Science.gov

Sample records for flow boiling conditions

  1. Evaluation of engine coolants under flow boiling conditions

    SciTech Connect

    McAssey, E.V. Jr.; Stinson, C.; Gollin, M.

    1995-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine coolant mixtures, propylene-glycol/water and ethylene-glycol/water. In each mixture, the concentration was 50-50 by volume. Performance in this situation is defined as the ability to maintain a lower surface temperature for a given flux. The heat transfer regimes considered covered the range from single phase forced convection through saturated flow boiling. Results show that both coolants perform satisfactorily. However, in single phase convection, ethylene-glycol/water is slightly more effective. Conversely, for sub-cooled nucleate boiling and saturated boiling, propylene-glycol/water results in slightly lower metal temperatures.

  2. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    NASA Astrophysics Data System (ADS)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  3. Investigation on the boiling heat transfer characteristics of R404A and R134a under stratified flow condition

    NASA Astrophysics Data System (ADS)

    Balachander, P.; Raja, B.

    2015-06-01

    An experimental investigation on the flow boiling heat transfer characteristics of R404A and R134a for low mass flux and heat flux conditions in a smooth horizontal tube is reported. Refrigerant saturation temperatures -15, -10, -5 and 0 °C were considered for the flow boiling conditions. The influence of the mass flux, heat flux and saturation temperature on the heat transfer coefficients of R404A and R134a are discussed in detail. The predominant flow pattern for the tested conditions is confirmed to be the stratified-wavy flow. The study revealed that the heat transfer coefficient is a strong function of the heat flux, throughout the flow boiling process, and the nucleate boiling contribution is much higher for R404A compared to that of R134a. The heat transfer characteristic of R404A is compared with that of R134a, to understand their relative performance in low temperature appliances. A modified correlation for the flow boiling heat transfer coefficient of R404A is developed to fit the experimental results of R404A.

  4. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    SciTech Connect

    Inasaka, F.; Nariai, H.

    1994-12-31

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m{sup 2}. Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q{sub cH} (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q{sub c,unif} (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities.

  5. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  6. Bubble transport in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  7. Critical heat flux in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe

  8. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  9. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  10. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  11. Heat transfer mechanisms in microgravity flow boiling.

    PubMed

    Ohta, Haruhiko

    2002-10-01

    The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

  12. Investigations of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.; Hasan, M.; Chao, David (Technical Monitor)

    2003-01-01

    In this work a building block type of approach is used so that a basic understanding of the processes that contribute to nucleate boiling heat fluxes under microgravity conditions can be developed. This understanding will lead to development of a mechanistic model for nucleate boiling heat transfer which could eventually be used as a design tool in space applications. Task Description Task 1: Fabrication of the Experimental Setup. Under this task, the test section and liquid holding and viewing chambers will be fabricated. Artificial cylinder cavities will be formed on silicon wafers. A single cavity and two or four cavities, with a prescribed spacing and size, will be formed. The desired nucleation wall superheat will be used to determine the size of the mouth of the cavities. Task 2: Experiments. The basic experiments for flow and temperature field around single and multiple (2 or 4 separated or merged bubbles growing on downward facing or inclined surfaces) will be carried out under normal gravity conditions. The experiments will be conducted at one atmosphere pressure, but liquid subcooling will be varied from 0 to 30C. Water and PF-5050 will be used as test liquids. Task 3: Analytical/Numerical Models. In this task, transient temperature and flow field in vapor and liquid will be determined during growth of a single bubble. Analysis will include the evolution of the vapor-liquid interface and development of microlayer underneath the bubbles. For merged bubbles, detailed calculations of flow and temperature field will be carried out for transient shapes of vapor stems supporting a large bubble and the corresponding evaporation rate. Flow and temperature field for a bubble sliding along a heated wall will also be determined. Microgravity conditions will be simulated and a framework of a numerical tool for prediction of nucleate boiling heat fluxes under microgravity conditions will be developed. Task 4: Experiments in a KC-135. To understand bubble growth and

  13. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  14. Local heat transfer for subcooled flow boiling with water

    SciTech Connect

    Boyd, R.D.; Meng, X. )

    1992-12-01

    In this paper, local heat transfer coefficients are predicted for turbulent water subcooled flow boiling through uniformly heated circular tubes. Correlations by Petukhov and by Shah are modified slightly. however, the correlation suggested by Kandlikar is improved significantly by requiring that it approach more accurate limits near the onset of fully developed boiling and the onset of nucleate boiling for subcooled flow. Excellent agreement is obtained with data corresponding to conditions of high inlet subcooling (183[degrees]C), high mass velocity (4.4 to 31.5 Mg/m[sup 2][center dot]s), and a large ratio of the axial coordinate to the diameter (95.5). The exit subcooling varies from 53.0 to 81.5[degrees]C. For smaller ratios ([lt]50.0), the accuracy decreases. In all cases, the local film temperature is the characteristic temperature. When the associated critical heat flux (CHF) data are examined in a Stanton number-Peclet number space, St [lt] 0.0065 and Pe [gt] 10[sup 5] in all cases. Comparisons with the Saha-Zuber criterion for bubble detachment show that moderately subcooled and high-velocity flows re characterized by a multiboundary layer phenomenon that includes an attached bubble layer. These results show that the bubble layer's existence can now be documented for a wide variety of fluids and conditions without flow visualizations.

  15. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  16. Nucleate boiling of water in twisted-tape swirled flow

    SciTech Connect

    Kudryavtsev, I.S.; Lekakh, B.M.; Paskar, B.L.; Fedorovich, Y.D. )

    1990-01-01

    This paper analyzes nucleate boiling in twisted-tape swirled water flow. The transverse flow velocity in the wall region, generated by the density gradient and acceleration, is estimated. It is concluded that the turbulence has a significant effect on the growth of vapor bubbles, decreasing the rate of nucleate boiling without simultaneously increasing the convective component to compensate for this effect.

  17. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  18. A heat transfer model for slug flow boiling within microchannels

    NASA Astrophysics Data System (ADS)

    Magnini, Mirco; Thome, John

    2016-11-01

    We propose a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels, to update the widely used three-zone model for the design of multi-microchannel evaporators. The flow is modelled as the cyclic passage of a liquid slug, an elongated bubble which traps a thin liquid film against the channel wall, and a dry vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method considering bubble proximity effects, which may limit the radial extension of the film, is included. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies: 833 slug flow boiling data points covering R134a, R245fa and R236fa and channel diameters from 0.4 mm to 1 mm. The new model predicts more than 80% of the database to within +/- 30 % and it represents an important step toward a complete physics-based modelling of bubble dynamics and heat transfer within microchannels under evaporating flow conditions.

  19. Can multiple flow boiling regimes be reduced into a single one in microchannels?

    NASA Astrophysics Data System (ADS)

    Yang, Fanghao; Dai, Xianming; Peles, Yoav; Cheng, Ping; Li, Chen

    2013-07-01

    We report that multiple and transitional flow boiling regimes in microchannels can be reduced into a single annular flow from the onset of nucleate boiling to the critical heat flux condition. Hydrophilic silicon nanowires directly grown on inner walls of microchannels were tailored to create boiling surfaces with optimal submicron pores surrounded by nanogaps through controlling the height and density of silicon nanowires using the nanocarpet effect. A single two-phase regime can be realized by controlling the flow structure in two aspects: reducing bubble size and transforming the dominant surface tension force from the cross-sectional plane to the inner-wall plane.

  20. Boils

    MedlinePlus

    A boil may begin as tender, pinkish-red, and swollen, on a firm area of the skin. Over time, it will feel like a water-filled balloon or cyst . Pain gets worse as it fills with pus and dead tissue. Pain lessens when the boil drains. A boil ...

  1. Study on critical heat flux enhancement in flow boiling of SiC nano-fluids under low pressure and low flow conditions

    SciTech Connect

    Lee, S. W.; Park, S. D.; Kang, S.; Kim, S. M.; Seo, H.; Lee, D. W.; Bang, I. C.

    2012-07-01

    Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristics of nano-fluids is their ability to significantly enhance the CHF. nano-fluids are nano-technology-based colloidal dispersions engineered through stable suspending of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol. % Al{sub 2}O{sub 3}/water and SiC/water nano-fluids. It was found that the CHF of the nano-fluids was enhanced and the CHF of the SiC/water nano-fluid was more enhanced than that of the Al{sub 2}O{sub 3}/water nano-fluid. (authors)

  2. Sodium boiling experiments in bundle geometries under fast transient and steady state conditions

    NASA Astrophysics Data System (ADS)

    Peppler, F. W.

    Flow loss experiments were carried out in tubular and 7 pin test-sections and in a sodium cooled 37 pin bundle with sinusoidal axial heat flux profile. Thermohydraulic behavior under fast loss of flow conditions, particularly three-dimensional phenomena such as the development of the temperature distribution, the boiling region, the onset and extension of dryout, and the flow regimes related to different boiling periods were studied. The experimental results provide data for the validation of three-dimensional two-phase hydrodynamic codes. Stationary boiling tests provide information on two-phase pressure drop in bundles, the flow regimes and the conditions prevailing during the approach to critical heat flux conditions.

  3. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy

  4. A correlation for nucleate flow boiling in small channels

    SciTech Connect

    Tran, T.N. |; Wambsganss, M.W.; Chyu, M.C.; France, D.M.

    1997-08-01

    Compact heat exchangers are becoming more attractive for applications in which energy conservation, space saving, and cost are important considerations. Applications exist in the process industries where phase-change heat transfer realizes more compact designs and improved performance compared to single-phase heat transfer. However, there have been only a few studies in the literature reporting on phase-change heat transfer and two-phase flow in compact heat exchangers, and validated design correlations are lacking. Recent data from experiments on flow boiling of refrigerants in small channels have led researchers to conclude that nucleation is the dominant heat transfer mechanism over a broad range of heat flux and wall superheats. Local heat transfer coefficients and overall two-phase pressure drops were measured for three different refrigerants with circular and non-circular channels in a range of pressures. This data base supports the nucleate boiling mechanism, and it was used to develop a new correlation for heat transfer in nucleate flow boiling. The correlation is based on the Rohsenow boiling model, introducing a confinement number defined by Kew and Cornwell. The new correlation predicts the experimental data for nucleate flow boiling of three refrigerants within {+-}15%.

  5. A study of flow boiling phenomena using real time neutron radiography

    NASA Astrophysics Data System (ADS)

    Novog, David Raymond

    decreased with increasing radial distance. For swirling flow, the void concentration was highest in the center of each subchannel formed by the twisted tape insert, producing two local void maxima at each axial position. Furthermore, the instantaneous RTNR results show that the effects of bubble agglomeration change from one geometry to the next. To further examine the application of RTNR for void distribution measurement, both vertical and horizontal orientations were examined. These experimental results show similar cross sectional averaged axial distributions of the void fraction but significant differences in the local void behavior. The HS-XCT experiments were conducted on swirl-flow boiling of Refrigerant 123 at similar conditions as the RTNR experiments. These tests were conducted to qualitatively compare and verify the void distribution and behavior obtained using RTNR techniques. The HS-XCT results verify that during smooth flow boiling in a vertical tube the void tends to concentrate in the center of the channel and decrease outward to the channel walls. For swirl flow, the void tends to concentrate near the center of each subchannel formed by the twisted tape. Furthermore, wall region void fraction for smooth-flow boiling was significantly higher than swirling flow conditions due to the significant centrifugal forces present in swirl-flow. These centrifugal forces may improve the heat transfer and dryout behavior during swirl-flow conditions. This work contributes to the development of two-phase flow diagnostics based on penetrating radiative techniques, i.e., RTNR and HS-XCT for void distribution measurement, and enhances the knowledge of flow boiling systems. The application of HS-XCT and RTNR for the study of flow boiling phenomena using smooth and swirl-flow geometries has clearly demonstrated that differences in local void distribution result in differences in heat transfer behavior.

  6. Modeling the onset of flow instability for subcooled boiling in downflow

    SciTech Connect

    Qureshi, Z. ); Barry, J.J.; Crowley, C.J. )

    1990-01-01

    A postulated loss-of-coolant accident (LOCA) scenario for the Savannah River Plant (SRP) production reactors involves a double-ended break of a reactor primary coolant pipe. The flow of coolant (D{sub 2}O) in the reactor may decrease in such an event. As the flow into the reactor decreases, boiling may occur, followed by dryout and failure of the fuel due to overheating. A typical SRP fuel assembly consists of multiple concentric tubes containing the fuel and target materials. Coolant passes through the annular passages in the assembly in downflow. Under normal operating conditions, the flow rate is maintained high enough to suppress or minimize subcooled boiling, i.e. the flow remains essentially single phase throughout. At high coolant flow rates, the flow is single phase or partially developed subcooled boiling, and the pressure drop decreases with decreasing flow rate. Here friction dominates the pressure gradient, and the flow is stable. Below a certain flow rate, however, pressure drop may increase with decreasing flow rate. This occurs when significant voids are produced by boiling, resulting in a large acceleration component to the pressure drop. The negative slope of the curve leads to an instability because the pressure drop cannot adjust to compensate -- the flow is driven to a lower value. Overheating of the channel may result. 15 refs., 14 figs.

  7. The bubbly-slug transition in a boiling two-phase flow under microgravity

    NASA Technical Reports Server (NTRS)

    Kiper, Ali M.; Swanson, T. D.

    1993-01-01

    A theory is presented to describe, in reduced gravity flow boiling, the transition from bubbly two-phase flow to slug flow. It is shown that characteristics of the bubbly flow and the transition were controlled by the mechanism of vapor bubble growth dynamics. By considering in nucleate boiling, behavior of vapor bubbles at departure from a heated surface a condition required for transition was determined. Although required, this condition alone could not ensure coalescence of bubbles to cause the transition to slug two-phase flow. The condition leading to coalescence, therefore, was obtained by examining oscillations of vapor bubbles following their departure from the heated surface. The predicted transition conditions were compared with the prediction and test data reported for adiabatic reduced gravity two-phase flow, and good qualitative agreement was found.

  8. Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes

    NASA Astrophysics Data System (ADS)

    Turgut, Oguz Emrah; Asker, Mustafa

    2017-01-01

    Literature comprises fewer studies about flow boiling modelling of refrigerants for in tube flows. In addition, researches on two phase flow heat transfer are based on the mathematical models which were derived in a very limited operational condition and correlated for their own measurements. In this study, a new flow boiling model including the superposed effects of nucleate and convective boiling mechanisms is proposed through the minimization of the cumulative error between the proposed mathematical model and actual data by means of artificial cooperative search algorithm and applied to the database of R-744 (carbon dioxide), available from different studies in the literature. Predictions obtained from the proposed model have been compared with those of retained from the literature correlations developed for flow boiling in tubes. The comparison results indicate that the new model outperforms the literature correlations in terms of prediction accuracy. Results of the comparisons reveal that the proposed flow boiling mathematical model has a mean absolute relative error of 14.6% and predicts 76.7% of the experimental data within ±20.0%.

  9. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  10. A Mechanistic Study of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Warrier, G. R.; Hasan, M. M.

    2002-01-01

    The overall objective of this work is to study nucleate boiling heat transfer under microgravity conditions in such a way that while providing basic knowledge of the phenomena, it also leads to development of simulation models and correlations that can be used as design tools for a wide range of gravity levels. In the study a building block type of approach is used and both pool and low velocity flow boiling are investigated. Starting with experiments using a single bubble, the complexity of the experiments is increased to two or three inline bubbles, to five bubbles placed on a two-dimensional grid. Finally, experiments are conducted where a large number of prescribed cavities nucleate on the heater and when a commercial surface is used. So far experiments have been conducted at earth normal gravity and in the reduced gravity environment of the KC-135 aircraft whereas experiments on the space station are planned. Modeling/complete numerical simulation of the boiling process is an integral part of the total effort. Experiments conducted with single bubbles formed on a nucleation site microfabricated on a polished silicon wafer show that for gravity levels (g) varying from 1.5g(sub e) to 0.01g(sub e), the bubble diameter at departure varies approximately as (g(sub e)/g)(exp 1/2) and the growth period as (g(sub e)/g). When bubbles merge either inline or in a plane, the bubble diameter at departure is found to be smaller than that obtained for a single bubble and shows a weaker dependence on the level of gravity. The possible reason is that as the bubbles merge they create fluid circulation around the bubbles, which in turn induces a lift force that is responsible for the earlier departure of the bubbles. The verification of this proposition is being sought through numerical simulations. There is a merger of two inline, three inline, and several bubbles in a plane in the low gravity environment of the KC-135 aircraft. After merger and before departure, a mushroom type

  11. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    SciTech Connect

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  12. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  13. Freon R141b flow boiling in silicon microchannel heat sinks: experimental investigation

    NASA Astrophysics Data System (ADS)

    Dong, Tao; Yang, Zhaochu; Bi, Qincheng; Zhang, Yulong

    2008-01-01

    This paper presents experimental investigations on Freon R141b flow boiling in rectangular microchannel heat sinks. The main aim is to provide an appropriate working fluid for microchannel flow boiling to meet the cooling demand of high power electronic devices. The microchannel heat sink used in this work contains 50 parallel channels, with a 60 × 200 ( W × H) μm cross-section. The flow boiling heat transfer experiments are performed with R141b over mass velocities ranging from 400 to 980 kg/(m2 s) and heat flux from 40 to 700 kW/m2, and the outlet pressure satisfying the atmospheric condition. The fluid flow-rate, fluid inlet/outlet temperature, wall temperature, and pressure drop are measured. The results indicate that the mean heat transfer coefficient of R141b flow boiling in present microchannel heat sinks depends heavily on mass velocity and heat flux and can be predicted by Kandlikar’s correlation (Heat Transf Eng 25(3):86 93, 2004). The two-phase pressure drop keeps increasing as mass velocity and exit vapor quality rise.

  14. Critical heat flux of subcooled flow boiling with water for high heat flux application

    NASA Astrophysics Data System (ADS)

    Inasaka, Fujio; Nariai, Hideki

    1993-11-01

    Subcooled flow boiling in water is thought to be advantageous in removing high heat load of more than 10 MW/m2. Characteristics of the critical heat flux (CHF), which determines the upper limit of heat removal, are very important for the design of cooling systems. In this paper, studies on subcooled flow boiling CHF, which have been conducted by the authors, are reported. Experiments were conducted using direct current heating of stainless steel tube. For uniform heating conditions, CHF increment in small diameter tubes (1 - 3 mm inside diameter) and the CHF characteristics in tubes with internal twisted tapes were investigated, and also the existing CHF correlations for ordinary tubes (more than 3 mm inside diameter) were evaluated. For peripherally non-uniform heating conditions using the tube, whose wall thickness was partly reduced, the CHF for swirl flow was higher than the CHF under uniform heating conditions with an increase of the non-uniformity factor.

  15. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  16. Static flow instability in subcooled flow boiling in parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-04-01

    A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime.

  17. The effects of geometric, flow, and boiling parameters on bubble growth and behavior in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Samaroo, Randy

    Air bubble injection and subcooled flow boiling experiments have been performed to investigate the liquid flow field and bubble nucleation, growth, and departure, in part to contribute to the DOE Nuclear HUB project, Consortium for Advanced Simulation of Light Water Reactors (CASL). The main objective was to obtain quantitative data and compartmentalize the many different interconnected aspects of the boiling process -- from the channel geometry, to liquid and gas interactions, to underlying heat transfer mechanisms. The air bubble injection experiments were performed in annular and rectangular geometries and yielded data on bubble formation and departure from a small hole on the inner tube surface, subsequent motion and deformation of the detached bubbles, and interactions with laminar or turbulent water flow. Instantaneous and ensemble- average liquid velocity profiles have been obtained using a Particle Image Velocimetry technique and a high speed video camera. Reynolds numbers for these works ranged from 1,300 to 7,700. Boiling experiments have been performed with subcooled water at atmospheric pres- sure in the same annular channel geometry as the air injection experiments. A second flow loop with a slightly larger annular channel was constructed to perform further boiling experiments at elevated pressures up to 10 bar. High speed video and PIV measurements of turbulent velocity profiles in the presence of small vapor bubbles on the heated rod are presented. The liquid Reynolds number for this set of experiments ranged from 5,460 to 86,000. It was observed that as the vapor bubbles are very small compared to the injected air bubbles, further experiments were performed using a microscopic objective to obtain higher spatial resolution for velocity fields near the heated wall. Multiple correlations for the bubble liftoff diameter, liftoff time and bub- ble history number were evaluated against a number of experimental datasets from previous works, resulting in a

  18. Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liburdy, James A.; Pence, Deborah V.; Narayanan, Vinod

    2009-11-01

    This study investigates the hydrodynamic characteristics of droplet impingement on heated surfaces and compares the effect of surface temperature when using water and a nanofluid on a polished and nanostructured surface. Results are obtained for an impact Reynolds number and Weber number of approximately 1700 and 25, respectively. Three discs are used: polished silicon, nanostructured porous silicon and gold-coated polished silicon. Seven surface temperatures, including single-phase (non-boiling) and two-phase (boiling) conditions, are included. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. Results of water and a water-based single-wall carbon-nanotube nanofluid impinging on a polished silicon surface are compared to determine the effects of nanoparticles on impinging dynamics. The nanofluid results in larger spreading velocities, larger spreading diameters and an increase in early-stage dynamic contact angle. Results of water impinging on both polished silicon and nanostructured silicon show that the nanostructured surface enhances the heat transfer for evaporative cooling at lower surface temperatures, which is indicated by a shorter evaporation time. Using a nanofluid or a nanostructured surface can reduce the total evaporation time up to 20% and 37%, respectively. Experimental data are compared with models that predict dynamic contact angle and non-dimensional maximum spreading diameter. Results show that the molecular-kinetic theory's dynamic contact angle model agrees well with current experimental data for later times, but over-predicts at early times. Predictions of maximum spreading diameter based on surface energy analyses indicate that these models over-predict unless empirical coefficients are adjusted to fit the test conditions. This is a consequence of underestimates of the dissipative energy for the conditions studied.

  19. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; Nawrocki, David; Clapper, Randy; Kolacz, John; Butcher, Robert; May, Rochelle; Chao, David; Mudawar, Issam; Kharangate, Chirag R.; O'Neill, Lucas E.

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  20. Transition from Pool to Flow Boiling: The Effect of Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    2004-01-01

    Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e

  1. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"

    NASA Astrophysics Data System (ADS)

    Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.

    2011-12-01

    Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.

  2. Experimental measurements and CFD simulation of convective boiling during subcooled developing flow of R-11 within vertical annulus

    NASA Astrophysics Data System (ADS)

    Bouaichaoui, Y.; Kibboua, R.; Matkovič, M.

    2015-05-01

    In this paper a convective flow boiling of refrigerant R-11 in a vertical annular channel has been investigated. Measurements were performed under various conditions of mass flux, heat flux, and inlet subcooling, which enabled to study the influence of different boundary conditions on the development of local flow parameters. Also, some measurements have been compared to the predictions by the three-dimensional two-fluid model of subcooled boiling flow carried out with the computer code ANSYS-CFX-13. Simulation results successfully predict the main experimental tendencies associated with the heat flux and Reynolds number variation. A sensitivity analysis of several modelling parameters on the radial distribution of flow quantities has highlighted the importance of correct description of the boiling boundary layer. In general a good quantitative and qualitative agreement with experimental data was obtained.

  3. Implementation of the interfacial area transport equation in trace for boiling two-phase flows

    NASA Astrophysics Data System (ADS)

    Bernard, Matthew S.

    Correctly predicting the interfacial area concentration (a i) is vital to the overall accuracy of the two-fluid model because ai describes the amount of surface area that exists between the two-phases, and is therefore directly related to interfacial mass, momentum and energy transfer. The conventional method for specifying ai in the two-fluid model is through flow regime-based empirical correlations coupled with regime transition criteria. However, a more physically consistent approach to predicting ai is through the interfacial area transport equation (IATE), which can address the deficiencies of the flow regime-based approach. Some previous studies have been performed to demonstrate the feasibility of IATE in developmental versions of the nuclear reactor systems analysis code, TRACE. However, a full TRACE version capable of predicting boiling two-phase flows with the IATE has not been established. Therefore, the current work develops a version of TRACE that is capable of predicting boiling two-phase flows using the IATE. The development is carried out in stages. First, a version of TRACE which employs the two-group IATE for adiabatic, vertical upward, air-water conditions is developed. An in-depth assessment on the existing experimental database is performed to select reliable experimental data for code assessment. Then, the implementation is assessed against the qualified air-water two-phase flow experimental data. Good agreement is observed between the experimental data for ai and the TRACE code with an average error of +/-9% for all conditions. Following the initial development, one-group IATE models for vertical downward and horizontal two-phase flows are implemented and assessed against qualified data. Finally, IATE models capable of predicting subcooled boiling two-phase flows are implemented. An assessment of the models shows that TRACE is capable of generating ai in subcooled boiling two-phase flows with the IATE and that heat transfer effects dominate

  4. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  5. Heat transfer performance of engine coolants under sub-cooled boiling conditions

    SciTech Connect

    Bhowmick, S.; Branchi, C.; McAssey, E.V. Jr.; Gollin, M.

    1996-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine cooling fluid mixtures, propylene-glycol/water and ethylene-glycol/water. These tests were performed under conditions closely simulating normal engine operation. For both mixtures, results were obtained over a range of heat transfer regimes from single phase convection to saturated flow boiling. Tests showed that propylene-glycol/water and ethylene-glycol/water have very similar heat transfer performances. Performance is defined as the steady state wall temperature maintained for a given surface heat flux and test section inlet velocity. For the lowest velocity tested, the test section experienced saturated boiling over approximately one-half of its heated length. The experimental results were also compared to analytical predictions based upon the Chen correlation. At higher fluxes, the analytical methods under-predicted the test section wall temperature.

  6. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  7. Effects of structural parameters on flow boiling performance of reentrant porous microchannels

    NASA Astrophysics Data System (ADS)

    Deng, Daxiang; Tang, Yong; Shao, Haoran; Zeng, Jian; Zhou, Wei; Liang, Dejie

    2014-06-01

    Flow boiling within advanced microchannel heat sinks provides an efficient and attractive method for the cooling of microelectronics chips. In this study, a series of porous microchannels with Ω-shaped reentrant configurations were developed for application in heat sink cooling. The reentrant porous microchannels were fabricated by using a solid-state sintering method under the replication of specially designed sintering modules. Micro wire electrical discharge machining was utilized to process the graphite-based sintering modules. Two types of commonly used copper powder in heat transfer devices, i.e., spherical and irregular powder, with three fractions of particle sizes respectively, were utilized to construct the porous microchannel heat sinks. The effects of powder type and size on the flow boiling performance of reentrant porous microchannels, i.e., two-phase heat transfer, pressure drop and flow instabilities, were examined under boiling deionized water conditions. The test results show that enhanced two-phase heat transfer was achieved with the increase of particle size for the reentrant porous microchannels with spherical powder, while the reversed trend existed for the counterparts with irregular powder. The reentrant porous microchannels with irregular powder of the smallest particle size presented the best heat transfer performance and lowest pressure drop.

  8. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors

    SciTech Connect

    Rosa, M.P.; Podowski, M.Z.

    1995-09-01

    This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.

  9. Specifics of boiling and condensation in upward flow in minichannel systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.; Safonov, S. A.; Shamirzaev, A. S.

    2015-12-01

    The results of experimental and numerical studies focused on determining the mechanism of heat transfer during boiling and condensation in a single-row system of minichannels in upward flow conditions at a mass flux of 30 and 50 kg/(m2 s) are presented. Refrigerant R21, which models cryogenic liquids at low temperatures, was used as the working liquid. The determining influence of self-organization of the flow under the influence of capillary forces on the processes of heat transfer during a phase transition in the system of minichannels at low mass and heat fluxes was revealed.

  10. Heat transfer coefficient for flow boiling in an annular mini gap

    NASA Astrophysics Data System (ADS)

    Hożejowska, Sylwia; Musiał, Tomasz; Piasecka, Magdalena

    2016-03-01

    The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface - fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two-phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.

  11. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  12. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  13. Study of Critical Heat Flux Mechanism in Flow Boiling Using Bubble Crowding Model

    NASA Astrophysics Data System (ADS)

    Kinoshita, Hidetaka; Nariai, Hideki; Inasaka, Fujio

    Critical heat flux (CHF) of Subcooled Flow Boiling with water in a tube was investigated from the viewpoint of mechanistic models. The Weisman-Pei bubble crowding model was selected to predict CHF in a short tube and in a tube with an internal twisted tape under nonuniform heating conditions, Based on the results of bubble behavior observation and preliminary analysis. The original Weisman-Pei model was modified in order to explain the physical phenomena of CHF. The modified model predicted well CHF in a smooth tube including the very short tube and the tube with an internal twisted tape under uniform and nonuniform heating conditions.

  14. Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Andrzejczyk, Rafał; Jakubowska, Blanka; Mikielewicz, Jarosław

    2014-09-01

    In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.

  15. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling.

    PubMed

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-17

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  16. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    PubMed Central

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-01-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics. PMID:28303952

  17. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    NASA Astrophysics Data System (ADS)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  18. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  19. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  20. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  1. Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.

    1999-01-01

    The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.

  2. Investigation of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    1996-01-01

    The focus of the present work is to experimentally study and to analytically/numerically model the mechanisms of growth of bubbles attached to, and sliding along, a heated surface. To control the location of the active cavities, the number, the spacing, and the nucleation superheat, artificial cavities will be formed on silicon wafers. In order to study the effect of magnitude of components of gravitational acceleration acting parallel to, and normal to the surface, experiments will be conducted on surfaces inclined at different angles including a downward facing surface. Information on the temperature field around bubbles, bubble shape and size, and bubble induced liquid velocities will be obtained through the use of holography, video/high speed photography and hydrogen bubble techniques, respectively. Analytical/numerical models will be developed to describe the heat transfer including that through the micro-macro layer underneath and around a bubble. In the micro layer model capillary and disjoining pressures will be included. Evolution of the interface along with induced liquid motion will be modelled. Subsequent to the world at normal gravity, experiments will be conducted in the KC-135 or the Lear jet especially to learn about bubble growth/detachment under low gravity conditions. Finally, an experiment will be defined to be conducted under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide microgravity data on bubble growth and detachment and will lead to a validation of the nucleate boiling heat transfer model developed from the preceding studies performed at normal and low gravity (KC-135 or Lear jet) conditions.

  3. Cryogenic two-phase flow during chilldown: Flow transition and nucleate boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Jackson, Jelliffe Kevin

    The recent interest in space exploration has placed a renewed focus on rocket propulsion technology. Cryogenic propellants are the preferred fuel for rocket propulsion since they are more energetic and environmentally friendly compared with other storable fuels. Voracious evaporation occurs while transferring these fluids through a pipeline that is initially in thermal equilibrium with the environment. This phenomenon is referred to as line chilldown. Large temperature differences, rapid transients, pressure fluctuations and the transition from the film boiling to the nucleate boiling regime characterize the chilldown process. Although the existence of the chilldown phenomenon has been known for decades, the process is not well understood. Attempts have been made to model the chilldown process; however the results have been fair at best. A major shortcoming of these models is the use of correlations that were developed for steady, non-cryogenic flows. The development of reliable correlations for cryogenic chilldown has been hindered by the lack of experimental data. An experimental facility was constructed that allows the flow structure, the temperature history and the pressure history to be recorded during the line chilldown process. The temperature history is then utilized in conjunction with an inverse heat conduction procedure that was developed, which allows the unsteady heat transfer coefficient on the interior of the pipe wall to be extracted. This database is used to evaluate present predictive models and correlations for flow regime transition and nucleate boiling heat transfer. It is found that by calibrating the transition between the stratified-wavy and the intermittent/annular regimes of the Taitel and Dukler flow regime map, satisfactory predictions are obtained. It is also found that by utilizing a simple model that includes the effect of flow structure and incorporating the enhancement provided by the local heat flux, significant improvement in the

  4. Static-flow-instability in subcooled flow boiling in wide rectangular parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-12-31

    The Advanced Neutron Source (ANS) is a state-of-the-art research reactor facility that will be built at the Oak Ridge National Laboratory (ORNL) and is designed to become the world`s most advanced thermal neutron flux source for scientific experiments. Therefore, the core of the ANS reactor (ANSR) must be designed to accommodate very high power densities using very high coolant mass fluxes and subcooling levels, The nominal average and peak heat fluxes in the ANSR are approximately 6 and 12 MW/M{sup 2}, respectively, with a nominal total thermal power of 303 MW. Highly subcooled heavy-water coolant (1.7 MPa and 85{degrees}C at the core exit) flows vertically upward at a very high mass flux of almost 27 Mg/M{sup 2}-s. The cooling channels in each fuel assembly are all parallel and share common inlet and outlet plenums, effectively imposing a common pressure drop across all the channels. This core configuration is subject to flow excursion (FE) and/or flow instability that may occur once boiling is initiated in any one of the channels. The FE phenomenon constitutes a different thermal limit than a true critical heat flux (CHF) or departure from nucleate boiling (DNB). In such a system, initiation of boiling in one of the channels (i.e., the hot channel) can result in flow redistribution to the other cooler channels. This report details testing to document this phenomenon.

  5. Investigation of Minimum Film boiling Phenomena on Fuel Rods Under Blowdown Cooling Conditions

    SciTech Connect

    Stephen M. Bajorek; Michael Gawron; Timothy Etzel; Lucas Peterson

    2003-06-30

    Blowdon cooling heat transfer is an important process that occurs early in a hypothetical large break loss-of-coolant accident (LOCA) in a pressurized water reactor. During blowdown, the flow through the hot assembly is a post-critical heat flux dispersed droplet flow. The heat transfer mechanisms that occur in blowdown cooling are complex and depend on droplet and heated surface interaction. In a safety analysis, it is of considerable importance to determine the thermal-hydraulic conditions leading to the minimum film boiling temperature, Tmin. A flow boiling rig for measurement of blowdown cooling heat transfer and quench phenomena on a nuclear fuel rod simulator was designed and constructed for operation at up to 12.4 MPa. The test section consisted of a concentric annulus, with a 9.5 mm OD nuclear fuel rod simulator at the center. The rod was contained within a 0.85 mm thick, 19 mm OD 316 stainless steel tube, forming the flow channel. Two types of rods were tested; one type was sheathed with Inconel 600 while the other was clad with Zircaloy-2. Water was injected into the test section at the top of the heated length through an injection header. This header was an annular sign that fit around the fuel rod simulator and within the stainless steel tube. Small spacers aligned the injection header and prevented contract with either the heater rod or the tube. A series of small diameter holes at the bottom of the header caused the formation of droplets that became entrained with the steam flow. The test section design was such that quench would take place on the rod, and not along the channel outer annulus.

  6. Experimental studies of adiabatic flow boiling in fractal-like branching microchannels

    SciTech Connect

    Daniels, Brian J.; Liburdy, James A.; Pence, Deborah V.

    2011-01-15

    Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2{sup -1/2}. There are four branching sections for a total flow length of 18 mm, a channel height of 150 {mu}m and a terminal channel width of 100 {mu}m. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large. (author)

  7. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kaji, Masao; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    To improve the thermal performance of high temperature generator of absorption chiller/heater, heat transfer characteristics of flow boiling of lithium bromide aqueous solution in the subcooled region were experimentally investigated. Experiments were made for water and lithium bromide aqueous solution flowing in a rectangular channel (5 mm × 20 mm cross section) with one side wall heated. Boiling onset quality of lithium bromide aqueous solution is greater than that of water. The heat transfer coefficient of lithium bromide aqueous solution is about a half of that of water under the same experimental conditions of inlet velocity and heat flux. The experimental data of heat transfer coefficient for water are compared with the empirical correlation of Thom et al.11) and a fairly good agreement is obtained. The predictive calculations by the method of Sekoguchi et al.12) are compared with the data for water and lithium bromide aqueous solution. Agreement between them is good for water, while the results for lithium bromide aqueous solution are not satisfactory.

  8. Injection of Nucleate-Boiling Slug Flows into a Heat Exchange Chamber in Microgravity

    DTIC Science & Technology

    2015-06-01

    usefhl reaction medimn. Properties I FC-72 Apperu·ar1ce Clear, colorless Average Molecular Weight 338 Boiling Point (I atm) 56°C Pour Point -90°C...at n01mal boiling point ) 88J/g Liqtrid Density 1680kg/m3 Kinematic Viscosity 0.38 centistokes Absolute Viscosity 0.64 centipoise Liqtrid Specific...AFRL-AFOSR-UK-TR-2015-0029 Injection of nucleate- boiling slug flows into a heat exchange chamber in microgravity Jaume

  9. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  10. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.

    PubMed

    Li, D; Wu, G S; Wang, W; Wang, Y D; Liu, Dong; Zhang, D C; Chen, Y F; Peterson, G P; Yang, Ronggui

    2012-07-11

    Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient.

  11. A combined experimental-numerical approach for two-phase flow boiling in a minichannel

    NASA Astrophysics Data System (ADS)

    Hożejowska, Sylwia; Grabowski, Mirosław

    2016-03-01

    The paper addresses experimental and numerical modeling of the two-phase flows in an asymmetrically heated horizontal minichannel. Experimental measurements concerned flows of evaporating ethanol in a minichannel with rectangular cross section 1.8mm × 2 mm. In order to observe the flows, measuring system was designed and built. The system measured and recorded basic heat and flow parameters of flowing fluid, and the temperature of external surface of the heater by using infrared camera and recorded images of flow with high-speed camera. The second aim of the paper was to formulate appropriate flow boiling heat transfer model, which would minimises the use of experimentally determined constants. The procedure of calculating the temperature of the ethanol is coupled with concurrent process of determining the temperature distributions in the isolating foil and the heating surface. The two-dimensional temperature distributions in three subsequent domains were calculated with Trefftz method. Due to the Robin condition, heat transfer coefficient at the heating surface-ethanol interface was calculated based on the known temperature distributions of the foil and liquid. Additionally, the paper describes the relation between two sets of functions used in the calculation. Numerical calculations made by Trefftz method were performed with using experimental data.

  12. Experimental study of the boiling mechanism of a liquid film flowing on the surface of a rotating disc

    SciTech Connect

    Kolokotsa, D.; Yanniotis, S.

    2010-11-15

    The boiling mechanism of a liquid film formed on the surface of a smooth horizontal rotating disc was studied using de-ionised water at 2 l/min flow rate, boiling under vacuum at 40 C and 5-10 C wall superheat. Visualization experiments were carried out and video films were taken for rotational speeds from 0 to 1000 rpm. It was observed that nucleate flow boiling prevails in the case of 0 rpm (stationary disc). Nucleate boiling was also observed at 100 and 200 rpm with the number of bubbles and the diameter of the bubbles decreasing as the rotational speed was increasing. At 600 and 1000 rpm rotational speeds, vapor bubbles were not observed. The results of visual observation were in agreement with bubble growth analysis which showed that at heat flux values of 40 kW/m{sup 2}, conditions for bubble growth are favorable at low rotational speeds (<200 rpm) but are unfavorable at high rotational speeds (1000 rpm). (author)

  13. Experimental investigation and simulation of flow boiling of nanofluids in different flow directions

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this work, the flow boiling of TiO2/water and Al2O3/water nanofluids was investigated experimentally and simulated with two phases. Experimental results were obtained in two directions and compared together. The volume fraction and heat transfer coefficient obtained from the vertical tube were compared with those obtained from the horizontal tube. The results showed that the contours of vapor volume fraction in horizontal tube are completely different from the vertical tube, which is due to the buoyancy effect. Moreover, the effect of nanoparticles on both flow directions was almost the same, while heat transfer coefficient was not the same in these flow directions. Based on the experimental result, presence of nanoparticles in the base fluid cannot increase the heat transfer coefficient.

  14. Film boiling on spheres in single- and two-phase flows. Final report

    SciTech Connect

    Liu, C.; Theofanous, T.G.

    1994-12-01

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

  15. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    SciTech Connect

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  16. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1991-01-01

    Future space exploration and commercialization will require more efficient heat rejection systems. For the required heat transfer rates, such systems must use advanced heat transfer techniques. Forced two phase flow boiling heat transfer with enhancements falls in this category. However, moderate to high quality two phase systems tend to require higher pressure losses. This report is divided into two major parts: (1) Multidimensional wall temperature measurement and heat transfer enhancement for top heated horizontal channels with flow boiling; and (2) Improved analytical heat transfer data reduction for a single side heated coolant channel. Part 1 summarizes over forty experiments which involve both single phase convection and flow boiling in a horizontal channel heated externally from the top side. Part 2 contains parametric dimensionless curves with parameters such as the coolant channel radius ratio, the Biot number, and the circumferential coordinate.

  17. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-08-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  18. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-01-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  19. Transport processes induced by metastable boiling water under Martian surface conditions

    NASA Astrophysics Data System (ADS)

    Massé, M.; Conway, S. J.; Gargani, J.; Patel, M. R.; Pasquon, K.; McEwen, A.; Carpy, S.; Chevrier, V.; Balme, M. R.; Ojha, L.; Vincendon, M.; Poulet, F.; Costard, F.; Jouannic, G.

    2016-06-01

    Liquid water may exist on the Martian surface today, albeit transiently and in a metastable state under the low atmospheric surface pressure. However, the identification of liquid water on Mars from observed morphological changes is hampered by our limited understanding of how metastable liquids interact with sediments. Here, we present lab experiments in which a block of ice melts and seeps into underlying sediment, and the resulting downslope fluid propagation and sediment transport are tracked. In experiments at Martian surface pressure, we find that pure water boils as it percolates into the sediment, inducing grain saltation and leading to wholesale slope destabilization: a hybrid flow mechanism involving both wet and dry processes. For metastable brines, which are more stable under Martian conditions than pure water, saltation intensity and geomorphological impact are reduced; however, we observed channel formation in some briny flow experiments that may be analogous to morphologies observed on Mars. In contrast, under terrestrial-like experimental conditions, there is little morphological impact of seeping water or brine, which are both stable. We propose that the hybrid flow mechanism operating in our experiments under Martian surface pressure could explain observed Martian surface changes that were originally interpreted as the products of either dry or wet processes.

  20. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  1. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    NASA Astrophysics Data System (ADS)

    Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.

  2. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  3. Mechanistic model for the prediction of water-subcooled-flow-boiling critical heat flux at high liquid velocity and subcooling

    SciTech Connect

    Celata, G.P.; Cumo, M.; Mariani, A.; Zummo, G.

    1996-07-01

    A new model is presented for the prediction of the critical heat flux (CHF) of subcooled flow boiling based on a liquid-sublayer dryout mechanism, i.e., the dryout of a thin, liquid layer beneath an intermittent vapor blanket due to the coalescence of small bubbles. The model focuses on the analysis of the CHF in subcooled flow boiling under conditions of very high mass flux and liquid subcooling, typical of fusion reactor thermal-hydraulic design, and is characterized by the absence of empirical constants always present in earlier models. Peripheral nonuniform heating and/or twisted-tape inserts are accounted for in the model, which was originally developed for uniform heating and straight flow. The simultaneous occurrence of the two events is also well predicted by the model. Although initially formulated for operating conditions typical of the thermal-hydraulic design of fusion reactor high-heat-flux components, the model is proven to be able to satisfactorily predict the CHF under more general conditions, provided local thermodynamic conditions of the bulk flow at the CHF are sufficiently far from the saturated state. 60 refs., 11 figs.

  4. Film boiling heat transfer from a wire to upward flow of liquid hydrogen and liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shiotsu, M.; Shirai, Y.; Horie, Y.; Shigeta, H.; Higa, D.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Nonaka, S.; Naruo, Y.; Inatani, Y.

    2015-11-01

    Film boiling heat transfer coefficients in liquid hydrogen were measured for the heater surface superheats to 300 K under pressures from 0.4 to 1.1 MPa, liquid subcoolings to 11 K and flow velocities to 8 m/s. Two test wires were both 1.2 mm in diameter, 120 mm and 200 mm in lengths and were made of PtCo alloy. The test wires were located on the center of 8 mm and 5 mm diameter conduits of FRP (Fiber Reinforced Plastics). Furthermore film boiling heat transfer coefficients in liquid nitrogen were measured only for the 200 mm long wire. The film boiling heat transfer coefficients are higher for higher pressure, higher subcooling, and higher flow velocity. The experimental data were compared with a conventional equation for forced flow film boiling in a wide channel. The data for the 8 mm diameter conduit were about 1.7 times and those for the 5 mm conduit were about 1.9 times higher than the predicted values by the equation. A new equation was presented modifying the conventional equation based on the liquid hydrogen and liquid nitrogen data. The experimental data were expressed well by the equation.

  5. Impact of boiling conditions on the molecular and sensory profile of a vegetable broth.

    PubMed

    Mougin, Alice; Mauroux, Olivier; Matthey-Doret, Walter; Barcos, Eugenia Maria; Beaud, Fernand; Bousbaine, Ahmed; Viton, Florian; Smarrito-Menozzi, Candice

    2015-02-11

    Low-pressure cooking has recently been identified as an alternative to ambient and high-pressure cooking to provide food with enhanced organoleptic properties. This work investigates the impact of the cooking process at different pressures on the molecular and sensory profile of a vegetable broth. Experimental results showed similar sensory and chemical profiles of vegetable broths when boiling at 0.93 and 1.5 bar, while an enhancement of sulfur volatile compounds correlated with a greater leek content and savory aroma was observed when boiling at low pressure (80 °C/0.48 bar). Thus, low-pressure cooking would allow preserving the most labile volatiles likely due to the lower water boiling temperature and the reduced level of oxygen. This study evidenced chemical and sensory impact of pressure during cooking and demonstrated that the flavor profile of culinary preparations can be enhanced by applying low-pressure conditions.

  6. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  7. Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

    SciTech Connect

    Pabisz, R.A. Jr.; Bergles, A.E.

    1996-12-31

    The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

  8. Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper reports the results of an experimental investigation about the occurrence of the critical heat flux (CHF) in subcooled flow boiling of water, carried out to ascertain the influence of thermal hydraulic parameters on CHF under conditions typical of themronuclear fusion divertor thermal hydraulic design. Helically coiled wires were used as turbulence promoters to enhance the CHF with respect to the smooth channel. Geometric characteristics of stainless steel 304 Type test sections were: 6.0 and 8.0 mm i.d., 0.25 mm wal thickness, 0.1 and 0.15 m heated length, horizontal and vertical (upflow) position. Test sections were uniformly heated using d.c. current. A maximum CHF of about 30 MW/sq m was reached with smooth tubes under the following conditions: T(sub in) = 30 C, p = 4.6 MPa, u = 10 m/s, D = 8.0 mm, L = 0.1 m. Helically coiled wires (d = 1.0 mm, pitch = 20.0 mm) allowed an increase of the CHF up to 50%, with reference to smooth channels, coupled with a moderate increase of pressure drop (down to 25%). Pressure revealed a negative effect on the efficiency of turbulence promoters. No observable influence of the channel orientation was detected.

  9. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-02-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  10. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  11. Physical interpretation of geysering phenomena and periodic boiling instability at low flows

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.

    1996-03-01

    Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ``geysering``, and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ``bumping`` when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations.

  12. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  13. (Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)

    SciTech Connect

    Not Available

    1989-01-01

    As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.

  14. A model for fluid flow during saturated boiling on a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Kheyrandish, K.; Dalton, C.; Lienhard, J. H.

    1987-01-01

    A model has been developed to represent the vapor removal pattern in the vicinity of a cylinder during nucleate flow boiling across a horizontal cylinder. The model is based on a potential flow representation of the liquid and vapor regions and an estimate of the losses that should occur in the flow. Correlation of the losses shows a weak dependence on the Weber number and a slightly stronger dependence on the saturated liquid-to-vapor density ratio. The vapor jet thickness, which is crucial to the prediction of the burnout heat flux, and the shape of the vapor film are predicted. Both are verified by qualitative experimental observations.

  15. Transient Pool Boiling Critical Heat Flux of FC-72 Under Saturated Conditions

    SciTech Connect

    Fitri, Sutopo P.; Katsuya Fukuda; Qiusheng Liu; Jongdoc Park

    2006-07-01

    In this study, the steady-state and transient critical heat fluxes (CHFs) in pool boiling were measured on 1.0 mm diameter horizontal cylinders of gold and platinum heaters under saturated conditions due to transient heat inputs, Q{sub 0}exp(t/t), in a pool of Fluorinert FC-72. Heaters were heated by electric current with the periods, t, ranged from 10 ms to 20 s, and the pressures ranged from atmospheric up to around 1.2 MPa. The steady-state CHFs measured are dependent on pressure and almost agree with the values obtained by Kutateladze's correlation based on hydrodynamic instability (HI) model. It was considered that the boiling inception and the direct transition during the steady-state period occur by the pre-pressure of {approx}1.2 MPa. The trend of typical transient CHFs were clearly divided into the first, second, and third groups for long, short, and intermediate periods, respectively. The direct transition processes to film boiling without nucleate boiling for the short periods obtained from both heaters were confirmed due to the heterogeneous spontaneous nucleation (HSN) in flooded cavities on the cylinder surface. The empirical correlations to express each of corresponding CHFs measured on both heaters for the short periods are presented in this paper. (authors)

  16. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  17. Bubble confinement in flow boiling of FC-72 in a ''rectangular'' microchannel of high aspect ratio

    SciTech Connect

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes; Sefiane, Khellil

    2010-11-15

    Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two-phase flow at a fundamental level. Boiling is induced in a single microchannel geometry (hydraulic diameter 727 {mu}m), using a refrigerant FC-72, to investigate the effect of channel confinement on bubble growth. A transparent, metallic, conductive deposit has been developed on the exterior of the rectangular microchannel, allowing simultaneous uniform heating and visualisation to be achieved. The data presented in this paper is for a particular case with a uniform heat flux applied to the microchannel and inlet liquid mass flowrate held constant. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop across the microchannel over time. Bubble nucleation and growth, as well as periodic slug flow, are observed in the microchannel test section. The periodic pressure fluctuations evidenced across the microchannel are caused by the bubble dynamics and instances of vapour blockage during confined bubble growth in the channel. The variation of the aspect ratio and the interface velocities of the growing vapour slug over time, are all observed and analysed. We follow visually the nucleation and subsequent both 'free' and 'confined' growth of a vapour bubble during flow boiling of FC-72 in a microchannel, from analysis of our results, images and video sequences with the corresponding pressure data obtained. (author)

  18. An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel

    SciTech Connect

    Huh, Cheol; Kim, Moo Hwan

    2006-08-15

    By using unique experimental techniques and carefully constructed experimental apparatus, the characteristics of flow boiling of water in microscale were investigated using a single horizontal rectangular microchannel. A polydimethylsiloxane rectangular microchannel (D{sub h}=103.5 and 133{mu}m) was fabricated by using the replica molding technique, a kind of soft lithography. A piecewise serpentine platinum microheater array on a Pyrex substrate was fabricated with the surface micromachining MEMS technique. Real time flow visualization of the phase change phenomena inside the microchannel was performed using a high speed CCD camera with microscope. The experimental local boiling heat transfer coefficients were studied, and single bubble inception, growth, and departure, as well as elongated bubble behavior were analyzed to elucidate the microscale heat transfer mechanisms. Tests were performed for mass fluxes of 77.5, 154.9, and 309.8kg/m{sup 2}s and heat fluxes of 180-500kW/m{sup 2}. The effects of mass flux, heat flux, and vapor qualities on flow boiling heat transfer in a microchannel were studied. (author)

  19. Orientation and related buoyancy effects in low-velocity flow boiling.

    PubMed

    Merte, Herman; Schultz, William W; Liu, Quanyi; Keller, Robert B

    2009-04-01

    This work is an extension of experimental results reported previously, which might provide design guidance for approximating certain aspects of the flow boiling process in microgravity but taking place in Earth gravity. In that research the buoyancy effects on the bubble dynamics were minimized by the imposition of a liquid velocity parallel to a flat heater surface in the inverted horizontal position, or nearly horizontal (within +/-5 degrees ), thus holding the heated liquid and vapor formed close to the heater surface. For the fluid used, liquid velocities in the range U= 5-10 cm/s were judged to be critical for changes in the behavior of the flow boiling process. Using the hydraulic diameter of the rectangular duct used, with the heater surface embedded in one side, this velocity range gives rise to flow Reynolds numbers on the order of 4400-8800. It was subsequently judged to be of interest to extend the range of orientation of the flat heater surface relative to gravity to the full circular range of 0-360 degrees, in increments of 45 degrees, and the results of this work are presented here. A solid massive copper heater with a gold-plated boiling heat transfer surface 19 x 38 mm in size, previously used for critical heat flux measurements with boiling, provided a near-uniform surface temperature. Only steady measurements of heat flux and surface temperature were possible with the copper heater. R-113 was the fluid used; the velocity was varied over the interval of 4-28 cm/s; bulk liquid subcooling was varied over 5-11 degrees C; and heat flux varied over 0-10 w/cm(2).

  20. Implementation of a Two-Phase Boiling Model into the RELAP5/MOD2 Computer Code to Predict Void Distribution in Low-Pressure Subcooled Boiling Flows

    SciTech Connect

    Yeoh, G.H.; Tu, J.Y.

    2002-02-15

    This paper demonstrates that the empirical models developed for subcooled flow boiling in RELAP5/MOD2 at high pressures are not valid for applications at low pressures. Modifications carried out in RELAP5/MOD2 to include better correlations of the interphase heat transfer and mean bubble diameter, and the wall heat flux partition model are shown to yield substantial improvements in the predictions of the axial void fraction distribution. When compared against experimental data covering a wide range of heat fluxes and flow rates, predicted axial void fraction profiles follow closely the measured data. Predictions made by the default subcooled boiling model show, however, an unacceptable margin of error with the experimental data.

  1. Flow and Heat Flux Behavior of Micro-bubble Jet Flows Observed in Thin, Twisted-Wire, Subcooled Boiling in Microgravity

    NASA Astrophysics Data System (ADS)

    Munro, Troy R.; Ban, Heng

    2015-02-01

    Thin wire, subcooled boiling experiments were performed onboard an aircraft flying a parabolic trajectory to provide microgravity conditions for improved observation of jet flow phenomena and their behavior in the absence of buoyant forces. A new type of nucleation jet flow was observed in microgravity. This new micro-bubble jet flow is seen at medium to high heat fluxes and is characterized by a region of the wire that forms multiple jet columns which contain micro-bubbles. These columns flow together and penetrate tens of millimeters into the bulk fluid. Bubble behavior on the wire was observed to progress from a dominance of larger isolated bubbles on the wire to a dominance of micro-bubble jet flows on the wire as heat flux was increased. There was also a transient transition from a few large isolated bubbles to micro-bubble jet flow dominance for a set heat flux. A cross correlation calculation provided velocities of micro-bubbles in the flow, which were in the range of 4-14 mm/s. These velocities were used with convection correlations to show that fluid flows induced by jet flows are a significant contributor to the subcooled boiling heat transfer in microgravity, but are not the primary contributor. Additionally, a relative bubble area analysis approximates the direct contribution of these jet flows to the overall heat dissipation. These micro-bubble jet flows, which are only observed on thin wires (not flat surfaces), and the convection currents they induce, have the potential to allow for sustained fluid motion to occur in microgravity.

  2. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of

  3. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Two experimental setups: High Heat Flux Pool Boiling Setup and Optical system of Measuring Contact Angle and Spreading Parameters were established and a series of experiments was conducted. The experimental work on the nucleate boiling performance of both Freon-113 and water on the composite surfaces has been finished and the results show that the composite surface with 25% volume fraction of graphite fibers in the copper matrix has the best enhancing performance. Stronger enhancement was obtained for water compared to Freon-113. The wall superheat initiating boiling was reduced 40% and 35% and the heat flux of the nucleate boiling was augmented up to ten times and 6.7 times, respectively. A bubble departure model has been presented to explain the enhancement mechanism of the boiling heat transfer on the composite surfaces. A powerful optical method to measure contact angle and spreading parameters of liquids on solid surfaces, including both transparent and non-transparent substrates, has been developed and successfully used in the measurements for various liquid-solid systems. The experimental work on identification of profiles near three-phase line by laser shadowgraphy method has been finished and the characteristics of the three-phase line for different liquid-solid systems were unveiled, which is very important to understand the mechanism of boiling under microgravity conditions. The four basic patterns of sessile profile were discovered through caustics and caustic-diffraction analysis by applying wave theory in shadowgraphy technology, which contributes to clearly explain the different characteristics of wetting and spreading of various liquids on a solid surface, and therefore to further understand the bubble departure mechanisms. A new working pattern of heat pipes using working fluids with positive surface-tension gradient against temperature was discovered and analyzed, and then the new heat pipe systems using this kind of working fluids have been

  4. Review of nucleation and incipient boiling under pool and forced convection conditions

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1987-01-01

    An overview of liquid-vapor nucleation is given. The result of thermodynamic equilibrium across curved liquid-vapor interfaces is presented. The extension of this to include the interaction with idealizations of surface cavities is made to demonstrate how superheat requirements for nucleation will be affected by surface roughness, flow velocity and buoyancy. Experimental measurements of high liquid superheats and nucleation delay times are presented as examples of homogeneous nucleation. Examples of nucleation and boiling on smooth glass substrates and on metal surfaces with various surface roughnesses are presented.

  5. Experimental analysis of R134a flow boiling inside a 5 PPI copper foam

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-04-01

    Heat dissipation is one of the most important issues for the reliability of electronic equipment. Boiling can be a very efficient heat transfer mechanism when used to face with the electronic technology needs of efficient and compact heat sinks. Recently, cellular structured materials both stochastic and periodic, particularly open cell metal foams, have been proposed as possible enhanced surfaces to lower the junction temperatures at high heat fluxes. Up today, most of the research on metal foams only regards single phase flow, whereas the two phase flow is still almost unexplored. This paper presents an experimental study on the heat transfer of R134a during flow boiling inside a 5 PPI (Pores Per linear Inch) copper foam, which is 5 mm high, 10 mm wide and 200 mm long, and it is brazed on a 10 mm thick copper plate. The experimental measurements were carried out by imposing three different heat fluxes (50, 75, and 100 kW m-2) and by varying the refrigerant mass velocity between 50 and 200 kg m-2 s-1 and the vapour quality from 0.2 to 0.90, at constant saturation temperature (30°C). The effects of the refrigerant mass flow rate, heat flux and vapour quality on the heat transfer coefficient, dry out phenomenon, and pressure drop are studied.

  6. Technology of forced flow and once-through boiling: A survey. [pressure distribution

    NASA Technical Reports Server (NTRS)

    Poppendieck, H. F.; Sabin, C. M.

    1975-01-01

    Representative boiling heat transfer and pressure drop information obtained primarily from past NASA and AEC programs is presented which is applicable to forced flow and once-through boiler systems. The forced convection boiler has a number of advantages: little possibility of flow mal-distribution; heat transfer characteristics are usually consistent; and conductances are predictable, so that higher heat fluxes may be employed with safety (which leads to more compact, lighter weight equipment). It was found that in gas-fired systems particularly, the controlling heat transfer resistance may be on the hot side, so that increased fluxes would require extended surfaces. If in a power generation system the working fluid is very expensive, a forced flow boiler can be designed especially for small holdup volume. If the fluid is temperature sensitive, the boiling side wall temperatures can be tailored to maintain maximum heat transfer rates without overheating the fluid. The forced flow and once-through configurations may be the only type which can satisfy a specific need (such as the automotive Rankine cycle power plant design having a very short time-response boiler).

  7. Thermohydrodynamics of boiling in a van der Waals fluid.

    PubMed

    Laurila, T; Carlson, A; Do-Quang, M; Ala-Nissila, T; Amberg, G

    2012-02-01

    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

  8. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D., Sr.

    1989-02-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  9. A combined photographic/thermographic study of highly subcooled flow boiling in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ozer, Arif Bilal

    Minichannels (those with channel spacing near 1 mm) offer an attractive scale range for technological applications of two-phase cooling. They are small enough to create large heat fluxes, but large enough to remove significant quantities of heat, and they do not present the same degree of fouling and maintenance issues anticipated for applications of true micro-scale channels. This study applies liquid crystal thermography in concert with high-speed video imaging of a two-phase flow field to study highly subcooled bubbly flow within a millimeter-scale channel. The experiments were conducted with a high-aspect-ratio (12x23 mm) rectangular, horizontal channel with one wide wall forming a uniform-heat-generation boundary and the other designed for optical access to the flow field. By using a thermochromic liquid crystal coating on the uniform-heat-generation boundary, wall temperature variations were obtained and the heat transfer characteristics were investigated. The experiments were focused on high inlet subcooling, typically 15--50 °C. The test surface temperature increases downstream until boiling initiates when a group of nucleation sites activate at a "boiling front." It is commonly thought that cooling of the surface downstream of the front would be dominated by active nucleation sites. However, few active sites were observed downstream of those near the current position of the boiling front. This observation provides strong evidence that it is the action of bubbles sliding in the confined channel that causes the enhancement of heat transfer, not the extensive nucleation of bubbles. A quenching/diffusion analytical model was developed to describe the heat process associated with sliding bubbles. The model is based on a transient conduction hypothesis. It is able to capture the elevated heat transfer rates measured in the channel without the need to consider nucleate boiling from the surface or microlayer evaporation from the sliding bubbles. Bubble speed and

  10. Local pressure gradients due to incipience of boiling in subcooled flows

    SciTech Connect

    Ruggles, A.E.; McDuffee, J.L.

    1995-09-01

    Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.

  11. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  12. Heating surface material’s effect on subcooled flow boiling heat transfer of R134a

    SciTech Connect

    Ling Zou; Barclay G. Jones

    2012-11-01

    In this study, subcooled flow boiling of R134a on copper (Cu) and stainless steel (SS) heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. By utilizing a high-speed digital camera, bubble growth rate, bubble departure size, and nucleation site density, were able to be observed and analyzed from the microscopic point of view. Macroscopic characteristics of the subcooled flow boiling, such as heat transfer coefficient, were able to be measured as well. Experimental results showed that there are no obvious difference between the copper and the stainless surface with respect to bubble dynamics, such as contact angle, growth rate and departure size. On the contrary, the results clearly showed a trend that the copper surface had a better performance than the stainless steel surface in terms of heat transfer coefficient. It was also observed that wall heat fluxes on both surfaces were found highly correlated with nucleation site density, as bubble hydrodynamics are similar on these two surfaces. The difference between these two surfaces was concluded as results of different surface thermal conductivities.

  13. The Effect of Numerical Diffusion on Oscillatory Flow in Two-Phase Boiling Channel

    SciTech Connect

    Chaiwat Muncharoen; Tatchai Sumitra; Takatoshi Takemoto; Masanori Aritomi

    2002-07-01

    The purpose of this paper is to study the effect of numerical diffusion on the ill-posedness and the accuracy of the model simulated the thermal-hydraulic instabilities in boiling water reactor channels. The model of the upward flow system in two-phase boiling channel simulating BWR core was developed to investigate the oscillatory flow, which was caused by flow instabilities, by using the drift-flux model. The time step was fixed at 1 millisecond at all time and the mesh size was varied as follows: 400, 200, 100, 50 and 20 mm. Then the numerical diffusion in the conservation equations was analyzed in reference to spatial mesh size. The maximums of the absolute ratios of the first order and the second order approximations of the time derivative terms (A/B) and the convective terms (C/D), including the summations of the second power of the ratios of the second order and the first order approximations of the time derivative terms ({sigma}(B/A){sup 2}) and the convective terms ({sigma}(D/C){sup 2}) were calculated to investigate the ill-posedness and the accuracy of numerical calculation of this model. The results from the model showed that the numerical diffusion in the time derivative term and the convective term play the important role in the drift-flux model for the small mesh size and may cause the ill-posedness and degrade the accuracy of the model. It was found that the A/B, the C/D, the {sigma}(B/A){sup 2} and the {sigma}(D/C){sup 2} in the drift-flux model highly fluctuated at the small mesh size of 50 and 20 mm. More importantly, the numerical diffusion due to the oscillation flow and the mesh size variation may have an effect on the amplitude of the pressure drop of the oscillatory flow at the small mesh size. (authors)

  14. Experimental verification of subcooled flow boiling for tokamak pump limiter designs

    SciTech Connect

    Koski, J.A.; Beattie, A.G.; Whitley, J.B.; Croessmann, C.D.

    1987-01-01

    In fusion energy research devices such as tokamaks, limiters are used to define the plasma boundary, and may serve the additional functions of plasma density and impurity control by removing neutralized particles from the plasma edge region. Because the devices must operate in the plasma edge, they are subject to high heat fluxes. In this paper, experimental studies conducted in support of a pump limiter design currently under development are discussed. Subcooled flow boiling of water and twisted tape flow enhancement are combined to enable heat removal of highly peaked local heat fluxes at the tube-water boundary in the 40 to 50 MW/m/sup 2/ range. Critical heat flux and heat removal experiments were conducted on copper tube targets with the use of a rastered 30 kV electron beam apparatus capable of producing the desired steady state heat flux levels.

  15. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  16. Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions

    NASA Astrophysics Data System (ADS)

    Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.

    2016-09-01

    To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.

  17. A more general Force Balance Model to predict Bubble Departure and Lift-off Diameters in flow boiling

    NASA Astrophysics Data System (ADS)

    Kommajosyula, Ravikishore; Mazzocco, Thomas; Ambrosini, Walter; Baglietto, Emilio

    2016-11-01

    Accurate prediction of Bubble Departure and Lift-off Diameters is key for development of closures in two-phase Eulerian CFD simulation of Flow Boiling, owing to its sensitivity in the Heat Flux partitioning approach. Several models ranging from simple correlations to solving complex force balance models have been proposed in literature; however, they rely on data-fitting for specific databases, and have shown to be inapplicable for general flow applications. The aim of this study is to extend the approach by proposing a more consistent and general formulation that accounts for relevant forces acting on the Bubble at the point of Departure and Lift-off. Among the key features of the model, the Bubble Inclination angle is treated as an unknown to be inferred along with the Departure Diameter, and the relative velocity of the bubble sliding on the surface, is modeled to determine the Lift-off Diameter. A novel expression is developed for the bubble growth force in terms of flow quantities, based on extensive data analysis. The model has been validated using 6 different experimental databases with varying flow conditions and 3 fluids. Results show high accuracy of predictions over a broad range, outperforming existing models both in terms of accuracy and generality. CASL - The Consortium for Advanced Simulation of LWRs.

  18. Numerical investigation of water-based nanofluid subcooled flow boiling by three-phase Euler-Euler, Euler-Lagrange approach

    NASA Astrophysics Data System (ADS)

    Valizadeh, Ziba; Shams, Mehrzad

    2016-08-01

    A numerical scheme for simulating the subcooled flow boiling of water and water-based nanofluids was developed. At first, subcooled flow boiling of water was simulated by the Eulerian multiphase scheme. Then the simulation results were compared with previous experimental data and a good agreement was observed. In the next step, subcooled flow boiling of water-based nanofluid was modeled. In the previous studies in this field, the nanofluid assumed as a homogeneous liquid and the two-phase scheme was used to simulate its boiling. In the present study, a new scheme was used to model the nanofluid boiling. In this scheme, to model the nanofluid flow boiling, three phases, water, vapor and nanoparticles were considered. The Eulerian-Eulerian approach was used for modeling water-vapor interphase and Eulerian-Lagrangian scheme was selected to observe water-nanoparticle interphase behavior. The results from the nanofluid boiling modeling were validated with an experimental investigation. The results of the present work and experimental data were consistent. The addition of 0.0935 % volume fraction of nanoparticles in pure liquid boiling flow increases the vapor volume fraction at the outlet almost by 40.7 %. The results show the three-phase model is a good approach to simulate the nanofluid boiling flow.

  19. Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions

    SciTech Connect

    V.K. Dhir

    2003-04-28

    At present, guidelines for fuel cycle designs to prevent axial offset anomalies (AOA) in pressurized water reactor (PWR) cores are based on empirical data from several operating reactors. Although the guidelines provide an ad-hoc solution to the problem, a unified approach based on simultaneous modeling of thermal-hydraulics, chemical, and nuclear interactions with vapor generation at the fuel cladding surface does not exist. As a result, the fuel designs are overly constrained with a resulting economic penalty. The objective of present project is to develop a numerical simulation model supported by laboratory experiments that can be used for fuel cycle design with respect to thermal duty of the fuel to avoid economic penalty, as well as, AOA. At first, two-dimensional numerical simulation of the growth and departure of a bubble in pool boiling with chemical interaction is considered. A finite difference scheme is used to solve the equations governing conservation of mass, momentum, energy, and species concentration. The Level Set method is used to capture the evolving liquid-vapor interface. A dilute aqueous boron solution is considered in the simulation. From numerical simulations, the dynamic change in concentration distribution of boron during the bubble growth shows that the precipitation of boron can occur near the advancing and receding liquid-vapor interface when the ambient boron concentration level is 3,000 ppm by weight. Secondly, a complete three-dimensional numerical simulation of inception, growth and departure of a single bubble subjected to forced flow parallel to the heater surface was developed. Experiments on a flat plate heater with water and with boron dissolved in the water were carried out. The heater was made out of well-polished silicon wafer. Numbers of nucleation sites and their locations were well controlled. Bubble dynamics in great details on an isolated nucleation site were obtained while varying the wall superheat, liquid subcooling

  20. Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-10-01

    An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.

  1. Critical heat flux in forced convective boiling with a plane jet (Revised correlation for saturated condition)

    NASA Astrophysics Data System (ADS)

    Monde, M.; Wang, X.

    Critical heat flux (CHF) has been measured in saturated forced convective boiling with a wall jet on a rectangular heated surface of 40 and 80mm in length and 20mm in width. The jet velocity is varied from 3 to 15 m/s, and the system pressure is 0.1, 0.2, and 0.4MPa for R113. It is found that the existing correlation for saturation condition can be applied to the CHF at high and low ρl/ρg values (e.g. water and R22), but hardly to the CHF at medium ρl/ρg values (e.g. R113 at 0.2 and 0.4MPa). A revised correlation is proposed to predict most of the CHF data within an accuracy of +/-25%.

  2. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  3. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    NASA Astrophysics Data System (ADS)

    Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.

    2011-09-01

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  4. Formation of Martian Gullies by the Flow of Simultaneously Freezing and Boiling Liquid Water

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Mellon, Michael T.; Toon, Owen B.; Pollard, Wayne H.; Mellon, Michael T.; Pitlick, John; McKay, Christopher P.; Andersen, Dale T.

    2004-01-01

    Geomorphic evidence suggests that recent gullies on Mars were formed by fluvial activity. The Martian gully features are significant because their existence implies the presence of liquid water near the surface on Mars in geologically recent times. Irrespective of the ultimate source of the fluid carving the gullies, we seek to understand the behavior of this fluid after it reaches the Martian surface. We find that, contrary to popular belief, the fluvially-carved Martian gullies require formation conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water. Mars Global Surveyor observations of gully length and our modeling of water stability are consistent with gully formation from the action of pure liquid water that is simultaneously boiling and freezing.

  5. Experimental verification of subcooled flow boiling for tokamak pump limiter designs

    SciTech Connect

    Koski, J.A.; Beattie, A.G.; Whitley, J.B.; Croessmann, C.D.

    1987-01-01

    In fusion energy research devices such as tokamaks, limiters are used to define the plasma boundary, and may serve the additional functions of plasma density and impurity control by removing neutralized particles from the plasma edge region. Because the devices must operate in the plasma edge or ''scrape-off-layer,'' they are subject to high heat fluxes. In this paper, experimental studies for a pump limiter design currently under development are discussed. Subcooled flow boiling of water and twisted tape flow enhancement are combined to enable heat removal of highly peaked local heat fluxes at the tube-water boundary in the 40 to 50 MW/m/sup 2/ range. Experiments were conducted with the use of a rastered 30 kV electron beam apparatus which is capable of producing the desired steady state heat flux levels. Objectives of the experiment were (1) to verify the heat removal model used for finite element thermal and stress analyses, (2) selection of appropriate critical heat flux (CHF) margins and criteria, and (3) development of acoustic techniques to monitor the onset of CHF during actual limiter operation.

  6. Film Boiling Heat Transfer from a Round Wire to Liquid Hydrogen Flowing Upward in a Concentric Annulus

    NASA Astrophysics Data System (ADS)

    Shiotsu, M.; Shirai, Y.; Oura, Y.; Horie, Y.; Yoneda, K.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.

    Hydrogen film boiling heat transfer coefficients were measured for the heater surface superheats up to 400 K under pressures from 400 to 1100 kPa, liquid subcoolings from 0 to 11 K and flow velocities up to 7 m/s. The test wire used was 1.2 mm in diameter and 120 mm in length made of PtCo (0.5 wt.%) alloy, which was located at the center of 8 mm diameter conduit made of FRP (Fiber Reinforced Plastics). The heat transfer coefficients were higher for higher pressure, higher subcooling and higher flow velocity. The heat transfer coefficients were about 1.6 times higher than those predicted by Shiotsu-Hama equation for forced flow film boiling in a wide channel. Discussions were made on the mechanism of difference between them.

  7. Heat transfer with nucleate boiling of liquids under weak mass force field conditions

    NASA Technical Reports Server (NTRS)

    Kirichenko, Y. A.

    1974-01-01

    The motion is examined of a vapor bubble growing and rising from a flat horizontal heater in the ideal fluid approximation and taking drag into account. Estimates are given of bubble lifetime, bubble radius at detachment, bubble detachment frequency, and time for the bubble to attain a constant rate of rise. The relations obtained for the microcharacteristics of the boiling process are used to determine the coefficients of heat transfer in developed nucleate boiling. A new form of the equations for describing heat transfer in nucleate boiling in dimensionless parameters is proposed.

  8. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  9. Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach

    NASA Astrophysics Data System (ADS)

    Shao, Xuefeng; Li, Xiangdong; Wang, Rongshun

    2016-04-01

    An average bubble number density (ABND) model was formulated and numerically resolved for the subcooled flow boiling of liquid nitrogen. The effects of bubble coalescence and breakup were taken into account. Some new closure correlations describing bubble nucleation and departure on the heating surface were selected as well. For the purpose of comparison, flow boiling of liquid nitrogen was also numerically simulated using a modified two-fluid model. The results show that the simulations performed by using the ABND model achieve encouraging improvement in accuracy in predicting heat flux and wall temperature of a vertical tube. Moreover, the influence of the bubble coalescence and breakup is shown to be great on predicting overall pressure beyond the transition point.

  10. The development of a non-equilibrium dispersed flow film boiling heat transfer modeling package

    NASA Astrophysics Data System (ADS)

    Meholic, Michael J.

    The dispersed flow film boiling (DFFB) heat transfer regime is important to several applications including cryogenics, rocket engines, steam generators, and in the safety analysis of nuclear reactors. Most notably, DFFB is responsible for the heat transfer during the blowdown and reflood portions of the postulated loss-of-coolant-accident (LOCA). Such analyses require the accurate predictions of the heat transfer resulting from the non-equilibrium conditions present in DFFB. A total of six, interrelated heat transfer paths need to be modeled accurately in order to quantify DFFB heat transfer. Within the nuclear industry, transient safety analysis codes, such as COBRA-TF, are used to ensure the safety of the reactor under various transient and accident scenarios. An extensive literature review of DFFB heat transfer highlighted a number of correlative, phenomenological, and mechanistic models. The Forslund-Rohsenow model is most commonly implemented throughout the nuclear industry. However, several of the models suggested by Forslund and Rohsenow to model DFFB phenomena are either inapplicable for nuclear reactors or do not provide an accurate physical representation of the true situation. Deficiencies among other DFFB heat transfer models in their applicability to nuclear reactors or in their computational expenses motivated the development of a mechanistically based DFFB model which accounted for each heat transfer mechanism explicitly. The heat transfer resulting from dispersed droplets contacting the heated wall in DFFB was often neglected in previous models. In this work, a first-principles approach was implemented to quantify the heat transfer attributed to direct contact. Lagrangian droplet trajectory calculations incorporating realistic radial vapor velocity and temperature profiles were performed to determine if droplets could contact the heated wall based upon the local conditions. These calculations were performed over a droplet size spectrum accounting

  11. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1996-01-01

    The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.

  12. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the

  13. Numerical Analysis of Nucleate Boiling on High Heat-Flux and High Subcooling Condition for Reactivity Initiation Accident

    SciTech Connect

    Heo, S.; Koshizuka, S.; Oka, Y.

    2002-07-01

    This paper shows the numerical simulation study on the growth of the bubble in the transient pool boiling using MPS-MAFL method. The growth process of a bubble with the different initial radii is calculated in a high heat-flux and high subcooling condition expected in nuclear reactor core during RIA. The smaller initial radius is, the earlier the growth starts. The initial bubble radius has little effect on the growth initiation time and the bubble departure radius. (authors)

  14. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 1: R-123

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-123 data with a structured enhanced boiling tube are available.The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual flooded evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}ft{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--15% (by weight), are varied; the mass flux is not varied independently but set by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature set point (taken at the top of the tube bundle) is 40 F (4.4 C).

  15. Experimental investigation on the flow instability behavior of a multi-channel boiling natural circulation loop at low-pressures

    SciTech Connect

    Jain, Vikas; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-09-15

    Natural circulation as a mode of heat removal is being considered as a prominent passive feature in the innovative nuclear reactor designs, particularly in boiling-water-reactors, due to its simplicity and economy. However, boiling natural circulation system poses many challenges to designer due to occurrence of various kinds of instabilities such as excursive instability, density wave oscillations, flow pattern transition instability, geysering and metastable states in parallel channels. This problem assumes greater significance particularly at low-pressures i.e. during startup, where there is great difference in the properties of two phases. In light of this, a parallel channel loop has been designed and installed that has a geometrical resemblance to the pressure-tube-type boiling-water-reactor, to investigate into the behavior of boiling natural circulation. The loop comprises of four identical parallel channels connected between two common plenums i.e. steam drum and header. The recirculation path is provided by a single downcomer connected between steam drum and header. Experiments have been conducted over a wide range of power and pressures (1-10 bar). Two distinct unstable zones are observed with respect to power i.e. corresponding to low power (Type-I) and high power (Type-II) with a stable zone at intermediate powers. The nature of oscillations in terms of their amplitude and frequency and their evolution for Type-I and Type-II instabilities are studied with respect to the effect of heater power and pressure. This paper discusses the evolution of unstable and stable behavior along with the nature of flow oscillation in the channels and the effect of pressure on it. (author)

  16. Oscillate boiling from microheaters

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  17. Subcooled freon-11 flow boiling in top-heated finned coolant channels with and without a twisted tape

    NASA Technical Reports Server (NTRS)

    Smith, Alvin; Boyd, Ronald D., Sr.

    1989-01-01

    An experimental study was conducted in top-heated finned horizontal tubes to study the effect of enhancement devices on flow boiling heat transfer in coolant channels. The objectives are to examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for circular coolant channels with spiral finned walls and/or spiral fins with a twisted tape, and improve the data reduction technique of a previous investigator. The working fluid is freon-11 with an inlet temperature of 22.2 C (approximately 21 C subcooling). The coolant channel's exit pressure and mass velocity are 0.19 M Pa (absolute) and 0.21 Mg/sq. ms, respectively. Two tube configurations were examined; i.e., tubes had either 6.52 (small pitch) or 4.0 (large pitch) fins/cm of the circumferential length (26 and 16 fins, respectively). The large pitch fins were also examined with a twisted tape insert. The inside nominal diameter of the copper channels at the root of the fins was 1.0 cm. The results show that by adding enhancement devices, boiling occurs almost simultaneously at all axial locations. The case of spiral fins with large pitch resulted in larger mean (circumferentially averaged) heat transfer coefficients, h sub m, at all axial locations. Finally, when twisted tape is added to the tube with large-pitched fins, the power required for the onset of boiling is reduced at all axial and circumferential locations.

  18. Subcooled freon-11 flow boiling in top-heated finned coolant channels with and without a twisted tape

    NASA Astrophysics Data System (ADS)

    Smith, Alvin; Boyd, Ronald D., Sr.

    An experimental study was conducted in top-heated finned horizontal tubes to study the effect of enhancement devices on flow boiling heat transfer in coolant channels. The objectives are to examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for circular coolant channels with spiral finned walls and/or spiral fins with a twisted tape, and improve the data reduction technique of a previous investigator. The working fluid is freon-11 with an inlet temperature of 22.2 C (approximately 21 C subcooling). The coolant channel's exit pressure and mass velocity are 0.19 M Pa (absolute) and 0.21 Mg/sq. ms, respectively. Two tube configurations were examined; i.e., tubes had either 6.52 (small pitch) or 4.0 (large pitch) fins/cm of the circumferential length (26 and 16 fins, respectively). The large pitch fins were also examined with a twisted tape insert. The inside nominal diameter of the copper channels at the root of the fins was 1.0 cm. The results show that by adding enhancement devices, boiling occurs almost simultaneously at all axial locations. The case of spiral fins with large pitch resulted in larger mean (circumferentially averaged) heat transfer coefficients, h sub m, at all axial locations. Finally, when twisted tape is added to the tube with large-pitched fins, the power required for the onset of boiling is reduced at all axial and circumferential locations.

  19. Boiling of a Liquid on Microstructured Surfaces Under Free-Convection Conditions

    NASA Astrophysics Data System (ADS)

    Shchelchkov, A. V.; Popov, I. A.; Zubkov, N. N.

    2016-09-01

    The authors have shown the possibilities of replacing complex and expensive technologies of manufacture of nanorough, microrough, and porous materials for boiling surfaces by a simple and resource-saving technique of mechanical treatment of surfaces: by the strain-cutting method. It has been established that the maximum levels of heat-transfer intensification (as high as four to six times) during the boiling of distilled water and increase (of six times) in the critical heat fluxes are inherent in surfaces obtained by the strain-cutting method with three-dimensional microfinning with spacings of width 120-180 μm at a height of fins of 340-570 μm and their longitudinal spacing of 240-400 μm.

  20. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  1. Boiling Heat Transfer Mechanisms in Earth and Low Gravity: Boundary Condition and Heater Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Kim, Jungho

    2004-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across

  2. A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Hasan, M. M.

    2000-01-01

    bubble along the surface. The numerical simulation has been carried out by solving under the condition of axisymmetry, the mass, momentum, and energy equations for the vapor and the liquid phases. In the model the contribution of micro-layer has been included and instantaneous shape of the evolving vapor-liquid interface is determined from the analysis. Consistent with the experimental results, it is found that effect of reduced gravity is to stretch the growth period and bubble diameter It is found that effect of reduced gravity is to stretch the growth period and bubble diameter at departure. The numerical simulations are in good agreement with the experimental data for both the departure diameters and the growth periods. In the study on dynamics of multiple bubbles, horizontal merger of 2,3 4,and 5 bubbles was observed. It is found that after merger of 2 and 3 bubbles the equivalent diameter of the detached bubble is smaller than that of a single bubble departing at the same gravity level. During and after bubble merger, liquid still fills the space between the vapor stems so as to form mushroom type bubbles. The experimental and numerical studies conducted so far have brought us a step closer to prediction of nucleate boiling heat fluxes under low gravity conditions. Preparations for a space flight are continuing.

  3. An improved method for simultaneous determination of frictional pressure drop and vapor volume fraction in vertical flow boiling

    NASA Technical Reports Server (NTRS)

    Klausner, J. F.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The two-phase frictional pressure drop and vapor volume fraction in the vertical boiling and adiabatic flow of the refrigerant, R11, have been simultaneously measured by a liquid balancing column and differential magnetic reluctance pressure transducers. An account is given of the experimental apparatus and procedure, data acquisition and analysis, and error estimation employed. All values of two-phase multipliers evaluated on the basis of the measured frictional pressure drop data in vertical upflow fall in the range bounded by the predictions of the Chisholm correlation and the homogeneous model.

  4. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    SciTech Connect

    Yu, Wenhua; Singh, Dileep; France, David M.

    2016-11-01

    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  5. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  6. Analytic solution to verify code predictions of two-phase flow in a boiling water reactor core channel

    SciTech Connect

    Chen, K.F.; Olson, C.A.

    1983-09-01

    One reliable method that can be used to verify the solution scheme of a computer code is to compare the code prediction to a simplified problem for which an analytic solution can be derived. An analytic solution for the axial pressure drop as a function of the flow was obtained for the simplified problem of homogeneous equilibrium two-phase flow in a vertical, heated channel with a cosine axial heat flux shape. This analytic solution was then used to verify the predictions of the CONDOR computer code, which is used to evaluate the thermal-hydraulic performance of boiling water reactors. The results show excellent agreement between the analytic solution and CONDOR prediction.

  7. Analytic solution to verify code predictions of two-phase flow in a boiling water reactor core channel. [CONDOR code

    SciTech Connect

    Chen, K.F.; Olson, C.A.

    1983-09-01

    One reliable method that can be used to verify the solution scheme of a computer code is to compare the code prediction to a simplified problem for which an analytic solution can be derived. An analytic solution for the axial pressure drop as a function of the flow was obtained for the simplified problem of homogeneous equilibrium two-phase flow in a vertical, heated channel with a cosine axial heat flux shape. This analytic solution was then used to verify the predictions of the CONDOR computer code, which is used to evaluate the thermal-hydraulic performance of boiling water reactors. The results show excellent agreement between the analytic solution and CONDOR prediction.

  8. Development of high-performance cooling devices for space application by using flow boiling in narrow channels.

    PubMed

    Miura, Shinichi; Inada, Yukihiro; Shinmoto, Yasuhisa; Ohta, Haruhiko

    2009-04-01

    Heat generation density from semiconductor devices has been increasing with the rapid development of electronic technology. The cooling system using boiling two-phase phenomena has attracted much attention because of its high heat removal potential. To develop compact and high-performance cooling systems, we conducted experiments on the increase of critical heat flux (CHF) for flow boiling in narrow channels by improved liquid supply. A large surface of 150 mm in heated length and 30 mm in width with grooves of an apex angle of 90 degrees , 0.5-mm depth, and 1 mm in pitch was employed. A structure of narrow heated channel between parallel plates with an unheated auxiliary channel was devised and tested by using water for different combinations of gap sizes and volumetric flow rates, where inlet of the main heated channel and the outlet of auxiliary unheated channel were closed to prevent the flow instability observed frequently at low flow rate for parallel two channels. For the total volumetric flow rate more than 4.5 x 10(-5) m(3)/s, higher values of CHF large than 2 x 10(6) W/m(2) were obtained for gap size of 2 mm. For gap sizes of 2 mm and 5 mm at high volumetric flow rate larger than 6.0 x 10(-5) m(3)/s, or mass velocity based on the cross section are of main heated channel 958.1 kg/m(2)s and 383.2 kg/m(2) s, respectively, the extension of dry patches was observed at the upstream location of the main heated channel resulting in burnout not at the downstream but at the upstream. By the increase in total volumetric flow rate, the pressure drop increased because of increasing in the flow rate passing through the sintered metal porous plates connecting both channels. The values of pressure drop for gap size of 2 mm were higher than that for gap size of 5 mm. When the performance of the cooling system was evaluated on the basis of pump power, ignoring its variation in the efficiency with volumetric flow rate, that is, the power defined as the product of the

  9. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    SciTech Connect

    Pointer, William David; Shaver, Dillon; Liu, Yang; Vegendla, Prasad; Tentner, Adrian

    2016-09-30

    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

  10. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  11. Pool boiling

    SciTech Connect

    Lallemand, M.

    1993-10-01

    Heat transfer between a wall and a stagnant boiling liquid is reviewed in this paper. The effect of different parameters on the boiling curve is pointed out on the basis of experimental data from the literature. Augmentation of heat transfer by enhanced surfaces is described briefly. The available correlations for prediction of heat transfer coefficients are given for the entire boiling curve, i.e., nucleate, transitional, and film boiling, and critical points. These correlations are useful for the design and operation of various heat-exchange systems.

  12. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 2: R-134a

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local, experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-134a data with a structured enhanced boiling tube are available. This tube has reentrant cavities designed for higher saturation pressure of refrigerants. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}f{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--12% (by weight), are varied; the mass flux is not an independent variable but determined by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature setpoint (taken at the top of the tube bundle) is 40 F (4.4 C).

  13. Modeling and experiments for wall heat flux partitioning during subcooled flow boiling of water at low pressures

    NASA Astrophysics Data System (ADS)

    Basu, Nilanjana

    Void fraction during subcooled flow boiling depends on the amount of vapor generated at the wall and condensation in the bulk. Partitioning of heat flux at the wall is required to determine the fraction of the energy that is utilized for vapor production. The wall heat flux models currently available in the literature were developed for high-pressure applications and have too much empiricism built into them. As such their deficiencies become pronounced when applied to low pressures (1--5 bar), which are of interest in passively cooled advanced reactors (e.g., AP 600). In this work a mechanistic model for nucleate boiling heat flux as a function of wall superheat has been developed. The premise of the proposed model is that the entire energy from the wall is first transferred to the superheated liquid layer adjacent to the wall, either by transient conduction or forced convection. A fraction of this energy is then utilized for vapor generation. Contribution of each of the heat transfer mechanism---forced convection, transient conduction, and vapor generation, has been quantified in terms of nucleation site densities, bubble departure and lift off diameters, bubble release frequency, flow parameters like velocity, inlet subcooling, wall superheat, and fluid and surface properties, including system pressures. In this work, the vapor generation component at the wall is computed independently and not as factors of other wall heat flux components as has been done in most past studies. To support the model development, subcooled flow boiling experiments were conducted at pressures of 1.03 to 3.2 bar for a wide range of mass fluxes (124 kg/m2s to 926 kg/m2s ), heat fluxes (2.5 W/cm2 to 113 W/cm2) and for contact angles varying from 30° to 90°. These experiments were conducted using a vertical Copper plate and a Zircalloy-4 nine-rod bundle. Experimental data were also utilized for developing empirical correlations for nucleation site density, bubble departure and lift off

  14. Time and Space Resolved Wall Temperature Measurements during Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Yerramilli, Vamsee K.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work is to acquire time and space resolved temperature distributions under nucleate bubbles on a constant heat flux surface. This was performed using a microheater array with 100 micron resolution that allowed effectively simultaneous measurements of surface temperature while supplying a constant dissipative heat flux. This data is then correlated with high speed (> 1000Hz) visual recordings of the bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that a significant source of energy during bubble nucleation and initial growth is the superheated layer around the bubble. Bubble coalescence was not observed to decrease surface temperature as significantly as bubble departure from the surface. Since bubble departure is typically followed by a sharp increase in the heater surface temperature, it is surmised that the departing bubble effectively removes the superheated layer, allowing a high local heat transfer rate with the bulk fluid through transient conduction/micro-convection during rewetting.

  15. Self-overcoming of the boiling condition by pressure increment in a water target irradiated by proton beam

    NASA Astrophysics Data System (ADS)

    Hong, Bong Hwan; Kang, Joonsun; Jung, In Su; Ram, Han Ga; Park, Yeun Soo; Cho, Hyung Hee

    2013-11-01

    An experiment was conducted to examine and visualize the boiling phenomena inside a water target by irradiating it with a proton beam from MC-50 cyclotron. The boiling phenomena were recorded with a CMOS camera. While an increase of the fraction of the water vapor volume is generally considered to be normal when water is boiled by a proton beam, our experiment showed the opposite result. The volume expansion of the liquid water exceeded the compressibility of the initial air volume. A grid structure in front of the entrance window foil held the target volume constant. Therefore, the phenomena inside the target underwent an isochoric process, and the pressure inside the target was increased rapidly beyond the pressure at the boiling point. Consequently, there was no more bulk boiling in the Bragg-peak region in the target water. Our results show that the boiling of the water can be controlled by controlling the equilibrium pressure of the water target.

  16. Experimental investigation of certain internal condensing and boiling flows: Their sensitivity to pressure fluctuations and heat transfer enhancements

    NASA Astrophysics Data System (ADS)

    Kivisalu, Michael Toomas

    . Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.

  17. Two-phase flow boiling frictional pressure drop of liquid nitrogen in horizontal circular mini-tubes: Experimental investigation and comparison with correlations

    NASA Astrophysics Data System (ADS)

    Chen, Xingya; Chen, Shuangtao; Chen, Jun; Li, Jiapeng; Liu, Xiufang; Chen, Liang; Hou, Yu

    2017-04-01

    The two-phase flow boiling characteristics of liquid nitrogen (LN2) in horizontal circular mini-tubes were experimentally studied. Experiments were performed in a wide range of flow conditions, e.g. inlet pressure from 0.17 to 0.35 MPa, mass flux from 140 to 330 kg/m2 s, heat flux from 0.5 to 69.4 kW/m2 and tube diameters of 2.92 mm and 3.96 mm. The influences of mass flux, heat flux, and inlet pressure on the pressure drop were discussed. The results indicated that the pressure drop increases with the increasing mass flux and heat flux but decreases with the increasing inlet pressure. But the influence of heat flux on the frictional pressure drop of LN2 was weaker than mass flux and inlet pressure. The frictional pressure drop of two-phase flow of LN2 was compared with homogeneous model and several semi-empirical correlations. An improved correlation based on the Lockhart-Martinelli model, which used coefficient C as a function of Reynolds number and Weber number was proposed.

  18. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  19. Influence of Pressure on Stable Film Boiling of Subcooled Liquid

    NASA Astrophysics Data System (ADS)

    Zabirov, A. R.; Yagov, V. V.; Kaban'kov, O. N.; Leksin, M. A.; Kanin, P. K.

    2016-11-01

    Film boiling of subcooled liquids is an integral part of the hardening process. Understanding of the mechanisms underlying film boiling is important for modeling processes in atomic power engineering and cryogenic technology. Stationary processes of film boiling of subcooled liquids under conditions of their free motion near cylindrical heaters, just as subcooled liquid turbulent flow past high-temperature surfaces, represent quite a different type of process. In cooling metal spheres heated to a high temperature by a subcooled water, a special regime of film boiling is observed (microbubble boiling) distinguished by high intensity of heat transfer. Such a regime has not been revealed up to now for nonaqueous liquids. The paper presents new experimental data on heat transfer regimes in cooling nickel spheres in subcooled isopropanol and perfluorohexane at pressures of up to 1 MPa. It has been established that stable film boiling is the main regime of heat transfer that accounts for the larger part of the total time of cooling. The regimes of highly intensive film boiling heat transfer were not observed in the entire range of operational parameters even in the case of extreme subcoolings of liquid below their saturation temperature (to 170 K). The intensity of heat transfer in stable film boiling increases noticeably with subcooling of a chilling liquid.

  20. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring.

    PubMed

    Ferrari, Anthony; Hunt, Jacob; Stiegman, Albert; Dudley, Gregory B

    2015-12-04

    Temporary superheating and sustained nucleation-limited "superboiling" of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating) and magnitude (of superheating and superboiling) vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.

  1. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  2. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model

    PubMed Central

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-01-01

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065

  3. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model

    NASA Astrophysics Data System (ADS)

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-08-01

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.

  4. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  5. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model.

    PubMed

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-08-16

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.

  6. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  7. Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions

    NASA Astrophysics Data System (ADS)

    van der Geld, C. W. M.; Colin, C.; Segers, Q. I. E.; Pereira da Rosa, V. H.; Yoshikawa, H. N.

    2012-08-01

    Terrestrial and microgravity flow boiling experiments were carried out with the same test rig, comprising a locally heated artificial cavity in the center of a channel near the frontal edge of an intrusive glass bubble generator. Bubble shapes were in microgravity generally not far from those of truncated spheres, which permitted the computation of inertial lift and drag from potential flow theory for truncated spheres approximating the actual shape. For these bubbles, inertial lift is counteracted by drag and both forces are of the same order of magnitude as g-jitter. A generalization of the Laplace equation is found which applies to a deforming bubble attached to a plane wall and yields the pressure difference between the hydrostatic pressures in the bubble and at the wall, Δp. A fully independent way to determine the overpressure Δp is given by a second Euler-Lagrange equation. Relative differences have been found to be about 5% for both terrestrial and microgravity bubbles. A way is found to determine the sum of the two counteracting major force contributions on a bubble in the direction normal to the wall from a single directly measurable quantity. Good agreement with expectation values for terrestrial bubbles was obtained with the difference in radii of curvature averaged over the liquid-vapor interface, ⟨(1/R2 - 1/R1)⟩, multiplied with the surface tension coefficient, σ. The new analysis methods of force components presented also permit the accounting for a surface tension gradient along the liquid-vapor interface. No such gradients were found for the present measurements.

  8. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.

  9. Effects of oil on boiling R-123 and R-134a flowing normal to an integral-finned tube bundle

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    1999-07-01

    Local, experimental heat transfer coefficients have been measured for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-123 and R-134a data with 26 fins per inch (1,024 fins per meter) tubes have been obtained. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual flooded evaporator bundle. The nominal area heat flux was varied from 2,607 to 10,427 Btu/h{center{underscore}dot}ft{sup 2} (8,224 to 32,893 W/m{sup 2}) as the tube bundle oil content ranged from 0 to 15% (by weight) for each refrigerant/tube combination. The performance of R-22 without oil has also been determined. Local tube and bulk fluid temperatures were measured directly by thermocouples to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature set point (taken at the top of the tube bundle) is 40 F (4.4 C).

  10. R1234yf vs. R134a Flow Boiling Heat Transfer Inside a 3.4 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-11-01

    The refrigerant charge minimization as well as the use of eco-friendly fluids can be considered two of the most important targets for these applications to cope with the new environmental challenges. This paper compares the R1234yf and R134a flow boiling heat transfer and pressure drop measurements inside a small microfin tube with internal diameter at the fin tip of 3.4 mm. This study is carried out in an experimental facility built at the Dipartimento di Ingegneria Industriale of the University of Padova especially designed to study both single and two phase heat transfer processes. The microfin tube is brazed inside a copper plate and electrically heated from the bottom. Several T -type thermocouples are inserted in the wall to measure the temperature distribution during the phase change process. In particular, the experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m-2 s-1 and 940 kg m-2 s-1, the vapour quality from 0.2 to 0.99, at different imposed heat fluxes. The two refrigerants are compared considering the values of the two-phase heat transfer coefficient and pressure drop.

  11. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1997

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    The Thermal Science Research Center (TSRC) at Prairie View A&M University is involved in an international fusion reactor technology development program aimed at demonstrating the technical feasibility of magnetic fusion energy. This report highlights: (1) Recent accomplishments and pinpoints thermal hydraulic problem areas of immediate concern to the development of plasma-facing components, and (2) Next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically, the near-term thermal hydraulic problem entails: (1) generating an appropriate data base to insure the development of single-side heat flux correlations, and (2) evaluating previously developed single-side/uniform heated transformations and correlations to determine which can be used to relate the vast two-phase heat transfer and critical heat flux (CHF) technical literature for uniformly heated flow channels to single-side heated channels.

  12. Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced

  13. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  14. Analysis and Modeling of a Two-Phase Jet Pump of a Flow Boiling Test Facility for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.; Steadham, Justin M.

    1996-01-01

    research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.

  15. Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements

    NASA Astrophysics Data System (ADS)

    Wagner, Enno; Sodtke, Christof; Schweizer, Nils; Stephan, Peter

    2006-08-01

    Heat transfer in nucleate boiling is strongly influenced by a very small circular area in the vicinity of the three phase contact line where a thin liquid film approaches the heated wall. This area is characterised by high evaporation rates which trigger a local temperature drop in the wall. The wall temperature drop can be computed using an existing nucleate boiling model. To verify the complex model and the underlying assumptions, an experiment was designed with an artificial nucleation site in a thin electrically heated wall featuring a two-dimensional, high resolution temperature measurement technique using unencapsulated thermochromic liquid crystals and a high speed colour camera. The shape of the bubble is observed simultaneously with a second high speed camera. Experiments were conducted in a low gravity environment of a parabolic flight, causing larger bubble departure diameters than in normal gravity environments. Thus, it was possible to measure the evolution of the predicted temperature drop in a transient boiling process.

  16. A quasi-multidimensional Eulerian-Lagrangian numerical model for turbulent subcooled boiling flows in single and branched channels

    NASA Astrophysics Data System (ADS)

    Pokharna, Himanshu

    The Particle-Fluid Model (PFM) is a modeling approach for two-phase flow which has promise for overcoming some of the limitations of the existing two-fluid models and leads to enhanced predictive capability. The model incorporates a Lagrangian representation for the dispersed phases and thus reduces the numerical diffusion associated with Eulerian schemes. In addition, it permits the interfacial interactions as well as inter-particle interactions to be modeled in a natural way. This thesis concerns further improvements to a PFM code called DISCON. In particular, stochastic models for bubble interactions such as bubble coalescence, turbulence, breakup and wall nucleation have been incorporated. Capability to model heat structures has also been added. The boiling model produces good agreement when compared to experiment data. A primary emphasis of the development was the quasi-multidimensional lateral phase distribution model and its incorporation into the Lagrangian-Eulerian single channel model. This phase distribution model is based on the physics of eddy-bubble interaction. Eddies are simulated using simple algebraic models and the bubble lateral motion is established by tracking the bubbles through a succession of eddies in turbulence. Results from the model are compared with experimental data and good agreement is obtained. Furthermore, the single channel code was extended to a pilot systems code to model branched flow passages. Models for merging and dividing flows were incorporated into the PFM code. Modeling results for a few conceptual problems have been obtained using this enhanced capability and are presented herein. Finally the modeling studies are augmented with theoretical dispersion and characteristics analysis of the conservation equations used in both the two-fluid model and in the PFM. It is shown that the Lagrangian-Eulerian system of equations results in a well posed problem. This is in contrast to the usual one-dimensional two-fluid model which

  17. Boiling heat transfer characteristics of liquid xenon

    NASA Astrophysics Data System (ADS)

    Haruyama, T.

    2002-05-01

    Liquid xenon is one of the excellent media for high-energy particle calorimeter. In order to detect a scintillation light effectively, a large number of photo-multipliers (PMTs) will be immersed in liquid xenon. Many chip-resistors equipped with the PMTs dissipate heat into liquid and possibly generate thermal turbulence, such as bubbles, convection flow under a certain operating condition. There is, however, no heat transfer curve (q-ΔT curve) in the literature. Boiling heat transfer characteristics of liquid xenon were measured at a saturated pressure of 0.1 MPa for the first time by using a small pulse tube refrigerator. The heat transfer surface is a thin platinum wire of 0.1 mm diameter and 25 mm long. The measured results were in good agreement with the calculated values both in natural convection and nucleate boiling condition. The film boiling state was difficult to obtain due to its poor reproducibility, and only one data was obtained. The relationship between the heat flux q and temperature difference ΔT was in good agreement with the Morgan's empirical equation in the natural convection region, and with the Kutateladze's equation in the nucleate boiling region.

  18. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  19. On conditional sampling for turbulent flow studies

    NASA Technical Reports Server (NTRS)

    Wang, F. C.

    1974-01-01

    The conditional sampling technique is analyzed as a weighted time average for turbulent flow. The various conditional averages are obtained by using different types of weighting functions. A second averaging relation is obtained between the conventional averages and the conditional averages. A few examples are given in which simplified expressions are used.

  20. Do Students Experience Flow Conditions Online?

    ERIC Educational Resources Information Center

    Meyer, Katrina A.; Jones, Stephanie J.

    2013-01-01

    This pilot study asked graduate students enrolled in higher education programs at two institutions to ascertain whether and to what extent they experienced nine flow-related conditions in two settings: (1) online courses or (2) surfing or gaming online. In both settings, flow was experienced "sometimes," although no significant…

  1. Development of a model to predict flow oscillations in low-flow sodium boiling. [Loss-of-Piping Integrity accidents

    SciTech Connect

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.

  2. Numerical Investigation of Boiling

    NASA Astrophysics Data System (ADS)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  3. Preferential flow occurs in unsaturated conditions

    USGS Publications Warehouse

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  4. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.; Youngdahl, C. A.; Lanagan, M. T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A(sub rms) for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used.

  5. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    SciTech Connect

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.; Youngdahl, C.A.; Lanagan, M.T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A{sub rms} for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used.

  6. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  7. Downstream boundary conditions for viscous flow problems

    NASA Technical Reports Server (NTRS)

    Fix, G.; Gunzburger, M.

    1977-01-01

    The problem of the specification of artificial outflow conditions in flow problems is studied. It is shown that for transport type equations incorrect outflow conditions will adversely affect the solution only in a small region near the outflow boundary, while for elliptic equations, e.g. those governing the streamfunction or pressure, a correct boundary specification is essential. In addition, integral outflow boundary conditions for fluid dynamical problems are considered. It is shown that such conditions are well posed, and their effect on the solutions of the Navier-Stokes equations is also considered.

  8. Overland flow connectivity under different climate conditions

    NASA Astrophysics Data System (ADS)

    Hanoch, Lavee

    2015-04-01

    The effect of climate conditions on overland flow connectivity was investigated in arid (mean annual rainfall 120 mm), semi-arid (mean annual rainfall 280 mm) and sub-humid (mean annual rainfall 620 mm) regions. In each of these regions a hillslope reference plot was established, in which soil properties and hydrological variables were measured. The results show that at the regional scale soil organic matter content and aggregate stability decreased with increasing aridity. Infiltration rate also decreased with aridity but overland flow increased. At the hillslope scale, at each of the regions overland flow decreased with increasing hillslope length which means that overland flow is not continuous and water losses increases with hillslope length. In order to understand the controlling factors of overland flow continuity the spatial distribution of soil properties, vegetation cover and overland flow generation mechanisms were measured along hillslopes. The results show that water contributing (source) patches and water collecting (sink) patches exist along the hillslopes, in accordance with the spatial distribution of shrubs. The conclusion is that overland flow connectivity at the hillslope scale is affected mainly by the size, the density and by the spatial distribution of shrubs. An application for preventing soil erosion in urban areas (parks), along roads and in cultivated areas is that planting vegetation in patches or strips is more efficient than all over the hillslopes.

  9. Highly stable superhydrophobic surfaces under flow conditions

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  10. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  11. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGES

    Li, Q.; Kang, Q. J.; Francois, M. M.; ...

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  12. Boundary Conditions for Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Johnson, D. K.

    1994-01-01

    This paper explores solutions to the spherically symmetric Euler equations. Motivated by the work of Hagstrom and Hariharan and Geer and Pope, we modeled the effect of a pulsating sphere in a compressible medium. The literature available on this suggests that an accurate numerical solution requires artificial boundary conditions which simulate the propagation of nonlinear waves in open domains. Until recently, the boundary conditions available were in general linear and based on nonreflection. Exceptions to this are the nonlinear nonreflective conditions of Thompson, and the nonlinear reflective conditions of Hagstrom and Hariharan. The former are based on the rate of change of the incoming characteristics; the latter rely on asymptotic analysis and the method of characteristics and account for the coupling of incoming and outgoing characteristics. Furthermore, Hagstrom and Hariharan have shown that, in a test situation in which the flow would reach a steady state over a long time, Thompson's method could lead to an incorrect steady state. The current study considers periodic flows and includes all possible types and techniques of boundary conditions. The technique recommended by Hagstrom and Hariharan proved superior to all others considered and matched the results of asymptotic methods that are valid for low subsonic Mach numbers.

  13. A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux for PFCs

    SciTech Connect

    Boyd, Ronald D. Sr.; Cofie, Penrose; Li Qingyuan; Ekhlassi, Ali A

    2002-01-15

    In the development of plasma-facing components for fusion reactors and high-heat-flux heat sinks (or components) for electronic applications, the components are usually subjected to a peripherally nonuniform heat flux. Even if the applied heat flux is uniform in the axial direction (which is unlikely), both intuition and recent investigations have clearly shown that both the local heat flux and the eventual critical heat flux (CHF) in this three-dimensional (3-D) case will differ significantly from similar quantities found in the voluminous body of data for uniformly heated flow channels. Although this latter case has been used in the past as an estimate for the former case, more study has become necessary to examine the 3-D temperature and heat flux distributions and related CHF. Work thus far has shown that the nonuniform peripheral heat flux condition enhances CHF in some cases.To avoid the excess costs associated with using electron or ion beams to produce the nonuniform heat flux, a new facility was developed that will allow 3-D conjugate heat transfer measurements and two-dimensional, local subcooled flow boiling heat flux and related CHF measurements.The configurations under study for this work consist of (a) a nonuniformly heated cylinder-like test section with a circular coolant channel bored through the center and (b) a monoblock that is a square cross-section parallelepiped with a circular drilled flow channel along the channel centerline. The theoretical or ideal cylinder-like test section would be a circular cylinder with half (-90 to 90 deg) of its outside boundary subjected to a uniform heat flux and the remaining half insulated. For the monoblock, a uniform heat flux is applied to one of the outside surfaces, and the remaining surfaces are insulated. The outside diameter of the cylinder-like test section is 30.0 mm, and its length is 200.0 mm. The monoblock square is 30.0 mm long. The inside diameter of the flow channel for both types of test

  14. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, G.; Jacqmin, Dave

    2000-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work have been limited. Here, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. Boiling involves both fluid flow and heat transfer and thus requires the solution of the Navier-Stokes and the energy equations. The numerical method is based on writing one set of governing transport equations which is valid in both the liquid and vapor phases. This local, single-field formulation incorporates the effect of the interface in the governing equations as source terms acting only at the interface. These sources account for surface tension and latent heat in the equations for conservation of momentum and energy as well as mass transfer across the interface due to phase change. The single-field formulation naturally incorporates the correct mass, momentum and energy balances across the interface. Integration of the conservation equations across the interface directly yields the jump conditions derived in the local instant formulation for two-phase systems. In the numerical implementation, the conservation equations for the whole computational domain (both vapor and liquid) are solved using a stationary grid and

  15. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  16. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    SciTech Connect

    Briere, E.; Larrauri, D.; Olive, J.

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  17. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies.

  18. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  19. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  20. Dynamic characteristics of a VK-50 reactor operating under conditions of the loss of a normal feedwater flow

    NASA Astrophysics Data System (ADS)

    Semidotskiy, I. I.; Kurskiy, A. S.

    2013-12-01

    The paper describes the conditions of the ATWS type with virtually complete cessation of the feed-water flow at the operating power level of a reactor of the VK-50 type. Under these conditions, the role of spatial kinetics in the system of feedback between thermohydraulic and nuclear processes with bulk boiling of the coolant in the reactor core is clearly seen. This feature determines the specific character of experimental data obtained and the suitability of their use for verification of the associated codes used for calculating water-water reactors.

  1. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on

  2. Development of a mechanistic model for forced convection subcooled boiling

    NASA Astrophysics Data System (ADS)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  3. FIBWR: a steady-state core flow distribution code for boiling water reactors code verification and qualification report. Final report

    SciTech Connect

    Ansari, A.F.; Gay, R.R.; Gitnick, B.J.

    1981-07-01

    A steady-state core flow distribution code (FIBWR) is described. The ability of the recommended models to predict various pressure drop components and void distribution is shown by comparison to the experimental data. Application of the FIBWR code to the Vermont Yankee Nuclear Power Station is shown by comparison to the plant measured data.

  4. Subchannel thermal-hydraulic analysis at AP600 low-flow steam-line-break conditions

    SciTech Connect

    Morita, T.; Olson, C.A.; Sung, Y.X.; Connelley, J.F. Jr.; Novendstern, E.H.; Kapil, S.; Rosenthal, P.W.

    1995-12-01

    The AP600 reactor core approaches buoyancy-dominated flow at the departure from nucleate boiling (DNB)-limiting period of a postulated steam-line--break accident. The reactor core has a highly skewed power distribution at this time due to the conservative assumption of a withdrawn rod cluster control assembly (stuck rod). Under such conditions, strong buoyancy-induced core cross flow occurs, and coupled nuclear and thermal-hydraulic interactions become important. To analyze the transient, Westinghouse Electric Corporation has coupled THINC-IV with a neutronic code (ANC). Applicability of the THINC-IV subchannel code to the low-flow conditions with a steep radial power gradient is verified with existing rod bundle test results. The code predictions are in excellent agreement with the test data. The coupled codes provide a realistic three-dimensional simulation of core power by considering core flow distributions and the resultant enthalpy distributions in neutronic feedback. The safety analysis using the coupled code demonstrates that the DNB design basis is met during the postulated steam-line-break accident.

  5. Enhancement of critical heat flux for subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire

    SciTech Connect

    Kabata, Y.; Nakajima, R.; Shioda, K.

    1996-08-01

    This paper reports results of an experimental investigation for critical heat flux (CHF) up to 30 MW/m{sup 2} in subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire. Experiments were carried out using uniformly heated horizontal tubes with inner diameters of 8 and 12 mm, and with a heated length of 50 mm. Although the CHF of tubes with and without the twisted tape depends on velocity and exit subcooling of water, no observable influence of the tube diameter is detected. As for the CHF enhancement ratio of the tubes with the tape, it is at least 40% higher than the case without the tape, and increases as the exit water subcooling decreases. In the case of the helically coiled wire, the CHF increases as the wire diameter becomes larger and as the coil pitch smaller. The increase of the CHF by the coil, which is the wire diameter of 1.0 mm and the coil pitch of 12 mm, is higher than that by the twisted tape. The CHF model for the smooth tube developed by Celata et al. was applied to the swirl tube by modifying for the calculation of the friction factor, and the radial temperature and velocity distribution in the liquid. Prediction using the modified Celata model accounts for almost all available experimental data for the swirl tube within {+-}25%. This study is relevant for the development of fusion reactors.

  6. Thermal Analysis on Mono-Block Type Divertor Based on Subcooled Flow Boiling Critical Heat Flux Data against Inlet Subcooling in Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    The subcooled flow boiling critical heat fluxes (CHFs) and the heat transfer coefficients (HTCs) data for the tube length, L, of 49, 99 and 149 mm with 9-mm inner diameter were applied to thermal analysis on the Mono-block type divertor of LHD. Incident CHFs for the divertor with the cooling tube diameter, d, of 10 mm and the carbon armor outer diameter, D, of 26 and 33 mm were numerically analyzed based on the measured CHFs and HTCs at the inlet pressure of around 800 kPa. The numerical solutions were also compared with those for the Flat-plate type divertor, which were numerically analyzed for the divertor with the cooling tube diameter d=10 mm and the divertor width, w, ranging from 16 to 30 mm. It is confirmed that the ratio of the one-side heating CHF data, qcr,inc, to the uniform heating CHF data, qcr,sub, can be represented as the simple equation based on the numerical solutions. The values of the qcr,inc for L=50, 100 and 150 mm were estimated with various D/d and w/d at higher pressures.

  7. Critical heat-flux characteristics of R-113 boiling two-phase flow in twisted-tape-inserted tubes

    SciTech Connect

    Lee, Sangryoul; Inoue, Akira; Takahashi, Minoru

    1996-07-01

    This paper presents experimental data on the critical heat flux (CHF) in twisted-tape-inserted tubes over a wide quality range of {minus}0.25 to 0.8. The influences of quality, twist ratio, mass velocity, and clearance between the twisted tape and tube inner wall on CHF were investigated. In the subcooled region, it was observed, using an infrared thermoviewer, that CHF was initiated locally at the wall near the twisted tape. Consequently, twisted tape insertion with small tape-well clearance decreased CHF to below the value of the empty tubes at a low flow rate. This decrease was found to be avoidable by adjusting the clearance. In the net quality region, CHF of the twisted-tape-inserted tubes increased with increasing flow rate contrary to the case of the empty tubes. However, CHF in the net quality region was also decreased by insertion of twisted tapes with high twist ratio (loosely twisted tapes) at a very low flow rate.

  8. Formation of Martian Gullies by the Action of Liquid Water Flowing Under Current Martian Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Toon, O. B.; Pollard, W. H.; Mellon, M. T.; Pitlick, J.; McKay, C. P.; Andersen, D. T.

    2005-01-01

    Images from the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft show geologically young small-scale features resembling terrestrial water-carved gullies. An improved understanding of these features has the potential to reveal important information about the hydrological system on Mars, which is of general interest to the planetary science community as well as the field of astrobiology and the search for life on Mars. The young geologic age of these gullies is often thought to be a paradox because liquid water is unstable at the Martian surface. Current temperatures and pressures are generally below the triple point of water (273 K, 6.1 mbar) so that liquid water will spontaneously boil and/or freeze. We therefore examine the flow of water on Mars to determine what conditions are consistent with the observed features of the gullies.

  9. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research

  10. A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data

    SciTech Connect

    Palmrose, D.E.; Mandl, R.M.

    1991-12-31

    There has been recent interest in the United States concerning the loss of residual heat removal system (RHRS) under reduced coolant inventory conditions for pressurized water reactors. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-HI experimental facility at Siemens-KWU to supply applicable data. Recently, an NRC-sponsored effort has been undertaken at the Idaho-National Engineering Laboratory to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following the long term loss-of-RHRS during reduced inventory operation. The thermal-hydraulic response of a closed reactor coolant system during such a transient is investigated in this report. Some of the specific processes investigated include: reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, and void fraction distributions on the primary side of the system. Mathematical models of these and other physical processes Experiment B4.5.

  11. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  12. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  13. Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    SciTech Connect

    Pruess, Karsten

    2003-03-31

    The critical point of CO{sub 2} is at temperature and pressure conditions of T{sub crit} = 31.04 C, P{sub crit} = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO{sub 2} can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO{sub 2} into brine formations would be made at supercritical pressures. However, CO{sub 2} escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO{sub 2} would be in subcritical conditions. An assessment of the fate of leaking CO{sub 2} requires a capability to model not only supercritical but also subcritical CO{sub 2}, as well as phase changes between liquid and gaseous CO{sub 2} in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO{sub 2} mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO{sub 2}. This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO{sub 2} plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO{sub 2} rises to elevations where it begins to boil and evolve a gaseous CO{sub 2} phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO{sub 2} to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO{sub 2} upflow, causes the plume to spread out laterally, and gives rise to dispersed CO{sub 2} discharge at the land surface. Our simulation suggests that temperatures along a CO{sub 2} leakage path may decline to levels low enough so that solid water ice and CO{sub 2} hydrate phases may be formed.

  14. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  15. A microgravity boiling and convective condensation experiment

    NASA Technical Reports Server (NTRS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-01-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  16. A microgravity boiling and convective condensation experiment

    NASA Astrophysics Data System (ADS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  17. Aspects of subcooled boiling

    SciTech Connect

    Bankoff, S.G.

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  18. Cooling Enhancement by Drop Impact and Pool Boiling on Nano-textured Surfaces Under Normal Gravity Conditions and at Zero and Increased Gravity in Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Yarin, Alexander; Sinha-Ray, Suman; Jun, Seongchul

    2014-03-01

    The earth experiments with drop impact onto metal-plated electrospun nanofiber mats encompass a single drop, or drop trains or jets impacts. The results on drop cooling and pool boiling on nano-textured surface were obtained during the parabolic flights supported by NASA and ESA. Pool boiling on nano-textured surfaces was studied for ethanol and water as working fluids. The nano-textured surfaces were copper platelets covered with copper-plated electrospun nanofibers. The results revealed that the heat flux in boiling on the nano-textured surfaces was about 3-8 times higher than that on the bare copper. This stems from the fact that nano-textured surfaces promote bubble growth by increasing the average temperature of fluid surrounding growing bubbles. Nano-textured surfaces facilitated bubble growth rate and increase bubble detachment frequency. On the other hand, the critical heat flux (CHF) on the nano-textured surfaces was found to be very close to its counterpart on the bare copper surfaces. However, the heat flux on the nano-textured surfaces in transition boiling was significantly higher than on the bare copper ones, since the presence of nanofibers prevented bubble merging and delayed formation of vapor film.

  19. Evaluation of flow patterns and elongated bubble characteristics during the flow boiling of halocarbon refrigerants in a micro-scale channel

    SciTech Connect

    Arcanjo, Alexandre Alves; Tibirica, Cristiano Bigonha; Ribatski, Gherhardt

    2010-09-15

    In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m{sup 2} s and saturation temperatures of 22 C, 31 C and 41 C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983), Felcar et al. (2007), Revellin and Thome (2007) and Ong and Thome (2009). From this comparison, it was found that the methods proposed by Felcar et al. (2007) and Ong and Thome (2009) predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity. (author)

  20. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  1. CHIMNEY FOR BOILING WATER REACTOR

    DOEpatents

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  2. The Isolated Bubble Regime in Pool Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider an isolated bubble boiling regime in which vapour bubbles are intermittently produced at a prearranged set of nucleation site on an upward facing overheated wall plane. In this boiling regime, the bubbles depart from the wall and move as separate entities. Except in the matter of rise velocity, the bubbles do not interfere and are independent of one another. However, the rise velocity is dependent on bubble volume concentration in the bulk. Heat transfer properties specific to this regime cannot be described without bubble detachment size, and we apply our previously developed dynamic theory of vapour bubble growth and detachment to determine this size. Bubble growth is presumed to be thermally controlled. Two limiting cases of bubble evolution are considered: the one in which buoyancy prevails in promoting bubble detachment and the one in which surface tension prevails. We prove termination of the isolated regime of pool nucleate boiling to result from one of the four possible causes, depending on relevant parameters values. The first cause consists in the fact that the upward flow of rising bubbles hampers the downward liquid flow, and under certain conditions, prevents the liquid from coming to the wall in an amount that would be sufficient to compensate for vapour removal from the wall. The second cause is due to the lateral coalescence of growing bubbles that are attached to their corresponding nucleation sites, with ensuing generation of larger bubbles and extended vapour patches near the wall. The other two causes involve longitudinal coalescence either 1) immediately in the wall vicinity, accompanied by the establishment of the multiple bubble boiling regime, or 2) in the bulk, with the formation of vapour columns. The longitudinal coalescence in the bulk is shown to be the most important cause. The critical wall temperature and the heat flux density associated with isolated bubble regime termination are found to be functions of the physical and

  3. Nucleate boiling pressure drop in an annulus: Book 5

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90.

  4. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition

    NASA Astrophysics Data System (ADS)

    Salari, E.; Peyghambarzadeh, S. M.; Sarafraz, M. M.; Hormozi, F.; Nikkhah, V.

    2017-01-01

    This paper experimentally focuses on the pool boiling heat transfer characteristics of gamma Fe3O4 aqueous nano-fluids on a flat disc heater. The nano-fluid used in this research was prepared using two-step method and was stabilized using nonylphenol ethoxylate nonionic surfactant, pH setting, and sonication process as well. Influence of different operating parameters such as heat flux (0-1546 kW/m2), mass concentration of nano-fluids (weight concentration 0.1-0.3 %), bubble formation, critical heat flux (1170 kW/m2 for water, 1230 kW/m2 (wt% = 0.1), 1320 kW/m2 (wt% = 0.2), 1450 kW/m2 (wt% = 0.3) and fouling on pool boiling heat transfer coefficient of nano-fluid as a thermal performance index were experimentally investigated and briefly discussed. Results demonstrated that the pool boiling heat transfer coefficient increases with increasing the mass concentration and the applied heat flux. In addition, the rate of bubble formation is significantly intensified at higher heat fluxes and subsequently, larger bubbles detach the surface due to the intensification of bubble coalescence. In terms of fouling formation, it can be stated that fouling of nano-fluids is a strong function of time and rate of deposition is increased over the extended time while the pool boiling heat transfer coefficient was not decreased over the time, as porous deposited layer on the surface are detached from the surface by bubble interactions. In terms of critical heat flux, capillary action of the deposited layer was found to be the main reason responsible for increasing the critical heat flux as liquid is stored inside the porous deposited layer, which enhances the surface toleration against the critical heat flux crisis.

  5. Bacterial populations growth under co- and counter-flow condition

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico

    2014-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.

  6. Turbulent heat-and-mass transfer in channel flow at transcritical temperature conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kukjin; Scalo, Carlo; Hickey, Jean-Pierre

    2016-11-01

    Turbulent heat and mass transfer at transcritical thermodynamic conditions is studied in turbulent channel flow using the high-fidelity DNS for solution to the compressible Navier-Stokes equations in the conservative form closed with the Peng-Robinson state equation. To isolate the real fluid effects on turbulent heat transfer, the bulk pressure is maintained at supercritical pb = 1 . 1pc and the isothermal walls are set to ΔT / 2 above and below the local pseudo-boiling temperature Tpb of the fluid (R-134a) where ΔT is 5K, 10K, and 20K. This setup allows the flow to reach a statistically-steady state while capturing the highest thermodynamic gradients, thus allowing a detailed study on thermodynamics of transcritical turbulent heat transfer. All thermodynamic and turbulent scales are fully resolved which is shown through a careful grid convergence analysis. The time-averaged density and compressibility factor are highly dependent on the temperature field and their large near-wall gradient causes thermodynamically-induced peaks in the RMS quantities resulting in strong turbulent mixing. The ejection of heavy pseudo-liquid blobs by near-wall turbulent structures into the channel core leads to a third RMS peak which is not observable in ideal gas simulations.

  7. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian

    2002-01-01

    The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.

  8. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  9. Flow separation in rocket nozzles under high altitude condition

    NASA Astrophysics Data System (ADS)

    Stark, R.; Génin, C.

    2017-01-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  10. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  11. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  12. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Astrophysics Data System (ADS)

    Dukler, A. E.; Fabre, J. A.; McQuillen, J. B.; Vernon, R.

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  13. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  14. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  15. Radiolysis of boiling water

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Katsumura, Yosuke; Yamashita, Shinichi; Matsuura, Chihiro; Hiroishi, Daisuke; Lertnaisat, Phantira; Taguchi, Mitsumasa

    2016-06-01

    γ-radiolysis of boiling water has been investigated. The G-value of H2 evolution was found to be very sensitive to the purity of water. In high-purity water, both H2 and O2 gases were formed in the stoichiometric ratio of 2:1; a negligible amount of H2O2 remained in the liquid phase. The G-values of H2 and O2 gas evolution depend on the dose rate: lower dose rates produce larger yields. To clarify the importance of the interface between liquid and gas phase for gas evolution, the gas evolution under Ar gas bubbling was measured. A large amount of H2 was detected, similar to the radiolysis of boiling water. The evolution of gas was enhanced in a 0.5 M NaCl aqueous solution. Deterministic chemical kinetics simulation elucidated the mechanism of radiolysis in boiling water.

  16. Boil-off experiments with the EIR-NEPTUN Facility: Analysis and code assessment overview report

    SciTech Connect

    Aksan, S.N.; Stierli, F.; Analytis, G.T.

    1992-03-01

    The NEPTUN data discussed in this report are from core uncovery (boil-off) experiments designed to investigate the mixture level decrease and the heat up of the fuel rod simulators above the mixture level for conditions simulating core boil-off for a nuclear reactor under small break loss-of-coolant accident conditions. The first series of experiments performed in the NEPTUN test facility consisted of ten boil-off (uncovery) and one adiabatic heat-up tests. In these tests three parameters were varied: rod power, system pressure and initial coolant subcooling. The NEPTUN experiments showed that the external surface thermocouples do not cause a significant cooling influence in the rods to which they are attached under boil-off conditions. The reflooding tests performed later on indicated that the external surface thermocouples have some effect during reflooding for NEPTUN electrically heated rod bundle. Peak cladding temperatures are reduced by about 30--40C and quench times occur 20--70 seconds earlier than rods with embedded thermocouples. Additionally, the external surface-thermocouples give readings up to 20 K lower than those obtained with internal surface thermocouples (in the absence of external thermocouples) in the peak cladding temperature zone. Some of the boil-off data obtained from the NEPTUN test facility are used for the assessment of the thermal-hydraulic transient computer codes. These calculations were performed extensively using the frozen version of TRAC-BD1/MOD1 (version 22). A limited number of assessment calculations were done with RELAP5/MOD2 (version 36.02). In this report the main results and conclusions of these calculations are presented with the identification of problem areas in relation to models relevant to boil-off phenomena. On the basis of further analysis and calculations done, changing some of the models such as the bubbly/slug flow interfacial friction correlation which eliminate some of the problems are recommended.

  17. Low-flow analysis with a conditional Weilbull tail model

    NASA Astrophysics Data System (ADS)

    Durrans, S. Rocky

    Estimates of low-flow quantiles, such as the 7-day, 10-year low flow, which are usually obtained by statistical modeling of observed data series, are widely used in water quality management. This paper presents a conditional modeling approach to low-flow analysis that employs only those data values which are less than or equal to a ceiling value. Modeling in this fashion has been motivated by the observation that annual low flows may derive from mixed processes and by the subjective nature of graphical methods, such as those employed by the U.S. Geological Survey, which are often employed in such cases. Results of Monte Carlo experiments demonstrate that the conditional modeling approach yields a low-flow quantile estimator whose bias and RMSE are comparable to more conventional modeling approaches of fitting a classical textbook probability distribution on the basis of all observed data values, even when the underlying population is of a ``well-behaved'' form. Since the complex forms of mixed low-flow data distributions are not capable of being represented by classical textbook distributions and since the conditional modeling approach performs comparably to those models even when the data derive from well-behaved probability distributions, these results imply that the conditional modeling approach is worthy of consideration for use by hydrologists. The conditional modeling approach also leads rather naturally to a scheme, much like that used in index flood methods, whereby a regional low-flow estimator might be devised. An application of the conditional modeling approach to 48 low-flow data series in Alabama is presented.

  18. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  19. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  20. Optimal design of multi-conditions for axial flow pump

    NASA Astrophysics Data System (ADS)

    Shi, L. J.; Tang, F. P.; Liu, C.; Xie, R. S.; Zhang, W. P.

    2016-11-01

    Passage components of the pump device will have a negative flow state when axial pump run off the design condition. Combined with model tests of axial flow pump, this paper use numerical simulation and numerical optimization techniques, and change geometric design parameters of the impeller to optimal design of multi conditions for Axial Flow Pump, in order to improve the efficiency of non-design conditions, broad the high efficient district and reduce operating cost. The results show that, efficiency curve of optimized significantly wider than the initial one without optimization. The efficiency of low flow working point increased by about 2.6%, the designed working point increased by about 0.5%, and the high flow working point increased the most, about 7.4%. The change range of head is small, so all working point can meet the operational requirements. That will greatly reduce operating costs and shorten the period of optimal design. This paper adopted the CFD simulation as the subject analysis, combined with experiment study, instead of artificial way of optimization design with experience, which proves the reliability and efficiency of the optimization design of multi-operation conditions of axial-flow pump device.

  1. Thermal-hydraulic performance of convective boiling jet array impingement

    NASA Astrophysics Data System (ADS)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  2. Verification of the karst flow model under laboratory controlled conditions

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  3. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  4. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  5. A new regime of nucleate boiling in microsphere mesostructures: Jumping pool boiling

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Makarov, P. G.; El Bouz, M. A.

    2015-03-01

    We have studied a new regime of nucleate boiling in distilled water on substrates representing mesostructures of monodisperse and/or polydisperse microspheres made of various materials. It is experimentally established that, under some conditions of nucleate boiling, there appear "jumping pool boiling" regimes in which bubbles do not reach the surface of underheated liquid. In addition, bubbles may capture a certain number of microspheres, lift them up to some height, and then sink together down to the vessel bottom. Alternatively, microspheres may trap a certain number of bubbles, float up toward the evaporating surface, and then (without reaching the surface) sink back to the bottom layer where the nucleate bubbling takes place. Subregimes of this boiling mechanism involving microspheres of various densities and dimensions have also been observed.

  6. Conditions of microvessel occlusion for blood coagulation in flow.

    PubMed

    Bouchnita, A; Galochkina, T; Kurbatova, P; Nony, P; Volpert, V

    2016-11-10

    Vessel occlusion is a perturbation of blood flow inside a blood vessel because of the fibrin clot formation. As a result, blood circulation in the vessel can be slowed down or even stopped. This can provoke the risk of cardiovascular events. In order to explore this phenomenon, we used a previously developed mathematical model of blood clotting to describe the concentrations of blood factors with a reaction-diffusion system of equations. The Navier-Stokes equations were used to model blood flow, and we treated the clot as a porous medium. We identify the conditions of partial or complete occlusion in a small vessel depending on various physical and physiological parameters. In particular, we were interested in the conditions on blood flow and diameter of the wounded area. The existence of a critical flow velocity separating the regimes of partial and complete occlusion was demonstrated through the mathematical investigation of a simplified model of thrombin wave propagation in Poiseuille flow. We observed different regimes of vessel occlusion depending on the model parameters both for the numerical simulations and in the theoretical study. Then, we compared the rate of clot growth in flow obtained in the simulations with experimental data. Both of them showed the existence of different regimes of clot growth depending on the velocity of blood flow.

  7. Boundary conditions for direct simulations of compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Poinsot, T. J.; Lele, S. K.

    1992-01-01

    The present consideration of procedures for the definition of boundary conditions for the Navier-Stokes equations emphasizes the derivation of boundary conditions that are compatible with nondissipative algorithms applicable to direct simulations of turbulent flows. A novel formulation for the Euler equations is derived on the basis of characteristic wave relations through boundaries; this formulation is generalized to the Navier-Stokes equations. The method, which applies to both sub- and supersonic flows, is used in reflecting and nonreflecting boundary-condition treatments. Attention is given to practical implementations involving inlet and outlet boundaries and slip and nonslip walls, as well as the test cases of a ducted shear layer, vortices propagating through boundaries, and Poiseuille flow.

  8. Stem sap flow in plants under low gravity conditions

    NASA Astrophysics Data System (ADS)

    Tokuda, Ayako; Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    A study was conducted to obtain a fundamental knowledge for plant functions in bio-regenerative life support systems in space. Stem sap flow in plants is important indicators for water transport from roots to atmosphere through leaves. In this study, stem sap flow in sweetpotato was assessed at gravity levels from 0.01 to 2 g for about 20 seconds each during parabolic airplane flights. Stem sap flow was monitored with a heat balance method in which heat generated with a tiny heater installed in the stem was transferred upstream and downstream by conduction and upstream by convection with the sap flow through xylems of the vascular tissue. Thermal images of stem surfaces near heated points were captured using infrared thermography and the internal heat convection corresponding to the sap flow was analyzed. In results, the sap flow in stems was suppressed more at lower gravity levels without forced air circulation. No suppression of the stem sap flow was observed with forced air circulation. Suppressed sap flow in stems would be caused by suppression of transpiration in leaves and would cause restriction of water and nutrient uptake in roots. The forced air movement is essential to culture healthy plants at a high growth rate under low gravity conditions in space.

  9. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  10. Solute Transport in Soils Under Conditions of Variable Flow Velocities

    NASA Astrophysics Data System (ADS)

    Ma, Liwang; Selim, H. M.

    1996-11-01

    Temporal and spatial variabilities of flow distribution significantly influence solute transport in soils. This laboratory study was designed to investigate the effects of temporal variation in flow velocity on pesticide transport in soils. Two pesticides, metribuzin (weakly adsorbed) and atrazine (moderately adsorbed), were chosen along with the following two soils: Cecil (<2 mm) and Sharkey (2-4 mm). Several tritium pulses were introduced into packed soil columns (15 or 30 cm in length) under different flow velocities to obtain velocity-dependent dispersion coefficients (D). Subsequently, several atrazine and metribuzin pulses were introduced under conditions of constant and variable velocities. For each experiment, changes in flow velocity were stepwise using a piston flow pump and were carried out during pulse application and leaching. For constant and variable flow velocity experiments, approximately similar pulse volumes and average flow velocities were maintained. Values of D versus pore water velocity (ν) from tritium breakthrough curves (BTCs) were well described using a linear equation for both soils. Identical BTCs for metribuzin were observed under conditions of constant or variable flow velocities in the Cecil soil column. However, metribuzin transport in the Sharkey soil was significantly influenced by velocity variations. Atrazine transport in the Sharkey soil was also significantly affected by variations in flow velocity. We further examined the error when an average rather than actual velocity distribution was used in BTC representation. The resulting experimental BTCs (concentration versus velocity-averaged pore volume) exhibited early arrival and the appearance of multiple peaks. Moreover, predictions of such BTCs based on the convective-dispersive equation were not successful. We concluded that actual water velocity distributions should be used in BTC representation, and, whenever possible, the use of an average velocity should be avoided.

  11. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  12. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matthew J.; Zachara, John M.

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5 m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.

  13. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions.

    PubMed

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matt; Zachara, John M

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.

  14. Advances in shell side boiling of refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube evaporators used in air conditioning and refrigeration applications is discussed. The heat exchanger geometry of interest involves evaporation or condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for shell side evaporation and for forced convection to water on the tube side. Refrigerant boiling data and forced convection refrigerant boiling correlations are described. The refrigerants of interest include R-11, 12, 22, 123, and 134a. Thermal design methods for sizing of the evaporator and condenser are outlined. A computer model for prediction of the evaporator performance is described.

  15. Formation of surface nanodroplets under controlled flow conditions

    PubMed Central

    Zhang, Xuehua; Lu, Ziyang; Tan, Huanshu; Bao, Lei; He, Yinghe; Sun, Chao; Lohse, Detlef

    2015-01-01

    Nanodroplets on a solid surface (i.e., surface nanodroplets) have practical implications for high-throughput chemical and biological analysis, lubrications, laboratory-on-chip devices, and near-field imaging techniques. Oil nanodroplets can be produced on a solid–liquid interface in a simple step of solvent exchange in which a good solvent of oil is displaced by a poor solvent. In this work, we experimentally and theoretically investigate the formation of nanodroplets by the solvent exchange process under well-controlled flow conditions. We find significant effects from the flow rate and the flow geometry on the droplet size. We develop a theoretical framework to account for these effects. The main idea is that the droplet nuclei are exposed to an oil oversaturation pulse during the exchange process. The analysis shows that the volume of the nanodroplets increases with the Peclet number Pe of the flow as ∝Pe3/4, which is in good agreement with our experimental results. In addition, at fixed flow rate and thus fixed Peclet number, larger and less homogeneously distributed droplets formed at less-narrow channels, due to convection effects originating from the density difference between the two solutions of the solvent exchange. The understanding from this work provides valuable guidelines for producing surface nanodroplets with desired sizes by controlling the flow conditions. PMID:26159418

  16. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.

  17. Trailing edge flow conditions as a factor in airfoil design

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Maughmer, M. D.

    1984-01-01

    Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.

  18. Use of RORA for Complex Ground-Water Flow Conditions

    USGS Publications Warehouse

    Rutledge, A.T.

    2004-01-01

    The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.

  19. A Boundary Condition for Simulation of Flow Over Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.

    2001-01-01

    A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.

  20. Mathematical model of platelet deposition under flow conditions.

    PubMed

    Affeld, K; Goubergrits, L; Kertzscher, U; Gadischke, J; Reininger, A

    2004-08-01

    Platelet deposition in resting blood is well researched and understood. However, the influence of hemodynamic parameters such as wall shear rate is less clear. Clinical experience and experiments show an interaction between flow and platelet deposition. But a complete understanding of the flow influence and hence a quantification has not yet been achieved. A well defined experiment of flow dependant platelet depositions is the stagnation point flow. This kind of flow is ubiquitous in the circulatory system, to be found in every bifurcation and recirculation region. These are the areas where thrombus formations are likely to occur if other conditions are also met. First, experiments were performed in a stagnation point flow chamber. A simplified blood model, platelet rich plasma, was used as a test fluid. With a microscope the platelet deposition was observed and recorded. Platelets deposit in a characteristic pattern showing the influence of the flow. An analysis of this pattern is the objective of this study and is achieved with the help of a numerical model, which is based on a convective diffusive transport. The model results in a platelet deposition pattern, which in its shape and temporal development is very similar to experimental results. Hence it is concluded that the assumed transport processes are causal for platelet depositions and thrombus formation.

  1. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  2. Lookup Tables for Predicting CHF and Film-Boiling Heat Transfer: Past, Present, and Future

    SciTech Connect

    Groeneveld, D.C.; Leung, L.K. H.; Guo, Y.; Vasic, A.; El Nakla, M.; Peng, S.W.; Yang, J.; Cheng, S.C.

    2005-10-15

    Lookup tables (LUTs) have been used widely for the prediction of critical heat flux (CHF) and film-boiling heat transfer for water-cooled tubes. LUTs are basically normalized data banks. They eliminate the need to choose between the many different CHF and film-boiling heat transfer prediction methods available.The LUTs have many advantages; e.g., (a) they are simple to use, (b) there is no iteration required, (c) they have a wide range of applications, (d) they may be applied to nonaqueous fluids using fluid-to-fluid modeling relationships, and (e) they are based on a very large database. Concerns associated with the use of LUTs include (a) there are fluctuations in the value of the CHF or film-boiling heat transfer coefficient (HTC) with pressure, mass flux, and quality, (b) there are large variations in the CHF or the film-boiling HTC between the adjacent table entries, and (c) there is a lack or scarcity of data at certain flow conditions.Work on the LUTs is continuing. This will resolve the aforementioned concerns and improve the LUT prediction capability. This work concentrates on better smoothing of the LUT entries, increasing the database, and improving models at conditions where data are sparse or absent.

  3. Experimental study of choking flow of water at supercritical conditions

    NASA Astrophysics Data System (ADS)

    Muftuoglu, Altan

    Future nuclear reactors will operate at a coolant pressure close to 25 MPa and at outlet temperatures ranging from 500°C to 625°C. As a result, the outlet flow enthalpy in future Supercritical Water-Cooled Reactors (SCWR) will be much higher than those of actual ones which can increase overall nuclear plant efficiencies up to 48%. However, under such flow conditions, the thermal-hydraulic behavior of supercritical water is not fully known, e.g., pressure drop, forced convection and heat transfer deterioration, critical and blowdown flow rate, etc. Up to now, only a very limited number of studies have been performed under supercritical conditions. Moreover, these studies are conducted at conditions that are not representative of future SCWRs. In addition, existing choked flow data have been collected from experiments at atmospheric discharge pressure conditions and in most cases by using working fluids different than water which constrain researchers to analyze the data correctly. In particular, the knowledge of critical (choked) discharge of supercritical fluids is mandatory to perform nuclear reactor safety analyses and to design key mechanical components (e.g., control and safety relief valves, etc.). Hence, an experimental supercritical water facility has been built at Ecole Polytechnique de Montreal which allows researchers to perform choking flow experiments under supercritical conditions. The facility can also be used to carry out heat transfer and pressure drop experiments under supercritical conditions. In this thesis, we present the results obtained at this facility using a test section that contains a 1 mm inside diameter, 3.17 mm long orifice plate with sharp edges. Thus, 545 choking flow of water data points are obtained under supercritical conditions for flow pressures ranging from 22.1 MPa to 32.1 MPa, flow temperatures ranging from 50°C to 502°C and for discharge pressures from 0.1 MPa to 3.6 MPa. Obtained data are compared with the data given in

  4. Boundary condition optimal control problem in lava flow modelling

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, Alik; Korotkii, Alexander; Tsepelev, Igor; Kovtunov, Dmitry; Melnik, Oleg

    2016-04-01

    We study a problem of steady-state fluid flow with known thermal conditions (e.g., measured temperature and the heat flux at the surface of lava flow) at one segment of the model boundary and unknown conditions at its another segment. This problem belongs to a class of boundary condition optimal control problems and can be solved by data assimilation from one boundary to another using direct and adjoint models. We derive analytically the adjoint model and test the cost function and its gradient, which minimize the misfit between the known thermal condition and its model counterpart. Using optimization algorithms, we iterate between the direct and adjoint problems and determine the missing boundary condition as well as thermal and dynamic characteristics of the fluid flow. The efficiency of optimization algorithms - Polak-Ribiere conjugate gradient and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithms - have been tested with the aim to get a rapid convergence to the solution of this inverse ill-posed problem. Numerical results show that temperature and velocity can be determined with a high accuracy in the case of smooth input data. A noise imposed on the input data results in a less accurate solution, but still acceptable below some noise level.

  5. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications.

  6. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  7. Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pallab S.; Ghosh, Koushik; Manna, Nirmal K.

    2015-08-01

    In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid-vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.

  8. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  9. Boiling local heat transfer enhancement in minichannels using nanofluids

    NASA Astrophysics Data System (ADS)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  10. Boiling local heat transfer enhancement in minichannels using nanofluids.

    PubMed

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  11. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas

    2002-11-01

    Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.

  12. On the freestream matching condition for stagnation point turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  13. Influence of the wettability on the boiling onset.

    PubMed

    Bourdon, B; Rioboo, R; Marengo, M; Gosselin, E; De Coninck, J

    2012-01-17

    Experimental investigation of pool boiling is conducted in stationary conditions over very smooth bronze surfaces covered by a very thin layer of gold presenting various surface treatments to isolate the role of wettability. We show that even with surfaces presenting mean roughness amplitudes below 10 nm the role of surface topography is of importance. The study shows also that wettability alone can trigger the boiling and that the boiling position on the surface can be controlled by chemical grafting using for instance alkanethiol. Moreover, boiling curves, that is, heat flux versus the surface superheat (which is the difference between the solid surface temperature and the liquid saturation temperature), are recorded and enabled to quantify, for this case, the significant reduction of the superheat at the onset of incipient boiling due to wettability.

  14. Magnetogasdynamic Power Extraction and Flow Conditioning for a Gas Turbine

    NASA Technical Reports Server (NTRS)

    Adamovich, Igor V.; Rich, J. William; Schneider, Steven; Blankson, Isaiah

    2003-01-01

    An extension of the Russian AJAX concept to a turbojet is being explored. This magnetohydrodynamic (MHD) energy bypass engine cycle incorporating conventional gas turbine technology has MHD flow conditioning at the inlet to electromagnetically extract part of the inlet air kinetic energy. The electrical power generated can be used for various on-board vehicle requirements including plasma flow control around the vehicle or it may be used for augmenting the expanding flow in the high speed nozzle by MHD forces to generate more thrust. In order to achieve this interaction, the air needs to be ionized by an external means even up to fairly high flight speeds, and the leading candidates may be classified as electrical discharge devices. The present kinetic modeling calculations suggest that the use of electron beams with characteristics close to the commercially available e-beam systems (electron energy approx. 60 keV, beam current approx. 0.2 mA/sq cm) to sustain ionization in intermediate pressure, low-temperature (P = 0.1 atm, T = 300 K) supersonic air flows allows considerable reduction of the flow kinetic energy (up to 10 to 20 percent in M = 3 flows). The calculations also suggest that this can be achieved at a reasonable electron beam efficiency (eta approx. 5), even if the e-beam window losses are taken into account. At these conditions, the exit NO and O atom concentrations due to e-beam initiated chemical reactions do not exceed 30 ppm. Increasing the beam current up to approx. 2 mA/sq cm, which corresponds to a maximum electrical conductivity of sigma(sub max) approx. 0.8 mho/m at the loading parameter of K = 0.5, would result in a much greater reduction of the flow kinetic energy (up to 30 to 40 percent). The MHD channel efficiency at these conditions would be greatly reduced (to eta approx. 1) due to increased electron recombination losses in the channel. At these conditions, partial energy conversion from kinetic energy to heat would result in a

  15. Nucleate boiling pressure drop in an annulus: Book 2

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux.

  16. Nucleate boiling pressure drop in an annulus: Book 4

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  17. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    SciTech Connect

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  18. Formation of surface nanodroplets under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Zhang, Xuehua; Lu, Ziyang; Tan, Huanshu; Bao, Lei; He, Yinghe; Sun, Chao

    2015-11-01

    Nanodroplets on a solid surface (i.e. surface nanodroplets) have practical implications for high-throughput chemical and biological analysis, lubrications, lab-on-chip devices, and near-field imaging techniques. Oil nanodroplets can be produced on a solid-liquid interface in a simple step of solvent exchange in which a good solvent of oil is displaced by a poor solvent. In this work, we experimentally and theoretically investigate the formation of nanodroplets by the solvent exchange process under well-controlled flow conditions. We find significant effects from the flow rate and the flow geometry on the droplet size. We develop a theoretical framework to account for these effects. The main idea is that the droplet nuclei are exposed to an oil oversaturation pulse during the exchange process. The analysis gives that the volume of the nanodroplets increases with the Peclet number Pe of the flow as ~ Pe 3 / 4 , which is in good agreement with our experimental results. In addition, at fixed flow rate and thus fixed Peclet number, larger and less homogeneously distributed droplets formed at less narrow channels, due to convection effects originating from the density difference between the two solutions of the solvent exchange.

  19. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  20. Pervaporation of ethanol and acetone above normal boiling temperatures

    SciTech Connect

    Windmoeller, D.; Galembeck, F. )

    1992-08-01

    Pervaporation experiments were performed at higher than normal feed liquid boiling temperatures by applying pressure to the feed compartment. Ethanol, acetone, and aqueous ethanol solutions were pervaporated through silicone rubber dense membranes. Large increases were observed in the permeate flow as the temperature rose above the liquid boiling temperature. Separation factors in aqueous ethanol pervaporation are not affected by these increases in permeate output, and they are in the same range as those obtained in conventional pervaporation.

  1. Joint conditional simulations and the spectral approach for flow modeling

    NASA Astrophysics Data System (ADS)

    Gutjahr, A.; Bullard, B.; Hatch, S.; Hughson, L.

    1994-03-01

    The use of data to condition single random fields has a well-established history. However, the joint use of data from several cross-correlated random fields is not as well developed. For example, the use of both transmissivity and head data in a steady state 2-d stochastic flow problem is essentially an inverse problem that is very important for both flow and transport predictions. This problem is addressed here by using a combination of numerical simulation and analytical methods and its application illustrated. The type of information conveyed by the different data categories is explored. The results presented are especially interesting in that head and transmissivity each give different information: Head values would appear to constrain the geometry of the paths while transmissivity data yields information about travel times. The linearized model is expanded to an iterative procedure and the “true” conditional distribution at several locations is compared with the iterative solution. The problem mentioned above is one with a special transfer function specified by the flow equation. In the second part of the paper a Fast Fourier Transform method for generation and conditioning of two or more random fields is introduced. This procedure is simple to implement, fast and very flexible.

  2. How Does Water Boil?

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-11-01

    Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network.

  3. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  4. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as

  5. RADIONUCLIDE TRANSPORT IN FRACTURED TUFF UNDER EPISODIC FLOW CONDITIONS

    SciTech Connect

    O. Hu; Y. Sun; R.P. Ewing

    2005-09-19

    The current conceptual model of radionuclide transport in unsaturated fractured rock includes water movement in fractures, with migration of the entrained radionuclides being retarded by diffusion into and sorption within the rock matrix. Water infiltration and radionuclide transport through low-permeability unsaturated fractured rock are episodic and intermittent in nature, at least at local scales. Under episodic flow conditions, the matrix is constantly imbibing or draining, and this fluctuating wetness both drives two-way advective movement of radionuclides, and forces changes in the matrix diffusivity. This work is intended to examine, both experimentally and numerically, how radionuclide transport under episodic flow conditions is affected by the interacting processes of imbibition and drainage, diffusion, and matrix sorption. Using Topopah Spring welded volcanic tuff, collected from the potential repository geologic unit at Yucca Mountain for storing high-level nuclear waste, we prepared a saw-cut fracture core (length 10.2 cm, diameter 4.4 cm, and fracture aperture 100 {micro}m). The dry core was packed into a flow reactor, flushed with CO{sub 2}, then saturated via slow pumping (0.01 mL/min) of synthetic groundwater. The fractured core was then flushed with air at >97% relative humidity (to simulate in situ unsaturated fractured rock conditions at Yucca Mountain), then the episodic transport experiment was conducted. Episodic flow involved 4 cycles of tracer solution flow within the fracture, followed by flushing with high humidity air. Each flow episode contained a different suite of non-sorbing and sorbing tracers, which included {sup 3}H, ReO{sub 4}{sup -} (a chemical analog for {sup 99}TcO{sub 4}{sup -}), I{sup -} (for {sup 129}I{sup -}), Sr and Cs (for {sup 90}Sr and {sup 137}Cs), plus the radionuclides {sup 235}U, {sup 237}Np, and {sup 241}Pu. These radionuclides span a variety of sorption strengths and represent a large fraction of the radionuclides

  6. Cellular automata model for traffic flow with safe driving conditions

    NASA Astrophysics Data System (ADS)

    María, Elena Lárraga; Luis, Alvarez-Icaza

    2014-05-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model.

  7. High-speed platelet adhesion under conditions of rapid flow.

    PubMed Central

    Polanowska-Grabowska, R; Gear, A R

    1992-01-01

    The recognition of exposed collagen by circulating platelets is an initial step in the formation of the hemostatic plug or a thrombus after vascular injury. Theoretical calculations of the speed of platelet function required for effective hemostasis have suggested very short reaction times. However, it is not known how fast platelets can adhere to collagen under arterial flow conditions or which membrane proteins are involved. We have used a continuous-flow, microaffinity column linked to a resistive-particle counter to detect platelet adhesion. Adhesion of human platelets to native type I collagen was extremely rapid, with exponential half-times as short as 240 ms, and was nearly complete by 2 s. This RGD-independent process was not associated with platelet aggregation or secretion. The monoclonal antibody 6F1 directed against the glycoprotein Ia/IIa complex inhibited adhesion, suggesting that this complex plays an important role in the initial phases of platelet-collagen interaction under flow conditions. In addition, divalent cations were required for adhesion, as indicated by inhibition with EDTA in plasma and the dependence on Mg2+ for washed platelets. Images PMID:1631056

  8. Unsteady Squeezing Flow of Carbon Nanotubes with Convective Boundary Conditions.

    PubMed

    Hayat, Tasawar; Muhammad, Khursheed; Farooq, Muhammad; Alsaedi, Ahmad

    2016-01-01

    Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed in the base fluid (water). A system of non-linear differential equations for the flow is obtained by utilizing similarity transformations through the conservation laws. Influence of various emerging parameters on the velocity and temperature profiles are sketched graphically and discussed comprehensively. Analyses of skin fraction coefficient and Nusselt number are also elaborated numerically. It is found out that velocity is smaller for squeezing parameter in the case of multi-wall carbon nanotubes when compared with single-wall carbon nanotubes.

  9. Unsteady Squeezing Flow of Carbon Nanotubes with Convective Boundary Conditions

    PubMed Central

    Hayat, Tasawar; Muhammad, Khursheed; Farooq, Muhammad; Alsaedi, Ahmad

    2016-01-01

    Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed in the base fluid (water). A system of non-linear differential equations for the flow is obtained by utilizing similarity transformations through the conservation laws. Influence of various emerging parameters on the velocity and temperature profiles are sketched graphically and discussed comprehensively. Analyses of skin fraction coefficient and Nusselt number are also elaborated numerically. It is found out that velocity is smaller for squeezing parameter in the case of multi-wall carbon nanotubes when compared with single-wall carbon nanotubes. PMID:27149208

  10. Boiling Fluids Behave Quite Differently in Space

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  11. Integrated Surface-groundwater Flow Modeling: a Free-surface Overland Flow Boundary Condition in a Parallel Groundwater Flow Model

    SciTech Connect

    Kollet, S J; Maxwell, R M

    2005-04-08

    Interactions between surface and ground water are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variable saturated subsurface flow code ParFlow. In ParFlow, the overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is efficiently exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the uncertainty in overland flow predictions due to subsurface heterogeneity and demonstrate the usefulness of our approach. Both the overland flow component and the coupled model are evaluated in a parallel scaling study and show to be efficient.

  12. Physical Model Study: Rill Erosion Morphology and Flow Conditions

    NASA Astrophysics Data System (ADS)

    Strohmeier, S.; Klik, A.; Nouwakpo, S. K.

    2012-04-01

    Using common catchment size erosion model software either lack of knowledge or lack in process ability of watershed characteristics leads to increasing simplifications in model assumptions. Referring to open channel hydraulics, erosion model equations are prevalently based on stepwise uniform flow condition requirements. Approaching balance of gravitational and frictional resistance forces, channel roughness is fundamental model input. The fusion of simplified model assumptions and the use of lumped roughness determination cause ambivalence in model calibration. By means of a physical model experiment at the National Soil Erosion Laboratory (NSERL), West Lafayette, USA, channel roughness was itemized into skin friction and channel shape friction due to rill morphology. Particularly the Manning-Strickler equation was analyzed concerning the applicability of constant and holistic factors describing boundary friction impacts. The insufficiency in using the Manning-Strickler equation for non-uniform flow conditions is widely advised, whereas lack in predictability in rill erosion development inhibits proper model adoptions. The aim of the present study is to determine the impact of channel morphology on roughness assessment in rill erosion scale. Therefore a 1.9 meter long, 0.6 meter wide and 0.3 meter deep flume with an inclination of 10 % was filled with a loamy soil representing a section of a hill slope. The soil was prepared and saturated by simulated rainfall before each model run. A single erosion channel was enforced to develop by means of steady state runoff. Two different erosion channel types were initiated and observed: I.) a Straight Constrained Rill (SCR) shape by concentration of the runoff into a prepared straight initial rill and II.) a Free Developing Rill (FDR) by back-cut erosion through the plain soil body. Discharge of the outflow was measured in 5 minute interval and outflow sediment concentration was measured every minute. A top view stereo

  13. Boundary conditions for soft glassy flows: slippage and surface fluidization.

    PubMed

    Mansard, Vincent; Bocquet, Lydéric; Colin, Annie

    2014-09-28

    We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

  14. 20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    SciTech Connect

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  16. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  17. Revisiting Johnson and Jackson boundary conditions for granular flows

    SciTech Connect

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  18. Platelet adhesion to polyurethane urea under pulsatile flow conditions.

    PubMed

    Navitsky, Michael A; Taylor, Joshua O; Smith, Alexander B; Slattery, Margaret J; Deutsch, Steven; Siedlecki, Christopher A; Manning, Keefe B

    2014-12-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s(-1). The aim of the current work is to determine the properties of platelet adhesion to the polyurethane urea surface as a function of time-varying shear exposure. A rotating disk system was used to study the influence of steady and pulsatile flow conditions (e.g., cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments were conducted with the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk was rotated in platelet-rich bovine plasma for 2 h, with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow was found to decay exponentially with increasing shear rate. Adhesion levels were found to depend upon peak platelet flux and shear rate, regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices.

  19. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  20. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  1. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    The heat transfer performance of forced convective boiling was tested using a high temperature generator of absorption chiller/heater, the rear furnace wall of which was composed of two different surfaces; i. e., plain and sprayed heated surfaces. These two surfaces were bisymmetrically set. Wall surface temperatures of both the fire and fluid sides were measured at three locations along the upward flow direction in each heated surface for determining the heat flux and heat transfer coefficient. Nickel-chromium and alumina were employed as the spray materials. The test results show that the sprayed surface can yield a marked elevation in the heat transfer performance due to boiling on the plain surface. Therefore the level of heated surface temperature is largely reduced by means of the spraying surface treatment. This implies that the spraying would much improve a corrosive condition of the heated surface.

  2. An experimental investigation of critical heat flux performance of hypervapotron in subcooled boiling

    NASA Astrophysics Data System (ADS)

    Chen, Peipei

    The successful use of subcooled flow boiling for high heat flux components requires that the critical heat flux (CHF), i.e., a fast reduction in the boiling heat transfer, must be avoided. Among the many techniques available to enhance CHF, particular attention has been focused on the hypervapotron concept. In this study, the CHF characteristics of the hypervapotron were experimentally investigated using a simulant fluid, R134a, which has been found to be an effective modeling fluid to simulate CHF in water-cooled environments. An experimental and modeling study of the subcooled boiling heat transfer on plain surface and hypervapotron has been conduced. A test facility was designed and constructed to perform required boiling heat transfer experiments. A high speed visualization system was utilized to give details of bubble formation and departure and of nucleation site density. Surface measurements of various specimens were performed to investigate the relationship between nucleation sites and surface microstructure. Full characterization of the hypervapotron effect as a function of fluid thermal hydraulic conditions was accomplished. A non-dimensional CHF correlation for smooth rectangular channels and the hypervapotron channel was developed and compared with experimental data in this work. In addition, a hot-spot model was developed to give predictions of critical heat flux on both plain and hypervapotron surfaces. It was developed on observations of bubble formation, departure and coalescence, and on the confirmation of nucleation structure on the heating surface. Finally, a numerical code was successfully developed to give CHF predictions for hypervapotron configurations. The simulation indicates that the better performance of CHF in hypervapotron configurations is a result of high conductivity material with augmented heating surfaces in subcooled boiling environment. Different fin dimensions were also tested numerically to compare the experimental results, and

  3. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  4. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  5. Integrated surface groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan J.; Maxwell, Reed M.

    2006-07-01

    Interactions between surface and groundwater are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variably saturated subsurface flow code ParFlow [Ashby SF, Falgout RD. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 1996;124(1):145-59; Jones JE, Woodward CS. Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv Water Resour 2001;24:763-774]. This new overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow, replicates a laboratory experiment for surface-subsurface flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the

  6. Pulsational characteristics of the natural-circulation loop of a large-scale model of a light-boiling boiling-water reactor

    SciTech Connect

    Babykin, A.S.; Balunov, B.F.; Chernykh, N.G.; Smirnov, E.L.; Tisheninova, V.I.; Zhiuitskaya, T.S.

    1985-10-01

    The results of an experimental study of a natural-circulation (NC) loop, whose geometrical and hydraulic characteristics are presented are described. The range of state parameters encompassed in the experiments is also indicated. The authors used a large-scale model of a low-boiling-water reactor, with natural heights and reduced stages of separate elements of the NC loop. The study confirmed that under the conditions the pulsations in the flow rate of the coolant occurs only in the transitional zone from natural circulation of the singlephase medium to natural circulation of the two-phase coolant.

  7. EFFECTS OF LOCALIZED AQUIFER BOILING ON FLUID PRODUCTION AT CERRO PRIETO.

    USGS Publications Warehouse

    Truesdell, Alfred H.; D'Amore, Franco; Nieva, David

    1984-01-01

    Localized aquifer boiling in the shallow two-phase reservoir of Cerro Prieto has produced excess steam and increased electrical output. Unfortunately it has also caused near-well mineral deposition that has decreased permeability and fluid flow. Inflow of cold water has limited the extent of aquifer boiling and permeability loss. The deeper reservoir at Cerro Prieto may need injection of cold water to decrease boiling and prevent loss of production. Refs.

  8. Investigation of flow and microstructure in rheometric and processing flow conditions for liquid crystalline pitch

    NASA Astrophysics Data System (ADS)

    Kundu, Santanu

    The microstructure development within mesophase pitch-based carbon materials depends on the flow history that the pitch is subjected to. Therefore, a fundamental understanding of flow and its influence on the microstructure is required to obtain carbon materials with desired properties. The objective of this research was to investigate the flow and microstructural behavior of a synthetic mesophase pitch (AR-HP) in rheometric and processing flow conditions. In addition, simulation studies were performed to establish a frame work for modeling the flow behavior of this complex material in different flow situations. The steady-shear viscosities obtained from a cone-plate rheometer during increasing rate-sweep experiments exhibited shear-thinning (Region I) and plateau (Region II) responses. However, the slope of the shear-thinning region was only about -0.2, much lower than -0.5 observed in some pitches and liquid-crystalline polymers. This difference could arise from the different molecular constituents of pitches. At higher shear rates, as measured from capillary rheometers, the viscosity values remained almost constant. The transient shear stress responses, as measured from cone-plate rheometer, exhibited nonmonotonic behavior as a function of applied strain at all shear rates and temperatures tested. After rheological experiments, the samples were collected by developing a new experimental protocol for preservation of the sample for microstructural analysis. Microstructural observations obtained from three orthogonal sections, reported for the first time in the literature, indicate that the local maximum in shear stress was due to yielding of initial microstructure. The microstructure became flow oriented with further shearing, and the structure size decreased with increasing shear rates. In addition to high-strain experiments, dynamic experiments were also performed in the linear viscoelastic region where no significant deformation of fluid takes place. The

  9. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2005-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  10. Convective Melting of Particles in Flow Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Stewart, C.; Schrimpsher, K.; Sidiqqui, A.; Jiang, J.; Hao, Y.; Tao, Y.-X.; Singh, Bhim (Technical Monitor)

    2000-01-01

    Study of melting of dispersed or packed solid particles in a fluid under gravity and microgravity conditions provides benchmark information for many engineering applications such as material processing, environmental assessment and protection and space fire protection. During such processes, packed or dispersed solid particles are interacting with fluid flow at above-melting temperatures. By unmasking the buoyancy effects in coupled flow, phase change and heat transport phenomena, a better understanding of melting rate in non-thermal equilibrium, convective conditions can be studied. A series of flight experiments were conducted onboard the NASA KC-135 Microgravity Research Airplane. The Particle Melting in Plow (PMF) module was designed to allow flow through the initially packed ice particles at controlled temperature and velocity. To achieve this, a close-loop flow system was designed. Video images were taken to record the visualization of the melting process, from which a time variation of packed particle thickness distribution at different times can be obtained by the image analysis method. The fluid temperature distribution within the melting zone is measured by thermocouples. An infrared camera was mounted from the top of the test section to record the ice-water thermal images at a given location. The results from thermal images yield local temperature variation between melting solid and liquid and local Stephan number. Typical results for a number of cases are presented. The mathematical model, describing mass, energy, and momentum balance equations for the liquid and solid phases, is presented. It is found that melting rate is influenced mainly by the ratio of Reynolds number (based on the initial particle diameter) to the Froud number, and Stephan number. At the absence of gravity, Froud number approaches zero, Reynolds number and Stephan number become dominant factors governing the melting rate. The numerically determined results are compared with the

  11. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  12. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  13. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  14. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  15. Irregular changes in the structure of flowing blood at low flow conditions.

    PubMed

    Pribush, Alexander; Meiselman, Herbert J; Meyerstein, Dan; Meyerstein, Naomi

    2009-12-01

    The structural organization of the dispersed phase of blood was studied by measuring the conductance (G) and the capacitance (C) of red blood cell (RBC) suspensions flowing in a vertical channel. Steady-state C and G signals exhibit erratic fluctuations around mean values; the root mean square of the fluctuating signals decreases rapidly as the average flow rate () increases from 0.21 to ~4.17 mm/s and then less rapidly at higher velocities. The intensity of oscillations is substantially reduced for suspensions with weaker aggregating media. Analysis of the fluctuations performed in the framework of the equivalent electrical circuits for flowing blood gives rise to the following conclusions: (1) Instantaneous hematocrit (Hct) and velocity cross-stream profiles are non-smooth functions of radial position. (2) Oscillations of conductance at low flow conditions reflect irregular changes in the RBC network structure caused by fluctuations of aggregation-disaggregation equilibrium in the non-uniform shear field. (3) A transformation of the rheological behavior of RBC suspensions from shear-thinning to shear-thickening in a low flow regime amplifies fluctuations of aggregation-disaggregation equilibrium.

  16. Simulation Study of the Flow Boundary Condition for Rough Surfaces

    NASA Astrophysics Data System (ADS)

    He, Gang; Robbins, Mark O.

    2001-03-01

    In order to solve a flow problem with the continuum Navier-Stokes equation, a boundary condition must be assumed. In most cases, a no-slip condition is used, i.e. the velocity of the fluid is set equal to that of a bounding solid at their interface. Deviations from this condition can be quantified by a slip length S that represents the additional width of fluid that would be needed to accomodate any velocity difference at the interface. Previous simulations with atomically flat surfaces show that S can be very large in certain limits. (P. A. Thompson and M. O. Robbins, Phys. Rev. A, 41), 6830(1990). ( J.-L. Barrat and L. Bocquet, Phys. Rev. Lett., 82), 4671(1999). A dramatic divergence with S as shear rate increases has also been seen.( P. A. Thompson and S. M. Troian, Nature, 389), 360(1997) We have extended these simulations to surfaces with random roughness, steps, and angled facets typical of twin boundaries. In all cases, S decreases rapidly as the roughness increases. When peak-to-peak roughness is only two atomic diameters, values of S have dropped from more than 20 diameters to only one or two. In addition, the non-linear regime where S diverges with shear rate is supressed by surface roughness. These results suggest that the experimental behavior of atomically flat surfaces such as mica may be very different than that of more typical rough surfaces.

  17. Mechanistic modeling of CHF in forced-convection subcooled boiling

    SciTech Connect

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels.

  18. Unsteady Validation of a Mean Flow Boundary Condition for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Zhen, F.; Nallasamy, M.; Sawyer, S> ; Dyson, R.

    2004-01-01

    In this work, a previously developed mean flow boundary condition will be validated for unsteady flows. The test cases will be several reference benchmark flows consisting of vortical gusts convecting in a uniform mean flow, as well as the more realistic case of a vortical gust impinging on a loaded 2D cascade. The results will verify that the mean flow boundary condition both imposes the desired mean flow as well as having little or no effect on the instantaneous unsteady solution.

  19. Magnetic targeting of microbubbles against physiologically relevant flow conditions

    PubMed Central

    Owen, Joshua; Rademeyer, Paul; Chung, Daniel; Cheng, Qian; Holroyd, David; Coussios, Constantin; Friend, Peter; Pankhurst, Quentin A.; Stride, Eleanor

    2015-01-01

    The localization of microbubbles to a treatment site has been shown to be essential to their effectiveness in therapeutic applications such as targeted drug delivery and gene therapy. A variety of different strategies for achieving localization has been investigated, including biochemical targeting, acoustic radiation force, and the incorporation of superparamagnetic nanoparticles into microbubbles to enable their manipulation using an externally applied magnetic field. The third of these strategies has the advantage of concentrating microbubbles in a target region without exposing them to ultrasound, and can be used in conjunction with biochemical targeting to achieve greater specificity. Magnetic microbubbles have been shown to be effective for therapeutic delivery in vitro and in vivo. Whether this technique can be successfully applied in humans however remains an open question. The aim of this study was to determine the range of flow conditions under which targeting could be achieved. In vitro results indicate that magnetic microbubbles can be retained using clinically acceptable magnetic fields, for both the high shear rates (approx. 104 s−1) found in human arterioles and capillaries, and the high flow rates (approx. 3.5 ml s−1) of human arteries. The potential for human in vivo microbubble retention was further demonstrated using a perfused porcine liver model. PMID:26442137

  20. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva

    2014-11-01

    We have performed large-eddy simulations of compressible turbulent channel flow at one bulk Reynolds number, Reb = 6900, for bulk Mach numbers Mb = 0.05, 0.2, 0.5, with linear acoustic impedance boundary conditions (IBCs). The IBCs are formulated in the time domain following Fung and Ju (2004) and coupled with a Navier-Stokes solver. The impedance model adopted is a three-parameter Helmholtz oscillator with resonant frequency tuned to the outer layer eddies. The IBC's resistance, R, has been varied in the range, R = 0.01, 0.10, 1.00. Tuned IBCs result in a noticeable drag increase for sufficiently high Mb and/or low R, exceeding 300% for Mb = 0.5 and R = 0.01, and thus represents a promising passive control technique for delaying boundary layer separation and/or enhancing wall heat transfer. Alterations to the turbulent flow structure are confined to the first 15% of the boundary layer thickness where the classical buffer-layer coherent vortical structures are replaced by an array of Kelvin-Helmholtz-like rollers. The non-zero asymptotic value of the Reynolds shear stress gradient at the wall results in the disappearance of the viscous sublayer and very early departure of the mean velocity profiles from the law of the wall.

  1. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  2. Variational necessary and sufficient stability conditions for inviscid shear flow

    PubMed Central

    Hirota, M.; Morrison, P. J.; Hattori, Y.

    2014-01-01

    A necessary and sufficient condition for linear stability of inviscid parallel shear flow is formulated by developing a novel variational principle, where the velocity profile is assumed to be monotonic and analytic. It is shown that unstable eigenvalues of Rayleigh's equation (which is a non-self-adjoint eigenvalue problem) can be associated with positive eigenvalues of a certain self-adjoint operator. The stability is therefore determined by maximizing a quadratic form, which is theoretically and numerically more tractable than directly solving Rayleigh's equation. This variational stability criterion is based on the understanding of Kreĭn signature for continuous spectra and is applicable to other stability problems of infinite-dimensional Hamiltonian systems. PMID:25484600

  3. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  4. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  5. Temporal Patterns in Bivalve Excurrent Flow Under Varying Ambient Flow Conditions

    NASA Astrophysics Data System (ADS)

    Delavan, S. K.; Webster, D. R.

    2008-11-01

    The predator-prey relationship between blue crabs (Callinectes sapidus) and bivalve clams (Mercenaria mercenaria) is mediated by the transport of metabolites released by the prey (clams) and transported downstream as a passive scalar. This study focuses on how the prey behavior contributes to the information available within the odorant plume. Clams may modify factors such as excurrent flux, flow unsteadiness, and siphon height and diameter. A Particle Image Velocimetry (PIV) system has been used to quantify the temporal patterns in the excurrent jet of the bivalve siphon under varying ambient flow conditions. According to a spectral analysis of siphon excurrent velocity time records, there is a low frequency periodic component that could contribute to the mixing of clam metabolites through the generation of persistent jet vorticies. Also, fractal analysis of the velocity time records shows that as the ambient velocity increases the excurrent velocity becomes more correlated and less random. These results suggest that for high ambient flow a low frequency periodicity may be sufficient to promote the mixing and dilution of metabolites. In contrast, for low ambient flow more random siphon excurrent velocity may be required to reduce the amount of information available to predators in the downstream odorant plume.

  6. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  7. Numerical and experimental investigation of subcooled film boiling on a horizontal plate

    NASA Astrophysics Data System (ADS)

    Banerjee, Debjyoti

    Analytical study of 3-D Taylor instability in cylindrical polar coordinates were performed. The predictions for wavenumber, based on this analysis, were found to be in good agreement with experimental data for subcooled film boiling. Numerical simulations of non-linear Taylor instability were performed to determine: the effect of heater thermo-physical properties on saturated film boiling, and the effect of subcooling on film boiling using static and dynamic models. The computations were restricted to 2-D incompressible and laminar flow which were described in axisymmetric coordinates. The finite volume method was used to simultaneously solve the equations governing conservation of mass, momentum and energy in the vapor and liquid phase. The governing equations were discretized by employing coordinate transformation, numerical grid generation and contravariant velocity vectors. Second order projection method for decoupling velocity from pressure was used to solve the governing equations. Results show that the heater material properties have a significant effect on the heater local temperature distribution resulting in the formation of "cold spot". The intensity of the cold spots are of the order of 10°C. The time period for vapor bubble "pinch-off" obtained from the calculations agree with experimental results and are found to be dependent on the heater material properties. The static model employed to study effects of subcooling in film boiling show that the degree of subcooling is a more important factor than the height of the vapor bulge. The dynamic model was used to obtain the flow patterns and isotherm distribution in the liquid and vapor phase. The wall heat transfer was predicted to increase with increase in subcooling while the contribution to vapor generation was found to decrease. Experimental validation of numerical predictions were performed by high speed photography, 2-D Particle Tracking Velocimetry (PTV) in the liquid phase and thermal measurements

  8. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect

    Ammerman, C.N.; You, S.M.; Hong, Y.S.

    1995-12-31

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  9. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2003-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  10. An analysis of a flat-plate solar collector with internal boiling

    SciTech Connect

    Abramzon, B.; Borde, I.; Yaron, I.

    1983-11-01

    The extended mathematical model of a flat-plate solar collector-evaporator permits prediction of the effects of boiling of the working fluid in the collector tubes on the efficiency of the collector. The efficiency increases sharply and approaches the ideal on transition from single phase flow to the subcooled and saturated boiling regimes, regardless of the nature of the working fluid.

  11. Hydrothermal conditions and resaturation times in underground openings for a nuclear waste repository in the Umtanum flow at the Basalt Waste Isolation Project

    SciTech Connect

    Pruess, K.; Bodvarsson, G.

    1982-07-01

    Numerical simulation techniques have been used to study heat flow and pore fluid migration in the near field of storage tunnels and canister storage holes in a proposed high-level nuclear waste repository in the Umtanum Basalt at the Basalt Waste Isolation Project site at Hanford, Washington. Particular emphasis was placed on evaluating boiling conditions in the host rock. Sensitivity studies were performed to determine the influence of variations in critical site-specific parameters which are not presently accurately known. The results indicate that, even when rather extreme values are assumed for key hydrothermal parameters, the volume of rock dried by boiling of pore fluids is negligible compared to the volume of excavated openings. The time required for saturation of backfilling materials is thus controlled by the volume of the mined excavations. When realistic values for the parameters of the natural and man-made systems are used resaturation is predicted to occur within less than two years after backfilling is placed. The approximations used in the analyses, and their limitations, are discussed in the body of the report. Recommendations are made for additional studies of the thermohydrological behavior of a high-level nuclear waste repository. 31 references, 76 figures, 7 tables.

  12. A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data. [Reactor Cooling Systems (RCS)

    SciTech Connect

    Palmrose, D.E. ); Mandl, R.M. )

    1991-01-01

    There has been recent interest in the United States concerning the loss of residual heat removal system (RHRS) under reduced coolant inventory conditions for pressurized water reactors. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-HI experimental facility at Siemens-KWU to supply applicable data. Recently, an NRC-sponsored effort has been undertaken at the Idaho-National Engineering Laboratory to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following the long term loss-of-RHRS during reduced inventory operation. The thermal-hydraulic response of a closed reactor coolant system during such a transient is investigated in this report. Some of the specific processes investigated include: reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, and void fraction distributions on the primary side of the system. Mathematical models of these and other physical processes Experiment B4.5.

  13. Electrohydrodynamics of boiling on microstructured surfaces for space applications

    NASA Astrophysics Data System (ADS)

    Saccone, Giacomo; Moran, Jeffrey L.; Bucci, Matteo; Buongiorno, Jacopo; di Marco, Paolo; Mit-Nuclear Science; Engineering Team; University Of Pisa-Destec Dept. Team

    2016-11-01

    Surface wettability is a major parameter in boiling heat transfer. It affects the departure of bubbles from the boiling surface and consequently determines the maximum heat flux transferrable in safe conditions, known as critical heat flux (CHF). Surface wettability can be enhanced through passive techniques, including micro-engineered surfaces and coatings, or through active techniques, e.g. by applying a tunable electric field (electrowetting) that modifies the bubble shape in such a way as to drive bubble detachment. The latter technique is particularly interesting for space applications, where the electric field is used to create a body force that compensates for the absence of gravity. The present work is focused on boiling heat transfer on surfaces whose wettability has been modified by passive and active techniques. We have built a pool boiling apparatus composed of a micro-structured heater acting as boiling surface and an axisymmetric electrode High-speed optical and infrared imaging have been used to investigate the dynamics of boiling phenomena. The aims of this project are twofold: to achieve a superior understanding of wetting phenomena, and to improve the efficiency of cooling devices for space applications.

  14. MRI of cerebral blood flow under hyperbaric conditions in rats.

    PubMed

    Cardenas, Damon P; Muir, Eric R; Duong, Timothy Q

    2016-07-01

    Hyperbaric oxygen (HBO) therapy has a number of clinical applications. However, the effects of acute HBO on basal cerebral blood flow (CBF) and neurovascular coupling are not well understood. This study explored the use of arterial spin labeling MRI to evaluate changes in baseline and forepaw stimulus-evoked CBF responses in rats (n = 8) during normobaric air (NB), normobaric oxygen (NBO) (100% O2 ), 3 atm absolute (ATA) hyperbaric air (HB) and 3 ATA HBO conditions. T1 was also measured, and the effects of changes in T1 caused by increasing oxygen on the CBF calculation were investigated. The major findings were as follows: (i) increased inhaled oxygen concentrations led to a reduced respiration rate; (ii) increased dissolved paramagnetic oxygen had significant effects on blood and tissue T1 , which affected the CBF calculation using the arterial spin labeling method; (iii) the differences in blood T1 had a larger effect than the differences in tissue T1 on CBF calculation; (iv) if oxygen-induced changes in blood and tissue T1 were not taken into account, CBF was underestimated by 33% at 3 ATA HBO, 10% at NBO and <5% at HB; (v) with correction, CBF values under HBO, HB and NBO were similar (p > 0.05) and all were higher than CBF under NB by ~40% (p < 0.05), indicating that hypercapnia from the reduced respiration rate masks oxygen-induced vasoconstriction, although blood gas was not measured; and (vi) substantial stimulus-evoked CBF increases were detected under HBO, similar to NB, supporting the notion that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism. CBF MRI provides valuable insights into the effects of oxygen on basal CBF and neurovascular coupling under hyperbaric conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  16. Peculiarities of evolution of shock waves generated by boiling coolant

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.

    2016-11-01

    Simulation of compression wave generation and evolution at the disk target was performed for the case of explosive-type boiling of coolant; the boiling is initiated by endwall rupture of a high-pressure pipeline. The calculations were performed for shock wave amplitude at different times and modes of pipe rupture. The simulated pressure of a target-reflected shock wave is different from the theoretical value for ideal gas; this discrepancy between simulation and theory becomes lower at higher distances of flow from the nozzle exit. Comparative simulation study was performed for flow of two-phase coolant with account for slip flow effect and for different sizes of droplets. Simulation gave the limiting droplet size when the single-velocity homogeneous flow model is valid, i.e., the slip flow effect is insignificant.

  17. Effect of surface properties on nucleate pool boiling

    SciTech Connect

    Haze, Ikuya; Tomemori, Hideki; Motoya, Daiju; Osakabe, Masahiro

    1999-07-01

    A series of experiments on nucleate pool boiling was performed by use of an oxygen-free copper rod and platinum wires of different surface properties under both normal gravity condition and microgravity condition. As a result of the experiments, under normal gravity condition, the bubbling on thick cracked silicone-coated surfaces and that on scale surfaces were more vigorous than that on mirror-finished (copper) surfaces, that on bare (Pt) surfaces, that on thin silicone-coated surfaces and that on thick silicone-coated surfaces. The boiling curves on the mirror-finished surface, the bare surface, the thin silicone-coated surface and the thick cracked silicone-coated surface were equal to those predicted by the Rohsenow's correlation. The superheats on the thick silicone-coated surface and the scale surface were larger than those predicted by the Rohsenow's correlation. The boiling curves on the non-cracked silicone-coated surface and the scale surface corrected by those heat resistance were equal to those predicted by the Rohsenow's correlation. The superheat on the thick silicone-coated surface corrected by its heat resistance was smaller than that predicted by the Rohsenow's correlation. The thick cracked silicone-coated surface enhanced the nucleate boiling heat transfer. On the other hand, under microgravity condition, the bubbles stayed around heated surfaces except scale surfaces. The boiling curve on the bare surface under microgravity condition was equal to that under normal gravity condition. The effect of surface properties on the nucleate boiling heat transfer under microgravity condition was equal to that under normal gravity condition.

  18. Experimental Investigation of Natural-Circulation Flow Behavior Under Low-Power/Low-Pressure Conditions in the Large-Scale PANDA Facility

    SciTech Connect

    Auban, Olivier; Paladino, Domenico; Zboray, Robert

    2004-12-15

    Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity. The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.

  19. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  20. High heat flux transport by microbubble emission boiling

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  1. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  2. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  3. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    NASA Astrophysics Data System (ADS)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the

  4. Immersion cooling of an array of heated elements by convective boiling of a subcooled binary liquid mixture

    NASA Astrophysics Data System (ADS)

    McGillis, W. R.; Carey, V. P.

    1991-01-01

    Boiling data and the critical heat flux conditions are reported for both channel flow and jet impingement flow using varying concentrations of R-11 in R-113. An array of ten flush-mounted heated elements on one wall of a vertical passage were cooled by subcooled boiling. Data indicate that for this binary system the addition of R-11 to R-113 does not produce a significant change in critical heat flux. For channel flow boiling, the data indicate that addition of a small amount of a less volatile component slightly increases the critical heat flux, whereas addition of a small amount of more volatile component decreases it. The critical heat flux data were also found to agree well with critical heat flux correlations for pure fluids if the mole-weighted mean properties of the mixture were used to compute the critical heat flux from the pure fluid correlation. The significance of the findings of this study with regard to the use of binary mixtures of dielectric fluids for immersion cooling of electronic components is also discussed in this paper.

  5. Effects of Surface Conditions on Boiling Characteristics,

    DTIC Science & Technology

    contact angle . This model for individual cavities was extended to the entire surface providing an expression for the cumulative site density in terms...water and organics at atmospheric pressure and was incorporated into a unified expression showing explicitly the role of surface geometry and contact angle . (Author)

  6. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  7. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  8. Influence of fracture intersections under unsaturated, low flow conditions

    SciTech Connect

    Thomas R. Wood; Michael J. Nicholl; Robert J. Glass

    2005-04-01

    Recent experimental evidence suggests that the capillary heterogeneity associated with fracture intersections can act to impose temporal and spatial structure on network-scale flows. A simple intersection between orthogonal fractures, one horizontal and the other vertical, has been shown to integrate unsaturated flows. At low flows the intersection forms a capillary barrier that accumulates water in a growing pool. Eventually, the retaining meniscus snaps, discharging a pulse of water. Here we develop a mechanistic explanation for this observed behavior and experimentally consider three perturbations to the geometry of the simple orthogonal intersection. Two of the perturbations also act as capillary barriers, while the third formed a capillary bridge across the intersection. At low flow, all of our experimental intersections imposed a temporal signal, with the nature of that signal dependent on intersection geometry and participation by the horizontal fractures in dynamic storage. At high flow a continuous fluid tendril spanned the system from inlet to outlet with water pooled above the intersection caused by a narrow fluid connection that restricted flow across the intersection. Results from all experiments suggest that pulsation is critically sensitive to small variations in the geometry of fracture intersections and storage in the horizontal fractures. When combined with dependency on supply rate, this sensitivity can generate pulsation of flow across a wide range of time periods and discharge volumes.

  9. Flow resistance under conditions of intense gravel transport

    USGS Publications Warehouse

    Pitlick, John

    1992-01-01

    A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.

  10. N Reactor departure from nucleate boiling correlation for outer annulus subchannel at higher steam quality

    SciTech Connect

    Wittekind, W.D.

    1988-02-01

    This report justifies an N Reactor departure from nucleate boiling heat flux correlation for the outer annulus subchannel into the higher steam quality region. The center hole flow channel was completed in 1963, and the inner annulus flow channel was completed in 1978. This extension to departure from nucleate boiling correlation will complete the extension into the higher steam quality region and relieve some calculated thermal hydraulic limits without compromising reactor safety. Justification for this departure from nucleate boiling heat flux correlation extension into the higher steam quality region results from the following references: Annular flow channel correlations, Annular flow channel measurements, and Hanford Site measurements on an N Reactor model. This extension to departure from nuclear boiling heat flux correlation is reasonable and conservative. 19 refs., 4 figs., 14 tabs.

  11. Conditional Second Order Closure for Turbulent Shear Flows.

    DTIC Science & Technology

    1985-07-22

    measurements in several shear flows and satisfactory agreement between calculation and experiment is obtained. S Ps *s ~ J j~~- p .’* % LX- W-Vvw.n W...which allows calculation of the intermittency factor and statistical moments characterizing the fluctuations in the individual zones. The closure model...The resulting model is then compared with measurements in several shear flows and satisfactory agreement between calculation and experiment is

  12. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  13. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.

    PubMed

    Wu, Z J; Antaki, J F; Burgreen, G W; Butler, K C; Thomas, D C; Griffith, B P

    1999-01-01

    As continuous flow pumps become more prominent as long-term ventricular assist devices, the wide range of conditions under which they must be operated has become evident. Designed to operate at a single, best-efficiency, operating point, continuous flow pumps are required to perform at off-design conditions quite frequently. The present study investigated the internal fluid dynamics within two representative rotary fluid pumps to characterize the quality of the flow field over a full range of operating conditions. A Nimbus/UoP axial flow blood pump and a small centrifugal pump were used as the study models. Full field visualization of flow features in the two pumps was conducted using a laser based fluorescent particle imaging technique. Experiments were performed under steady flow conditions. Flow patterns at inlet and outlet sections were visualized over a series of operating points. Flow features specific to each pump design were observed to exist under all operating conditions. At off-design conditions, an annular region of reverse flow was commonly observed within the inlet of the axial pump, while a small annulus of backflow in the inlet duct and a strong disturbed flow at the outlet tongue were observed for the centrifugal pump. These observations were correlated to a critical nondimensional flow coefficient. The creation of a "map" of flow behavior provides an additional, important criterion for determining favorable operating speed for rotary blood pumps. Many unfavorable flow features may be avoided by maintaining the flow coefficient above a characteristic critical coefficient for a particular pump, whereas the intrinsic deleterious flow features can only be minimized by design improvement. Broadening the operating range by raising the band between the critical flow coefficient and the designed flow coefficient, is also a worthy goal for design improvement.

  14. [Kinetic theory and boundary conditions for flows of highly inelastic spheres: Application to gravity driven granular flows down bumpy inclines

    SciTech Connect

    Richman, M.W.

    1992-01-01

    In this quarter, we extended our study of the effects of isotropic boundary vibrations to steady, gravity driven, inclined granular flows. These flows are more complex than those considered last quarter because of the presence of slip and mean velocity gradients at the boundary. Consequently, it was first necessary to modify the boundary conditions derived by Richman (1992) to account for corrections to the flow particle velocity distribution function from velocity gradients. In what follows we only summarize the results obtained.

  15. On the interpretation of ECP data from operating boiling water reactors

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1995-12-31

    A method has been devised for estimating the electrochemical conditions that exist in the recirculation piping of a Boiling Water Reactor (BWR) under hydrogen water chemistry (HWC) conditions from corrosion potential measurements that are made in remote autoclaves. The technique makes use of the mixed potential model (MPM) to estimate corrosion potentials in the autoclaves and compares these estimates with measured values in an optimization on the concentrations of hydrogen peroxide and oxygen in the recirculation system. The algorithm recognizes that hydrogen peroxide decomposes in the sampling lines and that the transit times between the recirculation system and the monitoring points depend on the flow rates and sampling line diameters. An analysis is made of ECP data from three monitoring locations in the Barseback BWR in Sweden, as a function of the concentration of hydrogen in the feedwater for two flow rates (5,500 and 6,300 kg/s for the four recirculation loops).

  16. Boiling heat transfer in a small horizontal rectangular channel

    SciTech Connect

    Tran, T.N.; Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1993-08-01

    Compact heat exchangers have traditionally found wide application in the transportation industry, where they are used as evaporators and condensers in vapor compression cycles for air conditioning and refrigeration. Such heat exchangers possess numerous attractive features including high thermal effectiveness, small size, low weight, design flexibility, and pure counterflow, and they can accommodate multiple streams. Today, there is a widespread interest in expanding the range of application of compact heat exchangers to include phase-change heat transfer in the process industries, among others. An overall objective of this effort is to provide the basis for establishing design technology in this area. In the present study, small channel flow boiling heat transfer was extended to a rectangular channel (4.06 {times} 1.70 mm) using refrigerant 12 (R-12). As with the circular tube studies, the flow channel wall was electrically heated providing a constant heat flux. Tests were performed over a quality range of 0.15 to 0.80, and large ranges of mass fluxes (50 to 400 kg/m{sup 2}s) and heat flux (4 to 34 kW/m{sup 2}). Heat transfer was measured and results are compared with correlation predictions.

  17. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  18. Effect of Oil on the Onset of Nucleate Pool Boiling of R-124 from a Single Horizontal Tube

    DTIC Science & Technology

    1993-06-01

    relative uncertainty. The uncertainty analysis method suggested by Kline and McClintock [Ref. 47] was used. for example: R R(x 1 Ix 2,x1 ...... x...Surfaces, Proceedings of the Engineering Foundation Conference On Pool and External Flow Boiling, Santa Barbara , CA, pp. 63- 71, 1992. 9. Bar-Cohen... Barbara , CA, pp. 1-13, 1992. 10. Thome, J. R., Enhanced Boiling of Mixtures, Enhanced Boiling Heat Transfer, Hemisphere Publishing Corp, pp.4-13, 1990

  19. An in-well heat-tracer-test method for evaluating borehole flow conditions

    NASA Astrophysics Data System (ADS)

    Sellwood, Stephen M.; Hart, David J.; Bahr, Jean M.

    2015-12-01

    An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

  20. The myth of the boiling point.

    PubMed

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  1. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition

    NASA Astrophysics Data System (ADS)

    Yu, Kwonkyu; Kim, Seojun; Kim, Dongsu

    2015-10-01

    Flow velocity estimation in actual rivers using image processing technique has been highlighted for hydrometric communities in the last decades, and this technique is called Large Scale Particle Image Velocimetry (LSPIV). Although LSPIV has been successfully tested in many flow conditions, it has addressed several limitations estimating mean flow field because of difficult flow conditions such as rotating, lack of light and seeds, and noisy flow conditions. Recently, an alternative technique named STIV to use spatio-temporal images based on successively recorded images has been introduced to overcome the limitations of LSPIV. The STIV was successfully applied to obtain one-dimensional flow component in the river for estimating streamflow discharge, where the main flow direction is known. Using the 5th order of central difference scheme, the STIV directly calculated the mean angle of slopes which appeared as strips in the spatio-temporal images and has been proved to be more reliable and efficient for the discharge estimation as compared with the conventional LSPIV. However, yet it has not been sufficiently qualified to derive two-dimensional flow field in the complex flow, such as rotating or locally unsteady flow conditions. We deemed that it was because the strips in the given spatio-temporal images from not properly oriented for main flow direction are not narrow enough or clearly visible, thus the direct estimating strip slope could give erroneous results. Thereby, the STIV has been mainly applied for obtaining one-dimensional flow component. In this regard, we proposed an alternative algorithm to estimate the mean slope angle for enhancing the capability of the STIV, which used correlation coefficient between odd and even image splits from the given spatio-temporal image. This method was named CASTI (Correlation Analysis of Spatio-Temporal Image). This paper described the step-by-step procedure of the CASTI and validated its capability for estimating two

  2. Topologically Derived Separation Conditions for Two- and Three-Dimensional Laminar Flows

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Topological concepts are used to derive separation conditions for two- and three-dimensional laminar flows. The result for two-dimensional flow reproduces the form of the well-known Stratford criterion. An extension makes the form applicable to the symmetry plane of a three-dimensional flow.

  3. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  4. Model for boiling and dryout in particle beds. [LMFBR

    SciTech Connect

    Lipinski, R. J.

    1982-06-01

    Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.

  5. Combined effects of flow condition and parasitism on shoaling behaviour of female guppies Poecilia reticulata.

    PubMed

    Hockley, F A; Wilson, C A M E; Graham, N; Cable, J

    2014-01-01

    Group living in fish can provide benefits of protection from predators and some parasites, more efficient foraging for food, increased mating opportunities and enhanced energetic benefit when swimming. For riverine species, shoaling behaviour can be influenced by various environmental stressors, yet little is known how flow rate might influence the shoaling of diseased fish shoals. In view of the increasingly unpredictable flow rates in streams and rivers, this study aimed to assess the combined effect of flow condition and parasitism on the shoaling behaviour of a model fish species. Shoal size, shoal cohesion and time spent shoaling of female guppies Poecilia reticulata were compared when infected with the directly transmitted ectoparasite Gyrodactylus turnbulli under flow and static conditions. Flow condition was an important factor in influencing shoaling behaviour of guppies with the fish forming larger shoals in the absence of flow. When a shoal member was infected with G. turnbulli, shoal cohesion was reduced, but the magnitude of this effect was dependent on flow condition. In both flow and static conditions, bigger fish formed larger shoals than smaller counterparts. Future changes to stream hydrology with more frequent flooding and drought events will affect the shoaling tendency of fish. During high-flow events, diseased fish may not be able to keep up with shoal mates and therefore have a higher risk of predation. Additionally, these findings may be important for aquaria and farmed species where an increase in flow rate may reduce aggregation in fish.

  6. Far Field Computational Boundary Conditions for Internal Flow Problems

    DTIC Science & Technology

    1988-09-01

    EULER EQUATIONS. TIHE EULER EQUATIONS ARE LI NEARI ZED) ABOUT A CONSTrANT PRESSURE, RECTILINEAR FLOW WH!I CH MAY hIAVE STREANWTSE-NORMAL VAR[AT i ONS IN...WIT11 ANY NUMER ICAL EULER SOLTITON MEFTHOD AND ALLOWS COMP’UT’ATrIONAL BOUN)AR IEs ron m.E P1 .ACE!) MUCH CLOSER TO THlE NONLINEAR RlIC ION" OF I...developed from analytic solutions of the linearized Euler equations. The Euler equations are linearized about a constant pressure, rectilinear f")w

  7. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  8. Conditions at the downstream boundary for simulations of viscous incompressible flow

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    The proper specification of boundary conditions at artificial boundaries for the simulation of time-dependent fluid flows has long been a matter of controversy. A general theory of asymptotic boundary conditions for dissipative waves is applied to the design of simple, accurate conditions at downstream boundary for incompressible flows. For Reynolds numbers far enough below the critical value for linear stability, a scaling is introduced which greatly simplifies the construction of the asymptotic conditions. Numerical experiments with the nonlinear dynamics of vortical disturbances to plane Poiseuille flow are presented which illustrate the accuracy of our approach. The consequences of directly applying the scalings to the equations are also considered.

  9. Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold.

    PubMed

    Gong, Xianghui; Liu, Haifeng; Ding, Xili; Liu, Meili; Li, Xiaoming; Zheng, Lisha; Jia, Xiaoling; Zhou, Gang; Zou, Yuanwen; Li, Jinchuan; Huang, Xuejin; Fan, Yubo

    2014-06-01

    Many studies have demonstrated that in vitro shear stress conditioning of endothelial cell-seeded small-diameter vascular grafts can improve cell retention and function. However, the laminar flow and pulsatile flow conditions which are commonly used in vascular tissue engineering and hemodynamic studies are quite different from the actual physiological pulsatile flow which is pulsatile in nature with typical pressure and flow waveforms. The actual physiological pulsatile flow leading to temporal and spatial variations of the wall shear stress may result in different phenotypes and functions of ECs. Thus, the aim of this study is to find out the best in vitro dynamic culture conditions to generate functional endothelium on sulfated silk fibroin nanofibrous scaffolds for small-diameter vascular tissue engineering. Rat aortic endothelial cells (RAECs) were seeded on sulfated silk fibroin nanofibrous scaffolds and cultured under three different patterns of flow conditioning, e.g., steady laminar flow (SLF), sinusoidal flow (SF), or physiological pulsatile flow (PPF) representative of a typical femoral distal pulse wave in vivo for up to 24 h. Cell morphology, cytoskeleton alignment, fibronectin assembly, apoptosis, and retention on the scaffolds were investigated and were compared between three different patterns of flow conditioning. The results showed that ECs responded differentially to different exposure time and different flow patterns. The actual PPF conditioning demonstrated excellent EC retention on sulfated silk fibroin scaffolds in comparison with SLF and SF, in addition to the alignment of cells in the direction of fluid flow, the formation of denser and regular F-actin microfilament bundles in the same direction, the assembly of thicker and highly crosslinked fibronectin, and the significant inhibition of cell apoptosis. Therefore, the actual PPF conditioning might contribute importantly to the generation of functional endothelium on a sulfated silk

  10. Drop-box Weir for Measuring Flow Rates Under Extreme Flow Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment and large rocks often are transported in runoff during extreme events. The sediment can deposit in a runoff-measuring structure and give erroneous readings. The drop-box weir (DBW) is one of only a few flow-measuring devices capable of measuring sediment-laden flows. Recent studies have ...

  11. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Wang, Yu-jie; Du, Cui; Wang, Yun-qi; Li, Yun-peng

    2016-11-01

    Debris flows in the mountain regions surrounding Beijing have been occurring for a long time and have resulted in great economic losses. In this study, 23 rainstorm events, surficial sediments, and debris flow deposits were analyzed to quantify the area's rainfall threshold and to investigate how such conditions may be used to predict debris flow in this region. Rainfall threshold of intensity-duration (I-D) functions after vegetation recovery was higher than before recovery and also higher than I-D levels in other regions where debris flows are closely associated with runoff. Field investigations revealed that surficial sediments were characterized by coarse-grained sediments and that debris flow deposits lacked fine particles. Local debris flows can be triggered by runoff; however, no single standard equation is used to predict the conditions that lead to runoff-triggered debris flow; and commonly used equations give different values. Here, we propose an empirical function that takes into account peak discharge per width and particle diameter. This model should be verified with further investigations so that it can be used as a reference to analyze the conditions that lead to debris flow in the study area. Finally, debris flows may have been related to occasional storms in the study area, which has been experiencing substantially increased temperatures and decreased annual precipitation. This work provides important information about the conditions that initiated debris flow in the Beijing mountain regions in the last few decades.

  12. Magnetohydrodynamic Stagnation Point Flow with a Convective Surface Boundary Condition

    NASA Astrophysics Data System (ADS)

    Jafar, Khamisah; Ishak, Anuar; Nazar, Roslinda

    2011-09-01

    This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities.

  13. Effects of Inlet Flow Conditions on Crossflow Jet Mixing

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.; Holdeman, J. D.

    1996-01-01

    An experimental investigation of the effects of mainstream turbulence, mainstream swirl and non-symmetric mass addition has been conducted for the isothermal mixing of multiple jets injected into a confined rectangular crossflow. Jet penetration and mixing in the near field was studied using planar Mie scattering to measure time-averaged mixture fraction distributions. Orifice configurations were used that were optimized for mixing performance based on previous experimental and computational results for a homogeneous approach flow. Mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of the mean jet concentration distributions, was found to be minimally affected by free-stream turbulence but significantly influenced by the addition of swirl to the mainstream. The results for non-symmetric mass addition indicate that the concentration distribution of the flowfield can be tailored if desired.

  14. A Robust Absorbing Boundary Condition for Compressible Flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; orgenson, Philip C. E.

    2005-01-01

    An absorbing non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented with theoretical proof. This paper is a continuation and improvement of a previous paper by the author. The absorbing NRBC technique is based on a first principle of non reflecting, which contains the essential physics that a plane wave solution of the Euler equations remains intact across the boundary. The technique is theoretically shown to work for a large class of finite volume approaches. When combined with the hyperbolic conservation laws, the NRBC is simple, robust and truly multi-dimensional; no additional implementation is needed except the prescribed physical boundary conditions. Several numerical examples in multi-dimensional spaces using two different finite volume schemes are illustrated to demonstrate its robustness in practical computations. Limitations and remedies of the technique are also discussed.

  15. Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions

    PubMed Central

    Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed

    2014-01-01

    This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608

  16. Methicillin Resistant Staphylococcus Aureus Biofilm Formation Over A Separated Flow Region Under Steady And Pulsatile Flow Conditions

    NASA Astrophysics Data System (ADS)

    Salek, M. Mehdi; Martinuzzi, Robert

    2012-02-01

    Several researchers have observed that the formation, morphology and susceptibility of bacterial biofilms are affected by the local hydrodynamic condition and, in particular, shear stresses acting on the fluid-biofilm interface. A backwards facing step (BFS) experimental model has been widely utilized as an in vitro model to examine and characterize the effect of flow separation and recirculation zones comparable to those present within various medical devices as well as those observed in vivo. The specific geometry of BFS covers a vide range of flow features observed in physiological or environmental conditions. The hypothesis of this study is that the flow behavior and structures can effectively contribute to the transport and attachment of cells and affecting the morphology of adhered colonies as well as suspended structures (i.e. biofilm streamers). Hence, the formation of the recirculation region occurring within a backward facing step (BFS) under steady and pulsatile conditions as well as three-dimensional flow structures arising close to the side walls are investigated to correlate to biofilms behavior. This hypothesis is investigated using a backward facing step incorporated into a flow cell under steady and pulsatile flow regimes to study the growth of methicillin resistant Staphylococcus aureus (MRSA) UC18 as the study microorganism.

  17. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  18. FLOWNET: A Computer Program for Calculating Secondary Flow Conditions in a Network of Turbomachinery

    NASA Technical Reports Server (NTRS)

    Rose, J. R.

    1978-01-01

    The program requires the network parameters, the flow component parameters, the reservoir conditions, and the gas properties as input. It will then calculate all unknown pressures and the mass flow rate in each flow component in the network. The program can treat networks containing up to fifty flow components and twenty-five unknown network pressures. The types of flow components that can be treated are face seals, narrow slots, and pipes. The program is written in both structured FORTRAN (SFTRAN) and FORTRAN 4. The program must be run in an interactive (conversational) mode.

  19. Development and validation of characteristic boundary conditions for cell-centered Euler flow calculations

    NASA Astrophysics Data System (ADS)

    van den Berg, J. I.; Boerstoel, J. W.

    An overview of the development, analysis, and numerical validation of a solid-wall boundary condition for cell-centered Euler-flow calculations is presented. This solid-wall boundary condition is provided by the theory of characteristics, and is based on a central-difference scheme. The boundary condition was developed to investigate the effect of various boundary-condition algorithms on the accuracy of calculation results for three-dimensional Euler flows around delta wings. A mathematical analysis of the boundary condition was performed. The numerical validation consists of a comparison of calculation results with various boundary conditions. Also discretization and convergence errors were investigated. As a test case, the NLR 7301 profile under supercritical, shock-free flow conditions of M = 0.721, alpha = -0.194 deg, were chosen.

  20. Hydrodynamic flow of the eutectic under the conditions of superplasticity

    NASA Astrophysics Data System (ADS)

    Korshak, V. F.; Kryshtal', A. P.; Shapovalov, Yu. A.; Samsonik, A. L.

    2010-10-01

    In this paper we present original experimental data indicating the manifestation of a hydrodynamic mode of deformation under the conditions of superplasticity. The investigations have been performed on a cast alloy Sn-38 wt % Pb at room temperature. The manifestation of the hydrodynamic mode is related to the high level of internal stresses arising in the process of tension in connection with the occurrence of structural and phase transformations stimulated by plastic deformation in the initially metastable alloy and caused by a preliminary swaging of the samples.

  1. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  2. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    S. James

    2004-10-06

    This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the saturated zone (SZ) site-scale model domains, both as recharge (infiltration) at the upper boundary (water table), and as underflow at the lateral boundaries. Specifically, this work compiles information on the recharge boundary conditions supplied to the base-case and alternate SZ site-scale flow models taken from (1) distributed recharge from the 1997 (D'Agnese et al. 1997 [DIRS 100131]) or 2001 (D'Agnese et al. 2002 [DIRS 158876]) SZ regional-scale (Death Valley Regional Flow System [DVRFS]) model; (2) recharge below the area of the 1997 (Wu et al. 1997 [DIRS 156453]) or 2003 (BSC 2004 [DIRS 169861]) unsaturated zone (UZ) site-scale flow model; and (3) focused recharge along Fortymile Wash. In addition, this analysis includes extraction of the groundwater flow rates simulated by the 1997 and 2001 DVRFS models coincident with the lateral boundaries of the SZ site-scale flow models. The fluxes from the 1997 DVRFS were used to calibrate the base-case SZ site-scale flow model. The 2001 DVRFS fluxes are used in the alternate SZ site-scale flow model.

  3. Gravel Particles Entrainment and Deposition under Unsteady Flow Conditions

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Altinakar, M. S.; Hassan, M. A.; Qu, Z.

    2014-12-01

    Spatial patterns of particle entrainment and deposition under unsteady flow regime were examined using coloured particles. The impact of three different basic hydrograph shapes (triangular, rising and falling) on the bedload rate of a gravel-bedded channel is experimentally analysed. The experiments were performed in a 16.8 m long glassed-walls tilting flume, with a 60 cm wide and 80 cm deep rectangular section, at the École Polytechnique Fédérale de Lausanne. A mobile 10 cm deep layer reach was made in the bed channel from x = 4.9 m to x = 14.1 m with a relatively uniform gravel of size 3 to 8 mm. A sediment trap is located immediately downstream the movable bed reach and no sediment feeding were imposed upstream. Eight 0.70 m long stripes of coloured sediments were laid over the natural gravel starting immediately upstream of the sediment trap. The thickness of the coloured gravel layer was about 3 to 4 cm (approximately 5 to 7 times D50). The total length of the reach covered with the coloured sediments was 5.6 m. After the experiments, approximately the top 2 cm of the gravel bed was sampled by strips of 0.175 m in the longitudinal direction, over the entire reach covered with sediments. These samples were then separated into gravels of different colours, and the dry weight of the sediments of each sample was measured. In addition, the gravel accumulated in the sediment trap was also separated into different colour groups, weighed separately. From the combined evaluation of the sediments trapped downstream and the sediments sampled throughout the channel, spatial patterns of entrainment and deposition rates are inferred. With this, back calculation of the depth of the active layer is performed and Wilcok's formulations on tracer dispersion and estimation of sediment transport is tested and discussed.

  4. Boils

    MedlinePlus

    ... Resident Research Award Daniel Koprince Award Resident Research Paper Award Surgery in the Outback CME CME ATTESTATION ... which are usually due to Staph infections. The bacteria are picked up somewhere and then live on ...

  5. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-11-01

    . The critical wavelength, lambdac, is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambdaD), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of Ic, coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.

  6. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    ) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.

  7. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  8. Evaluation of low flow characteristics of the Vermont Yankee plant

    SciTech Connect

    Ganther, S.; LeFrancoi, M.; Bergeron, P.

    1997-12-01

    Boiling water reactor (BWR) core flow instrumentation inaccuracies under low-flow conditions have been the subject of both reactor vendor and regulatory communications in response to incidents of the reported core flow being less than the flow corresponding to the natural-circulation line on the power flow map. During single recirculation loop operation, low-flow conditions exist in the idle recirculation loop, and these flow inaccuracies can affect the usefulness of the reported core flow. Accurate core flow indications are needed above 25% power to administer fuel thermal limits and comply with restrictions associated with the potential for thermal-hydraulic instability. While the natural-circulation line on the power flow map is recognized to be a nominal estimate of the flow expected at and near natural-circulation conditions, the boundaries of the stability regions are associated with conditions assumed in safety analyses performed to demonstrate compliance with general design criteria 10 and 12.

  9. Endothelial biocompatibility and accumulation of SPION under flow conditions

    NASA Astrophysics Data System (ADS)

    Matuszak, Jasmin; Zaloga, Jan; Friedrich, Ralf P.; Lyer, Stefan; Nowak, Johannes; Odenbach, Stefan; Alexiou, Christoph; Cicha, Iwona

    2015-04-01

    Magnetic targeting is considered a promising method to accumulate the nanoparticles at the sites of atherosclerotic lesions, but little is known about the biological effects of magnetic nanoparticles on the vascular wall. Here, we investigated endothelial cell growth and vitality upon treatment with SPION (0-60 μg/mL) using two complementing methods: real-time cell analysis and live-cell microscopy. Moreover, the uptake of circulating superparamagnetic iron oxide nanoparticles (SPIONs) was assessed in an in vitro model of arterial bifurcations. At the tested concentrations, SPIONs were well tolerated and had no major influence on endothelial cell growth. Our results further showed a uniform distribution of endothelial SPION uptake independent of channel geometry or hemodynamic conditions: In the absence of magnetic force, no increase in accumulation of SPIONs at non-uniform shear stress region at the outer walls of bifurcation was observed. Application of external magnet allowed enhanced accumulation of SPIONs at the regions of non-uniform shear stress. Increased uptake of SPIONs at non-uniform shear stress region was well tolerated by endothelial cells (ECs) and did not affect endothelial cell viability or attachment. These findings indicate that magnetic targeting can constitute a promising and safe technique for the delivery of imaging and therapeutic nanoparticles to atherosclerotic lesions.

  10. Study of erythrocyte aggregation at pulsatile flow conditions with backscattering analysis.

    PubMed

    Nam, Jeong-Hun; Xue, Shubin; Lim, Hyunjung; Shin, Sehyun

    2012-01-01

    In vivo red blood cell aggregation will vary under pulsatile flow but few studies have been reported due to various difficulties in generating physiological flow conditions and detecting RBC aggregation. The present study developed a microfluidic system that generates cyclic pulsatile flow through a microchannel. Backscattered light signals from human blood were recorded over time and analyzed for RBC aggregation in pulsatile flow. Four different blood samples (control, normal RBCs in PBS, hardened RBCs in autologous plasma, and hardened RBCs in PBS) were examined. In a cyclic pulsatile flow condition, light intensity-time curve for the control and hardened RBCs in plasma exhibited apparent critical shear stresses that were similar to the respective values measured at a single pulse flow condition. During entire cycles of pulsatile flow, the measured critical shear stress remained nearly constant. We conclude that the critical shear stress can be observed in cyclic pulsatile flow and would be an important index to represent in-vivo pulsatile blood flow rheology.

  11. Three-Dimensional Flow Analysis Inside Consortium Impeller at Design and Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    Hah, C.; Loellbach, J.; Tsung, F.-L.; Greenwald, D. A.; Garcia, Roberto

    1993-01-01

    Three-dimensional flow fields inside the Consortium impeller were analyzed with a Navier-Stokes code. The numerical results at the design and off-design conditions are compared with the experimental data.

  12. Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2012-01-01

    A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.

  13. Simulation of Couette flow using conventional Burnett equations with modified slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Hualin; Zhao, Wenwen; Chen, Weifang

    2016-11-01

    Gas or liquid flow through small channels has become more and more popular due to the micro-electro-mechanical systems (MEMS) fabrication technologies such as micro-motors, electrostatic comb-drive, micro-chromatographs, micro-actuators, micro-turbines and micro-pumps, etc. The flow conditions in and around these systems are always recognized as typical transitional regimes. Under these conditions, the mean free path of gas molecules approaches the characteristic scale of the micro-devices itself, and due to the little collisions the heat and momentum cannot equilibrate between the wall and fluids quickly. Couette flow is a simple and critical model in fluid dynamics which focuses on the mechanism of the heat transfer in shear-driven micro-cavities or micro-channels. Despite numerous work on the numerical solutions of the Couette flow, how to propose stable and accurate slip boundary conditions in rarefied flow conditions still remains to be elucidated. In this paper, converged solutions for steady-state micro Couette flows are obtained by using conventional Burnett equations with a set of modified slip boundary conditions. Instead of using the physical variables at the wall, the modified slip conditions use the variables at the edge of the Knudsen layer based on a physically plausible assumption in literature that Knudsen layer has a thickness only in the order of a mean free path and molecules are likely to travel without collision in this layer. Numerical results for non-dimensional wall shear stress and heat flux are compared with those of the DSMC solutions. Although there are not much improvement in the accuracy by using this modified slip conditions, the modified conditions perform much better than the unmodified slip conditions for numerical stabilization. All results show that the set of conventional Burnett equations with second order modified conditions are proved to be an appropriate model for the micro-Couette flows.

  14. Swash zone boundary conditions derived from optical remote sensing of swash zone flow patterns

    NASA Astrophysics Data System (ADS)

    Power, H. E.; Holman, R. A.; Baldock, T. E.

    2011-06-01

    Optical remote sensing is used to measure flow patterns in the swash zone. Timestack images are analyzed to measure the asymmetry and the relative duration of the inflow into the swash zone. This varies significantly between individual swashes, contrary to the classical analytical swash model for runup induced by bores, which predicts a similar flow pattern for all events. For swash forced by breaking bores, the gradient of the x-t locus of flow reversal varies over a wide range and flow reversal can occur simultaneously across the whole swash zone. This variation of the gradient of the locus of flow reversal in x-t space can be parameterized in terms of a single free variable in recent solutions to the nonlinear shallow water equations, which fully defines the swash boundary inflow condition. Consistent with the theory, the horizontal runup, the swash period, and the swash similarity parameter were observed to be independent of the swash inflow conditions but the flow asymmetry is not. Only a weak correlation was observed between the swash boundary condition and the Iribarren number and beach slope. Conversely, the analysis suggests that the degree of swash-swash interaction does influence the swash boundary condition and the resulting internal flow kinematics. The variation in inflow conditions is expected to influence the magnitudes of the velocity moments within the swash zone and therefore sediment transport rates.

  15. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Kamotani, Yasuhiro

    1996-01-01

    An experimental and theoretical research program is described herein to study bubble generation in a liquid flow in a pipe under reduced gravity conditions. The objective of the work is to study the bubble size and frequency of the generation and the resulting two-phase flow but it also concerns the fluid mechanical aspects of boiling in forced flow in microgravity. By injecting a gas into a liquid flow in a pipe through a small hole in the pipe wall we will investigate how the bubble expands and detaches from the wall, without involving the complexities of boiling. The experiments will be conducted both under isothermal conditions and with heat transfer from the wall. In the experiments with heat transfer the effect of thermocapillarity on the bubble formation and detachment will be the main subject.

  16. Flow modeling of actual human nasal cavity for various breathing conditions

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nur Hazwani; Yaakob, Muhammad Syauki; Osman, Kahar; Kadir, Mohammed Rafiq Abdul; Abdullah, Wan Kamil Wan; Haron, Juhara

    2012-06-01

    Flow in the human nasal cavity varies when the body is under various physical activities. However, in order to visualize the flow pattern, traditional in-vivo technique may disturb the flow patterns. In this study, computational method was used to model the flow in the nasal cavity under various breathing conditions. Image from CT-Scan was used to mimic the actual cavity geometry. The image was computationally constructed and EFD. Lab was used to predict the flow behavior. Steady incompressible flow was considered for all case studies. The result shows that, for all breathing conditions, vortices were observed in the turbinate region which confirms the turbinate functions as a filter before the flow reaches the olfactory area. Larger vortices were detected when the flow rates were higher. In the olfactory region, the flow velocities were shown to be dramatically dropped to the ideal odorant uptake velocity range for all cases studied. This study had successfully produced visual description of air flow pattern in the nasal cavity.

  17. New approximate boundary conditions for large eddy simulations of wall-bounded flows

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Ferziger, Joel; Moin, Parviz; Kim, John

    1989-01-01

    Two new approximate boundary conditions have been applied to the large eddy simulation of channel flow with and without transpiration. These new boundary conditions give more accurate results than those previously in use, and allow significant reduction of the required CPU time over simulations in which no-slip conditions are applied. Mean velocity profiles and turbulence intensities compare well both with experimental data and with the results of resolved simulations. The influence of the approximate boundary conditions remains confined near the point of application and does not affect the turbulence statistics in the core of the flow.

  18. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  19. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  20. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions

    USGS Publications Warehouse

    Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.

    2004-01-01

    During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200 000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), β-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased.

  1. Nucleate Pool Boiling Experiments (NPBX) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Dhir, Vijay Kumar; Warrier, Gopinath R.; Aktinol, Eduardo; Chao, David; Eggers, Jeffery; Sheredy, William; Booth, Wendell

    2012-11-01

    normal gravity conditions. The data are useful for calibration of results of numerical simulations. Any correlations that are developed for nucleate boiling heat transfer under microgravity condition must account for the existence of vapor escape path (sink) from the heater, size of the heater, and the size and geometry of the chamber.

  2. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-12-31

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels.

  3. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  4. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid

    SciTech Connect

    Abbasi, F. M.; Shehzad, S. A.; Hayat, T.; Alsaedi, A.; Obid, Mustafa A.

    2015-03-15

    This article explores the hydromagnetic steady flow of Jeffrey fluid in the presence of thermal radiation. The chosen nanofluid model takes into account the Brownian motion and thermophoresis effects. Flow and heat transfer characteristics are determined by a stretching surface with flux conditions. The nonlinear boundary layer flow through partial differential systems is converted into the ordinary differential systems. The resulting reduced systems are computed for the convergent solutions of velocity, temperature and nanoparticle concentration. Graphs of dimensionless temperature and nanoparticle concentration profiles are presented for different values of emerging parameters. Skin-friction coefficient are computed and analyzed in both hydrodynamic and hydromagnetic flow situations.

  5. LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-03-03

    This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.

  6. Traffic flow of a roundabout crossing with an open boundary condition

    NASA Astrophysics Data System (ADS)

    Bai, Ke-Zhao; Tan, Hui-Li; Kong, Ling-Jiang; Liu, Mu-Ren

    2010-04-01

    This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability β can be chosen.

  7. Hypergravity to Explore the Role of Buoyancy in Boiling in Porous Media

    NASA Astrophysics Data System (ADS)

    Lioumbas, John S.; Krause, Jutta; Karapantsios, Thodoris D.

    2013-02-01

    Boiling in porous media is an active topic of research since it is associated with various applications, e.g. microelectronics cooling, wetted porous media as thermal barriers, food frying. Theoretical expressions customary scale boiling heat and mass transfer rates with the value of gravitational acceleration. Information obtained at low gravity conditions show a deviation from the above scaling law but refers exclusively to non-porous substrates. In addition, the role of buoyancy in boiling at varying gravitational levels (i.e. from microgravity—important to satellites and future Lunar and Martial missions, to high-g body forces—associated with fast aerial maneuvers) is still unknown since most experiments were conducted over a limited range of g-value. The present work aims at providing evidence regarding boiling in porous media over a broad range of hypergravity values. For this, a special device has been constructed for studying boiling inside porous media in the Large Diameter Centrifuge (LDC at ESA/ESTEC). LDC offers the unique opportunity to cancel the shear stresses and study only the effect of increased normal forces on boiling in porous media. The device permits measurement of the temperature field beneath the surface of the porous material and video recordings of bubble activity over the free surface of the porous material. The preliminary results presented from experiments conducted at terrestrial and hypergravity conditions, reveal for the first time the influence of increased levels of gravity on boiling in porous media.

  8. Nonlinear dynamics of spherical particles in Poiseuille flow under creeping-flow condition.

    PubMed

    Reddig, S; Stark, H

    2013-06-21

    We study the nonlinear dynamics of spherical colloids under the influence of a pressure driven flow at vanishing Reynolds number. The colloids are confined between two parallel planar walls with a distance comparable to the particle diameter and they interact hydrodynamically via the solvent. We show that the bounded Poiseuille flow gives rise to new classes of trajectories resulting in cross-streamline migration. Two particles moving on these new trajectories exhibit either bound or unbound states. In the first case they oscillate on closed trajectories in the center-of-mass frame. In the second case, they exhibit cross-swapping trajectories in addition to swapping trajectories which were already observed in unbounded or bounded linear shear flow. The different classes of trajectories occur depending on the initial positions of the two particles and their size. We present state diagrams in the lateral positions, where we categorize the trajectories and color code the oscillation frequencies of the bound states. Finally we discuss how the results on the two-particle system help to understand the stability of particle trains composed of several particles.

  9. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  10. Investigation of an anomalous flow condition of the Langley pilot model expansion tube

    NASA Technical Reports Server (NTRS)

    Friesen, W. J.

    1974-01-01

    Free-stream flow velocity measurements were made in the Langley pilot model expansion tube during the test flow interval. During this interval, an anomalous dip in pitot pressure occurs for the expansion tube operating conditions employed. Within the test flow interval, the main conclusions reached from comparison of the measured flow velocity, pitot pressure, and tube wall pressure are: the variations which occur in velocity and wall pressure are small compared with the variations in pitot pressure; a corresponding dip in the derived flow density is associated with the dip in pitot pressure; and the value of the average density over the interval, which results from the expansion from the shocked intermediate chamber condition, is approximately one-half of the value that can result from only an isentropic process.

  11. Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon; Abarbanel, Saul; Nordstrom, Jan; Ryabenkii, Viktor; Vatsa, Veer

    1998-01-01

    We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness.

  12. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  13. Antecedent flow conditions and nitrate concentrations in the Mississippi River basin

    USGS Publications Warehouse

    Murphy, Jennifer C.; Hirsch, Robert M.; Sprague, Lori A.

    2014-01-01

    The relationship between antecedent flow conditions and nitrate concentrations was explored at eight sites in the 2.9 million square kilometers (km2) Mississippi River basin, USA. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Qratio), and the Qratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Qratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when mean daily streamflow during the previous year was lower than average, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships (p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent high flows. At half of the sites, when mean daily flow during the previous year was 50 percent lower than average, nitrate concentration can be from 9 to 27 percent higher than nitrate concentrations that follow a year with average mean daily flow. Conversely, nitrate concentration can be from 8 to 21 percent lower than expected when flow during the previous year was 50 percent higher than average. Previously documented for small, relatively homogenous basins, our results suggest that relationships between antecedent flows and nitrate concentrations are also observable at a regional scale. Relationships were not observed (using all contemporaneous flow data together) for basins larger than 1 million km2, suggesting that above this limit the overall size and diversity within these basins may necessitate the use of more

  14. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  15. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  16. A 3D Explicit Finite-Difference Scheme for Particulate Flows with Boundary Conditions based on Stokes Flow Solutions

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Hu, H.

    2006-11-01

    We have extended previous work on an 2D explicit finite-difference code for direct simulation of the motion of solid particles in a fluid to 3D. It is challenging to enforce the no-slip condition on the surface of spherical particles in a uniform Cartesian grid. We have implemented a treatment of the boundary condition similar to that in the PHYSALIS method of Takagi et. al. (2003), which is based on matching the Stokes flow solutions next to the particle surface with a numerical solution away from it. The original PHYSALIS method was developed for implicit flow solvers, and required an iterative process to match the Stokes flow solutions with the numerical solution. However, it was easily adapted to work with the present explicit scheme, and found to be more efficient since no iterative process is required in the matching. The method proceeds by approximating the flow next to the particle surface as a Stokes flow in the particle’s local coordinates, which is then matched to the numerically computed external flow on a ``cage'' of grid points near the particle surface. Advantages of the method include superior accuracy of the scheme on a relatively coarse grid for intermediate Reynolds numbers, ease of implementation, and the elimination of the need to track the particle surface. Several examples are presented, including flow over a stationary sphere in a square tube, sedimentation of a particle, and dropping, kissing, and tumbling of two particles. This research is supported by a GAANN fellowship from the U.S. Dept. of Education.

  17. Two-phase flow characterization for fluid components and variable gravity conditions

    NASA Technical Reports Server (NTRS)

    Dzenitis, John M.; Miller, Kathryn M.

    1992-01-01

    This paper describes a program initiated by the NASA Johnson Space Center to investigate vapor-liquid flow regimes and pressure drops in pipe components and variable gravity conditions. This program supports the Space Station Freedom External Active Thermal Control System design and future space missions, including the Space Exploration Initiative activities. The objectives for this program include studying two-phase flow behavior in fluid components (smooth pipes, bellows lines, quick-disconnect fittings), expanding the two-phase database for zero-g conditions, developing a database for low-g conditions (for example, Moon-g, Mars-g), and validating models for two-phase flow analyses. Zero-g and low-g data will be gathered using a Freon-12 flow loop during four test series on the KC-135 aircraft beginning in August 1991.

  18. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  19. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  20. Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains

    NASA Astrophysics Data System (ADS)

    Das, D. B.; Hanspal, N. S.; Nassehi, V.

    2005-09-01

    The existence of a free-flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro-scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free-porous domain interface and, hence, the combined flow behaviour. Under steady-state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well-known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow-through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing stress-free boundary conditions at the open

  1. Waves on the surface of a boiling liquid at various medium stratifications

    SciTech Connect

    Sinkevich, O. A.

    2015-08-15

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor–liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor–liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared.

  2. Open boundary conditions for ISPH and their application to micro-flow

    NASA Astrophysics Data System (ADS)

    Hirschler, Manuel; Kunz, Philip; Huber, Manuel; Hahn, Friedemann; Nieken, Ulrich

    2016-02-01

    Open boundary conditions for incompressible Smoothed Particle Hydrodynamics (ISPH) are rare. For stable simulations with open boundary conditions, one needs to specify all boundary conditions correctly in the pressure force as well as in the linear equation system for pressure calculation. Especially for homogeneous or non-homogeneous Dirichlet boundary conditions for pressure there exist several possibilities but only a few lead to stable results. However, this isn't trivial for open boundary conditions. We introduce a new approach for open boundary conditions for ISPH to enable stable simulations. In contrast to existing models for weakly-compressible SPH, we can specify open pressure boundary conditions because in ISPH, pressure can be calculated independently of the density. The presented approach is based on the mirror particle approach already introduced for solid wall boundary conditions. Here we divide the mirror axis in several segments with time-dependent positions. We validate the presented approach for the example of Poiseuille flow and flow around a cylinder at different Reynolds numbers and show that we get good agreement with references. Then, we demonstrate that the approach can be applied to free surface flows. Finally, we apply the new approach to micro-flow through a random porous medium with a different number of in- and outlets and demonstrate its benefits.

  3. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    NASA Astrophysics Data System (ADS)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  4. Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2005-01-01

    Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall

  5. On the far-field stream function condition for two-dimensional incompressible flows

    NASA Technical Reports Server (NTRS)

    Sa, Jong-Youb; Chang, Keun-Shik

    1990-01-01

    The present demonstration of the usefulness of the integral series expansion of the stream function as a far-field computational boundary condition shows the method to require only a 10-percent/time-step increase in computational effort over alternative boundary conditions, in the case of implementation of unsteady problems using a direct elliptic solver. So long as the vorticity was encompassed within the computational domain, the method proved sufficiently accurate to yield virtually identical results for two widely different domains. While the integral-series condition yielded the best results for periodic flow, the Neumann condition gave comparable accuracy with less computation time for the steady-flow case despite its inability to treat periodic flow with vortex shedding.

  6. Unsteady Flow Analysis of Pump Mode Small Discharge Condition for a Francis Pump-turbine

    NASA Astrophysics Data System (ADS)

    Xiaoran, ZHAO; Yexiang, XIAO; Jincai, XU; Wei, XU; Jianbo, SUN; Zhengwei, WANG; Yangyang, YAO

    2016-11-01

    Unsteady flow phenomena, including vortex flow at runner inlet, helical backflow in the draft tube and numerous vortexes inside the guide vanes, can occur in pump-turbines under off design conditions at pump mode and can impact normal operation of pump-turbines. All of these phenomena cause serious pressure pulsation, which is quite different from cases in normal pump mode. There is also a difference of pressure pulsation frequency and amplitude in different place through the runner. This paper builds a whole flow passage of a model pump-turbine, simulates flow characteristics in runner by CFD technology, analyses pressure pulsation in the runner and explores the origin and mechanism of pressure pulsations. The SST-CC turbulence model is adopted to perform unsteady simulations of the pump-turbine under 0.46Q BEP small discharge condition at pump mode. Unsteady flow structures are proceeded combined with hydraulic loss and pressure amplitude spectra. The results indicates that there is complicated disordered flow inside the runner under 0.46Q BEP small discharge condition at pump mode, shows the amplitude and frequency characteristic of pressure pulsations through runner flow passage.

  7. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    NASA Astrophysics Data System (ADS)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  8. Geometric scaling of artificial hair sensors for flow measurement under different conditions

    NASA Astrophysics Data System (ADS)

    Su, Weihua; Reich, Gregory W.

    2017-03-01

    Artificial hair sensors (AHSs) have been developed for prediction of the local flow speed and aerodynamic force around an airfoil and subsequent application in vibration control of the airfoil. Usually, a specific sensor design is only sensitive to the flow speeds within its operating flow measurement region. This paper aims at expanding this flow measurement concept of using AHSs to different flow speed conditions by properly sizing the parameters of the sensors, including the dimensions of the artificial hair, capillary, and carbon nanotubes (CNTs) that make up the sensor design, based on a baseline sensor design and its working flow condition. In doing so, the glass fiber hair is modeled as a cantilever beam with an elastic foundation, subject to the distributed aerodynamic drag over the length of the hair. Hair length and diameter, capillary depth, and CNT height are scaled by keeping the maximum compressive strain of the CNTs constant for different sensors under different speed conditions. Numerical studies will demonstrate the feasibility of the geometric scaling methodology by designing AHSs for aircraft with different dimensions and flight conditions, starting from the same baseline sensor. Finally, the operating bandwidth of the scaled sensors are explored.

  9. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    SciTech Connect

    Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.; Ali, Amir; Liu, Maolong; Blandford, Edward

    2016-06-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation and confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.

  10. Diffusion coefficients for nanoparticles under flow and stop-flow conditions.

    PubMed

    Katayama, Kenji; Nomura, Hiroko; Ogata, Hiroki; Eitoku, Takeshi

    2009-11-28

    Dynamic light scattering (DLS) is a well-known technique for measuring the size of nanoparticles from the diffusion coefficient. We developed a new DLS technique with high sensitivity and used it as a detection tool in microchemical applications. We found a step-like downward change in the diffusion coefficient of nanoparticles just by starting a slight flow in the fluid channel. Because the diffusion coefficient is defined by the ratio of the force due to the chemical potential gradient to the frictional coefficient for the particle by a solvent, we propose that the frictional coefficient increased significantly. This result suggests that nanoscale friction under liquid motion differs from that under a steady state.

  11. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different

  12. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  13. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  14. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  15. Triggering conditions and mobility of debris flows associated to complex earthflows

    NASA Astrophysics Data System (ADS)

    Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.

    2005-03-01

    Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging

  16. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model.

    PubMed

    Ha, Hojin; Lee, Sang-Joon

    2014-01-01

    Blood flow in an artery is closely related to atherosclerosis progression. Hemodynamic environments influence platelet activation, aggregation, and rupture of atherosclerotic plaque. The existence of swirling flow components in an artery is frequently observed under in vivo conditions. However, the fluid-dynamic roles of spiral flow are not fully understood to date. In this study, the spiral blood flow effect in an axisymmetric stenosis model was experimentally investigated using particle image velocimetry velocity field measurement technique and streakline flow visualization. Spiral inserts with two different helical pitches (10D and 10/3D) were installed upstream of the stenosis to induce swirling flows. Results show that the spiral flow significantly reduces the length of recirculation flow and provokes early breakout of turbulent transition, but variation of swirling intensity does not induce significant changes of turbulence intensity. The present results about the spiral flow effects through the stenosis will contribute in achieving better understanding of the hemodynamic characteristics of atherosclerosis and in discovering better diagnosis procedures and clinical treatments.

  17. Analysis of Continuous Heat Exchangers for Cryogenic Boil-Off Reduction

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteign, B. P. M.; Salerno, L. J.; Kittel, P.; Plachta, D.; Christie, R.; Carlberg, E.

    2008-03-01

    Cryogenic boil-off reduction systems (CBRS) employing continuous heat exchangers in pressurized helium distributed cooling networks for active thermal control of large surfaces such as propellant tank walls and light-weight radiation shields have been studied for some time. Usually, very simple and intuitive relations are used to derive such quantities as the pressure drop across the network and the required flow rate for a given heat load. Here, detailed thermal-fluid and heat transfer relations for such systems are formulated and then studied term by term in order to determine the conditions under which various approximations to them may reasonably be made. It is found that in most applications of interest, use of the simplified relations is justifiable.

  18. Effects of operation of Raccoon Mountain pumped-storage project on Nickajack Reservoir flow conditions

    SciTech Connect

    Garrison, J.; Price, J.T.

    1980-01-01

    The results from a study to determine the effects of Raccoon Mountain Pumped-Storage Plant operations on flow conditions within Nickajack Reservoir are presented. Computer simulations and field studies have shown that flow reversals occur in Nickajack Reservoir as a result of the power peaking operations of the Nickajack and Chickamauga hydroelectric plants, both situated on the Tennessee River. The primary cause of these reversals is attributable to shutdowns of the Chickamauga turbines. The focus of this study is on flow reversals near the Moccasin Bend sewage treatment plant and near the Tennessee American water treatment plant, both of which are located on the Tennessee River near Chattanooga. Results from the study show that, under normal and extreme operating conditions at Chickamauga and Nickajack Dams, operation of the Raccoon Mountain Pumped-Storage Plant has no appreciable influence on flow reversals at the two plant sites.

  19. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  20. Wall catalytic recombination and boundary conditions in nonequilibrium hypersonic flows - With applications

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1992-01-01

    The meaning of catalysis and its relation to aerodynamic heating in nonequilibrium hypersonic flows are discussed. The species equations are described and boundary conditions for them are derived for a multicomponent gas and for a binary gas. Slip effects are included for application of continuum methods to low-density flows. Measurement techniques for determining catalytic wall recombination rates are discussed. Among them are experiments carried out in arc jets as well as flow reactors. Diagnostic methods for determining the atom or molecule concentrations in the flow are included. Results are given for a number of materials of interest to the aerospace community, including glassy coatings such as the RCG coating of the Space Shuttle and for high temperature refractory metals such as coated niobium. Methods of calculating the heat flux to space vehicles in nonequilibrium flows are described. These methods are applied to the Space Shuttle, the planned Aeroassist Flight Experiment, and a hypersonic slender vehicle such as a transatmospheric vehicle.

  1. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    NASA Astrophysics Data System (ADS)

    Weinstein, L. A.; Cacan, M. R.; So, P. M.; Wright, P. K.

    2012-04-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s-1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s-1 and power generation of 3 mW for a flow speed of 5 m s-1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.

  2. Second-Order Far Field Computational Boundary Conditions for Inviscid Duct Flow Problems

    DTIC Science & Technology

    1990-03-01

    COMPUTATIONAL BOUNDARY CONDITIONS INTERNAL FLOW COMPUTATIONS EULER METHODS 19. ABSTRACT (Continue on reverse if necessary and identify by block number...SOLUTIONS OF THE LINEARIZED, SECOND-ORDER EULER EQUATIONS. THE EULER EQUATIONS ARE LINEARIZED ABOUT A CONSTANT PRESSURE, RECTILINEAR FLOW C)NDITION...THE BOUNDARY PROCEDURE CAN BE USED WITH ANY NUMERICAL EULER SOLUTION METHOD AND ALLOWS COMPUTATIONAL BOUNDARIES TO BE LOCATED EXTREMELY CLOSE TO THE

  3. Experimental study of the pressure fluctuations in a pump turbine at large partial flow conditions

    NASA Astrophysics Data System (ADS)

    Ran, Hongjuan; Luo, Xianwu; Zhu, Lei; Zhang, Yao; Wang, Xin; Xu, Hongyuan

    2012-11-01

    Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large head drop. The pressure fluctuation at the positive slope is crucial to the pump turbine unit safety. The operating instabilities at large partial flow conditions for a pump turbine are analyzed. The hydraulic performance of a model pump turbine is tested with the pressure fluctuations measured at unstable operating points near a positive slope in the performance curve. The hydraulic performance tests show that there are two separated positive-slope regions for the pump turbine, with the flow discharge for the first positive slope from 0.85 to 0.91 times that at the maximum efficiency point. The amplitudes of the pressure fluctuations at these unstable large partial flow conditions near the first positive slope are much larger than those at stable operating condtions. A dominant frequency is measured at 0.2 times the impeller rotational frequency in the flow passage near the impeller exit, which is believed to be induced by the rotating stall in the flow passage of the wicket gates. The test results also show hysteresis with pressure fluctuations when the pump turbine is operated near the first positive slope. The hysteresis creates different pressure fluctuations for those operation points even though their flow rates and heads are similar respectively. The pressure fluctuation characteristics at large partial flow conditions obtained by the present study will be helpful for the safe operation of pumped storage units.

  4. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems

    USGS Publications Warehouse

    Cunningham, Charles G.

    1978-01-01

    Fluid inclusions in ore zones of porphyry systems indicate that extensive boiling of hydrothermal fluids accompanies deposition of ore and gangue minerals. The boiling commonly accompanied a change from a lithostatic to a hydrostatic environment during evolution of an epizonal stock. Pressure gradients near the margin of the stock can determine whether ore or only a diffuse zone of mineralization is formed. A sharp drop in pressure in an epizonal environment is more likely to cause extensive boiling than a comparable change in a deeper environment, as the slope of the boiling curve steepens with an increase 'in pressure. The drop in pressure causes the hydrothermal fluids to boil and creates a crackle (stockwork) breccia, which hosts the veinlets of gangue quartz and ore minerals. The boiling selectively partitions CO2, H2S, and HCl into the vapor phase, changing the pH, composition, ionic strength, and thus the solubility product of metal complexes in the remaining liquid and causing the ore and gangue to come out of solution. Fluid inclusions trapped from boiling solutions can exhibit several forms, depending on the physical and chemical conditions of the hydrothermal fluid from which they were trapped. In one case, inclusions when heated can homogenize to either liquid or vapor at the same temperature, which is the true boiling temperature. In another case, homogenization of various inclusions can occur through a range of temperatures. The latter case results from the trapping of mixture of liquid and vapor. Variations in salinity can result from boiling of the hydrothermal fluid, or intermittent incorporation of high-salinity fluids from the magma, or trapping of fluids of varying densities at pressure-temperature conditions above the critical point of the fluid. In places, paleopressure-temperature transition zones can be recognized by fluid-inclusion homogenization temperatures and phase relationships and by the presence of anhydrite daughter minerals

  5. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure.

  6. Characteristics of the Shuttle Orbiter Leeside Flow During A Reentry Condition

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Weilmuenster, K. James

    1992-01-01

    A study of the leeside flow characteristics of the Shuttle Orbiter is presented for a reentry flight condition. The flow is computed using a point-implicit, finite-volume scheme known as the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). LAURA is a second-order accurate, laminar Navier-Stokes solver, incorporating finite-rate chemistry with a radiative equilibrium wall temperature distribution and finite-rate wall catalysis. The resulting computational solution is analyzed in terms of salient flow features and the surface quantities are compared with flight data.

  7. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.

    2016-05-01

    Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm-Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor-Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh-Fjørtoft criterion for unstratified shear flows.

  8. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wörman, Anders; Wang, Heng; Wang, Xu-Sheng; Li, Hailong

    2015-10-01

    Although it has been reported that flowing artesian wells could be topographically controlled, there is no quantitative research on artesian flow conditions in unconfined aquifers. In this study, the water table, which has a lower amplitude than the land surface, is damped from the topography and used as the boundary condition to obtain the analytical solution of hydraulic head of a unit basin with a single flow system. The term artesian head is defined to characterize the condition of flowing artesian wells. The zone with positive artesian head is called artesian zone while with negative artesian head is nonartesian zone. The maximum artesian head and the size of artesian zones are found to increase with the damping factor and the anisotropy ratio, and decrease with the ratio of basin width to depth and the depth-decay exponent of hydraulic conductivity. Moreover, the artesian head increases with depth nearby the valley and decreases with depth near by the divide, and the variation rates are influenced by the decay exponent and the anisotropy ratio. Finally, the distribution of flowing artesian wells and the artesian head measurements in different depths of a borehole in a small catchment in the Ordos Plateau, Northwestern China is used to illustrate the theoretical findings. The change in artesian head with depth was used to estimate the anisotropy ratio and the decay exponent. This study opens up a new door to analyze basin-scale groundwater flow.

  9. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  10. Increasing Boiling Heat Transfer using Low Conductivity Materials

    PubMed Central

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-01-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890

  11. Increasing Boiling Heat Transfer using Low Conductivity Materials.

    PubMed

    Rahman, Md Mahamudur; Pollack, Jordan; McCarthy, Matthew

    2015-08-18

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  12. Conditioning of Flow Projections under Climate Change on Hydrologic Signatures within the GLUE Framework

    NASA Astrophysics Data System (ADS)

    Todorovic, Andrijana; Plavsic, Jasna; Despotovic, Jovan

    2016-04-01

    Climate change impact on water resources is generally quantified in terms of relative changes in characteristic flows (e.g. annual runoff, median annual flows, etc.) over a future period compared to the baseline one. These changes are estimated under the assumed emission scenarios and with one or more modelling chains (combinations of the Global and Regional Climate Models, and a hydrological model). Since different modelling chains yield different projections, estimates of these relative changes are uncertain. High prediction uncertainty is reflected in a wide 90 per cent prediction uncertainty band (90PPU) or in a distribution that resembles the uniform distribution. Therefore, research in robustness of the modelling chains has been conducted. The goal of the research is to appoint higher probabilities to the projections obtained by the more robust chains, and in that way reduce the uncertainty in flow projections under climate change. In this research, the hydrologic projections are conditioned on the hydrologic signatures within the GLUE framework. Namely, a relative change obtained with a modelling chain is assigned a likelihood depending on the performance of the chain in terms of the hydrologic signatures over the baseline period. High flow projections (2nd percentile of the daily flows) are conditioned on the high-segment of the flow duration curve (FDC), projections of the median flows are conditioned on the FDC mid-segment slope, and the projections of the low flows are conditioned on the FDC low-segment. The projections of total annual runoff are conditioned on the entire FDC. The likelihoods are quantified in terms of Nash-Sutcliffe efficiency coefficient (NSE) evaluated from the FDCs of the flows simulated by the modelling chains and the observed FDC. The methodology presented is applied to develop flow projections in the Kolubara River catchment in Serbia over the mid 21st century (2041-2070). Hydrologic projections are obtained by the HBV

  13. Defining boundary conditions for RANS predictions of urban flows using mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Garcia Sanchez, Clara; Gorle, Catherine; van Beeck, Jeroen

    2015-11-01

    Pollutant dispersion and wind flows in urban canopies are major concerns for human health and energy, and the complex nature of the flow and transport processes remains a challenge when using Computational Fluid Dynamics (CFD) to predict wind flows. The definition of the inflow boundary condition in Reynolds-Averaged Navier-Stokes simulations (RANS) is one of the uncertainties that will strongly influence the prediction of the flow field, and thus, the dispersion pattern. The goal of the work presented is to define a methodology that improves the level of realism in the inflow condition for RANS simulations by accounting for larger mesoscale effects. The Weather Research and Forecasting model (WRF) is used to forecast mesoscale flow patterns, and two different approaches are used to define inflow conditions for the RANS simulations performed with OpenFOAM: 1) WRF variables such as local velocity magnitude, ABL height and friction velocity are directly interpolated onto the boundaries of the CFD domain; 2) WRF predictions for the geostrophic wind and friction velocity are applied as a forcing boundary condition. Simulations of the Joint Urban 2003 experimental campaign in Oklahoma City have been performed using both approaches and a comparison of the results will be presented.

  14. Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2004-12-01

    Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.

  15. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Muhammad, Taseer; Ahmad, B.; Shehzad, S. A.

    2016-09-01

    This communication addresses the magnetohydrodynamic (MHD) three dimensional flow of Sisko nanofluid bounded by a surface stretched bidirectionally. Nanofluid model includes the Brownian motion and thermophoresis. Heat transfer through convective condition is discussed. Developed condition with the zero nanoparticles mass flux at the surface is implemented. The governing problems subject to boundary layer approximations are computed for the convergent series solutions. Effects of interesting flow parameters on the temperature and nanoparticles concentration distributions are studied and discussed. Skin friction coefficients and the local Nusselt number are computed and analyzed.

  16. Microlayer formation characteristics in pool isolated bubble boiling of water

    NASA Astrophysics Data System (ADS)

    Yabuki, Tomohide; Nakabeppu, Osamu

    2016-10-01

    Investigation of microlayer formation characteristics is important for developing a reliable nucleate boiling heat transfer model based on accurate physical mechanisms. Although formation mechanisms of the thin liquid film in two-phase flow of confined spaces, such as micro-tubes and closely positioned parallel plates, have been thoroughly studied, microlayer formation mechanisms of pool boiling have been sparsely studied. In a previous study (Yabuki and Nakabeppu in Int J Heat Mass Transf 76:286-297, 2014; Int J Heat Mass Transf 100:851-860, 2016), the spatial distribution of initial microlayer thickness under pool boiling bubbles was calculated by transient heat conduction analysis using the local wall temperature measured with a MEMS sensor. In this study, the hydrodynamic characteristics of microlayer formation in pool boiling were investigated using the relationship between derived initial microlayer thickness and microlayer formation velocity determined by transient local heat flux data. The trend of microlayer thickness was found to change depending on the thickness of the velocity boundary layer outside the bubble foot. When the boundary layer thickness was thin, the initial microlayer thickness was determined by the boundary layer thickness, and the initial microlayer thickness proportionally increased with increasing boundary layer thickness. On the other hand, when the boundary layer was thick, the initial microlayer thickness decreased with increasing boundary layer thickness. In this thick boundary layer region, the momentum balance in the dynamic meniscus region became important, in addition to the boundary layer thickness, and the microlayer thickness, made dimensionless using boundary layer thickness, correlated with the Bond number.

  17. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  18. An investigation of vapor concentration during boiling of liquid mixtures

    SciTech Connect

    Utaka, Yoshio; Takahashi, Katsuaki; Tsuboi, Takao

    1999-07-01

    The objective of the study is to clarify experimentally the variation of the vapor concentration of binary mixture generated during nucleate boiling in a saturated pool under various boiling conditions. The generated vapor concentrations in the bulk vapor layer were measured for the binary mixtures of water-ethanol and ethanol-acetone under various liquid concentrations, the heat fluxes and the liquid layer heights from the heated thin wires at the atmospheric pressure. The main experimental apparatus for measuring concentration of bulk vapor in the boiling and condensation system is shown. Two methods of measuring concentration, i.e., the dew point method and the laser absorption method were adopted. The dew point measurement was carried out by utilizing the copper heat transfer block installed in the central part of the vapor layer in the vessel. The commencement of the condensation was observed directly for determining the dew point by controlling its temperature. The laser light having wavelength of 3.39 micron meters was used for the laser light absorption method utilizing its absorptive property against ethanol vapor. The measured results by using both methods coincided well with each other. The measured concentrations of the bulk vapor for various superheatings of heated wires, the depth of liquid mixture layer and liquid concentrations were almost independent of those parameters and were almost in equilibrium with bulk liquid conditions even under the higher surface superheating and the lower liquid heights.

  19. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a

  20. Microlayer during boiling in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  1. Why Is NASA Boiling Fluids in Space?

    NASA Video Gallery

    Convection and buoyancy work differently in space than on Earth. Learn how NASA uses this information and applies it to everyday life. Boiling fluids in space is easier than it is on Earth. Learn m...

  2. Analysis of boiling flat-plate collectors

    SciTech Connect

    Price, H.W.; Klein, S.A.; Beckman, W.A.

    1986-05-01

    A detailed model for use with TRNSYS, capable of modelling a wide range of boiling collector types, was used to analyze boiling flat-plate collector systems. This model can account for a subcooled liquid entering the collector, heat losses in the vapor and the liquid return line, pressure drops due to friction in the collector and piping, and pressure drops due to the hydrostatic head of the fluid. The model has been used to determine the yearly performance of boiling flat-plate solar collector systems. A simplified approach was also developed which can be used with the f-Chart method to predict yearly performance of boiling flat-plate collector systems.

  3. Development of a MELCOR self-initialization algorithm for boiling water reactors

    SciTech Connect

    Chien, C.S.; Wang, S.J.; Cheng, S.K.

    1996-01-01

    The MELCOR code, developed by Sandia National Laboratories, is suitable for calculating source terms and simulating severe accident phenomena of nuclear power plants. Prior to simulating a severe accident transient with MELCOR, the initial steady-state conditions must be generated in advance. The current MELCOR users` manuals do not provide a self-initialization procedure; this is the reason users have to adjust the initial conditions by themselves through a trial-and-error approach. A MELCOR self-initialization algorithm for boiling water reactor plants has been developed, which eliminates the tedious trial-and-error procedures and improves the simulation accuracy. This algorithm adjusts the important plant variable such as the dome pressure, downcomer level, and core flow rate to the desired conditions automatically. It is implemented through input with control functions provided in MELCOR. The reactor power and feedwater temperature are fed as input data. The initialization work of full-power conditions of the Kuosheng nuclear power station is cited as an example. These initial conditions are generated successfully with the developed algorithm. The generated initial conditions can be stored in a restart file and used for transient analysis. The methodology in this study improves the accuracy and consistency of transient calculations. Meanwhile, the algorithm provides all MELCOR users an easy and correct method for establishing the initial conditions.

  4. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  5. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  6. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  7. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  8. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  9. Influence of the Tool Shoulder Contact Conditions on the Material Flow During Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Doude, Haley R.; Schneider, Judy A.; Nunes, Arthur C.

    2014-09-01

    Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.

  10. Chaotic Phenomena and Analysis of Natural Circulation Flow Instability under Rolling Motion Condition

    NASA Astrophysics Data System (ADS)

    Tan, S. C.; Gao, P. Z.

    2010-03-01

    Experimental study on natural circulation flow instability under rolling motion is carried out and the results show that the complex flow oscillations are formed due to the overlapped effect of the rolling motion (trough instability) and density wave oscillation. The system becomes more instable because of the occurrence of complex flow oscillations. Complex flow oscillations only occur in the case of high subcooling and may be divided into two types: regular and irregular complex flow oscillations. Under the same thermo hydraulic conditions, the marginal stability boundary (MSB) of regular complex oscillations is similar to that of density wave oscillation without rolling motion. And the influences of rolling amplitude and rolling period on its MSB are slight. Chaotic characteristics are found in irregular complex oscillation flow under rolling motion condition. Based on the experimental data and G-P method, correlation dimension and Kolmogorov entropy are gotten with time series analysis. The results show that complex oscillation has fractal dimension and positive Kolmogorov entropy and is typical chaotic time series.

  11. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  12. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    PubMed

    Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing

    2014-01-01

    A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  13. Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process

    PubMed Central

    Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing

    2014-01-01

    A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions. PMID:25338207

  14. An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2014-06-01

    We present an effective outflow boundary condition, and an associated numerical algorithm, within the phase-field framework for dealing with two-phase outflows or open boundaries. The set of two-phase outflow boundary conditions for the phase-field and flow variables are designed to prevent the un-controlled growth in the total energy of the two-phase system, even in situations where strong backflows or vortices may be present at the outflow boundaries. We also present an additional boundary condition for the phase field function, which together with the usual Dirichlet condition can work effectively as the phase-field inflow conditions. The numerical algorithm for dealing with these boundary conditions is developed on top of a strategy for de-coupling the computations of all flow variables and for overcoming the performance bottleneck caused by variable coefficient matrices associated with variable density/viscosity. The algorithm contains special constructions, for treating the variable dynamic viscosity in the outflow boundary condition, and for preventing a numerical locking at the outflow boundaries for time-dependent problems. Extensive numerical tests with incompressible two-phase flows involving inflow and outflow boundaries demonstrate that, the two-phase outflow boundary conditions and the numerical algorithm developed herein allow for the fluid interface and the two-phase flow to pass through the outflow or open boundaries in a smooth and seamless fashion, and that our method produces stable simulations when large density ratios and large viscosity ratios are involved and when strong backflows are present at the outflow boundaries.

  15. Effect of boiling regime on melt stream breakup in water

    SciTech Connect

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  16. Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems.

    PubMed

    Masselon, Chloé; Colin, Annie; Olmsted, Peter D

    2010-02-01

    In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.

  17. Elasto visco-plastic flow with special attention to boundary conditions

    NASA Technical Reports Server (NTRS)

    Shimazaki, Y.; Thompson, E. G.

    1981-01-01

    A simple but nontrivial steady-state creeping elasto visco-plastic (Maxwell fluid) radial flow problem is analyzed, with special attention given to the effects of the boundary conditions. Solutions are obtained through integration of a governing equation on stress using the Runge-Kutta method for initial value problems and finite differences for boundary value problems. A more general approach through the finite element method, an approach that solves for the velocity field rather than the stress field and that is applicable to a wide range of problems, is presented and tested using the radial flow example. It is found that steady-state flows of elasto visco-plastic materials are strongly influenced by the state of stress of material as it enters the region of interest. The importance of this boundary or initial condition in analyses involving materials coming into control volumes from unusual stress environments is emphasized.

  18. Distribution of flowing fluids in a confined porous medium under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Guo, Boyun; Holder, Donald W.; Carter, Layne

    2004-08-01

    Predicting distribution of flowing fluids in confined porous media under microgravity conditions is vitally important for optimal design of packed bubble column reactors in space stations. Existing correlations have been found inaccurate when applied to microgravity conditions. On the basis of Darcy's law for two-phase flow, a simple mathematical model has been developed in this study. Sensitivity analyses with the model indicate that for a given combination of wetting and nonwetting fluid flow rates, fluid holdups are controlled by relative permeabilities. The effect of gravity on fluid holdup is influenced by the absolute permeability of the porous medium. Fluid distribution is affected by the temperature-dependent fluid properties and wall effect.

  19. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  20. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.

    PubMed

    Szalmás, Lajos

    2006-06-01

    A slip-flow boundary condition has been developed in the lattice Boltzmann model combining an interpolation method and a simple slip boundary condition for straight walls placed at arbitrary distance from the last fluid node. An analytical expression has been derived to connect the model parameters with the slip velocity for Couette and Poiseuille flows in the nearly continuum limit. The proposed interpolation method ensures that the slip velocity is independent of the wall position in first order of the Knudsen number. Computer simulations have been carried out to validate the model. The Couette and Poiseuille flows agree with the analytical results to machine order. Numerical simulation of a moving square demonstrates the accuracy of the model for walls moving in both the tangential and normal directions.

  1. Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado

    NASA Astrophysics Data System (ADS)

    Coe, Jeffrey A.; Kinner, David A.; Godt, Jonathan W.

    2008-04-01

    We have monitored initiation conditions for six debris flows between May 2004 and July 2006 in a 0.3 km 2 drainage basin at Chalk Cliffs; a band of hydrothermally-altered quartz monzonite in central Colorado. Debris flows were initiated by water runoff from colluvium and bedrock that entrained sediment from rills and channels with slopes ranging from about 14° to 45°. The availability of channel material is essentially unlimited because of thick channel fill and refilling following debris flows by rock fall and dry ravel processes. Rainfall exceeding I = 6.61( D) - 0.77 , where I is rainfall intensity (mm/h), and D is duration (h), was required for the initiation of debris flows in the drainage basin. The approximate minimum runoff discharge from the surface of bedrock required to initiate debris flows in the channels was 0.15 m 3/s. Colluvium in the basin was unsaturated immediately prior to (antecedent) and during debris flows. Antecedent, volumetric moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 4-9%, and 4-7%, respectively. During debris flows, peak moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 10-20%, and 4-12%, respectively. Channel sediment at a depth of 45 cm was unsaturated before and during debris flows; antecedent moisture ranged from 20-22%, and peak moisture ranged from 24-38%. Although we have no measurements from shallow rill or channel sediment, we infer that it was unsaturated before debris flows, and saturated by surface-water runoff during debris flows. Our results allow us to make the following general statements with regard to debris flows generated by runoff in semi-arid to arid mountainous regions: 1) high antecedent moisture levels in hillslope and channel sediment are not required for the initiation of debris flows by runoff, 2) locations of entrainment of sediment by successive runoff events can vary within a basin as a function of variations in the thickness of existing channel fill and the

  2. DSMC-LBM hybrid scheme for flows with variable rarefaction conditions

    NASA Astrophysics Data System (ADS)

    di Staso, Gianluca; Succi, Sauro; Toschi, Federico; Clercx, Herman

    2015-11-01

    The kinetic description of gases, based on the Boltzmann equation, allows to cover flow regimes ranging from the rarefied to the continuum limit. The two limits are traditionally studied by numerically approximating the Boltzmann equation via Direct Simulation Monte Carlo (DSMC) method or the Lattice Boltzmann Equation method (LBM). While DSMC is suitable for rarefied flows, its computational cost makes it unpractical to study hydrodynamic flows. The LBM has instead proved itself to be an efficient and accurate method in the hydrodynamic limit even though simulation of rarefied flows requires additional modeling. Here, results on the development of a hybrid scheme capable of coupling the LBM and the DSMC methods and able to efficiently simulate flows with variable rarefaction conditions are presented. The coupling scheme is based on Grad's moment method approach and the local single particle distribution function at a given order of truncation is built by using the Hermite polynomials expansion approach and Gauss-Hermite quadratures. The capabilities of the hybrid approach for simulating flows in the transition regime are illustrated in the case of planar Couette and Poiseuille flows.

  3. Aerodynamic and Acoustic Performance of Two Choked-Flow Inlets Under Static Conditions

    NASA Technical Reports Server (NTRS)

    Miller, B. A.; Abbott, J. M.

    1972-01-01

    Tests were conducted to determine the aerodynamic and acoustic performance of two choking flow inlets under static conditions. One inlet choked the flow in the cowl throat by an axial translation of the inlet centerbody. The other inlet employed a translating grid of airfoils to choke the flow. Both inlets were sized to fit a 13.97 cm diameter fan with a design weight flow of 2.49 kg/sec. The inlets were operated in both the choked and unchoked modes over a range of weight flows. Measurements were made of inlet pressure recovery, flow distortion, surface static pressure distribution, and fan noise suppression. Choking of the translating centerbody inlet reduced blade passing frequency noise by 29 db while yielding a total pressure recovery of 0.985. Noise reductions were also measured at 1/3-octave band center frequencies of 2500, 5000, and 20,000 cycles. The translating grid inlet gave a total pressure recovery of 0.968 when operating close to the choking weight flow. However, an intermittent high intensity noise source was encountered with this inlet that precluded an accurate measurement of inlet noise suppression.

  4. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    NASA Technical Reports Server (NTRS)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  5. Relationships Between Watershed Emergy Flow and Coastal New England Salt Marsh Structure, Function, and Condition

    EPA Science Inventory

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI. The field-collected data wer...

  6. SEPARATED FLOW CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS - Project Summary

    EPA Science Inventory

    The objectives of this research project were to develop and evaluate a method for determining residence times for separated recirculation cavity flow conditions, and to determine the rate of growth and surface ramp contours developed from particulate deposits at obstacles that i...

  7. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  8. Impact of flow conditions on ammonium uptake and microbial community structure in benthic biofilms

    NASA Astrophysics Data System (ADS)

    Arnon, Shai; Yanuka, Keren; Nejidat, Ali

    2010-05-01

    Excess nitrogen in surface waters is widely recognized to be a major global problem that adversely affects ecosystems, human health, and the economy. Today, most efforts to understand and model nutrient dynamics at large scales relies on macro-scale parameterization, such as mean channel geometry and velocity with uniform flow assumptions, as well as gross averages of in-situ nutrient transformation rates. However, there is increasing evidence that nutrient transformations in hyporheic zone are regulated by coupling between physical, chemical, and microbiological processes. Ignoring this greatly hinders the estimation of average biochemical transformation rates under the variable flow conditions found in aquatic systems. We used a combination of macro- and micro-scale observations in laboratory flumes to show that interplay between hydrodynamic transport, redox gradients, and microbial metabolism controls ammonium utilization by hyporheic microbial communities. Biofilm structural characteristics were quantified using denaturing gradient gel electrophoresis (DGGE) and real time PCR, while redox and pH gradients were measured using microelectrodes. We found that overlying velocities had profound effect on ammonium uptake due to mass transfer of ammonium from the bulk water to the benthic biofilms, but also due to the delivery of oxygen into the sediment bed. Under laminar flow conditions we didn't observe any change of ammonium uptake as a response to increase in overlying velocity. However, under non-laminar conditions we observe monotonic increase in ammonium uptake, with the greatest uptake under the fastest flow condition. We will discuss ammonium uptake rates results in the context of the different microbial communities and the micro-scale observations that were obtained using the microelectrodes. We anticipate that combined knowledge of the response of the microbial community and bulk nitrogen utilization rates to flow conditions will support the development of

  9. Study on Performance and Internal Flow Condition of Mini Turbo-Pump

    NASA Astrophysics Data System (ADS)

    Shigemitsu, Toru; Fukutomi, Junichiro; Nasada, Ryoichi

    2010-06-01

    Mini turbo-pumps which have a diameter smaller than 100mm are utilized in many fields; automobile radiator pump, artificial heart pump, cooling pump for electric devices, washing machine pump and so on. And the needs for the mini turbo-pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini turbo-pump design is as simple as possible due to the limitation of the precision for manufacture. But the design method for the mini turbo-pump is not established because the internal flow condition for these small-sized fluid machineries is not clarified and conventional theory is not conductive for small-sized pumps because of the low Reynolds number and the size effects. Therefore, we started the research of the mini turbo-pump for the purpose of development of high performance mini turbo-pump with simple structure. As a first step of this research, mini turbo-pump with the 46mm rotor diameter was designed based on the conventional design method in order to clarify the problems for the application of conventional method for mini turbo-pump in details. The three dimensional steady numerical flow analysis was conducted with the commercial code (Fluent6.3). The numerical flow analysis was also performed under the condition with and without a tip clearance because the tip clearance influence on the performance and internal flow condition is extremely large for mini turbo-pumps. It was clarified from the numerical results that head of the mini turbo-pump at the designed point without the tip clearance satisfied the designed value head H = 1.2m and the efficiency is about η = 60% which is acceptable value for the centrifugal pump. On the other hand, head and efficiency decreased drastically with the increase of the tip clearance. The flow condition near the tip region was influenced by the leakage flow from the blade tip. And it is observed by the results of the total pressure distributions that the total

  10. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells

    PubMed Central

    Cuvelier, Susan L.; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D.

    2005-01-01

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4–stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule–1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechanosensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking. PMID:16172263

  11. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells.

    PubMed

    Cuvelier, Susan L; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D

    2005-09-19

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule-1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechano-sensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking.

  12. Microlayer Topology And Bubble Growth In Nucleate Boiling

    NASA Astrophysics Data System (ADS)

    Jawurek, H. H.; Macgregor, H. G.; Bodenheimer, J. S.

    1987-09-01

    During nucleate boiling thin liquid films (nicrolayers) form beneath the base of bubbles and evaporate into the bubble interiors. A technique is presented which permits the simultaneous determination of microlayer topology and the contribution of microlayer evaporation to bubble growth. Isolated-bubble boiling takes place on an electrically heated, transparent tin-oxide coating deposited on a glass plate, the latter forming the floor of a vessel. With coherent Claser) illumination from beneath, the microlayers reflect fringe patterns similar to Newton's rings. Owing to the rapid evaporation of the layers (the process is completed within milliseconds) the fringes are in rapid motion and are recorded by eine photography at some 4 000 frames per second and exposure times of 50 μs. The resulting interferograms provide details of microlayer shape and thickness versus time, and thus evaporation rate. Simultaneously, and on the same film, bubble profiles (and thus volumes) are obtained under white light illumination. The two bubble images are manipulated by mirrors and lenses so as to appear side by side on the same frame of film, the fringes magnified and the profiles reduced. Sample results for methanol boiling at a pressure of 58.5 kPa and with the liquid bulk at saturation temperature, are presented. Under such conditions microlayer evaporation accounts for 37 per cent of the total bubble volume at detachment.

  13. Review of blunt body wake flows at hypersonic low density conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. N.; Price, J. M.

    1996-01-01

    Recent results of experimental and computational studies concerning hypersonic flows about blunted cones including their near wake are reviewed. Attention is focused on conditions where rarefaction effects are present, particularly in the wake. The experiments have been performed for a common model configuration (70 deg spherically-blunted cone) in five hypersonic facilities that encompass a significant range of rarefaction and nonequilibrium effects. Computational studies using direct simulation Monte Carlo (DSMC) and Navier-Stokes solvers have been applied to selected experiments performed in each of the facilities. In addition, computations have been made for typical flight conditions in both Earth and Mars atmospheres, hence more energetic flows than produced in the ground-based tests. Also, comparisons of DSMC calculations and forebody measurements made for the Japanese Orbital Reentry Experiment (OREX) vehicle (a 50 deg spherically-blunted cone) are presented to bridge the spectrum of ground to flight conditions.

  14. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well.

  15. Transport of bromide measured by soil coring, suction plates, and lysimeters under transient flow conditions.

    NASA Astrophysics Data System (ADS)

    Kasteel, R.; Pütz, Th.; Vereecken, H.

    2003-04-01

    Lysimeter studies are one step within the registration procedure of pesticides. Flow and transport in these free-draining lysimeters do not reflect the field situation mainly because of the occurence of a zone of local saturation at the lower boundary (seepage face). The objective of this study is to evaluate the impact of flow and transport behaviour of bromide detected with different measuring devices (lysimeters, suction plates, and soil coring) by comparing experimental results with numerical simulations in heterogeneous flow domains. We applied bromide as a small pulse to the bare soil surface (Orthic Luvisol) of the three devices and the displacement of bromide was regurlarly sampled for three years under natural wheather conditions. Based on the mean breakthrough curves we observe experimentally that lysimeters have a lower effective pore-water velocity and exhibit more solute spreading resulting in a larger dispersivity than the suction plates. This can be ascribed to the artefact of the lower boundary. We performed numerical transport simulations in 2-D heterogeneous flow fields (scaling approach) choosing appropriate boundary conditions for the various devices. The simulations allow to follow the temporal evolution of flow and transport processes in the various devices and to gain additional process understanding. We conclude that the model is essentially capable to reproduce the main experimental findings only if we account for the spatial correlation structure of the hydraulic properties, i.e. soil heterogeneity.

  16. Preconditioned characteristic boundary conditions for solution of the preconditioned Euler equations at low Mach number flows

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Kamali-Moghadam, Ramin

    2012-06-01

    Preconditioned characteristic boundary conditions (BCs) are implemented at artificial boundaries for the solution of the two- and three-dimensional preconditioned Euler equations at low Mach number flows. The preconditioned compatibility equations and the corresponding characteristic variables (or the Riemann invariants) based on the characteristic forms of preconditioned Euler equations are mathematically derived for three preconditioners proposed by Eriksson, Choi and Merkle, and Turkel. A cell-centered finite volume Roe's method is used for the discretization of the preconditioned system of equations on unstructured meshes. The accuracy and performance of the preconditioned characteristic BCs applied at artificial boundaries are evaluated in comparison with the non-preconditioned characteristic BCs and the simplified BCs in computing steady low Mach number flows. The two-dimensional flow over the NACA0012 airfoil and three-dimensional flow over the hemispherical headform are computed and the results are obtained for different conditions and compared with the available numerical and experimental data. The sensitivity of the solution to the size of computational domain and the variation of the angle of attack for each type of BCs is also examined. Indications are that the preconditioned characteristic BCs implemented in the preconditioned system of Euler equations greatly enhance the convergence rate of the solution of low Mach number flows compared to the other two types of BCs.

  17. Contaminant transport in a single fracture: Periodic boundary and flow conditions

    NASA Astrophysics Data System (ADS)

    Lowell, Robert P.

    1989-05-01

    The effects of time-periodic inlet contaminant concentration and groundwater flow velocity on contaminant transport in a single, planar fracture, imbedded in a relatively impermeable rock matrix, are investigated. The calculations show that the contaminant propagates as a damped traveling wave into the matrix and along the fracture. If longitudinal dispersion is neglected, penetration of the wave into the matrix and fracture depends upon the input frequency σ as σ-½. Under uniform flow conditions, a daily oscillation penetrates into the matrix and fracture approximately 1 cm and 1 m, respectively. An annual oscillation penetrates approximately 10 cm and tens of meters for the matrix and fracture, respectively. These results depend upon physical properties of the rock matrix and fracture, and upon the flow velocity. Because longitudinal dispersion acts to further damp the amplitude of the traveling waves, these results give maximum penetration distances for the waves. If the flow velocity also has a small, time-periodic component, the downstream contaminant oscillations are virtually unchanged unless the inlet condition and flow have the same frequency. In this case, a dc transport of contaminant transport occurs that may have an amplitude as large as one-half of the magnitude of the velocity oscillation. These results indicate that in the absence of resonance, negligible error occurs in treating contaminant transport using mean inlet and flow conditions rather than more realistic time-varying ones. Observations of oscillations, however, can be used to provide useful information on rock and fracture transport properties such as D' and D.

  18. Effect of initial conditions on mixing within a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Germaine, Emmanuel; Mydlarski, Laurent; Cortelezzi, Luca

    2011-11-01

    We analyze the mixing of a passive scalar (temperature) in a turbulent channel flow for different initial conditions by means of numerical simulations. The numerical domain is a channel delimited by two parallel and infinite flat walls, simulated using periodic boundary conditions in the streamwise and spanwise directions. We consider three initial distributions of temperature, where hot and cold fluids are separated by a sharp but continuous interface that subdivides the computational domain into two identical halves. The interface is taken parallel to the walls or perpendicular to them, oriented in the streamwise or spanwise directions. We perform a direct numerical simulation of the temperature field at Reτ = 190 when the flow is fully turbulent. The numerical scheme combines an advection diffusion solver, i.e, a third-order flux integral method based on UTOPIA (Leonard et al., Appl. Math. Modeling, 1995), with a Navier-Stokes solver, i.e, spectral code released by Prof. John Gibson, http://www.channelflow.org). We quantify the time-evolution of the mixing performance of the turbulent flow using different measures of the mixing, including a negative Sobolev norm - a diagnostic currently used to asses the mixing performance of laminar flows. Finally, we discuss the influence of the initial conditions on the turbulent mixing. Funding was provided by NSERC (grants RGPIN217169 and RGPIN217184).

  19. A convective-like energy-stable open boundary condition for simulations of incompressible flows

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2015-12-01

    We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on a canonical wake flow and a jet flow in open domain to test the effectiveness and performance of the method developed herein. Simulation results are compared with the experimental data as well as with other previous simulations to demonstrate the accuracy of the current method. Long-time simulations are performed for a range of Reynolds numbers, at which strong vortices and backflows occur at the outflow/open boundaries. The results show that our method is effective in overcoming the backflow instability, and that it allows for the vortices to discharge from the domain in a fairly natural fashion even at high Reynolds numbers.

  20. Regionalization of Low Flows in Hawaii Streams for Past and Future Rainfall Conditions

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.

    2014-12-01

    The Hawaiian Islands experience large inter-annual rainfall variations and statistically significant long-term downward trends in streamflow, especially low flows, have been detected. Low flows in Hawaii streams provide a variety of beneficial uses that include maintaining fish habitat, supplying freshwater for irrigation and domestic uses, and protecting traditional and customary Hawaiian rights. However, the variability of low flows in ungaged streams in Hawaii has not been quantified and potential effects of climate change on low flows need to be better understood to properly manage surface-water resources. Regionalization of streamflow for ungaged areas in Hawaii provides a useful case study because streamflow, climate, and basin characteristics are extremely spatially and temporally variable. Here we present the development of statistical models to estimate low flows of ungaged streams in Hawaii for past and future rainfall conditions. We discuss the benefits and limitations of applying simple statistical approaches to improve understanding of changes in low flows in heterogeneous and data poor regions and to explicitly evaluate uncertainty and data needs in the context of climate change predictions for regional water-resources management.