Sample records for flow cell storage

  1. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  2. Deep wells integrated with microfluidic valves for stable docking and storage of cells.

    PubMed

    Jang, Yun-Ho; Kwon, Cheong Hoon; Kim, Sang Bok; Selimović, Seila; Sim, Woo Young; Bae, Hojae; Khademhosseini, Ali

    2011-02-01

    In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    PubMed

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  4. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  5. Flow Cells for Scalable Energy Conversion and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary

    2017-10-26

    This project is a response to current flow systems that are V-aqueous and not cost effective. It will hopefully enable high energy/ power density flow cells through rational materials and system design.

  6. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions.

    PubMed

    Anniss, Angela M; Sparrow, Rosemary L

    2006-09-01

    Adherence of red blood cells (RBCs) to vascular endothelium impairs blood flow and decreases oxygen delivery. Although RBCs may be stored for up to 42 days before transfusion under current blood banking guidelines, little is known of how changes to RBCs during storage may affect their adherence properties. The influence of RBC product storage time and white blood cell (WBC) burden on the adherence of RBCs for transfusion to vascular endothelium under conditions of continuous flow was investigated in this study. RBC samples were collected from nonleukoreduced (S-RBC), buffy coat-poor (BCP-RBC), and leukofiltered (LF-RBC) products at fixed time points during storage. Samples were perfused, at controlled shear stress and temperature, across a confluent endothelial cell (EC) monolayer with a parallel-flow chamber mounted to an inverted microscope. RBC-EC interactions were recorded with a digital camera attached to the microscope. The number of RBCs adhering to the EC layer increased significantly with storage time in all RBC products; however, WBC reduction delayed this increase. LF-RBCs were also significantly less adherent than S-RBC or BCP-RBC products on Day 1 of storage (p < 0.05). The strength of RBC attachment to vascular endothelium was significantly stronger in S-RBC products compared to BCP-RBC and LF-RBC products. Our findings indicate that product storage time and WBC burden increase the number and strength of adhesion of RBCs to vascular endothelium. These results may lead to greater understanding of the interaction of transfused RBCs with recipient endothelium and the biologic consequences of this adherence.

  7. Collection, Storage, and Preparation of Human Blood Cells

    PubMed Central

    Dagur, Pradeep K.; McCoy, J. Philip

    2015-01-01

    Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177

  8. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    PubMed Central

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  9. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    PubMed

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  10. Hybrid Graphene-Polyoxometalates Nanofluids as Liquid Electrodes for Dual Energy Storage in Novel Flow Cells.

    PubMed

    Dubal, Deepak P; Rueda-Garcia, Daniel; Marchante, Carlos; Benages, Raul; Gomez-Romero, Pedro

    2018-02-22

    Solid Hybrid materials abound. But flowing versions of them are new actors in the materials science landscape and in particular for energy applications. This paper presents a new way to deliver nanostructured hybrid materials for energy storage, namely, in the form of nanofluids. We present here the first example of a hybrid electroactive nanofluid (HENFs) combining capacitive and faradaic energy storage mechanisms in a single fluid material. This liquid electrode is composed of reduced graphene oxide and polyoxometalates (rGO-POMs) forming a stable nanocomposite for electrochemical energy storage in novel Nanofluid Flow Cells. Two graphene based hybrid materials (rGO-phosphomolybdate, rGO-PMo 12 and rGO-phosphotungstate, rGO-PW 12 ) were synthesized and dispersed with the aid of a surfactant in 1 M H 2 SO 4 aqueous electrolyte to yield highly stable hybrid electroactive nanofluids (HENFs) of low viscosity which were tested in a home-made flow cell under static and continuous flowing conditions. Remarkably, even low concentration rGO-POMs HENFs (0.025 wt%) exhibited high specific capacitances of 273 F/g(rGO-PW 12 ) and 305 F/g(rGO-PMo 12 ) with high specific energy and specific power. Moreover, rGO-POM HENFs show excellent cycling stability (∼95 %) as well as Coulombic efficiency (∼77-79 %) after 2000 cycles. Thus, rGO-POM HENFs effectively behave as real liquid electrodes with excellent properties, demonstrating the possible future application of HENFs for dual energy storage in a new generation of Nanofluid Flow Cells. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Battery technologies for large-scale stationary energy storage.

    PubMed

    Soloveichik, Grigorii L

    2011-01-01

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  12. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  13. Bidirectional Pressure-Regulator System

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth; Miller, John R.

    2008-01-01

    A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.

  14. Evaluation of the effect of storage condition on cell extraction and flow cytometric analysis from intestinal biopsies.

    PubMed

    Wildenberg, Manon E; Duijvestein, Marjolijn; Westera, Liset; van Viegen, Tanja; Buskens, Christianne J; van der Bilt, Jarmila D W; Stitt, Larry; Jairath, Vipul; Feagan, Brian G; Vande Casteele, Niels

    2018-06-01

    Flow cytometric (FC) analysis of intestinal tissue biopsies requires prompt cell isolation and processing to prevent cell death and generate valid data. We examined the effect of storage conditions prior to cell isolation and FC on viable cell yield and the proportions of immune cell phenotypes from intestinal biopsies. Biopsies (N = 224) from inflamed or non-inflamed ileal and/or colonic tissue from three patients with Crohn's disease were processed and analyzed immediately in duplicate, or stored under different conditions. Cells were isolated and stained for specific markers, followed by FC. Decreased mean live CD45+ cell counts were observed after storage of biopsies at -80 °C dimethyl sulfoxide (DMSO)/citrate buffer compared with immediate processing (1794.3 vs. 19,672.7; p = 0.006]). A non-significant decrease in CD45+ live cell count occurred after storage at -20 °C in DMSO/citrate buffer and cell yield was adequate for subsequent analysis. CD3+ cell proportions were significantly lower after storage at 4 °C in complete medium for 48 h compared with immediate analysis. Mean CD14+ cell proportions were significantly higher after storage of biopsies at -80 °C in DMSO/citrate buffer compared with immediate analysis (2.61% vs. 1.31%, p = 0.007). CD4+, CD8+ and CD4+/CD8+ cell proportions were unaffected by storage condition. Storage of intestinal tissue biopsies at -20 °C in DMSO/citrate buffer for up to 48 h resulted in sufficient viable cell yield for FC analysis without affecting subsequent marker-positive cell proportions. These findings support the potential shipping and storage of intestinal biopsies for centralized FC analysis in multicenter clinical trials. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. High-energy redox-flow batteries with hybrid metal foam electrodes.

    PubMed

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  16. Project Themis Supercritical Cold Flow Facility, Experiment Design and Modeling for the Study of Fluid Mixing

    DTIC Science & Technology

    2012-06-01

    AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi

  17. Material design and engineering of next-generation flow-battery technologies

    NASA Astrophysics Data System (ADS)

    Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil

    2017-01-01

    Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.

  18. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  19. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Astrophysics Data System (ADS)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  20. The Redox Flow System for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  1. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  2. Long-term preservation of Tetraselmis indica (Chlorodendrophyceae, Chlorophyta) for flow cytometric analysis: Influence of fixative and storage temperature.

    PubMed

    Naik, Sangeeta Mahableshwar; Anil, Arga Chandrashekar

    2017-08-01

    Immediate enumeration of phytoplankton is seldom possible. Therefore, fixation and subsequent storage are required for delayed analysis. This study investigated the influence of glutaraldehyde (GA) concentrations (0.25%, 0.5%, and 1%) and storage temperatures (-80°C LN2 , -80°C, -20°C, and 5°C) on Tetraselmis indica for flow cytometric analysis. Cell recovery, granularity, and membrane permeability were independent of GA concentration whereas cell size and chlorophyll autofluorescence were concentration dependent. After an initial cell loss (16-19%), no cell loss was observed when samples were stored at 5°C. Cell recovery was not influenced by storage temperature until 4months but later samples preserved at -80°C LN2 , -80°C, and -20°C resulted in ~41% cell loss. Although maximum cell recovery with minimal effect on cell integrity was obtained at 5°C, autofluorescence was retained better at -80°C LN2 and -80°C. This suggests that in addition to fixative, the choice of storage temperature is equally important. Thus for long-term preservation, especially to retain autofluorescence, the use of lower concentration (0.25%) of GA when stored at a lower temperature (-80°C LN2 and -80°C) while a higher concentration (1%) of GA when stored at a higher temperature (5°C) is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Small organic molecule based flow battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskinson, Brian; Marshak, Michael; Aziz, Michael J.

    The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.

  4. Improvement of Storage Medium for Cultured Human Retinal Pigment Epithelial Cells Using Factorial Design.

    PubMed

    Pasovic, L; Utheim, T P; Reppe, S; Khan, A Z; Jackson, C J; Thiede, B; Berg, J P; Messelt, E B; Eidet, J R

    2018-04-09

    Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 different additives. Individual effects of each additive on cell viability were assessed using epifluorescence microscopy. Factorial design identified promising additive combinations by extrapolating their individual effects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifluorescence microscopy. Flow cytometry validated the findings. Proteomics identified 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage.

  5. Cold storage of rat hepatocyte suspensions for one week in a customized cold storage solution--preservation of cell attachment and metabolism.

    PubMed

    Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula

    2012-01-01

    Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.

  6. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    PubMed

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel chemistries and materials for grid-scale energy storage: Quinones and halogen catalysis

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian Thomas

    In this work I describe various approaches to electrochemical energy storage at the grid-scale. Chapter 1 provides an introduction to energy storage and an overview of the history and development of flow batteries. Chapter 2 describes work on the hydrogen-chlorine regenerative fuel cell, detailing its development and the record-breaking performance of the device. Chapter 3 dives into catalyst materials for such a fuel cell, focusing on ruthenium oxide based alloys to be used as chlorine redox catalysts. Chapter 4 introduces and details the development of a performance model for a hydrogen-bromine cell. Chapter 5 delves into the more recent work I have done, switching to applications of quinone chemistries in flow batteries. It focuses on the pairing of one particular quinone (2,7-anthraquinone disulfonic acid) with bromine, and highlights the promising performance characteristics of a device based on this type of chemistry.

  8. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device (Fig. 1), where energymore » is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Several of these systems have been commercialized although current technologies, such as vanadium (V) and zinc-bromine (Zn-Br 2) RFCs, for grid level energy storage, suffer from a number of drawbacks, i.e. expensive and resource-limited active materials (vanadium RFCc), and low current performance (Zn-Br 2 RFCs due to Zn dendrite formation). Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. Approach: To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible.« less

  9. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE PAGES

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  10. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  11. Pumping power considerations in the designs of NASA-Redox flow cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.

    1981-01-01

    Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.

  12. The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.

    Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To achieve these goals, a combined experimental and computational approach is undertaken. The technical viability of the technology is demonstrated, and in-depth studies are performed to understand the coupling between flow rate and slurry conductivity, and localized effects arising within the cell. The outlook of EFCs and other flowable electrode technologies is assessed, and opportunities for future work are discussed.

  13. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging.

    PubMed

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-05-04

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.

  14. Improvement and analysis of the hydrogen-cerium redox flow cell

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.

    2016-09-01

    The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.

  15. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function

    PubMed Central

    Kanias, Tamir; Triulzi, Darrel; Donadee, Chenell; Barge, Suchitra; Badlam, Jessica; Jain, Shilpa; Belanger, Andrea M.; Kim-Shapiro, Daniel B.

    2015-01-01

    Rationale: A major abnormality that characterizes the red cell “storage lesion” is increased hemolysis and reduced red cell lifespan after infusion. Low levels of intravascular hemolysis after transfusion of aged stored red cells disrupt nitric oxide (NO) bioavailabity, via accelerated NO scavenging reaction with cell-free plasma hemoglobin. The degree of intravascular hemolysis post-transfusion and effects on endothelial-dependent vasodilation responses to acetylcholine have not been fully characterized in humans. Objectives: To evaluate the effects of blood aged to the limits of Food and Drug Administration–approved storage time on the human microcirculation and endothelial function. Methods: Eighteen healthy individuals donated 1 U of leukopheresed red cells, divided and autologously transfused into the forearm brachial artery 5 and 42 days after blood donation. Blood samples were obtained from stored blood bag supernatants and the antecubital vein of the infusion arm. Forearm blood flow measurements were performed using strain-gauge plethysmography during transfusion, followed by testing of endothelium-dependent blood flow with increasing doses of intraarterial acetylcholine. Measurements and Main Results: We demonstrate that aged stored blood has higher levels of arginase-1 and cell-free plasma hemoglobin. Compared with 5-day blood, the transfusion of 42-day packed red cells decreases acetylcholine-dependent forearm blood flows. Intravascular venous levels of arginase-1 and cell-free plasma hemoglobin increase immediately after red cell transfusion, with more significant increases observed after infusion of 42-day-old blood. Conclusions: We demonstrate that the transfusion of blood at the limits of Food and Drug Administration–approved storage has a significant effect on the forearm circulation and impairs endothelial function. Clinical trial registered with www.clinicaltrials.gov (NCT 01137656) PMID:26222884

  17. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage.

    PubMed

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm -3 , 2 g sulfur in a single cell), high volumetric energy density (135 Wh L -1 ), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

  18. Improvement and analysis of the hydrogen-cerium redox flow cell

    DOE PAGES

    Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.

    2016-08-03

    In this paper, the H 2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm -2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50more » °C. Finally, the H 2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at highmore » current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.« less

  20. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging

    PubMed Central

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885

  1. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  2. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device where energy is storedmore » in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible. In order to address the second challenge of reducing cost of the RFCs, we plan to use iron (Fe) metal as it regularly occupies multiple oxidation states and is the second most abundant metal in the earth’s crust that makes it an ideal metal for improved energy densities, higher potentials, and numbers of electrons per molecule while maintaining potential cost competitiveness. Density functional theory calculations considering solvation effects will be performed to yield accurate predictions of redox potentials.« less

  3. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  4. Measurement of the Structure and Molecular Dynamics of Ionic Solutions for Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    Li, Zhixia; Robertson, Lily; Moore, Jeffery; Zhang, Yang

    Redox flow battery (RFB) is a promising electrical energy storage technology with great potential to finally realize alternative energy sources for the next-generation vehicles and at grid scales. The design of RFB is unique as the power scales separately from the energy capacity. The latter depends on the size of storage tanks and the concentration of the active materials. Redox-active organic molecules are excellent candidates with high synthetic tunability for both redox properties as well as, importantly, solubility. However, upon increasing concentrations, the flow cell has less cycling stability and more capacity fade. Further, after charging the battery, the viscosity increases while the ionic conductivity decreases, and thus the cell becomes overall ineffective. To understand the mechanism of the increased viscosity, we performed differential scanning calorimetry, wide and small angle X-rays scattering, and quasi-elastic neutron scattering measurements. Herein, we will present the measurement results and relative analysis.

  5. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries

    NASA Astrophysics Data System (ADS)

    Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.

    2016-09-01

    Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.

  6. A Comparison of Flow-Through Versus Non-Flow-Through Proton Exchange Membrane Fuel Cell Systems for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper summarizes the technical considerations which helped form the engineering judgement that led to the final decision.

  7. Effect of Red Blood Cell Storage on Cardiac Performance. Improved Myocardial Oxygen Delivery and Function during Constant Flow Coronary Perfusion with Low Oxy-Hemoglobin Affinity Human Red Blood Cells in Normothermic and Hypothermic Rabbit Hearts.

    DTIC Science & Technology

    1983-02-01

    with an isovolumic left ven- tricular balloon. Coronary flow was held constant to simulate the physiolog of coronary atherosclerosis and other...erythrocyte DPG content can potentially benefit patients with coronary atherosclerosis , or other states with a limited coronary vasodilator reserve, who...Coronary flow was held constant to simulate the physiology of coronary atherosclerosis and other conditions of limited coronary vasodilator reserve

  8. 500 Watt Solar AMTEC Power System for Small Spacecraft.

    DTIC Science & Technology

    1995-03-01

    Thermal Modeling of High Efficiency AMTEC Cells ," Proceedings of the 24th National Heat Transfer Conference. Journal Article 12. SPACE...power flow calculation is the power required by the AMTEC cells which is the cell output power over the cell efficiency . The system model also...Converter ( AMTEC ) cell , called the multi-tube cell , integrated with an individual Thermal Energy Storage (TES) unit. The

  9. Purification and Initial Functions of Sex-Specific Storage Protein 2 in Bombyx mori.

    PubMed

    Chen, Jianqing; Shu, Tejun; Chen, Jian; Ye, Man; Lv, Zhengbing; Nie, Zuoming; Gai, Qijing; Yu, Wei; Zhang, Yaozhou

    2015-08-01

    In this study, we identified a heat-resistant protein from the chrysalis stage of the silkworm which we named sex-specific storage protein 2 (SSP2). This protein was stable even at 80 °C, and has an amino acid sequence that is 90.65 % homologous to SP2. We utilized the heat-resistant characteristics of SSP2 to purify the protein and maintain its biological activity. In addition, using flow cytometry and the MTT assay, we found that SSP2 had anti-apoptotic effects on BmN cells, and that SSP2 could also inhibit cell apoptosis induced by chemical factors. These results suggest that SSP2 has a cell-protective function, and provides a basis for future work on the function of storage proteins in silkworm.

  10. Design Flexibility of Redox Flow Systems. [for energy storage applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1982-01-01

    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level.

  11. A metal-free organic-inorganic aqueous flow battery.

    PubMed

    Huskinson, Brian; Marshak, Michael P; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R; Galvin, Cooper J; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2014-01-09

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.

  12. Cost and size estimates for an electrochemical bulk energy storage concept

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Wright, L. O.

    1975-01-01

    Preliminary capital cost and size estimates were made for a titanium trichloride, titanium tetrachloride, ferric chloride, ferrous chloride redox-flow-cell electric power system. On the basis of these preliminary estimates plus other important considerations, this electrochemical system emerged as having great promise as a bulk energy storage system for power load leveling. The size of this system is less than two per cent of that of a comparable pumped hydroelectric plant. The estimated capital cost of a 10 MW, 60- and 85-MWh redox-flow system compared well with that of competing systems.

  13. Handling, storage, and preparation of human tissues.

    PubMed

    Dressler, L G; Visscher, D

    2001-05-01

    Human tissue for flow cytometry must be prepared as an adequate single-cell suspension. The appropriate methods for tissue collection, transport, storage, and dissociation depend on the cell parameters being measured and the localization of the markers. This unit includes a general method for collecting and transporting human tissue and preparing a tissue imprint. Protocols are supplied for tissue disaggregation by either mechanical or enzymatic means and for preparation of single-cell suspensions of whole cells from fine-needle aspirates, pleural effusions, abdominal fluids, or other body fluids. Other protocols detail preparation of intact nuclei from fresh, frozen, or paraffin-embedded tissue. Support protocols cover fixation, cryospin preparation, cryopreservation, and removal of debris.

  14. Transforming growth factor-β released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation.

    PubMed

    Vallion, Romain; Bonnefoy, Francis; Daoui, Anna; Vieille, Loredane; Tiberghien, Pierre; Saas, Philippe; Perruche, Sylvain

    2015-07-01

    Red blood cell (RBC) alloimmunization is a major immunologic risk of transfusion. However, RBC storage facilitates white blood cell (WBC) apoptosis and apoptotic cells have immunomodulatory properties. We investigated the behavior of WBCs, and apoptosis in particular, in RBC units during storage and then studied the impact of WBC apoptosis on the modulation of posttransfusion alloimmunization in RBC products stored short term. We used a mouse model of alloimmunization to transfused HEL-ovalbumin-Duffy (HOD) surface antigen expressed specifically on RBCs. The presence of circulating anti-HOD immunoglobulin G detected by flow cytometry confirmed immunization to HOD+ RBCs. WBC apoptosis and factors released by apoptotic WBCs during storage were determined and in particular the role of transforming growth factor (TGF)-β was assessed on RBC alloimmunization. In blood stored 72 hours, 30% of WBCs were apoptotic, and transfusion of short-term-stored blood resulted in lesser immunization than did fresh blood or stored leukoreduced (LR) RBCs. WBCs undergoing apoptosis released during short-term storage factors modulating RBC alloimmunization. Indeed apoptotic cell-released factors modulate alloimmunization whereas exogenous apoptotic cells directly transfused with LR RBCs did not. While microparticles released during RBC storage had no immunomodulatory role, TGF-β found in the supernatant of stored blood demonstrated the capacity to favor Treg polarization of naïve CD4+CD25- T cells in vitro and limited RBC alloimmunization in vivo. Indeed, addition of recombinant TGF-β to stored LR RBC transfusion strongly limited posttransfusion RBC alloimmunization. Our findings show that short-term storage of non-LR blood facilitates WBC apoptosis therefore releasing TGF-β that modulates posttransfusion RBC alloimmunization. © 2015 AABB.

  15. Detection of microparticles from human red blood cells by multiparametric flow cytometry

    PubMed Central

    Grisendi, Giulia; Finetti, Elena; Manganaro, Daniele; Cordova, Nicoletta; Montagnani, Giuliano; Spano, Carlotta; Prapa, Malvina; Guarneri, Valentina; Otsuru, Satoru; Horwitz, Edwin M.; Mari, Giorgio; Dominici, Massimo

    2015-01-01

    Background During storage, red blood cells (RBC) undergo chemical and biochemical changes referred to as “storage lesions”. These events determine the loss of RBC integrity, resulting in lysis and release of microparticles. There is growing evidence of the clinical importance of microparticles and their role in blood transfusion-related side effects and pathogen transmission. Flow cytometry is currently one of the most common techniques used to quantify and characterise microparticles. Here we propose multiparametric staining to monitor and quantify the dynamic release of microparticles by stored human RBC. Material and methods RBC units (n=10) were stored under blood bank conditions for up to 42 days. Samples were tested at different time points to detect microparticles and determine the haemolysis rate (HR%). Microparticles were identified by flow cytometry combining carboxyfluorescein diacetate succinimidyl ester (CFSE) dye, annexin V and anti-glycophorin A antibody. Results We demonstrated that CFSE can be successfully used to label closed vesicles with an intact membrane. The combination of CFSE and glycophorin A antibody was effective for monitoring and quantifying the dynamic release of microparticles from RBC during storage. Double staining with CFSE/glycophorin A was a more precise approach, increasing vesicle detection up to 4.7-fold vs the use of glycophorin A/annexin V alone. Moreover, at all the time points tested, we found a robust correlation (R=0.625; p=0.0001) between HR% and number of microparticles detected. Discussion Multiparametric staining, based on a combination of CFSE, glycophorin A antibody and annexin V, was able to detect, characterise and monitor the release of microparticles from RBC units during storage, providing a sensitive approach to labelling and identifying microparticles for transfusion medicine and, more broadly, for cell-based therapies. PMID:25369588

  16. Recent advances in redox flow cell storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    Several features which were conceived and incorporated into complete redox systems that greatly enhanced its ability to be kept in proper charge balance, to be capable of internal voltage regulation, and in general be treated as a true multicell electrochemical system rather than an assembly of single cells that were wired together, were discussed. The technology status as it relates to the two application areas of solar photovoltaic/wind and distributed energy storage for electric utility applications was addressed. The cost and life advantages of redox systems were also covered.

  17. "Wine-Dark Sea" in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.

    A highly soluble, readily accessible, redox-active organic material, 2,1,3-benzothiadiazole, is demonstrated as a novel anolyte material to enable exceptional cyclability in a full-cell organic redox flow battery. This material discovery represents a significant progress toward promising next-generation energy storage.

  18. Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilovic, Nemanja; Ayers, Katherine

    Regenerative fuel cells (RFC) are energy storage devices that capture electrical energy in the form of hydrogen, with potential application for backup power and energy storage in remote locations, unmanned missions, and renewable energy capture. A unitized regenerative fuel cell (URFC) combines two separate electrochemical devices (fuel cell and electrolyzer) into one stack. The stack cost is driven by the platinum group metal (PGM) catalysts and the flow field components designed to withstand high potentials in acidic environments. Since the stack is the most expensive subcomponent of both the fuel cell and electrolyzer system, combining the two devices results inmore » substantial reduction in capital cost. However, in the past, combining the two stacks sacrificed device performance (operating cost) largely because the fuel cell had to operate with the thick electrolysis membranes in a URFC configuration, and due to water management issues in switching modes. Recent work in membrane-based electrolysis has resulted in more mechanically robust designs and materials that allow much thinner membranes, and work in flow cell design such as flow batteries has shown improved water transport through channel design and wet-proofing approaches. Therefore, the URFC concept is worth revisiting. At the same time, alkaline exchange membrane (AEM) devices are gathering attention due to the promise of PGM and valve metal elimination from the stack and a resulting strategic and capital cost benefit as compared with proton exchange membrane (PEM) systems. The result is a lower capital cost system that has half the precious metal group (PGM) catalysts, membrane and other stack component materials compared with discrete RFCs, although at the sacrifice of performance (operating cost). Proton has identified innovative AEM based RFC's to fulfill the role of low capital cost energy storage device owing to the use of non-precious metal containing electrodes, that enables certain markets where higher operating costs can be tolerated.« less

  19. The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model.

    PubMed

    Wang, Ying; You, Guoxing; Chen, Peipei; Li, Jianjun; Chen, Gan; Wang, Bo; Li, Penglong; Han, Dong; Zhou, Hong; Zhao, Lian

    2016-03-01

    The mechanical properties of red blood cells (RBCs) are critical to the rheological and hemodynamic behavior of blood. Although measurements of the mechanical properties of RBCs have been studied for many years, the existing methods, such as ektacytometry, micropipette aspiration, and microfluidic approaches, still have limitations. Mechanical changes to RBCs during storage play an important role in transfusions, and so need to be evaluated pre-transfusion, which demands a convenient and rapid detection method. We present a microfluidic approach that focuses on the mechanical properties of single cell under physiological shear flow and does not require any high-end equipment, like a high-speed camera. Using this method, the images of stretched RBCs under physical shear can be obtained. The subsequent analysis, combined with mathematic models, gives the deformability distribution, the morphology distribution, the normalized curvature, and the Young's modulus (E) of the stored RBCs. The deformability index and the morphology distribution show that the deformability of RBCs decreases significantly with storage time. The normalized curvature, which is defined as the curvature of the cell tail during stretching in flow, suggests that the surface charge of the stored RBCs decreases significantly. According to the mathematic model, which derives from the relation between shear stress and the adherent cells' extension ratio, the Young's moduli of the stored RBCs are also calculated and show significant increase with storage. Therefore, the present method is capable of representing the mechanical properties and can distinguish the mechanical changes of the RBCs during storage. The advantages of this method are the small sample needed, high-throughput, and easy-use, which make it promising for the quality monitoring of RBCs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  1. Preliminary study of high energy density Zn/Ni flow batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Wang, Yan

    2015-10-01

    The escalation of power system promotes the development of energy storage technologies (ESTs). Among all of ESTs, battery technologies develop quickly and diversely because of its huge application market. Aqueous redox flow batteries (RFBs) are very attractive to customers in the energy grid system, and their noticeable technological innovations in past decades are driving them to gradually replace the conventional ESTs under certain circumstance. Here, the first fully-flow-able zinc-nickel flow battery (ZNFB) is preliminary reported in this paper, and its superior performance is supposed to be suitable for both large-scale storage need and carry-on powertrain in cars. Through using semi-solid fuel cell (SSFC) technology, we incorporates the beneficial features of Zn/Ni chemistry (essentially sustainable, eco-friendly and deposit-abundant) into RFB structure to make a ;hybrid; flow battery system, which can take the advantage of both. The relationship between carbon loading and suspension conductivity is determined. Electrochemical properties of ZNFB as static test, cycling test, and fully flowing test are studied to demonstrate our design.

  2. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    NASA Astrophysics Data System (ADS)

    Jervis, Rhodri; Brown, Leon D.; Neville, Tobias P.; Millichamp, Jason; Finegan, Donal P.; Heenan, Thomas M. M.; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems.

  3. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  4. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE PAGES

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; ...

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  5. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    PubMed

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of Pre-Storage Irradiation on the Oxidative Stress Markers, Membrane Integrity, Size and Shape of the Cold Stored Red Blood Cells

    PubMed Central

    Antosik, Adam; Czubak, Kamila; Gajek, Arkadiusz; Marczak, Agnieszka; Glowacki, Rafal; Borowczyk, Kamila; Zbikowska, Halina Malgorzata

    2015-01-01

    Background To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. Methods The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. Results Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. Conclusion Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving. PMID:26195927

  7. Influence of Pre-Storage Irradiation on the Oxidative Stress Markers, Membrane Integrity, Size and Shape of the Cold Stored Red Blood Cells.

    PubMed

    Antosik, Adam; Czubak, Kamila; Gajek, Arkadiusz; Marczak, Agnieszka; Glowacki, Rafal; Borowczyk, Kamila; Zbikowska, Halina Malgorzata

    2015-05-01

    To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving.

  8. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling

    NASA Astrophysics Data System (ADS)

    Bates, Paul D.; Horritt, Matthew S.; Fewtrell, Timothy J.

    2010-06-01

    SummaryThis paper describes the development of a new set of equations derived from 1D shallow water theory for use in 2D storage cell inundation models where flows in the x and y Cartesian directions are decoupled. The new equation set is designed to be solved explicitly at very low computational cost, and is here tested against a suite of four test cases of increasing complexity. In each case the predicted water depths compare favourably to analytical solutions or to simulation results from the diffusive storage cell code of Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow in a topographically complex urban area the Root Mean Squared Difference between the new formulation and the model of Hunter et al. is ˜1 cm. However, unlike diffusive storage cell codes where the stable time step scales with (1/Δ x) 2, the new equation set developed here represents shallow water wave propagation and so the stability is controlled by the Courant-Freidrichs-Lewy condition such that the stable time step instead scales with 1/Δ x. This allows use of a stable time step that is 1-3 orders of magnitude greater for typical cell sizes than that possible with diffusive storage cell models and results in commensurate reductions in model run times. For the tests reported in this paper the maximum speed up achieved over a diffusive storage cell model was 1120×, although the actual value seen will depend on model resolution and water surface gradient. Solutions using the new equation set are shown to be grid-independent for the conditions considered and to have an intuitively correct sensitivity to friction, however small instabilities and increased errors on predicted depth were noted when Manning's n = 0.01. The new equations are likely to find widespread application in many types of flood inundation modelling and should provide a useful additional tool, alongside more established model formulations, for a variety of flood risk management studies.

  9. TiO2-Photoanode-Assisted Direct-Solar-Energy Harvesting and Storage in a Solar-Powered Redox Cell Using Halides as Active Materials.

    PubMed

    Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong

    2018-06-27

    The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.

  10. A metal-free organic-inorganic aqueous flow battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskinson, B; Marshak, MP; Suh, C

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metalsmore » and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.« less

  11. Gels as battery separators for soluble electrode cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gahn, R. F. (Inventor)

    1977-01-01

    Gels are formed from silica powders and hydrochloric acid. The gels are then impregnated into a polymeric foam and the resultant sheet material is then used in applications where the transport of chloride ions is desired. Specifically disclosed is the utilization of the sheet in electrically rechargeable redox flow cells which find application in bulk power storage systems.

  12. Intestinal stem cells remain viable after prolonged tissue storage

    PubMed Central

    Fuller, Megan K.; Faulk, Denver M.; Sundaram, Nambirajan; Mahe, Maxime M.; Stout, Kara M.; von Furstenberg, Richard J.; Smith, Brian J.; McNaughton, Kirk K.; Shroyer, Noah F.; Helmrath, Michael A.; Henning, Susan J.

    2013-01-01

    Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such they have significant therapeutic potential. However, it is unknown whether ISCs can survive tissue storage. We hypothesized that, although the majority of epithelial cells may die, ISCs would remain viable for at least 24 h at 4°C. To explore this hypothesis, jejuni of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate buffered saline (PBS) at 4°C. Delayed isolations of epithelia were performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact through 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retain high integrity through 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Culture of isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80%. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated with human tissue, storage at 4°C may offer a valuable temporal window for harvest of crypts or ISCs for therapeutic application. PMID:23820734

  13. Reticulocyte count in red-blood-cell units stored in AS-1.

    PubMed

    Urbina, A; Palomino, F

    2013-05-01

    Previous data that showed maintenance of reticulocyte percentage in whole blood stored in CPDA-1 have led to the assumption that reticulocyte maturation becomes arrested during refrigerated storage. However, reticulocyte behaviour in red-blood-cell units stored in additive solutions has not yet been studied. This study was thus aimed at determining reticulocyte count and reticulocyte subtypes in red-blood-cells units stored in AS-1. Reticulocyte percentage and subtypes were determined by flow cytometry with thiazole orange in six red-blood-cells units stored in AS-1. Reticulocyte count was 26.8 ± 4.6 × 10(9) /l at week 0.5 and 8.2 ± 2.9 × 10(9) /l at week 6. Total haemolysis during storage was 0.19 ± 0.08%. High-fluorescence reticulocytes were 2.0 ± 3.2 × 10(9) /l at week 0.5 and decreased by weeks 2, 4 and 6. Low-fluorescence reticulocytes were 22.1 ± 3.1 × 10(9) /l at week 0.5 and decreased by weeks 4 and 6. A significant decrease in reticulocytes occurred during red-blood-cells units' storage in AS-1. Even if it were assumed that all of haemolysed cells during storage were reticulocytes, there are a number of them whose disappearance cannot be explained by this mechanism. Changes observed in reticulocyte subtypes suggest that they mature during storage. © 2013 The Author(s) Vox Sanguinis © 2013 International Society of Blood Transfusion.

  14. Metal-Free Aqueous Flow Battery with Novel Ultrafiltered Lignin as Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Alolika; Hamel, Jonathan; Katahira, Rui

    As the number of generation sources from intermittent renewable technologies on the electric grid increases, the need for large-scale energy storage devices is becoming essential to ensure grid stability. Flow batteries offer numerous advantages over conventional sealed batteries for grid storage. In this work, for the first time, we investigated lignin, the second most abundant wood derived biopolymer, as an anolyte for the aqueous flow battery. Lignosulfonate, a water-soluble derivative of lignin, is environmentally benign, low cost and abundant as it is obtained from the byproduct of paper and biofuel manufacturing. The lignosulfonate utilizes the redox chemistry of quinone tomore » store energy and undergoes a reversible redox reaction. Here, we paired lignosulfonate with Br2/Br-, and the full cell runs efficiently with high power density. Also, the large and complex molecular structure of lignin considerably reduces the electrolytic crossover, which ensures very high capacity retention. The flowcell was able to achieve current densities of up to 20 mA/cm2 and charge polarization resistance of 15 ohm cm2. This technology presents a unique opportunity for a low-cost, metal-free flow battery capable of large-scale sustainable energy storage.« less

  15. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2015-08-01

    The aim of the current study was to investigate the effect of varying sodium chloride concentrations (0-5%) on viability and membrane integrity of three probiotic bacteria, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, using conventional technique and flow cytometry. Double staining of cells by carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) enabled to evaluate the effect of NaCl on cell esterase activity and membrane integrity. Observations from conventional culture technique were compared with findings from flow cytometric analysis on the metabolic activities of the cells and a correlation was observed between culturability and dye extrusion ability of L. casei and B. longum. However, a certain population of L. acidophilus was viable as per the plate count method but its efflux activity was compromised. Esterase activity of most bacteria reduced significantly (P < 0.05) during one week storage at NaCl concentrations greater than 3.5%. The study revealed that L. casei was least affected by higher NaCl concentrations among the three probiotic bacteria, as opposed to B. longum where the cF extrusion performance was greatly reduced during 1 wk storage. The metabolic activity and salt resistance of L. casei was found to be highest among the bacteria studied. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    NASA Astrophysics Data System (ADS)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capitalmore » cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.« less

  18. Engineering model system study for a regenerative fuel cell: Study report

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  19. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  20. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  1. Estimating the system price of redox flow batteries for grid storage

    NASA Astrophysics Data System (ADS)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  2. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  3. Red blood cell membrane water permeability increases with length of ex vivo storage.

    PubMed

    Alshalani, Abdulrahman; Acker, Jason P

    2017-06-01

    Water transport across the red blood cell (RBC) membrane is an essential cell function that needs to be preserved during ex vivo storage. Progressive biochemical depletion during storage can result in significant conformational and compositional changes to the membrane. Characterizing the changes to RBC water permeability can help in evaluating the quality of stored blood products and aid in the development of improved methods for the cryopreservation of red blood cells. This study aimed to characterize the water permeability (L p ), osmotically inactive fraction (b), and Arrhenius activation energy (E a ) at defined storage time-points throughout storage and to correlate the observed results with other in vitro RBC quality parameters. RBCs were collected from age- and sex-matched blood donors. A stopped flow spectrophotometer was used to determine L p and b by monitoring changes in hemoglobin autofluorescence when RBCs were exposed to anisotonic solutions. Experimental values of L p were characterized at three different temperatures (4, 20 and 37 °C) to determine the E a . Results showed that L p , b, and E a of stored RBCs significantly increase by day 21 of storage. Degradation of the RBC membrane with length of storage was seen as an increase in hemolysis and supernatant potassium, and a decrease in deformability, mean corpuscular hemoglobin concentration and supernatant sodium. RBC osmotic characteristics were shown to change with storage and correlate with changes in RBC membrane quality metrics. Monitoring water parameters is a predictor of membrane damage and loss of membrane integrity in ex vivo stored RBCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Storage requirements for Georgia streams

    USGS Publications Warehouse

    Carter, Robert F.

    1983-01-01

    The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.

  5. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    PubMed

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Long term storage in liquid nitrogen leads to only minor phenotypic and gene expression changes in the mammary carcinoma model cell line BT474.

    PubMed

    Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef

    2017-05-23

    Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.

  7. Individual Battery-Power Control for a Battery Energy Storage System Using a Modular Multilevel Cascade Converter

    NASA Astrophysics Data System (ADS)

    Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi

    This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.

  8. Study of Basin Recession Characteristics and Groundwater Storage Properties

    NASA Astrophysics Data System (ADS)

    Yen-Bo, Chen; Cheng-Haw, Lee

    2017-04-01

    Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage

  9. High energy density redox flow device

    DOEpatents

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  10. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  11. Evaluating post-wildfire hydrologic recovery using ParFlow in southern California

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.

    2016-12-01

    Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.

  12. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  13. Microgrid Selection and Operation for Commercial Buildings in California and New York States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Environmental Energy Technologies Division; Lacommare, Kristina S H; Marnay, Chris

    The addition of storage technologies such as lead-acid batteries, flow batteries, or heat storage can potentially improve the economic and environmental attractiveness of on-site generation such as PV, fuel cells, reciprocating engines or microturbines (with or without CHP), and can contribute to enhanced demand response. Preliminary analyses for a Californian nursing home indicate that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. While economic results do not make a compelling case for storage, they indicate that storage technologies significantly alter the residual load profile,more » which may lower carbon emissions as well as energy costs depending on the test site, its load profile, and DER technology adoption.« less

  14. Application of image flow cytometry for the characterization of red blood cell morphology

    NASA Astrophysics Data System (ADS)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  15. A preliminary study of a miniature planar 6-cell PEMFC stack combined with a small hydrogen storage canister

    NASA Astrophysics Data System (ADS)

    Zhang, Xigui; Zheng, Dan; Wang, Tao; Chen, Cong; Cao, Jianyu; Yan, Jian; Wang, Wenming; Liu, Juanying; Liu, Haohan; Tian, Juan; Li, Xinxin; Yang, Hui; Xia, Baojia

    The fabrication and performance evaluation of a miniature 6-cell PEMFC stack based on Micro-Electronic-Mechanical-System (MEMS) technology is presented in this paper. The stack with a planar configuration consists of 6-cells in serial interconnection by spot welding one cell anode with another cell cathode. Each cell was made by sandwiching a membrane-electrode-assembly (MEA) between two flow field plates fabricated by a classical MEMS wet etching method using silicon wafer as the original material. The plates were made electrically conductive by sputtering a Ti/Pt/Au composite metal layer on their surfaces. The 6-cells lie in the same plane with a fuel buffer/distributor as their support, which was fabricated by the MEMS silicon-glass bonding technology. A small hydrogen storage canister was used as fuel source. Operating on dry H 2 at a 40 ml min -1 flow rate and air-breathing conditions at room temperature and atmospheric pressure, the linear polarization experiment gave a measured peak power of 0.9 W at 250 mA cm -2 for the stack and average power density of 104 mW cm -2 for each cell. The results suggested that the stack has reasonable performance benefiting from an even fuel supply. But its performance tended to deteriorate with power increase, which became obvious at 600 mW. This suggests that the stack may need some power assistance, from say supercapacitors to maintain its stability when operated at higher power.

  16. Heating and cooling system for an on-board gas adsorbent storage vessel

    DOEpatents

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  17. Use of a flow-cell system to investigate virucidal dimethylmethylene blue phototreatment in two RBC additive solutions.

    PubMed

    Wagner, Stephen; Skripchenko, Andrey; Thompson-Montgomery, Dedeene

    2002-09-01

    Limited photoinactivation kinetics, use of low-volume 30 percent Hct RBCs, and hemolysis have restricted the practicality of the use of dimethylmethylene blue (DMMB) and light for RBC decontamination. A flow-cell system was developed to rapidly treat larger volumes of oxygenated 45 percent Hct RBCs with high-intensity red light. CPD-whole blood was WBC reduced, RBCs were diluted in additive solutions (either Adsol or Erythrosol), and suspensions were subsequently oxygenated by gas overlay. Intracellular or extracellular VSV and DMMB were sequentially added. VSV-infected RBC suspensions (45% Hct) were passed through 1-mm-thick flow cells and illuminated. Samples were titered for VSV, stored for up to 42 days, and assayed for Hb, supernatant potassium, ATP, and MCV. The use of oxygenated RBCs resulted in rapid and reproducible photoinactivaton of > or = 6.6 log extracellular and approximately 4.0 log intracellular VSV independent of additive solution. Phototreated Adsol RBCs exhibited more than 10 times greater hemolysis and 30 percent greater MCV during storage than identically treated Erythrosol RBCs. Phototreatment caused RBC potassium leakage from RBCs in both additive solutions. ATP levels were better preserved in Erythrosol than Adsol RBCs. A rapid, reproducible, and robust method for photoinactivating model virus in RBC suspensions was developed. Despite improved hemolysis and ATP levels in Erythrosol-phototreated RBCs, storage properties were not maintained for 42 days.

  18. Liquid metal batteries - materials selection and fluid dynamics

    NASA Astrophysics Data System (ADS)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  19. Application of a clot-based assay to measure the procoagulant activity of stored allogeneic red blood cell concentrates

    PubMed Central

    Wannez, Adeline; Bailly, Nicolas; Alpan, Lutfiye; Gheldof, Damien; Douxfils, Jonathan; Deneys, Véronique; Bihin, Benoît; Chatelain, Bernard; Dogné, Jean-Michel; Chatelain, Christian; Mullier, François

    2018-01-01

    Background Thrombotic effects are possible complications of red blood cell transfusion. The generation and accumulation of procoagulant red blood cell extracellular vesicles during storage may play an important role in these thrombotic effects. The objective of this study was to assess the value of a simple phospholipid-dependent clot-based assay (STA®-Procoag-PPL) to estimate the procoagulant activity of stored red blood cells and changes in this activity during storage of the blood component. Materials and methods Extracellular vesicles from 12 red blood cell concentrates were isolated at 13 storage time-points and characterised by quantitative and functional methods: the degree of haemolysis (direct spectrophotometry), the quantification and determination of cellular origin (flow cytometry) and the procoagulant activity (thrombin generation and STA®-Procoag-PPL assays) were assessed. Results The mean clotting time of extracellular vesicles isolated from red blood cell concentrates decreased from 117.2±3.6 sec on the day of collection to 33.8±1.3 sec at the end of the storage period. This illustrates the phospholipid-dependent procoagulant activity of these extracellular vesicles, as confirmed by thrombin generation. Results of the peak of thrombin and the STA®-Procoag-PPL were well correlated (partial r=−0.41. p<0.001). In parallel, an exponential increase of the number of red blood cell-derived extracellular vesicles from 1,779/μL to 218,451/μL was observed. Discussion The STA®-Procoag-PPL is a potentially useful technique for assessing the procoagulant activity of a red blood cell concentrate. PMID:28287378

  20. Increased storage and secretion of phosphatidylcholines by senescent human peritoneal mesothelial cells.

    PubMed

    Bartosova, Maria; Rudolf, Andras; Pichl, Sebastian; Schmidt, Kathrin; Okun, Jürgen G; Straub, Beate K; Rutkowski, Rafael; Witowski, Janusz; Schmitt, Claus P

    2016-08-01

    Human peritoneal mesothelial cells (HPMC) secrete phosphatidylcholines (PC) which form a lipid bilayer lining the peritoneum. They prevent frictions and adhesions and act as a barrier to the transport of water-soluble solutes while permitting water flux. PC may play an essential role in peritoneal integrity and function, the role of PD induced HPMC senescence on PC homeostasis, however, is unknown. HPMC cell lines were isolated from four non-uremic patients. Expression of the three PC synthesis genes (rt-PCR), and cellular storage and secretion of PC (ESI-mass-spectrometry) were analyzed in young and senescent HPMC (>Hayflick-limit). Senescent cells displayed significantly altered morphology; flow cytometry demonstrated extensive staining for senescence-associated beta galactosidase. Nine different PC were detected in HPMC with palmitoyl-myristoyl phosphatidylcholine (PMPC) being most abundant. In senescent HPMC mRNA expression of the three key PC synthesis genes was 1.5-, 2.4- and 6-fold increased as compared to young HPMC, with the latter, phosphatidylcholine cytidylyltransferase, being rate limiting. Intracellular storage of the nine PC was 75-450 % higher in senescent vs. young HPMC, PC secretion rates were 100-300 % higher. Intracellular PC concentrations were not correlated with the PC secretion rates. Electron microscopy demonstrated lamellar bodies, the primary storage site of PC, in senescent but not in young cells. Senescent HPMC store and secrete substantially more PC than young cells. Our findings indicate a novel protective mechanism, which should counteract peritoneal damage induced by chronic exposure to PD fluids.

  1. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  2. Energy Storage Technology Development for Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  3. Theoretical and Experimental Flow Cell Studies of a Hydrogen-Bromine Fuel Cell, Part 1. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1986-01-01

    There is increasing interest in hydrogen-bromine fuel cells as both primary and regenerative energy storage systems. One promising design for a hydrogen-bromine fuel cell is a negative half cell having only a gas phase, which is separated by a cationic exchange membrane from a positive half cell having an aqueous electrolyte. The hydrogen gas and the aqueous bromide solution are stored external to the cell. In order to calculate the energy storage capacity and to predict and assess the performance of a single cell, the open circuit potential (OCV) must be estimated for different states of change, under various conditions. Theoretical expressions were derived to estimate the OCV of a hydrogen-bromine fuel cell. In these expressions temperature, hydrogen pressure, and bromine and hydrobromic acid concentrations were taken into consideration. Also included are the effects of the Nafion membrance separator and the various bromide complex species. Activity coefficients were taken into account in one of the expressions. The sensitivity of these parameters on the calculated OCV was studied.

  4. High energy density redox flow device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai

    2017-04-04

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % ofmore » the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.« less

  5. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  6. Nonlinear storage models of unconfined flow through a shallow aquifer on an inclined base and their quasi-steady flow application

    NASA Astrophysics Data System (ADS)

    Varvaris, Ioannis; Gravanis, Elias; Koussis, Antonis; Akylas, Evangelos

    2013-04-01

    Hillslope processes involving flow through an inclined shallow aquifer range from subsurface stormflow to stream base flow (drought flow, or groundwater recession flow). In the case of recharge, the infiltrating water moves vertically as unsaturated flow until it reaches the saturated groundwater, where the flow is approximately parallel to the base of the aquifer. Boussinesq used the Dupuit-Forchheimer (D-F) hydraulic theory to formulate unconfined groundwater flow through a soil layer resting on an impervious inclined bed, deriving a nonlinear equation for the flow rate that consists of a linear gravity-driven component and a quadratic pressure-gradient component. Inserting that flow rate equation into the differential storage balance equation (volume conservation) Boussinesq obtained a nonlinear second-order partial differential equation for the depth. So far however, only few special solutions have been advanced for that governing equation. The nonlinearity of the equation of Boussinesq is the major obstacle to deriving a general analytical solution for the depth profile of unconfined flow on a sloping base with recharge (from which the discharges could be then determined). Henderson and Wooding (1964) were able to obtain an exact analytical solution for steady unconfined flow on a sloping base, with recharge, and their work deserves special note in the realm of solutions of the nonlinear equation of Boussinesq. However, the absence of a general solution for the transient case, which is of practical interest to hydrologists, has been the motivation for developing approximate solutions of the non-linear equation of Boussinesq. In this work, we derive the aquifer storage function by integrating analytically over the aquifer base the depth profiles resulting from the complete nonlinear Boussinesq equation for steady flow. This storage function consists of a linear and a nonlinear outflow-dependent term. Then, we use this physics-based storage function in the transient storage balance over the hillslope, obtaining analytical solutions of the outflow and the storage, for recharge and drainage, via a quasi-steady flow calculation. The hydraulically derived storage model is thus embedded in a quasi-steady approximation of transient unconfined flow in sloping aquifers. We generalise this hydrologic model of groundwater flow by modifying the storage function to be the weighted sum of the linear and the nonlinear storage terms, determining the weighting factor objectively from a known integral quantity of the flow (either an initial volume of water stored in the aquifer or a drained water volume). We demonstrate the validity of this model through comparisons with experimental data and simulation results.

  7. Streamflow sensitivity to water storage changes across Europe

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter R.; Hartmann, Andreas; Woods, Ross A.

    2016-03-01

    Terrestrial water storage is the primary source of river flow. We introduce storage sensitivity of streamflow (ɛS), which for a given flow rate indicates the relative change in streamflow per change in catchment water storage. ɛS can be directly derived from streamflow observations. Analysis of 725 catchments in Europe reveals that ɛS is high in, e.g., parts of Spain, England, Germany, and Denmark, whereas flow regimes in parts of the Alps are more resilient (that is, less sensitive) to storage changes. A regional comparison of ɛS with observations indicates that ɛS is significantly correlated with variability of low (R2 = 0.41), median (R2 = 0.27), and high flow conditions (R2 = 0.35). Streamflow sensitivity provides new guidance for a changing hydrosphere where groundwater abstraction and climatic changes are altering water storage and flow regimes.

  8. Flow cytometric evaluation of antibiotic effects on viability and mitochondrial function of refrigerated spermatozoa of Nile tilapia

    USGS Publications Warehouse

    Segovia, M.; Jenkins, J.A.; Paniagua-Chavez, C.; Tiersch, T.R.

    2000-01-01

    Improved techniques for storage and evaluation of fish sperm would enhance breeding programs around the world. The goal of this study was to test the effect of antibiotics on refrigerated sperm from Nile tilapia (Oreochromis niloticus) by use of flow cytometry with 2 dual-staining protocols for objective assessment of sperm quality. Concentrations of 1 x 109 sperm/mL were suspended in Ringer's buffer at 318 mOsmol/kg (pH 8.0). The fluorescent stains Sybr 14 (10 ??M), propidium iodide (2.4 mM), and rhodamine 123 (0.13 ??M) were used to assess cell viability and mitochondrial function. Three concentrations of ampicillin, gentamicin, and an antibiotic/antimycotic solution were added to fresh spermatozoa. Motility estimates and flow cytometry measurements were made daily during 7 d of refrigerated storage (4 ??C). The highest concentrations of gentamicin and antibiotic/antimycotic and all 3 concentrations of ampicillin significantly reduced sperm viability. The highest of each of the 3 antibiotic concentrations significantly reduced mitochondrial function. This study demonstrates that objective sperm quality assessments can be made using flow cytometry and that addition of antibiotics at appropriate concentrations can lengthen refrigerated storage time for tilapia spermatozoa. With minor modifications, these protocols can be adapted for use with sperm from other species and with other tissue types.

  9. Recent developments in organic redox flow batteries: A critical review

    NASA Astrophysics Data System (ADS)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  10. Integration and Control of a Battery Balancing System

    DTIC Science & Technology

    2013-12-01

    2. Energy storage comparisons. From [2]. • Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni...Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni-Cd Other Advanced Batteries Lead-Acid

  11. Effect of Storage Temperature on the Phenotype of Cultured Epidermal Cells Stored in Xenobiotic-Free Medium.

    PubMed

    Jackson, Catherine; Eidet, Jon R; Reppe, Sjur; Aass, Hans Christian D; Tønseth, Kim A; Roald, Borghild; Lyberg, Torstein; Utheim, Tor P

    2016-06-01

    Cultured epidermal cell sheets (CECS) are used in the treatment of large area burns to the body and have potential to treat limbal stem cell deficiency (LSCD) as shown in animal studies. Despite widespread use, storage options for CECS are limited. Short-term storage allows flexibility in scheduling surgery, quality control and improved transportation to clinics worldwide. Recent evidence points to the phenotype of cultured epithelial cells as a critical predictor of post-operative success following transplantation of CECS in burns and in transplantation of cultured epithelial cells in patients with LSCD. This study, therefore assessed the effect of a range of temperatures, spanning 4-37 °C, on the phenotype of CECS stored over a 2-week period in a xenobiotic-free system. Progenitor cell (p63, ΔNp63α and ABCG2) and differentiation (C/EBPδ and CK10) associated marker expression was assessed using immunocytochemistry. Immunohistochemistry staining of normal skin for the markers p63, ABCG2 and C/EBPδ was also carried out. Assessment of progenitor cell side population (SP) was performed using JC1 dye by flow cytometry. P63 expression remained relatively constant throughout the temperature range but was significantly lower compared to control between 20 and 28 °C (p < 0.05). High C/EBPδ together with low p63 suggested more differentiation beginning at 20 °C and above. Lower CK10 and C/EBPδ expression most similar to control was seen at 12 °C. The percentage of ABCG2 positive cells was most similar to control between 8 and 24 °C. Between 4 and 24 °C, the SP fluctuated, but was not significantly different compared to control. Results were supported by staining patterns indicating differentiation status associated with markers in normal skin sections. Lower storage temperatures, and in particular 12 °C, merit further investigation as optimal storage temperature for maintenance of undifferentiated phenotype in CECS.

  12. An analysis of river bank slope and unsaturated flow effects on bank storage.

    PubMed

    Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G

    2012-01-01

    Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  13. Physiology of spermatozoa at high dilution rates: the influence of seminal plasma.

    PubMed

    Maxwell, W M; Johnson, L A

    1999-12-01

    Extensive dilution of spermatozoa, as occurs during flow-cytometric sperm sorting, can reduce their motility and viability. These effects may be minimized by the use of appropriate dilution and collection media, containing balanced salts, energy sources, egg yolk and some protein. Dilution and flow-cytometric sorting of spermatozoa, which involves the removal of seminal plasma, also destabilizes sperm membranes leading to functional capacitation. This membrane destabilization renders the spermatozoa immediately capable of fertilization in vitro, or in vivo after deposition close to the site of fertilization, but shortens their lifespan, resulting in premature death if the cells are deposited in the female tract distant from the site of fertilization or are held in vitro at standard storage temperatures. This functional capacitation can be reversed in boar spermatozoa by inclusion of seminal plasma in the medium used to collect the cells from the cell sorter and, consequently, reduces their in vitro fertility. It has yet to be determined whether seminal plasma would have similar effects on flow cytometrically sorted spermatozoa of other species, and what its effects might be on the in vivo fertility of flow sorted boar.

  14. Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.

    PubMed

    Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz

    2017-07-10

    All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of Processing and Storage on RBC function in vivo

    PubMed Central

    Doctor, Allan; Spinella, Phil

    2012-01-01

    Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545

  16. Evaluation of renal oxygen homeostasis in a preclinical animal model to elucidate difference in blood quality after transfusion.

    PubMed

    Baek, Jin Hyen; Yalamanoglu, Ayla; Moon, So-Eun; Gao, Yamei; Buehler, Paul W

    2018-03-01

    Red blood cell (RBC) oxygen (O 2 ) delivery may be impacted at the tissue, cellular, and molecular levels after storage duration, preservation strategies, and pathogen reduction. Collectively, the preclinical measurement of arterial and venous PO 2 , systemic blood flow, tissue hypoxia-inducible factors (HIFs), pimonidazole adduction, and erythropoietin (EPO) regulation can serve to elucidate differential RBC quality after storage and processing. Donor guinea pig blood was collected, leukoreduced, and stored at 4°C in AS-3 for 1 (fresh) or 14 (stored) days. RBC variables-2,3-diphosphoglycerate, adenosine triphosphate, hemoglobin, morphology, deformability, and in vivo recovery at 24 hours-were measured at each storage duration. Recipient guinea pigs were exchange transfused until 80% volume replacement was achieved. Arterial and venous blood gases, systemic blood flow, renal HIF-1α and HIF-2α, renal EPO mRNA, plasma EPO, and renal tissue pimonidazole adduction were measured after transfusion. RBC variables declined significantly with storage; however, hemolysis and in vivo recovery remained within the allowable limits for human blood storage. Posttransfusion arterial and venous PO 2 and systemic blood flow decreased, and renal HIFs, EPO mRNA, and pimonidazole adducts increased. Subsequently, EPO accumulated in plasma indicating decreased O 2 availability in the kidneys. Conversely, all variables remained at basal levels in the fresh blood group. The evaluation of renal O 2 homeostasis after transfusion represents an effective approach to defining RBC quality between predicate and novel processing. Methods are adapted from standardized techniques and ideal for preclinical evaluation. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  17. Highly accurate apparatus for electrochemical characterization of the felt electrodes used in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Park, Jong Ho; Park, Jung Jin; Park, O. Ok; Jin, Chang-Soo; Yang, Jung Hoon

    2016-04-01

    Because of the rise in renewable energy use, the redox flow battery (RFB) has attracted extensive attention as an energy storage system. Thus, many studies have focused on improving the performance of the felt electrodes used in RFBs. However, existing analysis cells are unsuitable for characterizing felt electrodes because of their complex 3-dimensional structure. Analysis is also greatly affected by the measurement conditions, viz. compression ratio, contact area, and contact strength between the felt and current collector. To address the growing need for practical analytical apparatus, we report a new analysis cell for accurate electrochemical characterization of felt electrodes under various conditions, and compare it with previous ones. In this cell, the measurement conditions can be exhaustively controlled with a compression supporter. The cell showed excellent reproducibility in cyclic voltammetry analysis and the results agreed well with actual RFB charge-discharge performance.

  18. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B; Hoober-Burkhardt, L; Wang, F

    We introduce a novel Organic Redox Flow Battery (ORBAT), for Meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonicmore » acid on the negative side, and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  19. Storage requirements for Arkansas streams

    USGS Publications Warehouse

    Patterson, James Lee

    1968-01-01

    The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.

  20. In vitro measures of membrane changes reveal differences between red blood cells stored in SAGM and AS-1 additive solutions: a paired study

    PubMed Central

    Sparrow, Rosemary L; Sran, Amrita; Healey, Geraldine; Veale, Margaret F; Norris, Philip J

    2014-01-01

    Background Saline-Adenine-Glucose-Mannitol (SAGM) and a variant solution, AS-1 have been used for over 30 years to preserve red blood cells (RBCs). Reputedly these RBC components have similar quality, although no paired study has been reported. To determine whether differences exist, a paired study of SAGM-RBCs and AS-1-RBCs was conducted to identify membrane changes, including microparticle (MP) quantitation and in vitro RBC-endothelial cell (EC) interaction. Study Design and Methods Two whole blood packs were pooled-and-split and RBCs prepared (n=6 pairs). One pack was suspended in SAGM and one in AS-1. Samples were collected during 42 days of refrigerated storage. RBC shape/size, glycophorin A (GPA)+ and phosphatidylserine (PS)+ MPs were measured by flow cytometry. RBC adhesion to ECs was determined by an in vitro flow perfusion assay. Routine parameters (pH, hemolysis) were also measured. Results Compared to SAGM-RBCs, AS-1-RBCs had lower hemolysis (p<0.04), lower GPA+ MPs (p<0.03) and lower PS+ MPs (p<0.03) from day 14 onwards. AS-1-RBCs had higher (p<0.02) side scatter from day 28 onwards, compared to SAGM-RBCs. SAGM-RBCs were more adherent to ECs at day 28 of storage compared to AS-1 RBCs (p=0.04), but reversed at day 42 (p=0.02). No significant differences in forward scatter or pH were found. Conclusion SAGM-RBCs lose more membrane during storage. SAGM-RBCs had increased adherence to ECs at day 28 of storage, while AS-1-RBCs were more adherent at day 42. The effect of these differences on the function and survival of SAGM-RBCs and AS-1-RBCs following transfusion remains to be determined. PMID:23869602

  1. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  2. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  3. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    USGS Publications Warehouse

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the Arkansas River for the transient simulation is 7,916,564 cubic feet per day (91.6 cubic feet per second) and the RMS error divided by (/) the total range in streamflow (7,916,564/37,461,669 cubic feet per day) is 22 percent. The RMS error calculated for observed and simulated streamflow gains or losses for the Little Arkansas River for the transient simulation is 5,610,089 cubic feet per day(64.9 cubic feet per second) and the RMS error divided by the total range in streamflow (5,612,918/41,791,091 cubic feet per day) is 13 percent. The mean error between observed and simulated base flow gains or losses was 29,999 cubic feet per day (0.34 cubic feet per second) for the Arkansas River and -1,369,250 cubic feet per day (-15.8 cubic feet per second) for the Little Arkansas River. Cumulative streamflow gain and loss observations are similar to the cumulative simulated equivalents. Average percent mass balance difference for individual stress periods ranged from -0.46 to 0.51 percent. The cumulative mass balance for the transient calibration was 0.01 percent. Composite scaled sensitivities indicate the simulations are most sensitive to parameters with a large areal distribution. For the steady-state calibration, these parameters include recharge, hydraulic conductivity, and vertical conductance. For the transient simulation, these parameters include evapotranspiration, recharge, and hydraulic conductivity. The ability of the calibrated model to account for the additional groundwater recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project was assessed by using the U.S. Geological Survey subregional water budget program ZONEBUDGET and comparing those results to metered recharge for 2007 and 2008 and previous estimates of artificial recharge. The change in storage between simulations is the volume of water that estimates the recharge credit for the aquifer storage and recovery system. The estimated increase in storage of 1,607 acre-ft in the basin storage area compared to metered recharge of 1,796 acre-ft indicates some loss of metered recharge. Increased storage outside of the basin storage area of 183 acre-ft accounts for all but 6 acre-ft or 0.33 percent of the total. Previously estimated recharge credits for 2007 and 2008 are 1,018 and 600 acre-ft, respectively, and a total estimated recharge credit of 1,618 acre-ft. Storage changes calculated for this study are 4.42 percent less for 2007 and 5.67 percent more for 2008 than previous estimates. Total storage change for 2007 and 2008 is 0.68 percent less than previous estimates. The small difference between the increase in storage from artificial recharge estimated with the groundwater-flow model and metered recharge indicates the groundwater model correctly accounts for the additional water recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project. Small percent differences between inflows and outflows for all stress periods and all index cells in the basin storage area, improved calibration compared to the previous model, and a reasonable match between simulated and measured long-term base flow indicates the groundwater model accurately simulates groundwater flow in the study area. The change in groundwater level through recent years compared to the August 1940 groundwater level map has been documented and used to assess the change of storage volume of the Equus Beds aquifer in and near the Wichita well field for three different areas. Two methods were used to estimate changes in storage from simulation results using simulated change in groundwater levels in layer 1 between stress periods, and using ZONEBUDGET to calculate the change in storage in the same way the effects of artificial recharge were estimated within the basin storage area. The three methods indicate similar trends although the magnitude of storage changes differ. Information about the change in storage in response to hydrologic stresses is important for managing groundwater resources in the study area. The comparison between the three methods indicates similar storage change trends are estimated and each could be used to determine relative increases or decreases in storage. Use of groundwater level changes that do not include storage changes that occur in confined or semi-confined parts of the aquifer will slightly underestimate storage changes; however, use of specific yield and groundwater level changes to estimate storage change in confined or semi-confined parts of the aquifer will overestimate storage changes. Using only changes in shallow groundwater levels would provide more accurate storage change estimates for the measured groundwater levels method. The value used for specific yield is also an important consideration when estimating storage. For the Equus Beds aquifer the reported specific yield ranges between 0.08 and 0.35 and the storage coefficient (for confined conditions) ranges between 0.0004 and 0.16. Considering the importance of the value of specific yield and storage coefficient to estimates of storage change over time, and the wide range and substantial overlap for the reported values for specific yield and storage coefficient in the study area, further information on the distribution of specific yield and storage coefficient within the Equus Beds aquifer in the study area would greatly enhance the accuracy of estimated storage changes using both simulated groundwater level, simulated groundwater budget, or measured groundwater level methods.

  4. Gas flow calculation method of a ramjet engine

    NASA Astrophysics Data System (ADS)

    Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir

    2017-11-01

    At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.

  5. NASA Redox cell stack shunt current, pumping power, and cell performance tradeoffs

    NASA Technical Reports Server (NTRS)

    Hagedorn, N.; Hoberecht, M. A.; Thaller, L. H.

    1982-01-01

    The NASA Redox energy storage system is under active technology development. The hardware undergoing laboratory testing is either 310 sq. cm. or 929 sq. cm. (0.33 sq. ft. or 1.0 sq. ft. per cell active area with up to 40 individual cells connected to make up a modular cell stack. This size of hardware allows rather accurate projections to be made of the shunt power/pump power tradeoffs. The modeling studies that were completed on the system concept are reviewed along with the approach of mapping the performance of Redox cells over a wide range of flow rates and depths of discharge of the Redox solutions. Methods are outlined for estimating the pumping and shunt current losses for any type of cell and stack combination. These methods are applicable to a variety of pumping options that are present with Redox systems. The results show that a fully developed Redox system has acceptable parasitic losses when using a fixed flow rate adequate to meet the worst conditions of current density and depth of discharge. These losses are reduced by about 65 percent if variable flow schedules are used. The exact value of the overall parasitics will depend on the specific system requirements of current density, voltage limits, charge, discharge time, etc.

  6. A Review of Hydrogen/Halogen Flow Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.

    Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less

  7. A Review of Hydrogen/Halogen Flow Cells

    DOE PAGES

    Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.

    2016-05-17

    Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less

  8. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1988-01-01

    The process of permanent compaction is not routinely included in simulations of groundwater flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U. S. Geological Survey modular finite-difference groundwater flow model. The new program is called the Interbed-Storage Package. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of skeletal component of elastic specific storage and thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the groundwater flow model by adding an additional term to the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum head. Another package that allows for a time-varying specified-head boundary is also documented. This package was written to reduce the data requirements for test simulations of the Interbed-Storage Package. (USGS)

  9. How to quantify microparticles in RBCs? A validated flow cytometry method allows the detection of an increase in microparticles during storage.

    PubMed

    Gamonet, Clémentine; Mourey, Guillaume; Aupet, Sophie; Biichle, Sabéha; Petitjean, Régis; Vidal, Chrystelle; Pugin, Aurore; Naegelen, Christian; Tiberghien, Pierre; Morel, Pascal; Angelot-Delettre, Fanny; Seilles, Estelle; Saas, Philippe; Bardiaux, Laurent; Garnache-Ottou, Francine

    2017-03-01

    The procoagulant and proinflammatory microparticles (MPs) released during storage of packed red blood cells (pRBCs) can potentially modify transfusion benefits. A robust method to quantify MPs in pRBCs is needed to evaluate their impact in clinical trials. The objective was to validate the preanalytic conditions required to prepare pRBC supernatant as well as a method to quantify and evaluate MP variations over 42 days of pRBC storage.A flow cytometry method with size-calibrated beads was developed and fully validated. Quantification of MPs in pRBCs (n = 109) was assessed during short-term (7 days) and long-term (42 days) storage at 4°C, during short-term storage (8 hours) at room temperature, and after 2 years frozen. Repeatability, reproducibility, and linearity of the quantification method were validated, and variations during conservation are presented. There was high variability in RBC (erythrocyte) MP (ERMP) and platelet MP (PMP) levels between RBC units, depending on the filter used for leukocyte reduction. During the 42 days of storage at 4°C, significant increases in ERMPs and PMPs occurred (from 58 to 138 ERMPs/µL from Day 2 to Day 42; p = 0.0002; and from 326 to 771 PMPs/µL from Day 2 to Day 42; p = 0.00026). We use a robust method to confirm that ERMPs and PMPs are present to various degrees in pRBCs and that storage for 42 days significantly increases their generation. This method is robust enough to allow MP quantification in pRBCs and is adapted to evaluate the clinical impact of transfused MPs in prospective clinical trials. © 2017 AABB.

  10. Apparatus and methods for storing and releasing hydrogen

    DOEpatents

    Heung, Leung K.

    2001-01-01

    A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.

  11. Apparatus and methods for storing and releasing hydrogen

    DOEpatents

    Heung, Leung K.

    2000-01-01

    A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.

  12. Spatial distribution of residence time, microbe and storage volume of groundwater in headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Ogawa, Mahiro; Yamamoto, Chisato; Sakakibara, Koichi; Sugiyama, Ayumi; Kato, Kenji; Nagaosa, Kazuyo; Yano, Shinjiro

    2017-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, and time and stock information of the water is principal to understand hydrological processes in the catchments. Also, a variety of microbes are included in the groundwater and spring water, and those varies in time and space, suggesting that information of microbe could be used as tracer for groundwater flow system. However, there have been few researches to evaluate the relationship among the residence time, microbe and storage volume of the groundwater in headwater catchments. We performed an investigation on age dating using SF6 and CFCs, microbe counting in the spring water, and evaluation of groundwater storage volume based on water budget analysis in 8 regions underlain by different lithology, those are granite, dacite, sedimentary rocks, serpentinite, basalt and volcanic lava all over Japan. We conducted hydrometric measurements and sampling of spring water in base flow conditions during the rainless periods 2015 and 2016 in those regions, and SF6, CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute concentrations and total number of prokaryotes were determined on all water samples. Residence time of spring water ranged from 0 to 16 years in all regions, and storage volume of the groundwater within topographical watershed was estimated to be 0.1 m to 222 m in water height. The spring with the longer residence time tends to have larger storage volume in the watershed, and the spring underlain by dacite tends to have larger storage volume as compared with that underlain by sand stone and chert. Also, total number of prokaryotes in the spring water ranged from 103 to 105 cells/mL, and the spring tends to show clear increasing of total number of prokaryotes with decreasing of residence time. Thus, we observed a certain relationship among residence time, storage volume and total number of prokaryotes in the spring water, and these parameters are effective to evaluate hydrological characteristics in the headwaters, and the microbe information could be an excellent tracer for groundwater flow research.

  13. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  14. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.

    PubMed

    Tsuji, Yoshinori; Yamazaki, Masatoshi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-08-01

    The bloom-forming coccolithophore Emiliania huxleyi (Haptophyta) is a dominant marine phytoplankton, cells of which are covered with calcareous plates (coccoliths). E. huxleyi produces unique lipids of C37-C40 long-chain ketones (alkenones) with two to four trans-unsaturated bonds, β-glucan (but not α-glucan) and acid polysaccharide (AP) associated with the morphogenesis of CaCO3 crystals in coccoliths. Despite such unique features, there is no detailed information on the patterns of carbon allocation into these compounds. Therefore, we performed quantitative estimation of carbon flow into various macromolecular products by conducting (14)C-radiotracer experiments using NaH(14)CO3 as a substrate. Photosynthetic (14)C incorporation into low molecular-mass compounds (LMC), extracellular AP, alkenones, and total lipids except alkenones was estimated to be 35, 13, 17, and 25 % of total (14)C fixation in logarithmic growth phase cells and 33, 19, 18, and 18 % in stationary growth phase cells, respectively. However, less than 1 % of (14)C was incorporated into β-glucan in both cells. (14)C-mannitol occupied ca. 5 % of total fixed (14)C as the most dominant LMC product. Levels of all (14)C compounds decreased in the dark. Therefore, alkenones and LMC (including mannitol), but not β-glucan, function in carbon/energy storage in E. huxleyi, irrespective of the growth phase. Compared with other algae, the low carbon flux into β-glucan is a unique feature of carbon metabolism in E. huxelyi.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align andmore » transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.« less

  16. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    PubMed Central

    Byloos, Bo; Coninx, Ilse; Van Hoey, Olivier; Cockell, Charles; Nicholson, Natasha; Ilyin, Vyacheslav; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    2017-01-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions. PMID:28503167

  17. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock.

    PubMed

    Byloos, Bo; Coninx, Ilse; Van Hoey, Olivier; Cockell, Charles; Nicholson, Natasha; Ilyin, Vyacheslav; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    2017-01-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  18. Cryopreservation of human whole blood allows immunophenotyping by flow cytometry up to 30days after cell isolation.

    PubMed

    Paredes, R Madelaine; Tadaki, Douglas K; Sooter, Amanda; Gamboni, Fabia; Sheppard, Forest

    2018-01-01

    Immunophenotyping of whole blood (WB) by flow cytometry (FC) is used clinically to assess a patient's immune status and also in biomedical research. Current protocols recommend storage of immunolabeled samples at 4°C with FC analysis to be completed within seven days. This data acquisition window can be extended to up to one year post-labeling, but this requires cryopreservation of the samples at ultra-low temperatures (≤-80°C or in liquid nitrogen). In this study we optimized a standardized cryopreservation protocol to enable preservation of immunolabeled, human WB samples at -20°C for FC and tested its effectiveness after 0, 5, 15 or 30days. Analysis of stored samples shows that this protocol effectively preserves immunolabeled WB samples and that the duration of storage has no effect on morphology, viability or frequency of WB cell subpopulations, and that the intensity of fluorescent signal from labeled extracellular markers is fully preserved for at least 15days, and up to 30days for some markers. We demonstrate that using this protocol, we are able to differentiate resting versus activated WB cells as demonstrated by detection of significantly increased expression of CD11b by myeloid cells in WB samples pretreated with LPS (100μg/mL for 12h). Finally, we show that this method allows for labeling and detection of the intracellular cytokine (IL-8) up to 30days following cryopreservation from myeloid cells, in previously labeled and cryopreserved WB samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flow and storage in groundwater systems.

    PubMed

    Alley, William M; Healy, Richard W; LaBaugh, James W; Reilly, Thomas E

    2002-06-14

    The dynamic nature of groundwater is not readily apparent, except where discharge is focused at springs or where recharge enters sinkholes. Yet groundwater flow and storage are continually changing in response to human and climatic stresses. Wise development of groundwater resources requires a more complete understanding of these changes in flow and storage and of their effects on the terrestrial environment and on numerous surface-water features and their biota.

  20. Low-Pressure Long-Term Xenon Storage for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight D.; Ramos, Charlie; Meyer, John A.

    2001-01-01

    This Phase 2 effort demonstrated an alternative Xe storage and regulation system using activated carbon (AC) as a secondary storage media (ACSFR). This regulator system is nonmechanical, simple, inexpensive, and lighter. The ACSFR system isolates the thruster from the compressed gas tank, and allows independent multiple setpoint thruster operation. The flow using an ACSFR can also be throttled by applying increments in electrical power. Primary storage of Xe by AC is not superior to compressed gas storage with regard to weight, but AC storage can provide volume reduction, lower pressures in space, and potentially in situ Xe purification. With partial fill designs, a primary AC storage vessel for Xe could also eliminate problems with two-phase storage and regulate pressure. AC could also be utilized in long-term large quantity storage of Xe serving as a compact capture site for boil-off. Several Xe delivery ACSFR protocols between 2 and 45 sccm, and 15 min to 7 hr, were tested with an average flow variance of 1.2 percent, average power requirements of 5 W, and repeatability s of about 0.4 percent. Power requirements are affected by ACSFR bed sizing and flow rate/ duration design points, and these flow variances can be reduced by optimizing PID controller parameters.

  1. Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase Qishi

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink datamore » flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align and transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections. These solutions will be tested using (1) 100 Gbps connection(s) between Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) with storage systems supported by Lustre and GPFS file systems with an asymmetric connection to University of Memphis (UM); (2) ORNL testbed with multicore and multibus hosts, switches with OpenFlow capabilities, and network emulators; and (3) 100 Gbps connections from ESnet and their Openflow testbed, and other experimental connections. This proposal brings together the expertise and facilities of the two national laboratories, ORNL and ANL, and UM. It also represents a collaboration between DOE and the Department of Defense (DOD) projects at ORNL by sharing technical expertise and personnel costs, and leveraging the existing DOD Extreme Scale Systems Center (ESSC) facilities at ORNL.« less

  2. Room temperature micro-hydrogen-generator

    NASA Astrophysics Data System (ADS)

    Gervasio, Don; Tasic, Sonja; Zenhausern, Frederic

    A new compact and cost-effective hydrogen-gas generator has been made that is well suited for supplying hydrogen to a fuel-cell for providing base electrical power to hand-carried appliances. This hydrogen-generator operates at room temperature, ambient pressure and is orientation-independent. The hydrogen-gas is generated by the heterogeneous catalytic hydrolysis of aqueous alkaline borohydride solution as it flows into a micro-reactor. This reactor has a membrane as one wall. Using the membrane keeps the liquid in the reactor, but allows the hydrogen-gas to pass out of the reactor to a fuel-cell anode. Aqueous alkaline 30 wt% borohydride solution is safe and promotes long application life, because this solution is non-toxic, non-flammable, and is a high energy-density (≥2200 W-h per liter or per kilogram) hydrogen-storage solution. The hydrogen is released from this storage-solution only when it passes over the solid catalyst surface in the reactor, so controlling the flow of the solution over the catalyst controls the rate of hydrogen-gas generation. This allows hydrogen generation to be matched to hydrogen consumption in the fuel-cell, so there is virtually no free hydrogen-gas during power generation. A hydrogen-generator scaled for a system to provide about 10 W electrical power is described here. However, the technology is expected to be scalable for systems providing power spanning from 1 W to kW levels.

  3. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The reactants are Li-naphthalene dissolved in tetrahydrofuran (THF) with a lithium salt of 1M LiBF4 (lithium tetra fluoroborate) in the anode compartment, and DDQ again dissolved in THF and also containing 1M LiBF4 salt in the cathode half-cell. The solid electrolyte separator used in the first set of experiments is a ceramic solid electrolyte, available from a commercial source. The open circuit voltage of the cells is close to 3.0 V, as expected from the individual half-cell voltages of Li-naphthalene and Li-DDQ. Upon discharge, the cell shows steady discharge voltage of 2.7 V, which confirms that the electrochemical processes do involve lithium ion shuttling from the anodic compartment to the cathode half-cell. The reversibility or rechargeability is demonstrated by charging the partially discharged cells (i.e., with lithium present in the DDQ half). Once again, a steady voltage close to 3.0 V was observed during charge, indicating that the system is quite reversible. In the subsequent concept-demonstration studies, the ceramic electrolyte has been replaced with a gel polymer electrolyte, e.g., PVDF-HFP (poly vinylene difluoride hexafluoropropene) gel, which has several advantages such as high ionic conductivity (almost comparable to liquid electrolyte and about 2 orders of magnitude better than the ceramic equivalent), lower cost, and possibly higher chemical stability at the anode. In addition, it can be bonded to the electrode by thermal fusion to form membrane electrode assemblies (MEAs), as is done in fuel cells.

  4. Glassy carbon/multi walled carbon nanotube/cadmium sulphide photoanode for light energy storage in vanadium photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Peimanifard, Zahra; Rashid-Nadimi, Sahar

    2015-12-01

    The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.

  5. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  6. A Focus on Polarity: Investigating the Role of Orientation Cues in Mediating Student Performance on mRNA Synthesis Tasks in an Introductory Cell and Molecular Biology Course

    ERIC Educational Resources Information Center

    Olimpo, Jeffrey T.; Quijas, Daniel A.; Quintana, Anita M.

    2017-01-01

    The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining…

  7. Conversion of raw carbonaceous fuels

    DOEpatents

    Cooper, John F [Oakland, CA

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  8. ON THE HYDRAULICS OF STREAM FLOW ROUTING WITH BANK STORAGE: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-00232 Hantush*, M.M., Harada, M., and Marino, M.A. On the Hydraulics of Stream Flow Routing with Bank Storage. Journal of Hydrologic Engineering 7 (1):76-89 (2002). EPA/600/J-02/173. Bank storage is a process in which volumes o...

  9. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    DOE PAGES

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; ...

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less

  10. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    NASA Astrophysics Data System (ADS)

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  11. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, L.E.

    1980-11-24

    An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

  12. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  13. Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage

    NASA Astrophysics Data System (ADS)

    Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.

    2018-01-01

    The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.

  14. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    PubMed

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  15. Ion conducting membranes for aqueous flow battery systems.

    PubMed

    Yuan, Zhizhang; Zhang, Huamin; Li, Xianfeng

    2018-06-07

    Flow batteries, aqueous flow batteries in particular, are the most promising candidates for stationary energy storage to realize the wide utilization of renewable energy sources. To meet the requirement of large-scale energy storage, there has been a growing interest in aqueous flow batteries, especially in novel redox couples and flow-type systems. However, the development of aqueous flow battery technologies is at an early stage and their performance can be further improved. As a key component of a flow battery, the membrane has a significant effect on battery performance. Currently, the membranes used in aqueous flow battery technologies are very limited. In this feature article, we first cover the application of porous membranes in vanadium flow battery technology, and then the membranes in most recently reported aqueous flow battery systems. Meanwhile, we hope that this feature article will inspire more efforts to design and prepare membranes with outstanding performance and stability, and then accelerate the development of flow batteries for large scale energy storage applications.

  16. Bacterial screening by flow cytometry offers potential for extension of platelet storage: results of 14 months of active surveillance.

    PubMed

    Vollmer, T; Engemann, J; Kleesiek, K; Dreier, J

    2011-06-01

    Bacterial contamination is currently the major infectious hazard of platelet transfusion in developed countries. It has been demonstrated that a significant transfusion risk remains, in particular with older platelet concentrates (PCs). In 2009, the shelf life of PCs was therefore reduced in Germany to 4 days after the day of production according to Vote 38. The aim of the present study was the application and implementation of a recently developed flow cytometry-based rapid screening method (BactiFlow) for bacterial contamination at the end of PC shelf life as a routine in-process control. A total of 472 apheresis-derived PCs were tested using the BactiFlow flow cytometric assay to detect and count bacteria based on esterase activity in viable bacterial cells, while the BacT/Alert automated culture system served as the reference method. The automation potential of the flow cytometric assay was analysed by applying the semi-automated BactiFlow ALS system. An algorithm was developed for use in routine blood bank operations to extend the storage period of PCs. Two of the 472 apheresis PCs tested were positive in culture and identified as Propionibacterium species. One PC was positive for Staphylococcus aureus by both methods. All remaining specimens were tested negative by both methods. Our study demonstrates that routine bacterial testing of PCs was successfully implemented and the established algorithm proved efficient. The BactiFlow flow cytometric assay is the first rapid screening method which is suitable for a routine application combined with a high sensitivity. © 2011 The Authors. Transfusion Medicine © 2011 British Blood Transfusion Society.

  17. Cause and control of Radix Ophiopogonis browning during storage.

    PubMed

    Wang, Hui; Qi, Jin; Han, Dong-Qi; Xu, Tian; Liu, Ji-Hua; Qin, Min-Jian; Zhu, Dan-Ni; Bo-Yang, Yu

    2015-01-01

    In the storage of Radix Ophiopogonis, browning often happens to cause potential risk with regard to safety. Previously few reports investigate the browning of Radix Ophiopogonis. In this research, the causes and mechanisms of the browning of Radix Ophiopogonis were preliminarily elucidated. Content determination by high-performance liquid chromatography (HPLC) and spectrophotometry, enzyme activity determination by colorimetry, and morphological observation by electron microscopy were performed in the present study. Uniform design and three-dimensional response surfaces were applied to investigate the relationship between browning and storage factors. The cortex cell wall of browned Radix Ophiopogonis was ruptured. Compared with the normal Radix Ophiopogonis, cellulase and polyphenol oxidase enzymes were activated, the levels of 5-hydroxymethylfurfural (5-HMF), total sugars, and reducing sugars were increased, while the levels of polysaccharides and methylophiopogonanone A were decreased in browned Radix Ophiopogonis. The relationship between the storage factors and degree of browning (Y) could be described by following correlation equation: Y = - 0.625 4 + 0.020 84 × X3 + 0.001 514 × X1 × X2 - 0.000 964 4 × X2 × X3. Accompanied with browning under storage conditions, the chemical composition of Radix Ophiopogonis was altered. Following the activation of cellulase, the rupture of the cortex cell wall and the outflow of cell substances flowed out, which caused the Radix Ophiopogonis tissue to become soft and sticky. The main causes of the browning were the production of 5-HMF, the activation of polyphenol oxidase, Maillard reactions and enzymatic browning. Browning could be effectively prevented when the air relative humidity (HR), temperature, and moisture content were under 25% RH, 12 °C and 18%, respectively. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Thermal Energy Storage in Phase Change Material.

    DTIC Science & Technology

    1982-03-01

    Graphs of the exnerimental results follow: tney are groupea in the tree categories: tube cross flow, ricked bed, and tube parallel flow. A. Tube Cross... Riordan , Michael, "Thermal Storage: A Rtsic Guile to the Ptate of the Art", Solar Age, Aril, 1978, P. 10. 5. Telkes, Maria, "Thermal Lner y Storage in

  19. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.

    PubMed

    Brooks, Jessica C; Judd, Robert L; Easley, Christopher J

    2017-01-01

    Microfluidic culture of primary adipose tissue allows for reduced sample and reagent volumes as well as constant media perfusion of the cells. By continuously flowing media over the tissue, microfluidic sampling systems can more accurately mimic vascular flow in vivo. Quantitative measurements can be performed on or off chip to provide time-resolved secretion data, furthering insight into the dynamics of the function of adipose tissue. Buoyancy resulting from the large lipid storage capacity in this tissue presents a unique challenge for culture, and it is important to account for this buoyancy during microdevice design. Herein, we describe approaches for microfluidic device fabrication that utilize 3D-printed interface templating to help counteract cell buoyancy. We apply such methods to the culture of both isolated, dispersed primary adipocytes and epididymal adipose explants. To facilitate more widespread adoption of the methodology, the devices presented here are designed for user-friendly operation. Only handheld syringes are needed to control flow, and devices are inexpensive and disposable.

  20. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells

    PubMed Central

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G.

    2015-01-01

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5′-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4−/−) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4−/− cells. The fission defect was associated with a robust increase of intralysosomal Ca2+ in Fig4−/− cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca2+ efflux of lysosomes because the endogenous ligand of lysosomal Ca2+ channel TRPML1 is PI3,5P2 that is deficient in Fig4−/− cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca2+ level and rescued abnormal lysosomal storage in Fig4−/− culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca2+ efflux in Fig4−/− culture cells and Fig4−/− mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency. PMID:25926456

  1. A spatial emergy model for Alachua County, Florida

    NASA Astrophysics Data System (ADS)

    Lambert, James David

    A spatial model of the distribution of energy flows and storages in Alachua County, Florida, was created and used to analyze spatial patterns of energy transformation hierarchy in relation to spatial patterns of human settlement. Emergy, the available energy of one kind previously required directly or indirectly to make a product or service, was used as a measure of the quality of the different forms of energy flows and storages. Emergy provides a common unit of measure for comparing the productive contributions of natural processes with those of economic and social processes---it is an alternative to using money for measuring value. A geographic information system was used to create a spatial model and make maps that show the distribution and magnitude of different types of energy and emergy flows and storages occurring in one-hectare land units. Energy transformities were used to convert individual energy flows and storages into emergy units. Maps of transformities were created that reveal a clear spatial pattern of energy transformation hierarchy. The maps display patterns of widely-dispersed areas with lower transformity energy flows and storages, and smaller, centrally-located areas with higher transformities. Energy signature graphs and spatial unit transformities were used to characterize and compare the types and amounts of energy being consumed and stored according to land use classification, planning unit, and neighborhood categories. Emergy ratio maps and spatial unit ratios were created by dividing the values for specific emergy flows or storages by the values for other emergy flows or storages. Spatial context analysis was used to analyze the spatial distribution patterns of mean and maximum values for emergy flows and storages. The modeling method developed for this study is general and applicable to all types of landscapes and could be applied at any scale. An advantage of this general approach is that the results of other studies using this method will be directly comparable with the results of this study. The results and conclusions of this study reinforce the hypothesis that an urban landscape will develop a predictable spatial pattern that can be described in terms of a universal energy transformation hierarchy.

  2. Geohydrology of Storage Unit III and a combined flow model of the Santa Barbara and foothill ground-water basins, Santa Barbara County, California

    USGS Publications Warehouse

    Freckleton, John R.; Martin, Peter; Nishikawa, Tracy

    1998-01-01

    The city of Santa Barbara pumps most of its ground water from the Santa Barbara and Foothill ground-water basins. The Santa Barbara basin is subdivided into two storage units: Storage Unit I and Storage Unit III. The Foothill basin and Storage Unit I of the Santa Barbara basin have been studied extensively and ground-water flow models have been developed for them. In this report, the geohydrology of the Santa Barbara ground- water basin is described with a special emphasis on Storage Unit III in the southwestern part of the basin. The purposes of this study were to summarize and evaluate the geohydrology of Storage Unit III and to develop an areawide model of the Santa Barbara and Foothill basins that includes the previously unmodeled Storage Unit III. Storage Unit III is in the southwestern part of the city of Santa Barbara. It is approximately 3.5 miles long and varies in width from about 2,000 feet in the southeast to 4,000 feet in the north-west. Storage Unit III is composed of the Santa Barbara Formation and overlying alluvium. The Santa Barbara Formation (the principal aquifer) consists of Pleistocene and Pliocene(?) unconsolidated marine sand, silt, and clay, and it has a maximum saturated thickness of about 160 feet. The alluvium that overlies the Santa Barbara Formation has a maximum saturated thickness of about 140 feet. The storage unit is bounded areally by faults and low-permeability deposits and is underlain by rocks of Tertiary age. The main sources of recharge to Storage Unit III are seepage from Arroyo Burro and infiltration of precipitation. Most of the recharge occurs in the northwest part of the storage unit, and ground water flows toward the southeast along the unit's long axis. Lesser amounts of recharge may occur as subsurface flow from the Hope Ranch subbasin and as upwelling from the underlying Tertiary rocks. Discharge from Storage Unit III occurs as pumpage, flow to underground drains, underflow through alluvium in the vicinity of Arroyo Burro across the Lavigia Fault, evapotranspiration, and underflow to the Pacific Ocean. The faults that bound Storage Unit III generally are considered to be effective barriers to the flow of ground water. Interbasin ground-water flow occurs where deposits of younger alluvium along stream channels cross faults. Ground-water quality in Storage Unit III deposits varies with location and depth. Upward leakage of poor-quality water from the underlying Tertiary rocks occurs in the storage unit, and such leakage can be influenced by poor well construction or by heavy localized pumping. The highest dissolved-solids concentration (4,710 milligrams per liter) in ground water resulting from this upward leakage is found in the coastal part of the storage unit. The ground-water system was modeled as two horizontal layers. In the Foothill basin and Storage Unit I the layers are separated by a confining bed. The upper layer represents the upper producing zone and the shallow zone near the coast. The lower layer represents the lower producing zone. In general, the faults in the study area were assumed to be no-flow boundaries, except for the offshore fault that forms the southeast boundary; the southeast boundary was simulated as a general-head boundary. The Storage Unit III model was combined with the preexisting Storage Unit I and Foothill basin models, using horizontal flow barriers, to form an areawide model. The areawide model was calibrated by simulating steady-state predevelopment conditions and transient conditions for 1978-92. The nonpumping steady- state simulation was used to verify that the calibrated model yielded physically reasonable results for predevelopment conditions. The calibrated areawide model calculates water levels in Storage Unit III that are within 10 feet of measured water levels at all sites of comparison. In addition, the model adequately simulates water levels in the Storage Unit I and Foothill basin areas. A total of 33,430 acre-feet of water was pum

  3. Behavior of radio frequency electric fields injured Escherichia coli in nutrient and non nutrient media during storage

    USDA-ARS?s Scientific Manuscript database

    Information on conditions required for resuscitation of Radio Frequency Electric Fields (RFEF) damaged E. coli cells is limited. Apple juice inoculated with Escherichia coli K-12 at 7.8 log CFU/ml was treated with RFEF at 20 kHz, 15 kV/cm for 170 micro second at 55C with a flow rate of 540 ml/min. A...

  4. Cost-driven materials selection criteria for redox flow battery electrolytes

    NASA Astrophysics Data System (ADS)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  5. Quantifying water flow and retention in an unsaturated fracture-facial domain

    USGS Publications Warehouse

    Nimmo, John R.; Malek-Mohammadi, Siamak

    2015-01-01

    Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.

  6. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    PubMed

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  7. In vitro hepatic differentiation of human endometrial stromal stem cells.

    PubMed

    Yang, Xin-yuan; Wang, Wei; Li, Xu

    2014-02-01

    Human endometrial stromal stem cells (hESSCs) can differentiate into mesodermal and ectodermal cellular lineages in the endometrium. However, whether hESSCs can differentiate into functional hepatic-like cells is unknown. In this study, we developed a multiple-step induction protocol to differentiate hESSCs into functional hepatic-like cells in vitro. Endometrial stromal cells were isolated by magnetic affinity sorting using anti-epithelial cell adhesion molecule-coated Dynabeads. The enriched hESSCs were analyzed by flow cytometry and were able to differentiate into osteoblasts or adipocytes under proper induction media. To differentiate into hepatic-like cells, hESSCs were cultured in a stepwise system containing hepatocyte growth factor, fibroblast growth factor-4, oncostatin M, and trichostatin A for a total of 24 d. The hepatic-like cell differentiation was analyzed by confocal microscopy and immunocytochemical staining. Glycogen storage, cellular urea synthesis, and ammonia concentrations were measured. Hepatic-like cells were successfully generated from hESSCs and were identified by their epithelial-like shape characteristics and expression of specific biomarkers albumin and cytokeratin 8 accompanied with a reduction of alpha-fetoprotein and alpha-smooth muscle actin expression. The hepatic-like cells generated were functional as evidenced by urea synthesis and glycogen storage. Our study demonstrated that hESSCs were able to differentiate into hepatic-like cells in vitro. Thus, endometrial stromal cells may be used as an easily accessible alternative source of stem cells for potential therapeutic applications in liver disease.

  8. Hydrologic considerations for estimation of storage-capacity requirements of impounding and side-channel reservoirs for water supply in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2001-01-01

    This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.

  9. Effects of in vitro storage time and semen-extender on membrane quality of boar sperm assessed by flow cytometry.

    PubMed

    Waterhouse, K E; De Angelis, P M; Haugan, T; Paulenz, H; Hofmo, P O; Farstad, W

    2004-12-01

    The Norwegian AI company Norsvin has used the short-term semen-extender BTS to extend and store boar semen since the late 1980s. Fertility results have been consistent when extended semen has been used for AI within 3 days after collection, however, from a production and economic point of view it is preferable that semen stored for up to 5 days can be used. The aim of this study was to compare membrane quality of sperm stored in BTS for 3 days with sperm stored in the long-term semen-extenders Androstar, Mulberry III and X-cell for 5 days. Using a split-sample design, plasma membrane- and acrosome-integrity were assessed flow cytometrically by use of Yo-Pro-1 and PNA-FITC, and fluidity and phospholipid asymmetry of the membrane were assessed by use of MC540 and Annexin V-FITC. Due to observed sperm fragmentation in Androstar after Day 1, the data for Androstar were excluded from the analyses. After 5 days of storage, the membrane quality of X-cell-stored sperm was not statistically different from that of sperm stored in BTS for 3 days, while membrane quality of sperm stored in Mulberry III was statistically better on Day 5 compared to BTS on Day 3. In conclusion, Mulberry III and X-cell preserve sperm quality, as well as that of BTS on Day 3, for up to 5 days after collection.

  10. Evaluation of a simple method for storage of blood samples that enables isolation of circulating tumor cells 96 h after sample collection.

    PubMed

    Apostolou, Panagiotis; Ntanovasilis, Dimitrios-Athanasios; Papasotiriou, Ioannis

    2017-12-01

    Minimizing the effects of transportation on the properties of biological material is a major challenge for the scientific community. The viability of cells is important in cases where their study is urgent for evaluation of treatment response or for the study of cancer progression. Circulating tumor cells (CTCs) constitute a cell subpopulation with great importance for oncologists, because of their prognostic value. Detection and isolation of CTCs from blood samples is a routine activity in many laboratories, but concerns exist with regard to the maintenance of the cells during transportation. In this study, experiments were conducted to determine the stability of gene and protein expression in CTCs over a period of 96 h. Blood samples collected from healthy individuals and patients with cancer were each divided into five aliquots, which were stored at 2-8 °C and analyzed after 0, 24, 48, 72 and 96 h of storage. CTCs from patients and CD45-negative cells from healthy individuals were isolated each day using enrichment protocols, and qPCR was performed to determine expression levels of genes encoding specific biological markers. In addition, cells from breast and colon cancer cell lines were spiked into blood samples from healthy individuals, and these samples were stored and analyzed over a period of 96 h by PCR and by flow cytometry. The markers that were studied included housekeeping genes and genes associated with the response to chemotherapy, as well as genes encoding transcription factors. The results demonstrated that the expression profiles of specific genes and proteins in CTCs were not significantly affected by 72 h of storage. After 96 h of storage, expression of some genes was altered. The transportation of blood at low temperature (2-8 °C) in the presence of the anticoagulant EDTA can protect CTCs from alteration of gene and protein expression for at least 72 h. Furthermore, under these conditions, CTCs can be detected and isolated 96 h after blood collection.

  11. Urban runoff (URO) process for MODFLOW 2005: simulation of sub-grid scale urban hydrologic processes in Broward County, FL

    USGS Publications Warehouse

    Decker, Jeremy D.; Hughes, J.D.

    2013-01-01

    Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.

  12. Design and assembly considerations for Redox cells and stacks

    NASA Technical Reports Server (NTRS)

    Stalnaker, D. K.; Lieberman, A.

    1981-01-01

    Individual redox flow cells are arranged electrically in series and hydraulically in parallel to form a single assembly called a stack. The hardware currently being tested in the laboratory has an active electrode area of either 310 sq cm or 929 sq cm. Four 310 sq cm stacks, each consisting of 39 active cells, were incorporated into a 1.0 kW preprototype system. The physical design of the stack is very critical to the performance and efficiency of the redox storage sytem. This report will discuss the mechanical aspects of the cell and stack design for the current Redox hardware, with regard to sealing the stack internally as well as externally, minimizing shunt currents and minimizing the electrical resistance of the stack.

  13. Base flow calibration in a global hydrological model

    NASA Astrophysics Data System (ADS)

    van Beek, L. P.; Bierkens, M. F.

    2006-12-01

    Base flow constitutes an important water resource in many parts of the world. Its provenance and yield over time are governed by the storage capacity of local aquifers and the internal drainage paths, which are difficult to capture at the global scale. To represent the spatial and temporal variability in base flow adequately in a distributed global model at 0.5 degree resolution, we resorted to the conceptual model of aquifer storage of Kraaijenhoff- van de Leur (1958) that yields the reservoir coefficient for a linear groundwater store. This model was parameterised using global information on drainage density, climatology and lithology. Initial estimates of aquifer thickness, permeability and specific porosity from literature were linked to the latter two categories and calibrated to low flow data by means of simulated annealing so as to conserve the ordinal information contained by them. The observations used stem from the RivDis dataset of monthly discharge. From this dataset 324 stations were selected with at least 10 years of observations in the period 1958-1991 and an areal coverage of at least 10 cells of 0.5 degree. The dataset was split between basins into a calibration and validation set whilst preserving a representative distribution of lithology types and climate zones. Optimisation involved minimising the absolute differences between the simulated base flow and the lowest 10% of the observed monthly discharge. Subsequently, the reliability of the calibrated parameters was tested by reversing the calibration and validation sets.

  14. Modelling and simulation of fuel cell dynamics for electrical energy usage of Hercules airplanes.

    PubMed

    Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G B; Fathi, S H

    2014-01-01

    Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane.

  15. Modelling and Simulation of Fuel Cell Dynamics for Electrical Energy Usage of Hercules Airplanes

    PubMed Central

    Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G. B.; Fathi, S. H.

    2014-01-01

    Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane. PMID:24782664

  16. Flow cytometry immunodetection and membrane integrity assessment of Escherichia coli O157:H7 in ready-to-eat pasta salad during refrigerated storage.

    PubMed

    Subires, Alicia; Yuste, Josep; Capellas, Marta

    2014-01-03

    Over the past years, products of non-animal origin have been increasingly linked to foodborne diseases caused by the enterohemorrhagic pathogen Escherichia coli O157:H7. Contaminated fresh produce and derived ready-to-eat meals are of major concern, since no further or only minimal processing is applied. In this study, flow cytometry was evaluated as a rapid technique to detect E. coli O157:H7 by immunofluorescence, using polyclonal antibodies conjugated to R-phycoerythrin, in refrigerated ready-to-eat pasta salad containing acetic acid and benzoic acid. Signal filtering strategies were applied during sample analysis to reduce the limit of detection of the technique to 5 log CFU/g. Simultaneously with pathogen detection, physiological state was assessed by staining with the membrane integrity indicators propidium iodide and SYBR Green I. Fine tuning of dye concentrations and ratios allowed discrimination of not only cells with intact or damaged membranes, but also of cells with partially damaged membranes, which were considered injured cells. Then, changes in membrane integrity of inoculated E. coli O157:H7 cells were monitored throughout 14-day refrigerated storage. Most cells were injured at the beginning of refrigeration, but showed an intact membrane at the end. This suggests that injured E. coli O157:H7 cells underwent a membrane repair during exposure to refrigeration and acid stresses, and survived in ready-to-eat pasta salad. This highlights the importance of the implementation of control measures to limit the presence of this pathogen in non-animal origin food products. Additionally, the proposed immunodetection and membrane integrity three-color assay in food is a good tool to monitor the effect of a number of food-related treatments on E. coli O157:H7 cell membrane. © 2013.

  17. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, Lyle E.

    1983-01-01

    An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

  18. Current Density Scaling in Electrochemical Flow Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, NC; Wainright, JS; Savinell, RF

    Electrochemical flow capacitors (EFCs) are a recently developed energy storage technology. One of the principal performance metrics of an EFC is the steady-state electrical current density that it can accept or deliver. Numerical models exist to predict this performance for specific cases, but here we present a study of how the current varies with respect to the applied cell voltage, flow rate, cell dimensions, and slurry properties using scaling laws. The scaling relationships are confirmed by numerical simulations and then subsequently by comparison to results from symmetric cell EFC experiments. This modeling approach permits the delimitation of three distinct operationalmore » regimes dependent on the values of two nondimensional combinations of the pertinent variables (specifically, a capacitive Graetz number and a conductivity ratio). Lastly, the models and nondimensional numbers are used to provide design guidance in terms of criteria for proper EFC operation. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  19. Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  20. Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, MC; Cho, KT; Spingler, FB

    2015-06-15

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.« less

  1. Sloshing instability and electrolyte layer rupture in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Weber, Norbert; Beckstein, Pascal; Herreman, Wietze; Horstmann, Gerrit Maik; Nore, Caroline; Stefani, Frank; Weier, Tom

    2017-05-01

    Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required for the deployment of fluctuating renewable energies. Built as stable density stratification of two liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid flows. Using direct numerical simulation, we study a sloshing long wave interface instability in cylindrical cells, which is already known from aluminium reduction cells. After characterising the instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity, conductivity and magnetic background field. Finally we study the shape of the interface and give a dimensionless parameter for the onset of sloshing as well as for the short-circuit.

  2. Integration of CW / Radionucleotide Detection Systems to the Fido XT Explosives Detector

    DTIC Science & Technology

    2008-07-31

    explosives detected by the Fido XT. Additionally, a platform for centralized storage and processing of Fido XT data files collected in house, targeted...fused silica glass wool (obtained from Restek). The fluorescent signal was easily washed out of the flow cell by a nominal amount of buffer...detector with supporting NRE was processed . The Interceptor components were configured to operate under a Windows CE processor environment, and to

  3. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate

    PubMed Central

    Ide, Hisamitsu; Aoki, Hiroaki; Muto, Satoru; Yamaguchi, Raizo; Tsujimura, Akira; Horie, Shigeo

    2015-01-01

    In order to investigate how holmium laser enucleation of the prostate (HoLEP) improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH) before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53–88) underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS), IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS), uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan) laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2). The median IPSS improved significantly from 20 (range: 6–35) to 3 (0–22) (p<0.001; Wilcoxon signed-rank test), as did the storage symptoms score, which decreased from 13 (2–20) to 3 (1–8) (p<0.001). Median bladder blood flow increased at the trigone from 9.57±0.83 ml/sec to 17.60±1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms. PMID:26090819

  4. Direct Solar Charging of an Organic–Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode

    PubMed Central

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza

    2016-01-01

    Abstract The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination. PMID:27151516

  5. Modeling of information flows in natural gas storage facility

    NASA Astrophysics Data System (ADS)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  6. Documentation of a computer program to simulate transient leakage from confining units using the modular finite-difference, ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Leahy, P.P.; Navoy, A.S.

    1994-01-01

    Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.

  7. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    DOE PAGES

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; ...

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm -2 and a peak power density of 1.4 W cm -2. Maximummore » energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br - reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br - coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less

  8. Synthesis of natural flows at selected sites in the upper Missouri River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1996-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 for 43 sites in the upper Missouri River Basin upstream from Fort Peck Lake in Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation. Recorded and historical flows at most sites have been affected by human activities including reservoir storage, diversions for irrigation, and municipal use. Natural flows at the sites were synthesized by eliminating the effects of these activities. Recorded data at some sites do not include the entire study period. The missing flows at these sites were estimated using a statistical procedure. The methods of synthesis varied, depending on upstream activities and information available. Recorded flows were transferred to nodes that did not have streamflow-gaging stations from the nearest station with a sufficient length of record. The flows at one node were computed as the sum of flows from three upstream tributaries. Monthly changes in reservoir storage were computed from monthend contents. The changes in storage were corrected for the effects of evaporation and precipitation using pan-evaporation and precipitation data from climate stations. Irrigation depletions and consumptive use by the three largest municipalities were computed. Synthesized natural flow at most nodes was computed by adding algebraically the upstream depletions and changes in reservoir storage to recorded or historical flow at the nodes.

  9. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects

    PubMed Central

    Kriebardis, Anastasios G.; Antonelou, Marianna H.; Georgatzakou, Hara T.; Tzounakas, Vassilis L.; Stamoulis, Konstantinos E.; Papassideri, Issidora S.

    2016-01-01

    Background Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Materials and methods Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors’ haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Results Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. Discussion The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles. PMID:27136430

  10. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects.

    PubMed

    Kriebardis, Anastasios G; Antonelou, Marianna H; Georgatzakou, Hara T; Tzounakas, Vassilis L; Stamoulis, Konstantinos E; Papassideri, Issidora S

    2016-05-01

    Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors' haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles.

  11. Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US

    NASA Astrophysics Data System (ADS)

    Fang, Kuai; Shen, Chaopeng

    2017-09-01

    Interannual changes in low, median, and high regimes of streamflow have important implications for flood control, irrigation, and ecologic and human health. The Gravity Recovery and Climate Experiment (GRACE) satellites record global terrestrial water storage anomalies (TWSA), providing an opportunity to observe, interpret, and potentially utilize the complex relationships between storage and full-flow-regime streamflow. Here we show that utilizable storage-streamflow correlations exist throughout vastly different climates in the continental US (CONUS) across low- to high-flow regimes. A panoramic framework, the storage-streamflow correlation spectrum (SSCS), is proposed to examine macroscopic gradients in these relationships. SSCS helps form, corroborate or reject hypotheses about basin hydrologic behaviors. SSCS patterns vary greatly over CONUS with climate, land surface, and geologic conditions. Data mining analysis suggests that for catchments with hydrologic settings that favor storage over runoff, e.g., a large fraction of precipitation as snow, thick and highly-permeable permeable soil, SSCS values tend to be high. Based on our results, we form the hypotheses that groundwater flow dominates streamflows in Southeastern CONUS and Great Plains, while thin soils in a belt along the Appalachian Plateau impose alimit on water storage. SSCS also suggests shallow water table caused by high-bulk density soil and flat terrain induces rapid runoff in several regions. Our results highlight the importance of subsurface properties and groundwater flow in capturing flood and drought. We propose that SSCS can be used as a fundamental hydrologic signature to constrain models and to provide insights thatlead usto better understand hydrologic functioning.

  12. Relations among storage, yield, and instream flow

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Sieber, Jack; Archfield, Stacey A.; Smith, Mark P.; Apse, Colin D.; Huber-Lee, Annette

    2007-05-01

    An extensive literature documents relations between reservoir storage capacity and water supply yield and the properties of instream flow needed to support downstream aquatic ecosystems. However, the literature that evaluates the impact of reservoir operating rules on instream flow properties is limited to a few site-specific studies, and as a result, few general conclusions can be drawn to date. This study adapts the existing generalized water evaluation and planning model (WEAP) to enable general explorations of relations between reservoir storage, instream flow, and water supply yield for a wide class of reservoirs and operating rules. Generalized relationships among these variables document the types of instream flow policies that when combined with drought management strategies, are likely to provide compromise solutions to the ecological and human negotiations for water for different sized reservoir systems. The concept of a seasonal ecodeficit/ecosurplus is introduced for evaluating the impact of reservoir regulation on ecological flow regimes.

  13. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  14. Energy Options for Wireless Sensor Nodes.

    PubMed

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-12-08

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.

  15. Energy Options for Wireless Sensor Nodes

    PubMed Central

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-01-01

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975

  16. Previous cryopreservation alters the natural history of the red blood cell storage lesion

    PubMed Central

    Chang, Alex L.; Hoehn, Richard S.; Jernigan, Peter; Cox, Daniel; Schreiber, Martin; Pritts, Timothy A.

    2016-01-01

    Background During storage, packed red blood cells (pRBCs) undergo a number of biochemical, metabolic and morphologic changes, collectively known as the “storage lesion”. We aimed to determine the effect of cryopreservation on the red blood cell storage lesion compared to traditional 4°C storage. Methods Previously cryopreserved human packed red blood cells were compared to age matched never frozen packed red blood cells obtained from the local blood bank. The development of the red cell storage lesion was evaluated after 7, 14, 21, 28, and 42 days of storage at 4°C in AS-3 storage medium. We measured physiological parameters including cell counts, lactic acid and potassium concentrations as well as signs of eryptosis including loss of phosphatidylserine (PS) asymmetry, microparticle production and osmotic fragility in hypotonic saline. Results Compared to controls, previously cryopreserved pRBC at 7 days of storage in AS-3 showed lower red cell counts (3.7 vs 5.3 ×10^6 cells/uL, p(<0.01), hemoglobin (12.0 vs 16.5 g/dL, p<0.01), hematocrit (33.0 vs 46.5%, p<0.01), and pH (6.27 vs 6.72, p<0.01). Over 28 days of storage, storage cryopreserved pRBC developed increased cell free hemoglobin (0.7 vs 0.3 g/dL, p<0.01), greater PS exposure (10.1 vs 3.3%, p<0.01), and microparticle production (30,836 vs 1,802 MP/uL, p<0.01). Previously cryopreserved cells were also less resistant to osmotic stress. Conclusion The red blood cell storage lesion is accelerated in previously cryopreserved pRBC after thawing. Biochemical deterioration of thawed and deglycerolized red cells suggests that storage time prior to transfusion should be limited in order to achieve similar risk profiles as never frozen standard liquid storage pRBC units. PMID:27380532

  17. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  18. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1991-01-01

    Removal of ground water by pumping from aquifers may result in compaction of compressible fine-grained beds that are within or adjacent to the aquifers. Compaction of the sediments and resulting land subsidence may be permanent if the head declines result in vertical stresses beyond the previous maximum stress. The process of permanent compaction is not routinely included in simulations of ground-water flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U.S. Geological Survey modular finite-difference ground- water flow model. The new program, the Interbed-Storage Package, is designed to be incorporated into this model. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of the skeletal component of elastic specific storage and the thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the ground-water flow model by adding an additional term to the right-hand side of the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum (preconsolidation) head. Two tests were performed to verify that the package works correctly. The first test compared model-calculated storage and compaction changes to hand-calculated values for a three-dimensional simulation. Model and hand-calculated values were essentially equal. The second test was performed to compare the results of the Interbed-Storage Package with results of the one-dimensional Helm compaction model. This test problem simulated compaction in doubly draining confining beds stressed by head changes in adjacent aquifers. The Interbed-Storage Package and the Helm model computed essentially equal values of compaction. Documentation of the Interbed-Storage Package includes data input instructions, flow charts, narratives, and listings for each of the five modules included in the package. The documentation also includes an appendix describing input instructions and a listing of a computer program for time-variant specified-head boundaries. That package was developed to reduce the amount of data input and output associated with one of the Interbed-Storage Package test problems.

  19. Integrated Modeling Approach for Verifying Water Storage Services for a Payment for Environmental Service Programs

    NASA Astrophysics Data System (ADS)

    Hendricks, G.; Shukla, S.; Guzha, A. C.

    2013-12-01

    Hydrologic models have been used for improved understanding of how an ecosystem's hydrologic response to human intervention and may provide substantial insight into the viability of payment for environmental services (PES) programs. Little is currently known about how hydrologic models can contribute to the design and evaluation of PES programs. Increased water storage is a desired environmental service (ES) for the Florida Everglades' watershed to reduce nutrient loads and excessive flows to lakes and estuaries in the region. We present monitoring and modeling results to verify the water storage PES for two ranch sites (wetland and watershed scales) located in the Northern Everglades region located north of the Lake Okeechobee (LO). Verification of the water storage PES using at least 3 years of hydrologic data was inconclusive due to variable rainfall during pre- and post-PES periods. An integrated surface and groundwater model, MIKE-SHE/MIKE11, was used to help verify the water storage service as well as predict ecological responses for different water storage scenarios (different levels of storage). The hydrological model was calibrated and validated using field measurements and was able to effectively simulate the surface and groundwater levels for the watershed (Nash Sutcliffe Efficiency, NSE = 0.54 to 0.82) and for surface water levels within wetlands (NSE = 0.54 to 0.84). Scenario analyses for storage levels showed an inverse relationship between board heights for water control structures and flows at the watershed outlet. Changes in flow were marginal when board heights approached a maximum indicating movement of water into subsurface storage. Combining simulation results with field measurements showed reduced flows and increased subsurface storage (2 cm/yr.), a desired outcome for protecting LO and estuarine systems from excessive flows. Simulated wetland water levels were combined with LIDAR-based topography to predict inundation for wetlands at the two PES sites for exploring the addition of biodiversity related ES. Simulations showed that effects of increased storage on enhanced hydro-periods and biodiversity was limited to the wetlands close to the drainage ditches. Results for a variety of water management scenarios showed that modeling can be used as an effective tool for optimizing the ES for a desired PES scheme. Measured and predicted surface flows from watershed and wetland water levels for different scenarios are currently being combined with ecological measurements to develop hydro-ecological models that predict the effects of enhanced water storage on ecological diversity.

  20. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-01

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  1. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.

    PubMed

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-28

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  2. Estimates of consumptive use and ground-water return flow using water budgets in Palo Verde Valley, California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Kimsey, Steven L.

    1987-01-01

    Palo Verde Valley, California, is an agricultural area in the flood plain of the Colorado River where irrigation water is diverted from the river and groundwater is discharged to a network of drainage ditches and (or) the river. Consumptive use by vegetation and groundwater return flow were calculated using water budgets. Consumptive use by vegetation was 484,000 acre-ft in 1981, 453,600 acre-ft in 1982, 364,400 acre-ft in 1983, and 374,300 acre-ft in 1984. The consumptive-use estimates are most sensitive to two measured components of the water budget, the diversion at Palo Verde Dam and the discharge from drainage ditches to the river. Groundwater return flow was 31,700 acre-ft in 1981, 24,000 acre-ft in 1982, 2,500 acre-ft in 1983, and 7 ,900 acre-ft in 1984. The return-flow estimates are most sensitive to discharge from drainage ditches; various irrigation requirements and crop areas, particularly alfalfa; the diversion at Palo Verde Dam; and the estimate of consumptive use. During increasing flows in the river, the estimate of groundwater return flow is sensitive also to change in groundwater storage. Change in groundwater storage was estimated to be -5,700 acre-ft in 1981, -12,600 acre-ft in 1982, 5,200 acre-ft in 1983, and 11 ,600 acre-ft in 1984. Changes in storage can be a significant component in the water budget used to estimate groundwater return flow but is negligible in the water budget used to estimate consumptive use. Change in storage was 1 to 3% of annual consumptive use. Change in storage for the area drained by the river ranged from 7 to 96% of annual groundwater return flow during the 4 years studied. Consumptive use calculated as diversions minus return flows was consistently lower than consumptive use calculated in a water budget. Water-budget estimates of consumptive use account for variations in precipitation, tributary inflow, river stage, and groundwater storage. The calculations for diversions minus return flows do not account for these components, which can be large enough to affect the estimates of consumptive use. (Author 's abstract)

  3. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the Chicot and Evangeline aquifers, Houston area, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Strom, Eric W.

    2002-01-01

    In November 1997, the U.S. Geological Survey, in cooperation with the City of Houston Utilities Planning Section and the City of Houston Department of Public Works & Engineering, began an investigation of the Chicot and Evangeline aquifers in the greater Houston area in Texas to better understand the hydrology, flow, and associated land-surface subsidence. The principal part of the investigation was a numerical finite-difference model (MODFLOW) developed to simulate ground-water flow and land-surface subsidence in an 18,100-square-mile area encompassing greater Houston.The focus of the study was Harris and Galveston Counties, but other counties were included to achieve the appropriate boundary conditions. The model was vertically discretized into three 103-row by 109-column layers resulting in a total of 33,681 grid cells. Layer 1 represents the water table using a specified head, layer 2 represents the Chicot aquifer, and layer 3 represents the Evangeline aquifer.Simulations were made under transient conditions for 31 ground-water-withdrawal (stress) periods spanning 1891–1996. The years 1977 and 1996 were chosen as potentiometric-surface calibration periods for the model. Simulated and measured potentiometric surfaces of the Chicot and Evangeline aquifers for 1977 match closely. Waterlevel measurements indicate that by 1977, large ground-water withdrawals in east-central and southeastern areas of Harris County had caused the potentiometric surfaces to decline as much as 250 feet below sea level in the Chicot aquifer and as much as 350 feet below sea level in the Evangeline aquifer. Simulated and measured potentiometric surfaces of the Chicot and Evangeline aquifers for 1996 also match closely. The large potentiometric-surface decline in 1977 in the southeastern Houston area showed significant recovery by 1996. The 1996 centers of potentiometric-surface decline are located much farther northwest. Potentiometric-surface declines of more than 200 feet below sea level in the Chicot aquifer and more than 350 feet below sea level in the Evangeline aquifer were measured in observation wells and simulated in the flow model.Simulation of land-surface subsidence and water released from storage in the clay layers was accomplished using the Interbed-Storage Package of the MODFLOW model. Land-surface subsidence was calibrated by comparing simulated long-term (1891–1995) and short-term (1978–95) land-surface subsidence with published maps of land-surface subsidence for about the same period until acceptable matches were achieved.Simulated 1996 Chicot aquifer flow rates indicate that a net flow of 562.5 cubic feet per second enters the Chicot aquifer in the outcrop area, and a net flow of 459.5 cubic feet per second passes through the Chicot aquifer into the Evangeline aquifer. The remaining 103.0 cubic feet per second of flow is withdrawn as pumpage, with a shortfall of about 84.9 cubic feet per second supplied to the wells from storage in sands and clays. Water simulated from storage in clays in the Chicot aquifer is about 19 percent of the total water withdrawn from the aquifer.Simulated 1996 Evangeline aquifer flow rates indicate that a net flow of 14.8 cubic feet per second enters the Evangeline aquifer in the outcrop area, and a net flow of 459.5 cubic feet per second passes through the Chicot aquifer into the Evangeline aquifer for a total inflow of 474.3 cubic feet per second. A greater amount, 528.6 cubic feet per second, is withdrawn by wells; the shortfall of about 54.8 cubic feet per second is supplied from storage in sands and clays. Water simulated from storage in clays in the Evangeline aquifer is about 10 percent of the total water withdrawn from the aquifer.

  4. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problemmore » is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.« less

  5. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells

    NASA Astrophysics Data System (ADS)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-09-01

    The vanadium redox flow battery (VRFB) is a promising electrochemical storage system for stationary megawatt-class applications. The currently limited cell area determined by the bipolar plate (BPP) could be enlarged significantly with a novel extruded large-area plate. For the first time a techno-economic assessment of VRFB in a power range of 1 MW-20 MW and energy capacities of up to 160 MWh is presented on the basis of the production cost model of large-area BPP. The economic model is based on the configuration of a 250 kW stack and the overall system including stacks, power electronics, electrolyte and auxiliaries. Final results include a simple function for the calculation of system costs within the above described scope. In addition, the impact of cost reduction potentials for key components (membrane, electrode, BPP, vanadium electrolyte) on stack and system costs is quantified and validated.

  6. Integrating molecular diagnostic and flow cytometric reporting for improved longitudinal monitoring of HIV patients.

    PubMed Central

    Asare, A. L.; Huda, H.; Klimczak, J. C.; Caldwell, C. W.

    1998-01-01

    Studies have shown that monitoring HIV-infected patients undergoing antiretroviral therapy is best represented by combined measurement of plasma HIV-1 RNA and CD4+ T-lymphocytes [1]. This pilot study at the University of Missouri-Columbia integrates molecular diagnostic and flow cytometric data reporting to provide current and historical HIV-1 RNA levels and CD4+ T-cell counts. The development of a single database for storage and retrieval of these values facilitates composite report generation that includes longitudinal HIV-1 RNA levels and CD4+ T-cell counts for all patients. Results are displayed in tables and plotted graphically within a web browser. This method of data presentation converts individual data points to more useful medical information and could provide clinicians with decision support for improved monitoring of HIV patients undergoing antiretroviral therapy. Images Figure 2 Figure 3 Figure 4 PMID:9929359

  7. Polyarene mediators for mediated redox flow battery

    DOEpatents

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  8. Effect of antiaggregants on the in vitro viability, cell count and stability of abalone (Haliotis iris) haemocytes.

    PubMed

    Grandiosa, Roffi; Bouwman, Mai-Louise; Young, Tim; Mérien, Fabrice; Alfaro, Andrea C

    2018-07-01

    The ability to successfully prepare and preserve haemocyte cells for microscopy and flow cytometry is critical for the investigation of animal immune systems. In this study, we observed the total cell count, in vitro viability and stability of New Zealand black-footed abalone (Haliotis iris) haemocytes with different antiaggregants and handling protocols. Haemocyte stability was evaluated by direct observation of haemocytes under the microscope and calculating the aggregation index. Haemocyte counts and viability were measured via flow cytometry and tested for the effect of different antiaggregants (Alsever's solution at three concentrations, and specialised blood collection tubes containing lithium heparin and K 2 EDTA) at different temperatures and storage times. Results showed that Alsever's solution is an effective antiaggregant at haemolymph:antiaggregant dilution ratios of 1:1, 1:2 and 1:3. Lithium heparin was ineffective as an antiaggregant, whereas K 2 EDTA was similarly as effective as Alsever's solution. The influence of different mixing techniques (vortex, pipetting and flipping) were subsequently tested using the K 2 EDTA Microtainer ® tubes, revealing that proper mixing should be performed immediately. High cell viability can be achieved by mixing samples by either 10 s of vortexing (1000 rpm), 10 times pipetting or 20 times flipping. The in vitro storage of abalone haemocytes in AS and K 2 EDTA as antiaggregants at ambient room temperature was highly effective for up to 24 h (75-85% viability; 0.05-0.15 aggregation index) and is recommended for haemocyte studies in H. iris. Utilization of K 2 EDTA Microtainer ® tubes were advantageous since they are more cost effective compared to Alsever's solution, and samples can be prepared more efficiently. Copyright © 2018. Published by Elsevier Ltd.

  9. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities

    PubMed Central

    Leung, Kaston; Zahn, Hans; Leaver, Timothy; Konwar, Kishori M.; Hanson, Niels W.; Pagé, Antoine P.; Lo, Chien-Chi; Chain, Patrick S.; Hallam, Steven J.; Hansen, Carl L.

    2012-01-01

    We present a programmable droplet-based microfluidic device that combines the reconfigurable flow-routing capabilities of integrated microvalve technology with the sample compartmentalization and dispersion-free transport that is inherent to droplets. The device allows for the execution of user-defined multistep reaction protocols in 95 individually addressable nanoliter-volume storage chambers by consecutively merging programmable sequences of picoliter-volume droplets containing reagents or cells. This functionality is enabled by “flow-controlled wetting,” a droplet docking and merging mechanism that exploits the physics of droplet flow through a channel to control the precise location of droplet wetting. The device also allows for automated cross-contamination-free recovery of reaction products from individual chambers into standard microfuge tubes for downstream analysis. The combined features of programmability, addressability, and selective recovery provide a general hardware platform that can be reprogrammed for multiple applications. We demonstrate this versatility by implementing multiple single-cell experiment types with this device: bacterial cell sorting and cultivation, taxonomic gene identification, and high-throughput single-cell whole genome amplification and sequencing using common laboratory strains. Finally, we apply the device to genome analysis of single cells and microbial consortia from diverse environmental samples including a marine enrichment culture, deep-sea sediments, and the human oral cavity. The resulting datasets capture genotypic properties of individual cells and illuminate known and potentially unique partnerships between microbial community members. PMID:22547789

  10. Grid Scale Energy Storage (Symposium EE8)

    DTIC Science & Technology

    2016-06-01

    27709-2211 Grid-Scale Energy Storage, electrolytes, systems ntegration, Lithium - ion chemistry, Redox flow batteries REPORT DOCUMENTATION PAGE 11... Lithium - Ion Chemistry (4) Redox Flow Batteries Christopher J. Orendorff from Sandia National Laboratories kicked off the symposium on Tuesday...for redox flow batteries . SEI formation is a well-known process in standard lithium - ion battery operation; however, using aqueous electrolytes does

  11. U.S. EPA CSO CAPSTONE REPORT: CONTROL SYSTEM OPTIMIZATION

    EPA Science Inventory

    An optimized combined sewer overflow (CSO) requires a storage treatment system because storm flow in the combined sewer system is intermittent and highly variable in both pollutant concentration and flow rate. Storage and treatment alternatives are strongly influenced by input...

  12. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    NASA Astrophysics Data System (ADS)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  13. High resolution modeling of reservoir storage and extent dynamics at the continental scale

    NASA Astrophysics Data System (ADS)

    Shin, S.; Pokhrel, Y. N.

    2017-12-01

    Over the past decade, significant progress has been made in developing reservoir schemes in large scale hydrological models to better simulate hydrological fluxes and storages in highly managed river basins. These schemes have been successfully used to study the impact of reservoir operation on global river basins. However, improvements in the existing schemes are needed for hydrological fluxes and storages, especially at the spatial resolution to be used in hyper-resolution hydrological modeling. In this study, we developed a reservoir routing scheme with explicit representation of reservoir storage and extent at the grid scale of 5km or less. Instead of setting reservoir area to a fixed value or diagnosing it using the area-storage equation, which is a commonly used approach in the existing reservoir schemes, we explicitly simulate the inundated storage and area for all grid cells that are within the reservoir extent. This approach enables a better simulation of river-floodplain-reservoir storage by considering both the natural flood and man-made reservoir storage. Results of the seasonal dynamics of reservoir storage, river discharge at the downstream of dams, and the reservoir inundation extent are evaluated with various datasets from ground-observations and satellite measurements. The new model captures the dynamics of these variables with a good accuracy for most of the large reservoirs in the western United States. It is expected that the incorporation of the newly developed reservoir scheme in large-scale land surface models (LSMs) will lead to improved simulation of river flow and terrestrial water storage in highly managed river basins.

  14. Membranes for redox flow battery applications.

    PubMed

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  15. Coupling desalination and energy storage with redox flow electrodes.

    PubMed

    Hou, Xianhua; Liang, Qian; Hu, Xiaoqiao; Zhou, Yu; Ru, Qiang; Chen, Fuming; Hu, Shejun

    2018-06-26

    Both freshwater shortage and energy crisis are global issues. Herein, we present a double-function system of faradaic desalination and a redox flow battery consisting of VCl3|NaI redox flow electrodes and a feed stream. The system has a nominal cell potential (E0 = +0.79 V). During the discharge process, the salt ions in the feed are extracted by the redox reaction of the flow electrodes, which is indicated by salt removal. Stable and reversible salt removal capacity and electricity can be achieved up to 30 cycles. The energy consumption is as low as 10.27 kJ mol-1 salt. The energy efficiency is as high as 50% in the current aqueous redox flow battery. With energy recovery, the desalination energy consumption decreases greatly to 5.38 kJ mol-1; this is the lowest reported value to date. This "redox flow battery desalination generator" can be operated in a voltage range of 0.3-1.1 V. Our research provides a novel method for obtaining energy-saving desalination and redox flow batteries.

  16. Membranes for Redox Flow Battery Applications

    PubMed Central

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  17. Development and testing of a simple inertial formulation of the shallow water equations for flood inundation modelling

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy; Bates, Paul; Horritt, Matthew

    2010-05-01

    This abstract describes the development of a new set of equations derived from 1D shallow water theory for use in 2D storage cell inundation models. The new equation set is designed to be solved explicitly at very low computational cost, and is here tested against a suite of four analytical and numerical test cases of increasing complexity. In each case the predicted water depths compare favourably to analytical solutions or to benchmark results from the optimally stable diffusive storage cell code of Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow in a topographically complex urban area the Root Mean Squared Difference between the new formulation and the model of Hunter et al. is ~1 cm. However, unlike diffusive storage cell codes where the stable time step scales with (1-?x)2 the new equation set developed here represents shallow water wave propagation and so the stability is controlled by the Courant-Freidrichs-Lewy condition such that the stable time step instead scales with 1-?x. This allows use of a stable time step that is 1-3 orders of magnitude greater for typical cell sizes than that possible with diffusive storage cell models and results in commensurate reductions in model run times. The maximum speed up achieved over a diffusive storage cell model was 1120x in these tests, although the actual value seen will depend on model resolution and water depth and surface gradient. Solutions using the new equation set are shown to be relatively grid-independent for the conditions considered given the numerical diffusion likely at coarse model resolution. In addition, the inertial formulation appears to have an intuitively correct sensitivity to friction, however small instabilities and increased errors on predicted depth were noted when Manning's n = 0.01. These small instabilities are likely to be a result of the numerical scheme employed, whereby friction is acting to stabilise the solution although this scheme is still widely used in practice. The new equations are likely to find widespread application in many types of flood inundation modelling and should provide a useful additional tool, alongside more established model formulations, for a variety of flood risk management studies.

  18. Effect of freezing of sputum samples on flow cytometric analysis of lymphocyte subsets.

    PubMed

    Jaksztat, E; Holz, O; Paasch, K; Kelly, M M; Hargreave, F E; Cox, G; Magnussen, H; Jörres, R A

    2004-08-01

    Sputum samples should be processed shortly after induction to prevent cell degradation. For intermediate storage, freezing of homogenised samples or immediate fixation have been shown to be suitable for cytospins. The aim of this study was to investigate whether freezing or immediate fixation of sputum affect the analysis of lymphocyte subsets by flow cytometry. Selected plugs from 24 sputum samples were homogenised. One aliquot was processed immediately and analysed by flow cytometry. A second aliquot was homogenised, frozen at -20 C after addition of dimethylsulfoxide and stored for a median time of 6 days. In six samples a third aliquot was fixed in formalin after induction and stored for up to 72 h before further processing. Compared to immediate processing, percentages of total lymphocytes and T-suppressor cells were elevated after being frozen, with a minor decrease in the T4/T8 ratio. Proportions of total lymphocytes, T-helper and T-suppressor cells correlated between native and frozen samples, intra-class correlation coefficients being 0.74, 0.85 and 0.70, respectively. The formalin-fixed aliquots could not be analysed with the antibodies used. In conclusion, freezing seems to be a suitable technique to store sputum samples for flow cytometry of CD3, CD4 and CD8 lymphocyte subsets. Its effects were minor compared to the variation between subjects.

  19. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  20. The Roles of Shallow and Deep Groundwater Storage During Drought at Panola Mountain Research Watershed, Georgia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Aulenbach, B. T.; Peters, N. E.

    2016-12-01

    Southeastern U.S. experiences recurring droughts, which can reduce water availability and can result in water-limiting conditions. Monthly water budgets were estimated at Panola Mountain Research Watershed, a small 41-hectare forested watershed near Atlanta, Georgia, from 1985 through 2015, to quantify the effects of climatic variability on groundwater (GW) storage. A relation between stream base flow and watershed GW storage was developed. The relation indicated that both shallow and deep GW storage contribute to base-flow runoff, except for the bottom third (78 mm) of the range in observed shallow soil moisture. The base flow-storage relation was then used to estimate monthly evapotranspiration (ET) using a closed water budget approach. Growing season droughts were almost always preceded by low GW storage at the onset of the growing season. The low base flow and GW storage conditions were caused by low precipitation (P) during the dormant season, and to a lesser extent, carryover of low GW storage conditions from the previous growing season. Growing season P had little impact on drought, as most P ultimately resulted in ET instead of deeper GW recharge. Water-limited growing season conditions were indicated when potential ET (PET) >> ET, and occurred during months having a large "P-deficit", PET - P, and when shallow storage was already near its observed minimum—such that the P-deficits exceeded the extractable water in shallow storage. These observations can be used to hypothesize how projected future increases in temperature, and how resulting increases in PET affect water budgets in Southeastern U.S. The dormant season will become shorter and ET will increase, causing decreased GW recharge during the dormant season, and will result in more frequent and severe growing season droughts. Higher growing season PET would increase the frequency and duration of water limiting conditions due to higher P-deficits and more frequent occurrences of low shallow storage.

  1. Previous Cryopreservation Alters the Natural History of the Red Blood Cell Storage Lesion.

    PubMed

    Chang, Alex L; Hoehn, Richard S; Jernigan, Peter; Cox, Daniel; Schreiber, Martin; Pritts, Timothy A

    2016-09-01

    During storage, packed red blood cells (pRBCs) undergo a number of biochemical, metabolic, and morphologic changes, collectively known as the "storage lesion." We aimed to determine the effect of cryopreservation on the red blood cell storage lesion compared with traditional 4°C storage. Previously cryopreserved human pRBCs were compared with age-matched never-frozen pRBCs obtained from the local blood bank. The development of the red cell storage lesion was evaluated after 7, 14, 21, 28, and 42 days of storage at 4°C in AS-3 storage medium. We measured physiological parameters including cell counts, lactic acid, and potassium concentrations as well as signs of eryptosis including loss of phosphatidylserine (PS) asymmetry, microparticle production, and osmotic fragility in hypotonic saline. Compared with controls, previously cryopreserved pRBC at 7 days of storage in AS-3 showed lower red cell counts (3.7 vs. 5.3 × 10 cells/μL, P < 0.01), hemoglobin (Hgb) (12.0 vs. 16.5 g/dL, P < 0.01), hematocrit (33.0% vs. 46.5%, P < 0.01), and pH (6.27 vs. 6.72, P < 0.01). Over 28 days of storage, storage cryopreserved pRBC developed increased cell-free Hgb (0.7 vs. 0.3 g/dL, P < 0.01), greater PS exposure (10.1% vs. 3.3%, P < 0.01), and microparticle production (30,836 vs. 1,802 MP/μL, P < 0.01). Previously cryopreserved cells were also less resistant to osmotic stress. The red blood cell storage lesion is accelerated in previously cryopreserved pRBC after thawing. Biochemical deterioration of thawed and deglycerolized red cells suggests that storage time before transfusion should be limited to achieve similar risk profiles as never-frozen standard liquid storage pRBC units.

  2. Simulation of flow in the Edwards Aquifer, San Antonio region, Texas, and refinement of storage and flow concepts

    USGS Publications Warehouse

    Maclay, Robert W.; Land, Larry F.

    1988-01-01

    The Edwards aquifer is a complexly faulted, carbonate aquifer lying within the Balcones fault zone of south-central Texas. The aquifer consists of thin- to massive-bedded limestone and dolomite, most of which is in the form of mudstones and wackestones. Well-developed secondary porosity has formed in association with former erosional surfaces within the carbonate rocks, within dolomitized-burrowed tidal and evaporitic deposits, and along inclined fractures to produce an aquifer with transmissivities greater than 100 ft2/s. The aquifer is recharged mainly by streamflow losses in the outcrop area of the Edwards aquifer and is discharged by major springs located at considerable distances, as much as 150 mi, from the areas of recharge and by wells. Ground-water flow within the Edwards aquifer of the San Antonio region was simulated to investigate concepts relating to the storage and flow characteristics. The concepts of major interest were the effects of barrier faults on flow direction, water levels, springflow, and storage within the aquifer. A general-purpose, finite-difference model, modified to provide the capability of representing barrier faults, was used to simulate ground-water flow and storage in the aquifer. The approach in model development was to conduct a series of simulations beginning with a simple representation of the aquifer framework and then proceeding to subsequent representations of increasing complexity. The simulations investigated the effects of complex geologic structures and of significant changes in transmissivity, anisotropy, and storage coefficient. Initial values of transmissivity, anisotropy, and storage coefficient were estimated based on concepts developed in previous studies. Results of the simulations confirmed the original estimates of transmissivity values (greater than 100 square feet/s) in the confined zone of the aquifer between San Antonio and Comal Springs. A storage coefficient of 0.05 in the unconfined zone of the aquifer produced the best simulation of water levels and springflow. A major interpretation resulting from the simulations is that two essentially independent areas of regional flow were identified in the west and central part of the study area. Flows from the two areas converge at Comal Springs. The directions of computed flux vectors reflected the presence of major barrier faults, which locally deflect patterns of ground-water movement. The most noticeable deflection is the convergence of flow through a geologic structural opening, the Knippa gap, in eastern Uvalde County. A second significant interpretation is that ground-water flow in northeastern Bexar, Comal, and Hays Counties is diverted by barrier faults toward San Marcos Springs, a regional discharge point. Simulations showed that several barrier faults in the northwestern part of the San Antonio area had a significant effect on storage, water levels, and springflow within the Edwards aquifer.

  3. Energy storage cell impedance measuring apparatus, methods and related systems

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  4. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  5. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGES

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less

  6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on amore » highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.« less

  7. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  8. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  9. COMBINED SEWER OVERFLOW - BALANCING FLOW FOR CSO ABATEMENT

    EPA Science Inventory

    Instead of using conventional storage units, e.g., reinforced concrete tanks and lined earthen basins, which are relatively expensive and require a lot of urban land area, the in-receiving water flow balance method (FBM) facilities use the receiving water body itself for storage ...

  10. Influence of CO2 on the long-term chemomechanical behavior of an oolitic limestone

    NASA Astrophysics Data System (ADS)

    Grgic, D.

    2011-07-01

    In order to study the long-term mechanical and petrographical evolutions of a carbonate rock (oolitic limestone) during storage of CO2, CO2 injection tests were performed in triaxial cells at temperature and mechanical stresses (isotropic and deviatoric) corresponding to the depth of the Dogger carbonate reservoirs of the Paris basin (˜800 m). We used a specific "flow-through" triaxial cell which allowed us to measure very low strain rates in both axial and lateral directions, while ensuring the sealing of the samples during the injection of CO2. Under isotropic loading, neither the dynamic percolation (i.e., flow-through tests) of dry supercritical/gaseous CO2, nor the diffusion of CO2, into initially saturated samples was shown to produce significant axial compaction and calcite dissolution. Indeed, even though the interstitial aqueous fluid becomes acidic, the progressive increase in dissolved species induces the H2O-CO2-calcite re-equilibrium. The dynamic injection of CO2-saturated solution induced significant axial compaction due to the dissolution of calcite at the sample/piston interface only under open flow conditions (i.e., the injected acidic solution is continuously renewed). Under closed flow conditions (i.e., acidic solution recirculation or no-flow conditions) which reproduce the physicochemical conditions of CO2 storage at the field scale better, the rapid H2O-CO2-calcite re-equilibrium inhibits calcite dissolution. Under deviatoric loading and closed conditions, the diffusion of CO2 induced a very small increase in the PSC (pressure solution creep) process which was stopped by the H2O-CO2-calcite re-equilibrium inside the sample. Therefore, a significant compaction of limestone samples was obtained only under open conditions and is mainly due to a purely chemical mechanism (calcite dissolution), while the contribution of the chemo-mechanical mechanism (PSC) was found to not be of any great importance. In the context of massive injection of CO2 at the field scale, if the reservoir can be considered as a closed system from a hydrodynamic point of view (i.e., the brine circulates in the aquifer but is not renewed by any groundwater), CO2 will not play a significant role in the chemistry of carbonate reservoirs due to the H2O-CO2-calcite re-equilibrium and will not induce reservoir compaction and affect its long-term storage capacity, whatever the stress state (isotropic or deviatoric).

  11. Parametric and cycle tests of a 40-A-hr bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1986-01-01

    A series of tests was performed to characterize battery performance relating to certain operating parameters which included charge current, discharge current, temperature and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions. Spacecraft power requirements are constantly increasing. Special spacecraft such as the Space Station and platforms will require energy storage systems of 130 and 25 kWh, respectively. The complexity of these high power systems will demand high reliability, and reduced mass and volume. A system that uses batteries for storage will require a cell count in excess of 400 units. These cell units must then be assembled into several batteries with over 100 cells in a series connected string. In an attempt to simplify the construction of conventional cells and batteries, the NASA Lewis Research Center battery systems group initiated work on a nickel-hydrogen battery in a bipolar configuration in early 1981. Features of the battery with this bipolar construction show promise in improving both volumetric and gravimetric energy densities as well as thermal management. Bipolar construction allows cooling in closer proximity to the cell components, thus heat removal can be accomplished at a higher rejection temperature than conventional cell designs. Also, higher current densities are achievable because of low cell impedance. Lower cell impedance is achieved via current flow perpendicular to the electrode face, thus reducing voltage drops in the electrode grid and electrode terminals tabs.

  12. Heat transfer and flow in solar energy and bioenergy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected that the proposed methods can provide useful information for engineers and researchers.

  13. Preservation of tomcat (Felis catus) semen in variable temperatures.

    PubMed

    Siemieniuch, Marta; Dubiel, Andrzej

    2007-05-01

    The aim of our study was to estimate the viability of cat epididymal sperm in short time storage at +4 degrees C and in long term storage at -196 degrees C and to assess the percentage of live sperm in fresh semen using eosin/nigrosin staining compared to the flow cytometry method. The testes with epididymides were obtained after routine castration procedure. The sperm for further research were collected after flushing the epididymides using extender consist of: Tris 2.4 g, citric acid 1.4 g, glucose 0.8 g, 0.06% (w/v) Na-benzylpenicillin, 0.1% (w/v) streptomycin sulphate and distilled water. Half of each sample was equilibrated with the dilution and loaded in 0.25 ml plastic straws. The straws were placed on a rack in liquid nitrogen vapour at -120 degrees C for 10 min, plunged in liquid nitrogen for 10 min, replaced to marked goblets and loaded into canes for long term storage in liquid nitrogen at -196 degrees C. Sixty percent of motile spermatozoa was accomplished after thawing. However, the percentage of the sperm with intact acrosomes was decreased and the share of cells with midpiece and tail defects was increased. The storage of sperm flushed from epididymides at +4 degrees C for a short time and the usage of sperm during 2-3 days after collection seems to be better than cryopreservation. In our study, normospermia was present in 72.7 +/- 8.8% of fresh semen. The most common defect was the presence of distal droplets, imperfect heads or abnormal acrosomal outline. The motility of fresh sperm flushed from epididymides achieved 77.9 +/- 6.8%. The viability of sperm amounting to 52.5 +/- 13.8% was achieved on third day of conservation in the liquid extender. The percentage of viable sperm in fresh epididymal spermatozoa was 84.9 +/- 7.8%. Compared to these results, the percentage of live cells using SYBR-14/propidium iodide staining was insignificantly lower (82.2 +/- 8%). The live, non-apoptotic cells were 79.0 +/- 7.8%. The share of live, early-apoptotic spermatozoa and late-apoptotic spermatozoa was, respectively, 2 +/- 1.4% and 1.5 +/- 0.9%. The viability of sperm estimated by eosin/nigrosin staining was confirmed by the flow cytometry method. There was no statistical differences between the staining. The usage of apoptosis detection kit revealed, that the percentage of early-apoptotic and late-apoptotic cells was insignificant. (c)2006 Elsevier B.V. All rights reserved.

  14. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    PubMed

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design and performance of honeycomb structure for nanobubbles generating apparatus having different cell dimensions

    NASA Astrophysics Data System (ADS)

    Ueda, T.; Zhai, H. F.; Ren, F.; Noda, N.-A.; Sano, Y.; Takase, Yasushi; Yonezawa, Y.; Tanaka, H.

    2018-06-01

    In recent years, nanobubble technology has drawn great attention due to their wide applications in various fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. This study focuses on the application to seafood long term storage. The nitrogen nanobubble water circulation may reduce the oxygen in water and slow the progressions of oxidation and spoilage. Our previous study showed the pressure reduction and shear stress are involved in nanobubble generation apparatus with honeycomb cells. In this work, the nanobubble generating performance is studied experimentally for honeycomb structures by varying the cell size and the flow velocity. Computational Fluid Dynamics analysis is also performed to simulate the experiment and find out the efficient nanobubble generation.

  16. HYDRAULIC ANALYSIS OF BASE-FLOW AND BANK STORAGE IN ALLUVIAL STREAMS

    EPA Science Inventory

    This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...

  17. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    PubMed

    Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  18. Novel optimization technique of isolated microgrid with hydrogen energy storage

    PubMed Central

    Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433

  19. Battery management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  20. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOEpatents

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  1. STORAGE/SEDIMENTATION FACILITIES FOR CONTROL OF STORM AND COMBINED SEWER OVERFLOW: DESIGN MANUAL

    EPA Science Inventory

    This manual describes applications of storage facilities in wet-weather flow management and presents step-by-step procedures for analysis and design of storage-treatment facilities. Retention, detention, and sedimentation storage information is classified and described. Internati...

  2. Red blood cell microparticles and blood group antigens: an analysis by flow cytometry

    PubMed Central

    Canellini, Giorgia; Rubin, Olivier; Delobel, Julien; Crettaz, David; Lion, Niels; Tissot, Jean-Daniel

    2012-01-01

    Background The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. Material and methods Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. Results The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. Discussion We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies. PMID:22890266

  3. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  4. Compare Vehicle Technologies | Transportation Research | NREL

    Science.gov Websites

    electric car diagramming energy storage, power electronics, and climate control components, as well as storage, power electronics, and climate control components, as well as energy flow among components. 3-D control components, as well as energy flow among components. 3-D illustration of electric car diagramming

  5. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep unsaturated zones [Pruess, 1999]. Lewis, M.A., H.K. Jones, D.M.J. Macdonald, M. Price, J.A. Barker, T.R. Shearer, A.J. Wesselink, and D.J. Evans (1993), Groundwater storage in British aquifers--Chalk, National Rivers Authority R&D Note, 169, Bristol, UK. Nimmo, J.R. (2010), Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow, Vadose Zone Journal, 9(2), 295-306, doi:10.2136/vzj2009.0085. Price, M., R.G. Low, and C. McCann (2000), Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer, Journal of Hydrology, 233(1-4), 54-71. Pruess, K. (1999), A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resources Research, 35(4), 1039-1051.

  6. Study of component technologies for fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  7. Quantifying the water storage volume of major aquifers in the US

    NASA Astrophysics Data System (ADS)

    Jame, S. A.; Bowling, L. C.

    2017-12-01

    Groundwater is one of our most valuable natural resources which affects not only the food and energy nexus, but ecosystem and human health, through the availability of drinking water. Quantification of current groundwater storage is not only required to better understand groundwater flow and its role in the hydrologic cycle, but also sustainable use. In this study, a new high resolution map (5' minutes) of groundwater properties is created for US major aquifers to provide an estimate of total groundwater storage. The estimation was done using information on the spatial extent of the principal aquifers of the US from the USGS Groundwater Atlas, the average porosity of different hydrolithologic groups and the current saturated thickness of each aquifer. Saturated thickness varies within aquifers, and has been calculated by superimposing current water-table contour maps over the base aquifer altitude provided by USGS. The average saturated thickness has been computed by interpolating available data on saturated thickness for an aquifer using the kriging method. Total storage of aquifers in each cell was then calculated by multiplying the spatial extent, porosity, and thickness of the saturated layer. The resulting aquifer storage estimates was compared with current groundwater withdrawal rates to produce an estimate of how many years' worth of water are stored in the aquifers. The resulting storage map will serve as a national dataset for stakeholders to make decisions for sustainable use of groundwater.

  8. Hydrogeology and simulated groundwater flow and availability in the North Fork Red River aquifer, southwest Oklahoma, 1980–2013

    USGS Publications Warehouse

    Smith, S. Jerrod; Ellis, John H.; Wagner, Derrick L.; Peterson, Steven M.

    2017-09-28

    On September 8, 1981, the Oklahoma Water Resources Board established regulatory limits on the maximum annual yield of groundwater (343,042 acre-feet per year) and equal-proportionate-share (EPS) pumping rate (1.0 acre-foot per acre per year) for the North Fork Red River aquifer. The maximum annual yield and EPS were based on a hydrologic investigation that used a numerical groundwater-flow model to evaluate the effects of potential groundwater withdrawals on groundwater availability in the North Fork Red River aquifer. The Oklahoma Water Resources Board is statutorily required (every 20 years) to update the hydrologic investigation on which the maximum annual yield and EPS were based. Because 20 years have elapsed since the final order was issued, the U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an updated hydrologic investigation and evaluated the effects of potential groundwater withdrawals on groundwater flow and availability in the North Fork Red River aquifer in Oklahoma. This report describes a hydrologic investigation of the North Fork Red River aquifer that includes an updated summary of the aquifer hydrogeology. As part of this investigation, groundwater flow and availability were simulated by using a numerical groundwater-flow model.The North Fork Red River aquifer in Beckham, Greer, Jackson, Kiowa, and Roger Mills Counties in Oklahoma is composed of about 777 square miles (497,582 acres) of alluvium and terrace deposits along the North Fork Red River and tributaries, including Sweetwater Creek, Elk Creek, Otter Creek, and Elm Fork Red River. The North Fork Red River is the primary source of surface-water inflow to Lake Altus, which overlies the North Fork Red River aquifer. Lake Altus is a U.S. Bureau of Reclamation reservoir with the primary purpose of supplying irrigation water to the Lugert-Altus Irrigation District.A hydrogeologic framework was developed for the North Fork Red River aquifer and included a definition of the aquifer extent and potentiometric surface, as well as a description of the textural and hydraulic properties of aquifer materials. The hydrogeologic framework was used in the construction of a numerical groundwater-flow model of the North Fork Red River aquifer described in this report. A conceptual model of aquifer inflows and outflows was developed for the North Fork Red River aquifer to constrain the construction and calibration of a numerical groundwater-flow model that reasonably represented the groundwater-flow system. The conceptual-model water budget estimated mean annual inflows to and outflows from the North Fork Red River aquifer for the period 1980–2013 and included a sub-accounting of mean annual inflows and outflows for the portions of the aquifer that were upgradient and downgradient from Lake Altus. The numerical groundwater-flow model simulated the period 1980–2013 and was calibrated to water-table-altitude observations at selected wells, monthly base flow at selected streamgages, net streambed seepage as estimated for the conceptual model, and Lake Altus stage.Groundwater-availability scenarios were performed by using the calibrated numerical groundwater-flow model to (1) estimate the EPS pumping rate that guarantees a minimum 20-, 40-, and 50-year life of the aquifer, (2) quantify the potential effects of projected well withdrawals on groundwater storage over a 50-year period, and (3) simulate the potential effects of a hypothetical (10-year) drought on base flow and groundwater storage. The results of the groundwater-availability scenarios could be used by the Oklahoma Water Resources Board to reevaluate the maximum annual yield of groundwater from the North Fork Red River aquifer.EPS scenarios for the North Fork Red River aquifer were run for periods of 20, 40, and 50 years. The 20-, 40-, and 50-year EPS pumping rates under normal recharge conditions were 0.59, 0.52, and 0.52 acre-foot per acre per year, respectively. Given the 497,582-acre aquifer area, these rates correspond to annual yields of about 294,000, 259,000, and 259,000 acre-feet per year, respectively. Groundwater storage at the end of the 20-year EPS scenario was about 951,000 acre-feet, or about 1,317,000 acre-feet (58 percent) less than the starting EPS scenario storage. This decrease in storage was equivalent to a mean water-level decline of about 22 feet. Most areas of the active alluvium near the North Fork Red River, Elk Creek, and Elm Fork Red River remained partially saturated through the end of the EPS scenario because of streambed seepage. Lake Altus storage was reduced to zero after 6–7 years of EPS pumping in each scenario.Projected 50-year pumping scenarios were used to simulate the effects of selected well withdrawal rates on groundwater storage of the North Fork Red River aquifer and base flows in the North Fork Red River upstream from Lake Altus. The effects of well withdrawals were evaluated by comparing changes in groundwater storage and base flow between four 50-year scenarios using (1) no groundwater pumping, (2) mean pumping rates for the study period (1980–2013), (3) 2013 pumping rates, and (4) increasing demand pumping rates. The increasing demand pumping rates assumed a 20.4-percent increase in pumping over 50 years based on 2010–60 demand projections for southwest Oklahoma.Groundwater storage after 50 years with no pumping was about 2,606,000 acre-feet, or 137,000 acre-feet (5.5 percent) greater than the initial groundwater storage; this groundwater storage increase is equivalent to a mean water-level increase of 2.3 feet. Groundwater storage after 50 years with the mean pumping rate for the study period (1980–2013) was about 2,476,000 acre-feet, or about 7,000 acre-feet (0.3 percent) greater than the initial groundwater storage; this groundwater storage increase is equivalent to a mean water-level increase of 0.1 foot. Groundwater storage at the end of the 50-year period with 2013 pumping rates was about 2,398,000 acre-feet, or about 70,000 acre-feet (2.8 percent) less than the initial storage; this groundwater storage decrease is equivalent to a mean water-level decline of 1.2 feet. Groundwater storage at the end of the 50-year period with increasing demand pumping rates was about 2,361,000 acre-feet, or about 107,000 acre-feet (4.3 percent) less than the initial storage; this groundwater storage decrease is equivalent to a mean water-level decline of 1.8 feet. Mean annual base flow simulated at the Carter streamgage (07301500) on North Fork Red River increased by about 4,000 acre-feet (10 percent) after 50 years with no pumping and decreased by about 5,400 acre-feet (13 percent) after 50 years with increasing demand pumping rates. Mean annual base flow simulated at the North Fork Red River inflow to Lake Altus increased by about 7,400 acre-feet (15 percent) after 50 years with no pumping and decreased by about 5,800 acre-feet (12 percent) after 50 years with increasing demand pumping rates.A hypothetical 10-year drought scenario was used to simulate the effects of a prolonged period of reduced recharge on groundwater storage and Lake Altus stage and storage. Drought effects were quantified by comparing the results of the drought scenario to those of the calibrated numerical model (no drought). To simulate the hypothetical drought, recharge in the calibrated numerical model was reduced by 50 percent during the simulated drought period (1984–1993). Groundwater storage at the end of the drought period was about 2,271,000 acre-feet, or about 426,000 acre-feet (15.8 percent) less than the groundwater storage of the calibrated numerical model. This decrease in groundwater storage is equivalent to a mean water-table-altitude decline of 7.1 feet. At the end of the 10-year hypothetical drought period, base flows at the Sweetwater (07301420), Carter (07301500), Headrick (07305000), and Snyder (07307010) streamgages had decreased by about 37, 61, 44, and 45 percent, respectively. The minimum Lake Altus storage simulated during the drought period was 403 acre-feet, which was a decline of 92 percent from the nondrought storage. Reduced base flows in the North Fork Red River were the primary cause of Lake Altus storage declines.

  9. Magnetohydrodynamic effects in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Galindo, V.; Kasprzyk, C.; Landgraf, S.; Seilmayer, M.; Starace, M.; Weber, N.; Weier, T.

    2016-07-01

    Liquid metal batteries (LMBs) consist of two liquid metal electrodes and a molten salt ionic conductor sandwiched between them. The density ratios allow for a stable stratification of the three layers. LMBs were already considered as part of energy conversion systems in the 1960s and have recently received renewed interest for economical large-scale energy storage. In this paper, we concentrate on the magnetohydrodynamic aspects of this cell type with special focus on electro-vortex flows and possible effects of the Tayler instability.

  10. Information storage at the molecular level - The design of a molecular shift register memory

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose Nelson; Hopfield, J. J.

    1989-01-01

    The control of electron transfer rates is discussed and a molecular shift register memory at the molecular level is described. The memory elements are made up of molecules which can exist in either an oxidized or reduced state and the bits can be shifted between the cells with photoinduced electron transfer reactions. The device integrates designed molecules onto a VLSI substrate. A control structure to modify the flow of information along a shift register is indicated schematically.

  11. Modeling post-wildfire hydrological processes with ParFlow

    NASA Astrophysics Data System (ADS)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference to the presenter, Isabel Escobar: Research is funded by the NASA-DIRECT STEM Program. Travel expenses for this presentation is funded by CSU-LSAMP. CSU-LSAMP is supported by the National Science Foundation under Grant # HRD-1302873 and the CSU Office of Chancellor.

  12. Getting coal to go with the flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbaugh, G.D.

    1984-01-01

    There are three accepted methods of recovering storage piles. They are surface reclaiming, sub-grade hopper sections or bins, and flat surface storage with ground level ports. In general, the decision to use either approach is a matter of economics, reliability, labor intensity, and other related practical factors. The concept of induced vertical flow of bulk solids was initiated in 1962 with the birth of the bin activator. Its performance was at times questionable until the elusive cycle type operation was finally discovered. This solved the problems of coupling induced vertical flow units with feeders. Surprisingly, an operator in a cementmore » plant was the first to demonstrate this principle of operation in 1965, but it needed at least five more years for it to be fully understood. The storage pile discharger with its drawdown skirt and unique stroke action was developed out of sheer necessity in 1964. However, it was not until 1979 that the railcar discharger was introduced. Frankly, it took that long to recognize a railcar could be temporarily converted to a huge rectangular shaped activated binexclamation Significantly, all induced vertical flow units are designed and operated for the sole purpose of bulk solid storage withdrawal. They have no other function. For many reasons, the successful evolution of the concept of induced vertical flow of bulk solids has been one of more perspiration than of meditation. Armed with time proven application guidelines and cycle type operation to minimize the effects of feeder flow streams, bin activators, activated bins, storage pile dischargers, and railcar dischargers can be applied confidently and predictably.« less

  13. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  14. Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae).

    PubMed

    Tonini, Patricia Pinho; Purgatto, Eduardo; Buckeridge, Marcos Silveira

    2010-10-01

    Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, α-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased α-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased α-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.

  15. pH modulation ameliorates the red blood cell storage lesion in a murine model of transfusion.

    PubMed

    Chang, Alex L; Kim, Young; Seitz, Aaron P; Schuster, Rebecca M; Pritts, Timothy A

    2017-05-15

    Prolonged storage of packed red blood cells (pRBCs) induces a series of harmful biochemical and metabolic changes known as the RBC storage lesion. RBCs are currently stored in an acidic storage solution, but the effect of pH on the RBC storage lesion is unknown. We investigated the effect of modulation of storage pH on the RBC storage lesion and on erythrocyte survival after transfusion. Murine pRBCs were stored in Additive Solution-3 (AS3) under standard conditions (pH, 5.8), acidic AS3 (pH, 4.5), or alkalinized AS3 (pH, 8.5). pRBC units were analyzed at the end of the storage period. Several components of the storage lesion were measured, including cell-free hemoglobin, microparticle production, phosphatidylserine externalization, lactate accumulation, and byproducts of lipid peroxidation. Carboxyfluorescein-labeled erythrocytes were transfused into healthy mice to determine cell survival. Compared with pRBCs stored in standard AS3, those stored in alkaline solution exhibited decreased hemolysis, phosphatidylserine externalization, microparticle production, and lipid peroxidation. Lactate levels were greater after storage in alkaline conditions, suggesting that these pRBCs remained more metabolically viable. Storage in acidic AS3 accelerated erythrocyte deterioration. Compared with standard AS3 storage, circulating half-life of cells was increased by alkaline storage but decreased in acidic conditions. Storage pH significantly affects the quality of stored RBCs and cell survival after transfusion. Current erythrocyte storage solutions may benefit from refinements in pH levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. In-situ short circuit protection system and method for high-energy electrochemical cells

    DOEpatents

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  17. In-situ short-circuit protection system and method for high-energy electrochemical cells

    DOEpatents

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  18. Methods to determine transit losses for return flows of transmountain water in Fountain Creek between Colorado Springs and the Arkansas River, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1988-01-01

    Methods were developed by which transit losses could be determined for transmountain return flows in Fountain Creek between Colorado Springs, Colorado, and its confluence with the Arkansas River. The study reach is a complex hydrologic system wherein a substantially variable streamflow interacts with an alluvial aquifer. The study approach included: (1) calibration and verification of a streamflow-routing model that contained a bank-storage-discharge component; (2) use of the model to develop the methods by which transit losses could be calculated; and (3) design of an application method for calculating daily transit loss using the model results. Sources of transit losses that were studied are bank storage, channel storage, and evaporation. Magnitude of bank-storage loss primarily depends on duration of a recovery period during which water lost to bank storage is returned to the stream. Net loss to bank storage can vary from about 50% for a 0-day recovery period to about 2% for a 180-day recovery period. Virtually all water lost to bank storage could be returned to the stream with longer recovery periods. Channel-storage loss was determined to be about 10% of a release quantity. Because the loss on any given day is totally recovered in the form of gains from channel storage on the subsequent day, channel storage is a temporary transit loss. Evaporation loss generally is less than 5% of a given daily transmountain return-flow release, depending on month of year. Evaporation losses are permanently lost from the system. (USGS)

  19. Electronic circuit for measuring series connected electrochemical cell voltages

    DOEpatents

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2000-01-01

    An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.

  20. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    PubMed

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  1. Thermal performance and heat transport in aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  2. Material handling robot system for flow-through storage applications

    NASA Astrophysics Data System (ADS)

    Dill, James F.; Candiloro, Brian; Downer, James; Wiesman, Richard; Fallin, Larry; Smith, Ron

    1999-01-01

    This paper describes the design, development and planned implementation of a system of mobile robots for use in flow through storage applications. The robots are being designed with on-board embedded controls so that they can perform their tasks as semi-autonomous workers distributed within a centrally controlled network. On the storage input side, boxes will be identified by bar-codes and placed into preassigned flow through bins. On the shipping side, orders will be forwarded to the robots from a central order processing station and boxes will be picked from designated storage bins following proper sequencing to permit direct loading into trucks for shipping. Because of the need to maintain high system availability, a distributed control strategy has been selected. When completed, the system will permit robots to be dynamically reassigned responsibilities if an individual unit fails. On-board health diagnostics and condition monitoring will be used to maintain high reliability of the units.

  3. Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.

  4. Cultured Human Retinal Pigment Epithelial (hRPE) Sheets: A Search for Suitable Storage Conditions.

    PubMed

    Khan, Ayyad Z; Utheim, Tor P; Reppe, Sjur; Sandvik, Leiv; Lyberg, Torstein; Roald, Borghild B-H; Ibrahim, Ibrahim B; Eidet, Jon R

    2018-04-01

    The advancement of human retinal pigment epithelial cell (hRPE) replacement therapy is partly dependent on optimization of cell culture, cell preservation, and storage medium. This study was undertaken to search for a suitable storage temperature and storage medium for hRPE. hRPE monolayer sheets were cultured under standard conditions at 37°C and then randomized for storage at six temperatures (4, 16, 20, 24, 28, and 37°C) for 7 days. After revealing a suitable storage temperature, hRPE sheets were subsequently stored with and without the silk protein sericin added to the storage medium. Live/dead assay, light microscopy, pH, and phenotypic expression of various proteins were used to assess cell cultures stored at different temperatures. After 7 days of storage, hRPE morphology was best preserved at 4°C. Addition of sericin to the storage medium maintained the characteristic morphology of the preserved cells, and improved pigmentation and levels of pigmentation-related proteins in the cultured hRPE sheets following a 7-day storage period at 4°C.

  5. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media

    USGS Publications Warehouse

    Lappala, E.G.; Healy, R.W.; Weeks, E.P.

    1987-01-01

    This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)

  6. Retrieval-travel-time model for free-fall-flow-rack automated storage and retrieval system

    NASA Astrophysics Data System (ADS)

    Metahri, Dhiyaeddine; Hachemi, Khalid

    2018-03-01

    Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval-travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for drug distribution. This system is a new variation of flow-rack AS/RS that uses an operator or a single machine for storage operations, and uses a combination between the free-fall movement and a transport conveyor for retrieval operations. The main contribution of this paper is to develop an analytical model of the expected retrieval-travel time for the free-fall flow-rack under a dedicated storage assignment policy. The proposed model, which is based on a continuous approach, is compared for accuracy, via simulation, with discrete model. The obtained results show that the maximum deviation between the continuous model and the simulation is less than 5%, which shows the accuracy of our model to estimate the retrieval time. The analytical model is useful to optimise the dimensions of the rack, assess the system throughput, and evaluate different storage policies.

  7. Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane

    NASA Astrophysics Data System (ADS)

    Allcorn, Eric; Nagasubramanian, Ganesan; Pratt, Harry D.; Spoerke, Erik; Ingersoll, David

    2018-02-01

    Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83-4.67 mS cm-1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm-1 after 66 days of exposure. Charge and discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV-vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10-10 cm2 min-1. The demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.

  8. Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allcorn, Eric; Nagasubramanian, Ganesan; Pratt, III, Harry D.

    Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83–4.67 mS cm –1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm –1 after 66 days of exposure. Charge andmore » discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV–vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10 –10 cm 2 min –1. As a result, the demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.« less

  9. Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane

    DOE PAGES

    Allcorn, Eric; Nagasubramanian, Ganesan; Pratt, III, Harry D.; ...

    2018-01-04

    Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83–4.67 mS cm –1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm –1 after 66 days of exposure. Charge andmore » discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV–vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10 –10 cm 2 min –1. As a result, the demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.« less

  10. Competing forces in liquid metal electrodes and batteries

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan F.; Kelley, Douglas H.; Salas, Alejandro; Starace, Marco; Weber, Norbert; Weier, Tom

    2018-02-01

    Liquid metal batteries are proposed for low-cost grid scale energy storage. During their operation, solid intermetallic phases often form in the cathode and are known to limit the capacity of the cell. Fluid flow in the liquid electrodes can enhance mass transfer and reduce the formation of localized intermetallics, and fluid flow can be promoted by careful choice of the locations and topology of a battery's electrical connections. In this context we study four phenomena that drive flow: Rayleigh-Bénard convection, internally heated convection, electro-vortex flow, and swirl flow, in both experiment and simulation. In experiments, we use ultrasound Doppler velocimetry (UDV) to measure the flow in a eutectic PbBi electrode at 160 °C and subject to all four phenomena. In numerical simulations, we isolate the phenomena and simulate each separately using OpenFOAM. Comparing simulated velocities to experiments via a UDV beam model, we find that all four phenomena can enhance mass transfer in LMBs. We explain the flow direction, describe how the phenomena interact, and propose dimensionless numbers for estimating their mutual relevance. A brief discussion of electrical connections summarizes the engineering implications of our work.

  11. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  12. The combined effect of platelet storage media and intercept pathogen reduction technology on platelet activation/activability and cellular apoptosis/necrosis: Lisbon-RBS experience.

    PubMed

    Carvalho, Helena; Alguero, Carmen; Santos, Matilde; de Sousa, Gracinda; Trindade, Helder; Seghatchian, Jerard

    2006-04-01

    Platelets are known to undergo shape change, activation, a release reaction and apoptosis/necrosis during processing and storage, all of which are collectively known as the platelet storage lesion. Any additional processing may have some deleterious impact on platelet activability and functional integrity, which need to be investigated. This preliminary investigation was undertaken to establish the combined effects of standard platelet storage media and the intercept pathogen reduction technology on platelet activation and activability during 7 day storage, using buffy-coat derived platelets in standard storage media containing 35% plasma (N=24). P-selectin (CD62p) expression, a classical marker of platelet activation, and phosphatidylserine (PS) exposure on the platelet surface membrane, a hallmark of cellular necrosis/apoptosis, were both measured by flow cytometry. The results reveal significant increases in activation, from an average of 22.7% on day 1 before treatment to 31.6% on day 2 after treatment and 58.7% at the end of storage. Concomitantly, the basal expression of PS was slightly increased from 1.9% to 2.8% at day 2 after treatment and 7.3% at the end of storage. However, the functional reserve of platelets during storage, which reflects their capability to undergo activation and the release reaction when platelets were challenged with either calcium ionophore or thrombin, was relatively well maintained. These preliminary data confirm the earlier data on the use of intercept, and for the first time, based on the assessment of platelet functional integrity, suggest that platelet functional reserve is relatively well maintained, with little change in the formation of apoptotic cells.

  13. Flow Cytometric Human Leukocyte Antigen-B27 Typing with Stored Samples for Batch Testing

    PubMed Central

    Seo, Bo Young

    2013-01-01

    Background Flow cytometry (FC) HLA-B27 typing is still used extensively for the diagnosis of spondyloarthropathies. If patient blood samples are stored for a prolonged duration, this testing can be performed in a batch manner, and in-house cellular controls could easily be procured. In this study, we investigated various methods of storing patient blood samples. Methods We compared four storage methods: three methods of analyzing lymphocytes (whole blood stored at room temperature, frozen mononuclear cells, and frozen white blood cells [WBCs] after lysing red blood cells [RBCs]), and one method using frozen platelets (FPLT). We used three ratios associated with mean fluorescence intensities (MFI) for HLAB27 assignment: the B27 MFI ratio (sample/control) for HLA-B27 fluorescein-5-isothiocyanate (FITC); the B7 MFI ratio for HLA-B7 phycoerythrin (PE); and the ratio of these two ratios, B7/B27 ratio. Results Comparing the B27 MFI ratios of each storage method for the HLA-B27+ samples and the B7/B27 ratios for the HLA-B7+ samples revealed that FPLT was the best of the four methods. FPLT had a sensitivity of 100% and a specificity of 99.3% for HLA-B27 assignment in DNA-typed samples (N=164) when the two criteria, namely, B27 MFI ratio >4.0 and B7/B27 ratio <1.5, were used. Conclusions The FPLT method was found to offer a simple, economical, and accurate method of FC HLA-B27 typing by using stored patient samples. If stored samples are used, this method has the potential to replace the standard FC typing method when used in combination with a complementary DNA-based method. PMID:23667843

  14. A Hybrid Mineral Battery: Energy Storage and Dissolution Behavior of CuFeS2 in a Fixed Bed Flow Cell.

    PubMed

    Deen, Kashif Mairaj; Asselin, Edouard

    2018-05-09

    The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS 2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H 2 SO 4 ) and catholyte (0.5 m Fe 2+ in 0.2 m H 2 SO 4 with or without 0.1 m Cu 2+ ) were circulated in the cell. The electrochemical activity of the Fe 2+ /Fe 3+ redox couple over graphite felt significantly improved after the addition of Cu 2+ in the catholyte. Ultimately, in the CuFeS 2 ∥Fe 2+ /Cu 2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g -1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS 2 ∥Fe 2+ (CFe) system (13.9 mAh g -1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg -1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg -1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Numerical simulation of the groundwater-flow system of the Kitsap Peninsula, west-central Washington

    USGS Publications Warehouse

    Frans, Lonna M.; Olsen, Theresa D.

    2016-05-05

    A groundwater-flow model was developed to improve understanding of water resources on the Kitsap Peninsula. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater, and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Twelve hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit form the basis of the groundwater-flow model.Groundwater flow on the Kitsap Peninsula was simulated using the groundwater-flow model, MODFLOW‑NWT. The finite difference model grid comprises 536 rows, 362 columns, and 14 layers. Each model cell has a horizontal dimension of 500 by 500 feet, and the model contains a total of 1,227,772 active cells. Groundwater flow was simulated for transient conditions. Transient conditions were simulated for January 1985–December 2012 using annual stress periods for 1985–2004 and monthly stress periods for 2005–2012. During model calibration, variables were adjusted within probable ranges to minimize differences between measured and simulated groundwater levels and stream baseflows. As calibrated to transient conditions, the model has a standard deviation for heads and flows of 47.04 feet and 2.46 cubic feet per second, respectively.Simulated inflow to the model area for the 2005–2012 period from precipitation and secondary recharge was 585,323 acre-feet per year (acre-ft/yr) (93 percent of total simulated inflow ignoring changes in storage), and simulated inflow from stream and lake leakage was 43,905 acre-ft/yr (7 percent of total simulated inflow). Simulated outflow from the model primarily was through discharge to streams, lakes, springs, seeps, and Puget Sound (594,595 acre-ft/yr; 95 percent of total simulated outflow excluding changes in storage) and through withdrawals from wells (30,761 acre-ft/yr; 5 percent of total simulated outflow excluding changes in storage).Six scenarios were formulated with input from project stakeholders and were simulated using the calibrated model to provide representative examples of how the model could be used to evaluate the effects on water levels and stream baseflows of potential changes in groundwater withdrawals, in consumptive use, and in recharge. These included simulations of a steady-state system, no-pumping and return flows, 15-percent increase in current withdrawals in all wells, 80-percent decrease in outdoor water to simulate effects of conservation efforts, 15-percent decrease in recharge from precipitation to simulate a drought, and particle tracking to determine flow paths.Changes in water-level altitudes and baseflow amounts vary depending on the stress applied to the system in these various scenarios. Reducing recharge by 15 percent between 2005 and 2012 had the largest effect, with water-level altitudes declining throughout the model domain and baseflow amounts decreasing by as much as 18 percent compared to baseline conditions. Changes in pumping volumes had a smaller effect on the model. Removing all pumping and resulting return flows caused increased water-level altitudes in many areas and increased baseflow amounts of between 1 and 3 percent.

  16. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  17. Aramid Nanofiber Composites for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Tung, Siu on

    Lithium ion batteries and non-aqueous redox flow batteries represent two of the most important energy storage technologies to efficient electric vehicles and power grid, which are essential to decreasing U.S. dependence on fossil fuels and sustainable economic growth. Many of the developmental roadblocks for these batteries are related to the separator, an electrically insulating layer between the cathode and anode. Lithium dendrite growth has limited the performance and threatened the safety of lithium ion batteries by piercing the separator and causing internal shorts. In non-aqueous redox flow batteries, active material crossover through microporous separators and the general lack of a suitable ion conducting membrane has led to low operating efficiencies and rapid capacity fade. Developing new separators for these batteries involve the combination of different and sometimes seemingly contradictory properties, such as high ionic conductivity, mechanical stability, thermal stability, chemical stability, and selective permeability. In this dissertation, I present work on composites made from Kevlar-drived aramid nanofibers (ANF) through rational design and fabrication techniques. For lithium ion batteries, a dendrite suppressing layer-by-layer composite of ANF and polyethylene oxide is present with goals of high ionic conductivity, improved safety and thermal stability. For non-aqueous redox flow batteries, a nanoporous ANF separator with surface polyelectrolyte modification is used to achieve high coulombic efficiencies and cycle life in practical flow cells. Finally, manufacturability of ANF based separators is addressed through a prototype machine for continuous ANF separator production and a novel separator coated on anode assembly. In combination, these studies serve as a foundation for addressing the challenges in separator engineering for lithium ion batteries and redox flow batteries.

  18. Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Roznyatovskaya, Nataliya; Herr, Tatjana; Küttinger, Michael; Fühl, Matthias; Noack, Jens; Pinkwart, Karsten; Tübke, Jens

    2016-01-01

    A vanadium electrolyte for redox-flow batteries (VRFB) with different VIII and VIV mole fractions has been studied by UV-vis spectroscopy. Spectrophotometric detection enables a rough estimate of the VIV and VIII content, which can be used to detect an electrolyte capacity imbalance, i.e. a deviation in the mole fraction of VIV or VIII away from 50%. The isosbestic point at 600 nm can be used as a reference point in the analysis of common VRFB electrolyte batches. The VRFB electrolyte is observed to have an imbalance after prolonged storage (a couple of years) in a tank under ambient conditions. A regeneration procedure, which involves pre-charging the unbalanced electrolyte and mixing part of it with a portion of initial unbalanced electrolyte, has been tested. The resulting rebalanced electrolyte has been compared with a common electrolyte in a charge-discharge cell test and is shown to be suitable for cell operation.

  19. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing

    PubMed Central

    Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A.; Alves, Paula M.

    2016-01-01

    To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. Significance The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. PMID:27025693

  20. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing.

    PubMed

    Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A; Serra, Margarida; Alves, Paula M

    2016-05-01

    To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. ©AlphaMed Press.

  1. Redox Flow Batteries, Hydrogen and Distributed Storage.

    PubMed

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  2. Experimental investigation of a molten salt thermocline storage tank

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  3. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE PAGES

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; ...

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  4. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    NASA Astrophysics Data System (ADS)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  5. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Rucci, A.; Ferretti, A.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model,more » the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.« less

  6. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  7. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  8. High energy sodium based room temperature flow batteries

    NASA Astrophysics Data System (ADS)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back to the original state. In the discharged state, it was found that precipitation occurs, but is due to solubility limits and not chemical reactions. The TEMPO system showed the potential of higher concentration catholytes although large capacity losses were found. Although no explanation is found, the behavior of the fade is related to time and concentration.

  9. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  10. Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships

    NASA Astrophysics Data System (ADS)

    Ajami, Hoori; Troch, Peter A.; Maddock, Thomas, III; Meixner, Thomas; Eastoe, Chris

    2011-04-01

    Despite the importance of mountainous catchments for providing freshwater resources, especially in semi-arid regions, little is known about key hydrological processes such as mountain block recharge (MBR). Here we implement a data-based method informed by isotopic data to quantify MBR rates using recession flow analysis. We applied our hybrid method in a semi-arid sky island catchment in southern Arizona, United States. Sabino Creek is a 91 km2 catchment with its sources near the summit of the Santa Catalina Mountains northeast of Tucson. Southern Arizona's climate has two distinct wet seasons separated by prolonged dry periods. Winter frontal storms (November-March) provide about 50% of annual precipitation, and summers are dominated by monsoon convective storms from July to September. Isotope analyses of springs and surface water in the Sabino Creek catchment indicate that streamflow during dry periods is derived from groundwater storage in fractured bedrock. Storage-discharge relationships are derived from recession flow analysis to estimate changes in storage during wet periods. To provide reliable estimates, several corrections and improvements to classic base flow recession analysis are considered. These corrections and improvements include adaptive time stepping, data binning, and the choice of storage-discharge functions. Our analysis shows that (1) incorporating adaptive time steps to correct for streamflow measurement errors improves the coefficient of determination, (2) the quantile method is best for streamflow data binning, (3) the choice of the regression model is critical when the stage-discharge function is used to predict changes in bedrock storage beyond the maximum observed flow in the catchment, and (4) the use of daily or night-time hourly streamflow does not affect the form of the storage-discharge relationship but will impact MBR estimates because of differences in the observed range of streamflow in each series.

  11. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells

    PubMed Central

    Herrera-Valencia, E. E.; Rey, Alejandro D.

    2014-01-01

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  12. Factors influencing survival of mammalian cells exposed to hypothermia. VI. Effects of prehypothermic hypoxia followed by aerobic or hypoxic storage at various hypothermic temperatures.

    PubMed

    Kruuv, J; Lepock, J R

    1995-04-01

    The Arrhenius plot of inactivation (killing) rates of V-79 Chinese hamster cells exposed to hypothermia in air-equilibrated (aerobic) medium contains a break at about 8 degrees C, which corresponds to the minimum inactivation rate, implying that there are distinct hypothermic damage mechanisms above (range I, 8 to 25 degrees C) and below (range II, 0 to 8 degrees C) 8 degrees C. Prehypothermic hypoxia (PHH) for 75 min at room temperature sensitizes cells to subsequent aerobic hypothermia at both 5 and 10 degrees C (range II and I). However, PHH followed by severe hypoxia (0.03 microM oxygen in the medium) protected cells during 10 degrees C (range I) storage by increasing the shoulder, but not the slope, of the cell survival curve compared to the PHH plus 10 degrees C aerobic hypothermia case. On the other hand, PHH plus severe hypoxia during 5 degrees C storage (range II) protected cells by decreasing the slope, but not the shoulder, of the cell survival curve compared to the PHH plus 5 degrees C aerobic hypothermia case. Furthermore, PHH plus severe hypoxia during 5 degrees C storage was not significantly worse than aerobic storage without PHH at 5 degrees C. With or without severe hypoxia, 10 degrees C storage is preferable to 5 degrees C storage in this cell line. Extrapolated to organ storage, the results may imply that if warm ischemia (PHH) has occurred, subsequent hypoxic hypothermic perfusion storage may be preferable to aerobic hypothermic perfusion storage.

  13. Multiple-Purpose Project. Osage River Basin, Big Bull Creek, Kansas. Hillsdale Lake Operation and Maintenance Manual. Appendix V. Embankment Criteria and Performance Report.

    DTIC Science & Technology

    1984-09-01

    and Mississippi Rivers; provide storage for Increasing low - water flows for the Improvement of water supply, abatement of pollution, and improvement...des Cygnes, Osage and Lower Missourl River. Hillsdale Lake will have storage for sediment, low -flow supplementation, water supply, and flood control...will furnish a water supply withdrawal of 32 cubic feet per second on a 2 percent chance dependability and low flow supplementation of 13 cubic feet

  14. Energy Harvesting Systems and Methods of Assembling Same

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2013-01-01

    A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.

  15. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells

    PubMed Central

    van den Biggelaar, Maartje; Bouwens, Eveline A.M.; Kootstra, Neeltje A.; Hebbel, Robert P.; Voorberg, Jan; Mertens, Koen

    2009-01-01

    Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this study, we explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delivery device with particular reference to long-term production levels, intracellular storage in Weibel-Palade bodies and agonist-induced regulated secretion. Design and Methods Human blood outgrowth endothelial cells were isolated from peripheral blood collected from healthy donors, transduced at passage 5 using a lentiviral vector encoding human B-domain deleted FVIII-GFP and characterized by flow cytometry and confocal microscopy. Results Blood outgrowth endothelial cells displayed typical endothelial morphology and expressed the endothelial-specific marker VWF. Following transduction with a lentivirus encoding FVIII-GFP, 80% of transduced blood outgrowth endothelial cells expressed FVIII-GFP. Levels of FVIII-GFP positive cells declined slowly upon prolonged culturing. Transduced blood outgrowth endothelial cells expressed 1.6±1.0 pmol/1×106 cells/24h FVIII. Morphological analysis demonstrated that FVIII-GFP was stored in Weibel-Palade bodies together with VWF and P-selectin. FVIII levels were only slightly increased following agonist-induced stimulation, whereas a 6- to 8-fold increase of VWF levels was observed. Subcellular fractionation revealed that 15–22% of FVIII antigen was present within the dense fraction containing Weibel-Palade bodies. Conclusions We conclude that blood outgrowth endothelial cells, by virtue of their ability to store a significant portion of synthesized FVIII-GFP in Weibel-Palade bodies, provide an attractive cellular on-demand delivery device for gene therapy of hemophilia A. PMID:19336741

  16. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.

  17. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.

  18. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.

    PubMed

    Cermák, Jan; Kucera, Jiri; Bauerle, William L; Phillips, Nathan; Hinckley, Thomas M

    2007-02-01

    Diurnal and seasonal tree water storage was studied in three large Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) trees at the Wind River Canopy Crane Research site. Changes in water storage were based on measurements of sap flow and changes in stem volume and tissue water content at different heights in the stem and branches. We measured sap flow by two variants of the heat balance method (with internal heating in stems and external heating in branches), stem volume with electronic dendrometers, and tissue water content gravimetrically. Water storage was calculated from the differences in diurnal courses of sap flow at different heights and their integration. Old-growth Douglas-fir trees contained large amounts of free water: stem sapwood was the most important storage site, followed by stem phloem, branch sapwood, branch phloem and needles. There were significant time shifts (minutes to hours) between sap flow measured at different positions within the transport system (i.e., stem base to shoot tip), suggesting a highly elastic transport system. On selected fine days between late July and early October, when daily transpiration ranged from 150 to 300 liters, the quantity of stored water used daily ranged from 25 to 55 liters, i.e., about 20% of daily total sap flow. The greatest amount of this stored water came from the lower stem; however, proportionally more water was removed from the upper parts of the tree relative to their water storage capacity. In addition to lags in sap flow from one point in the hydrolic pathway to another, the withdrawal and replacement of stored water was reflected in changes in stem volume. When point-to-point lags in sap flow (minutes to hours near the top and stem base, respectively) were considered, there was a strong linear relationship between stem volume changes and transpiration. Volume changes of the whole tree were small (equivalent to 14% of the total daily use of stored water) indicating that most stored water came from the stem and from its inelastic (sapwood) tissues. Whole tree transpiration can be maintained with stored water for about a week, but it can be maintained with stored water from the upper crown alone for no more than a few hours.

  19. Diurnal and Seasonal Variation in Sap Flow Among Different Sagebrush Species and Subspecies Along an Elevation Gradient in a Semi-Arid Ecosystem

    NASA Astrophysics Data System (ADS)

    Sharma, H.; Reinhardt, K.; Lohse, K. A.

    2015-12-01

    Sagebrush is a widespread and locally dominant shrub across much of western North America, occupying >66 million ha. Sagebrush steppe provides many important ecosystem services including carbon (C) storage, water storage, and providing critical habitat for several threatened and endangered animal species. At the Reynolds Creek Critical Zone Observatory (RC CZO) in southwestern Idaho, sagebrush is the dominant shrub species across most of the watershed. The research objectives of RC CZO are to quantify soil carbon storage and flux, and the environmental factors governing these from pedon to landscape scales. Sagebrush-steppe ecosystems have been identified as possible future C sinks, but C storage in these water-limited systems is tightly linked to hydroclimate, which is highly variable in space and time. Quantifying soil-plant water relations is essential to understanding C storage in these systems. Stem-heat-balance sap-flow sensors were installed in June 2015 at three sites in RC CZO that had existing meteorological stations and eddy covariance towers. These sites are situated along an elevation gradient from 1417 m to 2111 m. Artemisia tridentata ssp. wyomingenesis, A. arbuscula and A. tridentata ssp. vaseyana at dominate at the lower, middle, and upper sites, respectively. At all three sites, we installed sensors on 5-6 shrubs. Preliminary results indicate greater sap flow velocity in both wyomingenesis and tridentata species than arbuscula. The mean hourly sap flow rates were 2.05±0.12 g/h, 0.33±0.01 g/h and 3.02±0.14 g/h for wyomingenesis, arbuscula, and vaseyana, respectively, during June 26th to July 22nd, 2015. Daily sap flow averaged about 61.56±5.21 g/day, 7.60±0.88 g/day, and 74.60±5.44 g/day, respectively within same time period. Lower soil water content at the middle site seemed to be the cause of lower sap flow velocities in arbuscula. Diurnal patterns in sap flow were similar in all subspecies, with maximum flow velocities recorded between 11 AM to 4 PM. The data suggest that water use in tridentata dominated landscapes may be as much as 10 times greater compared to arbuscula dominated landscapes. Thus presumably, there is greater C storage capacity in tridentata dominated sites.

  20. Long-range, low-cost electric vehicles enabled by robust energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ping; Ross, Russel; Newman, Aron

    2015-09-18

    ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less

  1. Super NiCd Open-Circuit Storage and Low Earth Orbit (LEO) Life Test Evaluation

    NASA Technical Reports Server (NTRS)

    Baer, Jean Marie; Hwang, Warren C.; Ang, Valerie J.; Hayden, Jeff; Rao, Gopalakrishna; Day, John H. (Technical Monitor)

    2002-01-01

    This presentation discusses Air Force tests performed on super NiCd cells to measure their performance under conditions simulating Low Earth Orbit (LEO) conditions. Super NiCd cells offer potential advantages over existing NiCd cell designs including advanced cell design with improved separator material and electrode making processes, but handling and storage requires active charging. These tests conclude that the super NiCd cells support generic Air Force qualifications for conventional LEO missions (up to five years duration) and that handling and storage may not actually require active charging as previously assumed. Topics covered include: Test Plan, Initial Characterization Tests, Open-Circuit Storage Tests, and post storage capacities.

  2. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers

    PubMed Central

    Wu, Yueting; Deng, Wentao; Klinke, David J.

    2016-01-01

    As a type of secreted membrane vesicle, exosomes are an emerging mode of cell-to-cell communication. Yet as exosome samples are commonly contaminated with other extracellular vesicles, the biological roles of exosomes in regulating immunity and promoting oncogenesis remain controversial. Wondering whether existing methods could distort our view of exosome biology, we compared two direct methods for imaging extracellular vesicles and quantified the impact of different production and storage conditions on the quality of exosome samples. Scanning electron microscope (SEM) was compared to transmission electron microscope (TEM) as alternatives to examine the morphology of exosomes. Using SEM, we were able to distinguish exosomes from other contaminating extracellular vesicles based on the size distribution. More importantly, freezing of samples prior to SEM imaging made it more difficult to distinguish exosomes from extracellular vesicles secreted during cell death. In addition to morphology, the quality of RNA contained within the exosomes was characterized under different storage conditions, where freezing of samples also degraded RNA. Finally, we developed a new flow cytometry approach to assay transmembrane proteins on exosomes. While high-copy-number proteins could be readily detected, detecting low-copy-number proteins was improved using a lipophilic tracer that clustered exosomes. To illustrate this, we observed that exosomes derived from SKBR3 cells, a cell model for human HER2+ breast cancer, contained both HER1 and HER2 but at different levels of abundance. Collectively, these new methods will help to ensure a consistent framework to identify specific roles that exosomes play in regulating cell-to-cell communication. PMID:26332016

  3. Biochemical Storage Lesions Occurring in Nonirradiated and Irradiated Red Blood Cells: A Brief Review

    PubMed Central

    Adams, F.; Bellairs, G.; Bird, A. R.; Oguntibeju, O. O.

    2015-01-01

    Red blood cells undergo a series of biochemical fluctuations during 35–42-day storage period at 1°C to 6°C. The sodium/potassium pump is immobilised causing a decrease in intracellular potassium with an increase in cytoplasmic sodium levels, glucose levels decline, and acidosis occurs as a result of low pH levels. The frailty of stored erythrocytes triggers the formation of haemoglobin-containing microparticles and the release of cell-free haemoglobin which may add to transfusion difficulties. Lipid peroxidation, oxidative stress to band 3 structures, and other morphological and structural molecular changes also occur leading to spheroechinocytes and osmotic fragility. These changes that transpire in the red cells during the storage period are referred to as “storage lesions.” It is well documented that gamma irradiation exacerbates storage lesions and the reports of increased potassium levels leading to adverse reactions observed in neonates and infants have been of particular concern. There are, however, remarkably few systematic studies comparing the in vitro storage lesions of irradiated and nonirradiated red cell concentrates and it has been suggested that the impact of storage lesions on leucocyte reduced red blood cell concentrate (RBCC) is incomplete. The review examines storage lesions in red blood cells and their adverse effects in reference to blood transfusion. PMID:25710038

  4. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    NASA Astrophysics Data System (ADS)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  5. Long-term storage of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari

    1987-01-01

    Representative samples of nickel hydrogen cells for the INTELSAT program were used to evaluate the effects of prolonged storage under passive conditions such as open circuit discharged at 0 C, room temperature, and -20 C, and under quasidynamic conditions such as top-off charge and trickle charge. Cell capacity declines when cells are stored open-circuit discharged at room temperature, and a second plateau occurs in the discharge curve. Capacity loss was 47 percent for a cell with hydrogen precharge and 24.5 percent for one with no hydrogen precharge. Capacity recovery was observed following top-off charge storage of cells which had exhibited faded capacity as a result of passive storage at room temperature. Cells stored either at -20 C or on trickle charge maintained their capacity. At 0 C storage, the capacity of all three cells under tests was greater than 55 Ah (which exceeds the required minimum of 44 Ah) after 7 months.

  6. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    USGS Publications Warehouse

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  7. Calcium delivery and storage in plant leaves: exploring the link with water flow.

    PubMed

    Gilliham, Matthew; Dayod, Maclin; Hocking, Bradleigh J; Xu, Bo; Conn, Simon J; Kaiser, Brent N; Leigh, Roger A; Tyerman, Stephen D

    2011-04-01

    Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.

  8. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing.

    PubMed

    Brouwers, Jos F; Silva, Patricia F N; Gadella, Barend M

    2005-01-15

    Reactive oxygen species have been implicated in sperm aberrations causing multiple pathologies including sub- and infertility. Freeze/thawing of sperm samples is routinely performed in the cattle breeding industries for semen storage prior to artificial insemination but unusual in porcine breeding industries as semen dilution and storage at 17 degrees C is sufficient for artificial insemination within 2-3 days. However, longer semen storage requires cryopreservation of boar semen. Freeze/thawing procedures induce sperm damage and induce reactive oxygen species in mammalian sperm and boar sperm seems to be more vulnerable for this than bull sperm. We developed a new method to detect reactive oxygen species induced damage at the level of the sperm plasma membrane in bull sperm. Lipid peroxidation in freshly stored and frozen/thawed sperm cells was assessed by mass spectrometric analysis of the main endogenous lipid classes, phosphatidylcholine and cholesterol and by fluorescence techniques using the lipid peroxidation reporter probe C11-BODIPY(581/591). Peroxidation as reported by the fluorescent probe, clearly corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of lipid peroxidation. This allowed us, for the first time, to correlate endogenous lipid peroxidation with localization of this process in the living sperm cells. Cytoplasmatic droplets in incompletely matured sperm cells were intensely peroxidized. Furthermore, lipid peroxidation was particularly strong in the mid-piece and tail of frozen/thawed spermatozoa and significantly less intense in the sperm head. Induction of peroxidation in fresh sperm cells with the lipid soluble reactive oxygen species tert-butylhydroperoxide gave an even more pronounced effect, demonstrating antioxidant activity in the head of fresh sperm cells. Furthermore, we were able to show using the flow cytometer that spontaneous peroxidation was not a result of cell death, as only a pronounced subpopulation of living cells showed peroxidation after freeze-thawing. Although the method was established on bovine sperm, we discuss the importance of these assays for detecting lipid peroxidation in boar sperm cells.

  9. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.

    PubMed

    Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen

    2013-10-01

    The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage

    PubMed Central

    Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.

    2013-01-01

    Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253

  11. Prolonged red cell storage before transfusion increases extravascular hemolysis

    PubMed Central

    Rapido, Francesca; Brittenham, Gary M.; Bandyopadhyay, Sheila; La Carpia, Francesca; L’Acqua, Camilla; McMahon, Donald J.; Rebbaa, Abdelhadi; Wojczyk, Boguslaw S.; Netterwald, Jane; Wang, Hangli; Schwartz, Joseph; Eisenberger, Andrew; Soffing, Mark; Yeh, Randy; Divgi, Chaitanya; Ginzburg, Yelena Z.; Shaz, Beth H.; Sheth, Sujit; Francis, Richard O.; Spitalnik, Steven L.; Hod, Eldad A.

    2016-01-01

    BACKGROUND. Some countries have limited the maximum allowable storage duration for red cells to 5 weeks before transfusion. In the US, red blood cells can be stored for up to 6 weeks, but randomized trials have not assessed the effects of this final week of storage on clinical outcomes. METHODS. Sixty healthy adult volunteers were randomized to a single standard, autologous, leukoreduced, packed red cell transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage (n = 10 per group). 51-Chromium posttransfusion red cell recovery studies were performed and laboratory parameters measured before and at defined times after transfusion. RESULTS. Extravascular hemolysis after transfusion progressively increased with increasing storage time (P < 0.001 for linear trend in the AUC of serum indirect bilirubin and iron levels). Longer storage duration was associated with decreasing posttransfusion red cell recovery (P = 0.002), decreasing elevations in hematocrit (P = 0.02), and increasing serum ferritin (P < 0.0001). After 6 weeks of refrigerated storage, transfusion was followed by increases in AUC for serum iron (P < 0.01), transferrin saturation (P < 0.001), and nontransferrin-bound iron (P < 0.001) as compared with transfusion after 1 to 5 weeks of storage. CONCLUSIONS. After 6 weeks of refrigerated storage, transfusion of autologous red cells to healthy human volunteers increased extravascular hemolysis, saturated serum transferrin, and produced circulating nontransferrin-bound iron. These outcomes, associated with increased risks of harm, provide evidence that the maximal allowable red cell storage duration should be reduced to the minimum sustainable by the blood supply, with 35 days as an attainable goal. REGISTRATION. ClinicalTrials.gov NCT02087514. FUNDING. NIH grant HL115557 and UL1 TR000040. PMID:27941245

  12. Lightweight bipolar storage battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  13. Storage Characteristics of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Blosiu, J. O.; Surampudi, S.

    2000-01-01

    Lithium ion cells are being developed under the NASA/Air Force Consortium for the upcoming aerospace missions. First among these missions are the Mars 2001 Lander and Mars 2003 Lander and Rover missions. Apart from the usual needs of high specific energy, energy density and long cycle life, a critical performance characteristic for the Mars missions is low temperature performance. The batteries need to perform well at -20 C, with at least 70% of the rated capacity realizable at moderate discharge rates (C/5). Several modifications have been made to the lithium ion chemistry, mainly with respect to the electrolyte, both at JPL' and elsewhere to achieve this. Another key requirement for the battery is its storageability during pre-cruise and cruise periods. For the Mars programs, the cruise period is relatively short, about 12 months, compared to the Outer Planets missions (3-8 years). Yet, the initial results of our storage studies reveal that the cells do sustain noticeable permanent degradation under certain storage conditions, typically of 10% over two months duration at ambient temperatures, attributed to impedance buildup. The build up of the cell impedance or the decay in the cell capacity is affected by various storage parameters, i.e., storage temperature, storage duration, storage mode (open circuit, on buss or cycling at low rates) and state of charge. Our preliminary studies indicate that low storage temperatures and states of charge are preferable. In some cases, we have observed permanent capacity losses of approx. 10% over eight-week storage at 40 C, compared to approx. 0-2% at O C. Also, we are attempting to determine the impact of cell chemistry and design upon the storageability of Li ion cells.

  14. Redox Active Colloids as Discrete Energy Storage Carriers.

    PubMed

    Montoto, Elena C; Nagarjuna, Gavvalapalli; Hui, Jingshu; Burgess, Mark; Sekerak, Nina M; Hernández-Burgos, Kenneth; Wei, Teng-Sing; Kneer, Marissa; Grolman, Joshua; Cheng, Kevin J; Lewis, Jennifer A; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-10-12

    Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.

  15. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.

    PubMed

    Prieto, Auxiliadora; Escapa, Isabel F; Martínez, Virginia; Dinjaski, Nina; Herencias, Cristina; de la Peña, Fernando; Tarazona, Natalia; Revelles, Olga

    2016-02-01

    Polyhydroxyalkanoate (PHA) metabolism has been traditionally considered as a futile cycle involved in carbon and energy storage. The use of cutting-edge technologies linked to systems biology has improved our understanding of the interaction between bacterial physiology, PHA metabolism and other cell functions in model bacteria such as Pseudomonas putida KT2440. PHA granules or carbonosomes are supramolecular complexes of biopolyester and proteins that are essential for granule segregation during cell division, and for the functioning of the PHA metabolic route as a continuous cycle. The simultaneous activities of PHA synthase and depolymerase ensure the carbon flow to the transient demand for metabolic intermediates to balance the storage and use of carbon and energy. PHA cycle also determines the number and size of bacterial cells. The importance of PHAs as nutrients for members of the microbial community different to those that produce them is illustrated here via examples of bacterial predators such as Bdellovibrio bacteriovorus that prey on PHA producers and produces specific extra-cellular depolymerases. PHA hydrolysis confers Bdellovibrio ecological advantages in terms of motility and predation efficiency, demonstrating the importance of PHA producers predation in population dynamics. Metabolic modulation strategies for broadening the portfolio of PHAs are summarized and their properties are compiled. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.

    PubMed

    Mauk, Michael G; Liu, Changchun; Qiu, Xianbo; Chen, Dafeng; Song, Jinzhao; Bau, Haim H

    2017-01-01

    Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.

  17. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    PubMed

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  18. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  19. Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases.

    PubMed

    Son, Donghee; Lee, Jongha; Lee, Dong Jun; Ghaffari, Roozbeh; Yun, Sumin; Kim, Seok Joo; Lee, Ji Eun; Cho, Hye Rim; Yoon, Soonho; Yang, Shixuan; Lee, Seunghyun; Qiao, Shutao; Ling, Daishun; Shin, Sanghun; Song, Jun-Kyul; Kim, Jaemin; Kim, Taeho; Lee, Hakyong; Kim, Jonghoon; Soh, Min; Lee, Nohyun; Hwang, Cheol Seong; Nam, Sangwook; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong

    2015-06-23

    Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.

  20. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  1. Large-scale thermal energy storage using sodium hydroxide /NaOH/

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Truscello, V. C.

    1977-01-01

    A technique employing NaOH phase change material for large-scale thermal energy storage to 900 F (482 C) is described; the concept consists of 12-foot diameter by 60-foot long cylindrical steel shell with closely spaced internal tubes similar to a shell and tube heat exchanger. The NaOH heat storage medium fills the space between the tubes and outer shell. To charge the system, superheated steam flowing through the tubes melts and raises the temperature of NaOH; for discharge, pressurized water flows through the same tube bundle. A technique for system design and cost estimation is shown. General technical and economic properties of the storage unit integrated into a solar power plant are discussed.

  2. Nonvolatile semiconductor memory having three dimension charge confinement

    DOEpatents

    Dawson, L. Ralph; Osbourn, Gordon C.; Peercy, Paul S.; Weaver, Harry T.; Zipperian, Thomas E.

    1991-01-01

    A layered semiconductor device with a nonvolatile three dimensional memory comprises a storage channel which stores charge carriers. Charge carriers flow laterally through the storage channel from a source to a drain. Isolation material, either a Schottky barrier or a heterojunction, located in a trench of an upper layer controllably retains the charge within the a storage portion determined by the confining means. The charge is retained for a time determined by the isolation materials' nonvolatile characteristics or until a change of voltage on the isolation material and the source and drain permit a read operation. Flow of charge through an underlying sense channel is affected by the presence of charge within the storage channel, thus the presences of charge in the memory can be easily detected.

  3. Honey bees preferentially consume freshly-stored pollen

    PubMed Central

    Goodall, Craig; Downs, Alexandra M.; Sheenan, Timothy H.

    2017-01-01

    Honey bees (Apis mellifera) collect and store both honey and pollen in preserved forms. Pollen storage involves the addition of honey or nectar and oral secretions to pollen granules. It is controversial whether the duration of pollen storage alters the palatability or nutritive value of the pollen storage medium. We examined how bees utilize different-aged stored pollen during an extended pollen flow. The deposition of pollen into wax cells and subsequent consumption were monitored daily on 18 brood frames from 6 colonies over an 8d observation period. Despite a greater abundance of older stored pollen cells on brood frames, bees showed a marked preference for the consumption of freshly-stored pollen. Two to four day-old pollen cell contents were significantly more likely to be consumed, while pollen cell contents more than seven days old were eaten at much lower rates. Similar experiments that controlled for cell abundance and spatial effects using cage assays yielded the same result. One day-old stored pollen was consumed approximately three times more often than 10d-old stored pollen, and two times more often than 5d-old stored pollen. These consumption preferences for freshly-stored pollen occurred despite a lack of clear developmental advantages. Young adult workers reared for 7 days on 1d-, 5d-, or 10d-old stored pollen showed no difference in body mass, stored pollen consumption, hindgut fecal material accumulation, or hypopharyngeal gland (HPG) protein titers, suggesting that different-aged pollen stores did not vary in their nutritional value to adult bees. These findings are inconsistent with the hypothesis promoting a period of microbially-mediated, “beebread maturation” that results in greater palatability or nutritive value for aged pollen stores. Rather, stored pollen that is not eaten in the first few days accumulates as excess stores preserved in a less preferred, but nutritionally-similar state. PMID:28430801

  4. Honey bees preferentially consume freshly-stored pollen.

    PubMed

    Carroll, Mark J; Brown, Nicholas; Goodall, Craig; Downs, Alexandra M; Sheenan, Timothy H; Anderson, Kirk E

    2017-01-01

    Honey bees (Apis mellifera) collect and store both honey and pollen in preserved forms. Pollen storage involves the addition of honey or nectar and oral secretions to pollen granules. It is controversial whether the duration of pollen storage alters the palatability or nutritive value of the pollen storage medium. We examined how bees utilize different-aged stored pollen during an extended pollen flow. The deposition of pollen into wax cells and subsequent consumption were monitored daily on 18 brood frames from 6 colonies over an 8d observation period. Despite a greater abundance of older stored pollen cells on brood frames, bees showed a marked preference for the consumption of freshly-stored pollen. Two to four day-old pollen cell contents were significantly more likely to be consumed, while pollen cell contents more than seven days old were eaten at much lower rates. Similar experiments that controlled for cell abundance and spatial effects using cage assays yielded the same result. One day-old stored pollen was consumed approximately three times more often than 10d-old stored pollen, and two times more often than 5d-old stored pollen. These consumption preferences for freshly-stored pollen occurred despite a lack of clear developmental advantages. Young adult workers reared for 7 days on 1d-, 5d-, or 10d-old stored pollen showed no difference in body mass, stored pollen consumption, hindgut fecal material accumulation, or hypopharyngeal gland (HPG) protein titers, suggesting that different-aged pollen stores did not vary in their nutritional value to adult bees. These findings are inconsistent with the hypothesis promoting a period of microbially-mediated, "beebread maturation" that results in greater palatability or nutritive value for aged pollen stores. Rather, stored pollen that is not eaten in the first few days accumulates as excess stores preserved in a less preferred, but nutritionally-similar state.

  5. Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1980-01-01

    The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.

  6. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries

    PubMed Central

    2018-01-01

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application. PMID:29532018

  7. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendriks, Koen H.; Robinson, Sophia G.; Braten, Miles N.

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation whilemore » maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. Finally, these studies provide a template for the future design of other redox-active oligomers for this application.« less

  8. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    PubMed

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  9. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries

    DOE PAGES

    Hendriks, Koen H.; Robinson, Sophia G.; Braten, Miles N.; ...

    2018-01-17

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation whilemore » maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. Finally, these studies provide a template for the future design of other redox-active oligomers for this application.« less

  10. Bibliography on Tidal Hydraulics. Supplementary Material Compiled from June 1983 to June 1986. Tidal Flows in Rivers and Harbors. Supplement Number 10.

    DTIC Science & Technology

    1987-06-01

    Section VIII.) the total time. The reverse of this cir- culation (surface inflow, outflow at Edinger, J. E., and Buchak, E. M. "Estu- depth) and storage ...respect to their applicabil- Attempts have been made to determine the ity. Hourly sampled 70-hours time series flow characteristics in the estuary, ana- of...Integration Using Pumped Storage ." cient equations, it is obvious that the (See complete entry in Section V.) flow will not be properly simulated with

  11. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  12. Design of electrolyzer for carbon dioxide conversion to fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Rosen, Jonathan S.

    The stabilization of global atmospheric CO2 levels requires a transition towards a renewable energy based economy as well as methods for handling current CO2 output from fossil fuels. Challenges with renewable energy intermittency have thus far limited the use of these alternative energy sources to only a fraction of the current energy portfolio. To enable more widespread use of renewable energy systems, methods of large scale energy storage must be developed to store excess renewable energy when demand is low and allow for combined use of energy storage and renewable systems when demand is high. To date, no one technique has demonstrated energy storage methods on the gigawatt scale needed for integration with renewable sources; therefore the development of suitable energy storage technologies, such as CO2 electrolysis to fuels is needed. In this work, research efforts have focused on two major thrusts related to electrochemical methods of CO 2 conversion to fuels. The first thrust focuses on the synthesis and design of highly efficient anode and cathode catalysts with emphasis on understanding structure-property relationships. A second thrust focuses on the design of novel electrochemical devices for CO2 conversion and integration of synthesized materials into flow cell systems. On the anode side, the synthesis of highly active catalysts using abundant transition metals is crucial to reducing capital costs and enabling widespread use of electrochemical CO2 conversion devices. Highly active mesoporous Co3O4 and metal-substituted Co3O4 water oxidation catalysts were designed to investigate the role of the spinel structure on water oxidation activity. Further analysis of metal substituted samples reveal the importance of the octahedral sites in the spinel structure, which was later used to design an Mg-Co3O4 sample with improved water oxidation activity. The design of efficient cathode materials which can selectivity reduce CO2 to fuels and chemicals is critical to the widespread use of CO2 electrolysis. A nanoporous Ag material was synthesized through a dealloying technique able to operate with less than 0.5 V overpotential and high selectivity towards CO. CO is a valuable intermediate chemical which can used in Fischer-Tropsch or Gas-to-liquids technologies to produce liquids fuels. A detailed investigation of nanostructured Ag catalysts found stepped sites to be responsible for enhanced CO2 reduction activity due to improved stabilization of the COOH intermediate on the catalyst surface. In addition, an low-cost Zn dendrite electrocatalyst was developed using an electroplating technique. Low coordinated sites formed through electrodeposition demonstrated the suppression of hydrogen evolution while maintaining CO activity. The Zn dendrite electrocatalyst was further examined using a newly developed in situ X-ray absorption technique able to probe catalyst stability and crystalline structure under CO2 reduction operating conditions. A final hurdle in the realization of CO2 electrolysis technologies is the integration of catalysts into working flow cell devices. To address this issue and enable testing in a practical system, a highly efficient and robust CO2 electrolysis flow cell was designed including the scale up of the previous nanoporous Ag synthesis procedure. Using the modified porous Ag catalyst, currents in the Amp regime were demonstrated approaching rates needed for energy storage applications. Stability on the order of days was successfully demonstrated due to use of robust system components and conditions suitable for process scale up.

  13. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  14. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  15. Preservation media, durations and cell concentrations of short-term storage affect key features of human adipose-derived mesenchymal stem cells for therapeutic application.

    PubMed

    Zhang, Fengli; Ren, Huaijuan; Shao, Xiaohu; Zhuang, Chao; Chen, Yantian; Qi, Nianmin

    2017-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) have shown great potential in the treatment of various diseases. However, the optimum short-term storage condition of ADSCs in 2∼8 °C is rarely reported. This study aimed at optimizing a short-term storage condition to ensure the viability and function of ADSCs before transplantation. Preservation media and durations of storage were evaluated by cell viability, apoptosis, adhesion ability and colony-forming unit (CFU) capacity of ADSCs. The abilities of cell proliferation and differentiation were used to optimize cell concentrations. Optimized preservation condition was evaluated by cell surface markers, cell cycle and immunosuppressive capacity. A total of 5% human serum albumin in multiple electrolytes (ME + HSA) was the optimized medium with high cell viability, low cluster rate, good adhesion ability and high CFU capacity of ADSCs. Duration of storage should be limited to 24 h to ensure the quality of ADSCs before transplantation. A concentration of 5 × 10 6 cells/ml was the most suitable cell concentration with low late stage apoptosis, rapid proliferation and good osteogenic and adipogenic differentiation ability. This selected condition did not change surface markers, cell cycle, indoleamine 2, 3-dioxygenase 1 (IDO1) gene expression and kynurenine (Kyn) concentration significantly. In this study, ME + HSA was found to be the best medium, most likely due to the supplement of HSA which could protect cells, the physiological pH (7.4) of ME and sodium gluconate ingredient in ME which could provide energy for cells. Duration should be limited to 24 h because of reduced nutrient supply and increased waste and lactic acid accumulation during prolonged storage. To keep cell proliferation and limit lactic acid accumulation, the proper cell concentration is 5× 10 6 cells/ml. Surface markers, cell cycle and immunosuppressive capacity did not change significantly after storage using the optimized condition, which confirmed our results that this optimized short-term storage condition of MSCs has a great potential for the application of cell therapy.

  16. Sensitivity analysis of a multilayer, finite-difference model of the Southeastern Coastal Plain regional aquifer system; Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Pernik, Meribeth

    1987-01-01

    The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)

  17. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.

  18. Effect of storage in short--and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa.

    PubMed

    De Ambrogi, Marco; Ballester, Juan; Saravia, Fernando; Caballero, Ignacio; Johannisson, Anders; Wallgren, Margareta; Andersson, Magnus; Rodriguez-Martinez, Heriberto

    2006-10-01

    For artificial insemination (AI) in pigs, preservation of liquid boar semen at 16-20 degrees C is still common practice as sperm cryopreservation remains suboptimal in this species. To meet the different needs of the swine industry, several extenders have been developed to preserve semen in liquid form for short--and long-term storage. In the present study, three different commercial extenders devised for short-term (BTS+) or long-term preservation (MR-A and X-Cell), were used to test whether storage of semen from four mature, fertile boars at 17 degrees C for 96 h would affect sperm characteristics relevant for fertility, such as motility, membrane integrity and chromatin stability. Computer-assisted sperm analysis, and stainings with the acylated membrane dye SYBR-14/propidium iodide, and acridine orange in connection with flow cytometry were used to evaluate these variables. Percentages of total motile spermatozoa decreased slightly, but significantly, after 72-96 h. While membrane integrity values varied during the period of study, no significant changes in either membrane integrity or chromatin stability were, however, registered. This suggests a customary 96-day storage at 17 degrees C in these extenders was too short an interval to cause losses of integrity in nuclear DNA in the boar population studied.

  19. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    NASA Astrophysics Data System (ADS)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed. The experimental data were then used as a benchmark for this model based on a balance of three forces: capillarity force, gravity force and pressure drop induced by the liquid flow.

  20. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  1. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    PubMed

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  2. Performance characteristics of lithium primary cells after controlled storage. [on-orbit for energy power supply

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Shen, D. H.; Halpert, G.; Ang, V.; Donley, S.

    1991-01-01

    A program was initiated to investigate the effects of storage on the performance of lithium primary cells. Two types of liquid cathode cells were chosen to investigate these effects. The cell types included Li-SOCl2/BCX cells, Li-SO2 cells from two different manufacturers, and a small sample size of 8-year-old Li-SO2 cells. The following measurements are performed at each test interval: open circuit voltage, resistance and weight, microcalorimetry, ac impedance, capacity, and voltage delay. The authors examine the performance characteristics of these cells after one year of controlled storage at two temperatures (10 and 30 C). The Li-SO2 cells experienced little to no voltage and capacity degradation after one year storage. The Li-SOCl2/BCX cells exhibited significant voltage and capacity degradation after 30 C storage. Predischarging shortly prior to use appears to be an effective method of reducing the initial voltage drop. Studies are in progress to correlate ac impedance and microcalorimetry measurements with capacity losses and voltage delay.

  3. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality.

    PubMed

    Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M

    2014-04-01

    Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and red blood cell concentrates for specific groups of patients.

  4. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  5. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions

    PubMed Central

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja

    2018-01-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec−1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec−1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production—as elicited by an inhibitor of the respiratory chain, antimycin A—can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions. PMID:29390882

  6. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions.

    PubMed

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja; Rauen, Ursula

    2017-12-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/10 6 cells after cold storage, 5 ± 3 nmol/10 6 cells after rewarming vs. control 29 ± 6 nmol/10 6 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec -1 per 10 6 cells after rewarming vs. control 232 ± 83 pmol sec -1 per 10 6 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/10 6 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.

  7. Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, S.; Gibson, J.

    1995-02-01

    In 1992, a sinkhole was discovered above a Strategic Petroleum Reserve storage facility at Weeks Island, Louisiana. The oil is stored in an old salt mine located within a salt dome. In order to assess the hydrologic significance of the sink hole, an In Situ Permeable Flow Sensor was deployed within a sand-filled conduit in the salt dome directly beneath the sinkhole. The flow sensor is a recently developed instrument which uses a thermal perturbation technique to measure the magnitude and direction of the full 3-dimensional groundwater flow velocity vector in saturated, permeable materials. The flow sensor measured substantial groundwatermore » flow directed vertically downward into the salt dome. The data obtained with the flow sensor provided critical evidence which was instrumental in assessing the significance of the sinkhole in terms of the integrity of the oil storage facility.« less

  8. Evaluation program for secondary spacecraft cells: Evaluation of storage methods, open circuit versus continuous trickle charge, Sonotone 3.5 ampere-hour sealed nickel-cadmium secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Thomas, R. E.

    1972-01-01

    Twenty-five cells were used in a five-year test to compare, after each successive one-year storage period, the discharge and charge characteristics of charged cells on open circuit versus that of cells on continuous trickle charge. The test procedure, instrumentation, and results are described. Based on the test results, the following recommendations were made: (1) If the user's purpose will allow a rejuvenation cycle or two after a long storage period, the open circuit regime will likely give slightly greater capacity. (2) If the user's purpose demands immediately available power following a long storage period, the trickle charge method of storage is definitely the regime to use.

  9. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    PubMed

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  10. Natural Flood Management Plus: Scaling Up Nature Based Solutions to Larger Catchments

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Nicholson, Alex; Adams, Russ

    2017-04-01

    It has been established that networks NFM features, such as ponds and wetlands, can have a significant effect on flood flow and pollution at local scales (less than 10km2). However, it is much less certain that NFM and NBS can impact at larger scales and protect larger cities. This is especially true for recent storms in the UK such as storm Desmond that caused devastation across the north of England. It is possible using observed rainfall and runoff data to estimate the amounts of storage that would be required to impact on extreme flood events. Here we will how a toolkit that will estimate the amount of storage that can be accrued through a dense networks of NFM features. The analysis suggest that the use of many hundreds of small NFM features can have a significant impact on peak flow, however we still require more storage in order to address extreme events and to satisfy flood engineers who may propose more traditional flood defences. We will also show case studies of larger NFM feature positioned on flood plains that can store significantly more flood flow. Examples designs of NFM plus feature will be shown. The storage aggregation tool will then show the degree to which storing large amounts of flood flow in NFM plus features can contribute to flood management and estimate the likely costs. Together smaller and larger NFM features if used together can produce significant flood storage and at a much lower cost than traditional schemes.

  11. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  12. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  13. KSC-pa99dig02

    NASA Image and Video Library

    1999-02-17

    Various materials are ready for testing in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development

  14. KSC-pa99dig01

    NASA Image and Video Library

    1999-02-17

    Materials are being tested in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development

  15. Energy Storage for the Power Grid

    ScienceCinema

    Imhoff, Carl; Vaishnav, Dave; Wang, Wei

    2018-05-30

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  16. Incorporating the Impacts of Small Scale Rock Heterogeneity into Models of Flow and Trapping in Target UK CO2 Storage Systems

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Reynolds, C.; Krevor, S. C.

    2017-12-01

    Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the Captain sandstone. At low capillary numbers, typical of regions where flow is dominated by buoyancy, fluid flow is impeded and trapping enhanced. At high capillary numbers, typical of the near wellbore environment, the fluid distributed homogeneously and the equivalent relative permeability was higher leading to improved injectivity.

  17. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    NASA Astrophysics Data System (ADS)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  18. Energy Storage Requirements & Challenges for Ground Vehicles

    DTIC Science & Technology

    2010-03-18

    Titinate Evaluation Cell Evaluation Battery Aging Phenomenon Battery SOC/SOH Determination Modeling ARM 100 LiIon APU Lion Cell Evaluation Cell...Advanced Batteries Fuels Th er m al Ma na ge m en t Radiators Heat Recovery Thermal Interface Materials Phase Change Cooling Advanced Electronics...in all energy storage Energy Storage Team Mission Battery Technology Evaluation Lab Module Test & Eval Cell Test & Eval 6UNCLASSIFIED Pacing Vehicle

  19. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  20. Analysis of flow near a dug well in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Sridharan, K.; Sathyanarayana, D.; Reddy, A. Siva

    1990-11-01

    A numerical analysis of flow to a dug well in an unconfined aquifer is made, taking into account well storage, elastic storage release, gravity drainage, anisotropy, partial penetration, vertical flow and seepage surface at the well face, and treating the water table in the aquifer and water level in the well as unknown boundaries. The pumped discharge is maintained constant. The solution is obtained by a two-level iterative scheme. The effects of governing parameters on the drawdown, development of seepage surface and contribution from aquifer flow to the total discharge are discussed. The degree of anisotropy and partial penetration are found to be the parameters which affect the flow characteristics most significantly. The effect of anisotropy on the development of seepage surface is very pronounced.

  1. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.D.; Collins, J.L.

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less

  2. “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.

    Redox-active organic materials (ROMs) have shown great promise for redox flow battery applications but generally encounter limited cycling efficiency and stability at relevant redox material concentrations in nonaqueous systems. Here we report a new heterocyclic organic anolyte molecule, 2,1,3-benzothiadiazole, that has high solubility, a low redox potential, and fast electrochemical kinetics. Coupling it with a benchmark catholyte ROM, the nonaqueous organic flow battery demonstrated significant improvement in cyclable redox material concentrations and cell efficiencies compared to the state-of-the-art nonaqueous systems. Especially, this system produced exceeding cyclability with relatively stable efficiencies and capacities at high ROM concentrations (>0.5 M), which ismore » ascribed to the highly delocalized charge densities in the radical anions of 2,1,3-benzothiadiazole, leading to good chemical stability. As a result, this material development represents significant progress toward promising next-generation energy storage.« less

  3. Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.

    PubMed

    Song, Yongchen; Jiang, Lanlan; Liu, Yu; Yang, Mingjun; Zhou, Xinhuan; Zhao, Yuechao; Dou, Binlin; Abudula, Abuliti; Xue, Ziqiu

    2014-06-01

    The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2-water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2-water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  4. Bypass apparatus and method for series connected energy storage devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik

    2000-01-01

    A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.

  5. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  6. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. Assessment of changes in plasma hemoglobin and potassium levels in red cell units during processing and storage.

    PubMed

    Saini, Nishant; Basu, Sabita; Kaur, Ravneet; Kaur, Jasbinder

    2015-06-01

    Red cell units undergo changes during storage and processing. The study was planned to assess plasma potassium, plasma hemoglobin, percentage hemolysis during storage and to determine the effects of outdoor blood collection and processing on those parameters. Blood collection in three types of blood storage bags was done - single CPDA bag (40 outdoor and 40 in-house collection), triple CPD + SAGM bag (40 in-house collection) and quadruple CPD + SAGM bag with integral leukoreduction filter (40 in-house collection). All bags were sampled on day 0 (day of collection), day 1 (after processing), day 7, day 14 and day 28 for measurement of percentage hemolysis and potassium levels in the plasma of bag contents. There was significant increase in percentage hemolysis, plasma hemoglobin and plasma potassium level in all the groups during storage (p < 0.001). No significant difference was found between any parameter analyzed for outdoor and in-house collected single CPDA red cell units. There was significant lower percentage hemolysis (p < 0.001) and potassium (day 7 to day 14 - p < 0.05 and day 14 to day 28 - p < 0.001) in red cell units from day 7 onward until day 28 of storage in the leukoreduced quadruple bag as compared to the triple bag. The in-house single CPDA red cell units showed significantly more hemolysis (p < 0.001) as compared to the triple bags with SAGM additive solution after 28 days of storage. There is gradual increase in plasma hemoglobin and plasma potassium levels during the storage of red blood cells. Blood collection can be safely undertaken in outdoor blood donation camps even in hot summer months in monitored blood transport boxes. SAGM additive solution decreases the red cell hemolysis and allows extended storage of red cells. Prestorage leukoreduction decreases the red cell hemolysis and improves the quality of blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  10. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  11. Regulation of tissue factor in NT2 germ cell tumor cells by cisplatin chemotherapy.

    PubMed

    Jacobsen, Christine; Oechsle, Karin; Hauschild, Jessica; Steinemann, Gustav; Spath, Brigitte; Bokemeyer, Carsten; Ruf, Wolfram; Honecker, Friedemann; Langer, Florian

    2015-09-01

    Patients with germ cell tumors (GCTs) receiving cisplatin-based chemotherapy are at increased risk of thrombosis, but the underlying cellular and molecular mechanisms remain obscure. To study baseline tissue factor (TF) expression by GCT cell lines and its modulation by cisplatin treatment. TF expression was assessed by single-stage clotting and thrombin generation assay, flow cytometry, ELISA, and Western blot analysis. Cell cycle analysis and detection of phosphatidylserine (PS) membrane exposure were carried out by flow cytometry. TF mRNA was analyzed by quantitative RT-PCR. Significant expression of TF-specific procoagulant activity (PCA) was detected on three non-seminoma (NT2, 2102Ep, NCCIT) and one seminoma cell line (TCam-2). Treatment with 0.4μM cisplatin (corresponding to the IC50) for 48hrs increased TF PCA on NT2 cells 3-fold, an effect that was largely independent of PS exposure and that could not be explained by translocation of active TF from intracellular storage pools. Cisplatin-induced TF PCA expression in NT2 cells did not occur before 12hrs, but was steady thereafter and accompanied by a 2-fold increase in total and surface-located TF antigen. Importantly, increased TF gene transcription or production and release of an intermediate factor were not involved in this process. Cell cycle analysis suggested that cisplatin-induced G2/M arrest resulted in an accumulation of procoagulant TF on the membrane surface of NT2 cells. In addition to induction of apoptosis/necrosis with PS-mediated activation of preformed TF, cisplatin may alter the procoagulant phenotype of GCT cells through an increase in total cellular TF antigen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma.

    PubMed

    Li, Congfen; Takahashi, Chikara; Zhang, Liangxuan; Huseni, Mahrukh; Stankovich, Basha; Mashhedi, Haider; Lee, Joanna; French, Dorothy; Anderson, Jeff Eastham; Kim, Doris; Howell, Kathy; Brauer, Matthew J; Kowanetz, Marcin; Yan, Yibing; Humke, Eric; Ebens, Allen; Hampton, Garret; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2013-03-23

    The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials.

  13. Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

    PubMed Central

    2013-01-01

    Background The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients. Methods We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application. Results The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials. PMID:23522020

  14. A Simplified Model for Multiphase Leakage through Faults with Applications for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Watson, F. E.; Doster, F.

    2017-12-01

    In the context of geological CO2 storage, faults in the subsurface could affect storage security by acting as high permeability pathways which allow CO2 to flow upwards and away from the storage formation. To assess the likelihood of leakage through faults and the impacts faults might have on storage security numerical models are required. However, faults are complex geological features, usually consisting of a fault core surrounded by a highly fractured damage zone. A direct representation of these in a numerical model would require very fine grid resolution and would be computationally expensive. Here, we present the development of a reduced complexity model for fault flow using the vertically integrated formulation. This model captures the main features of the flow but does not require us to resolve the vertical dimension, nor the fault in the horizontal dimension, explicitly. It is thus less computationally expensive than full resolution models. Consequently, we can quickly model many realisations for parameter uncertainty studies of CO2 injection into faulted reservoirs. We develop the model based on explicitly simulating local 3D representations of faults for characteristic scenarios using the Matlab Reservoir Simulation Toolbox (MRST). We have assessed the impact of variables such as fault geometry, porosity and permeability on multiphase leakage rates.

  15. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation

    PubMed Central

    Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.

    2012-01-01

    In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214

  16. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    PubMed

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  17. Effect of culture residence time on substrate uptake and storage by a pure culture of Thiothrix (CT3 strain) under continuous or batch feeding.

    PubMed

    Valentino, Francesco; Beccari, Mario; Villano, Marianna; Tandoi, Valter; Majone, Mauro

    2017-05-25

    A pure culture of the filamentous bacterium Thiothrix, strain CT3, was aerobically cultured in a chemostat under continuous acetate feeding at three different culture residence times (RT 6, 12 or 22 d) and the same volumetric organic load rate (OLR 0.12gCOD/L/d). Cells cultured at decreasing RT in the chemostat had an increasing transient response to acetate spikes in batch tests. The maximum specific acetate removal rate increased from 25 to 185mgCOD/gCOD/h, corresponding to a 1.8 to 8.1 fold higher respective steady-state rate in the chemostat. The transient response was mainly due to acetate storage in the form of poly(3-hydroxybutyrate) (PHB), whereas no growth response was observed at any RT. Interestingly, even though the storage rate also decreased as the RT increased, the storage yield increased from 0.41 to 0.50 COD/COD. This finding does not support the traditional view that storage plays a more important role as the transient response increases. The transient response of the steady-state cells was much lower than in cells cultured under periodic feeding (at 6 d RT, from 82 to 247mgCOD/gCOD/h), with the latter cells showing both storage and growth responses. On the other hand, even though steady-state cells had no growth response and their storage rate was also less, steady-state cells showed a higher storage yield than cells cultured under dynamic feeding. This suggests that in Thiothrix strain CT3, the growth response is triggered by periodic feeding, whereas the storage response is a constitutive mechanism, independent from previous acclimation to transient conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo

    2017-01-01

    The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.

  19. An analytical study of reduced-gravity liquid reorientation using a simplified marker and cell technique

    NASA Technical Reports Server (NTRS)

    Betts, W. S., Jr.

    1972-01-01

    A computer program called HOPI was developed to predict reorientation flow dynamics, wherein liquids move from one end of a closed, partially filled, rigid container to the other end under the influence of container acceleration. The program uses the simplified marker and cell numerical technique and, using explicit finite-differencing, solves the Navier-Stokes equations for an incompressible viscous fluid. The effects of turbulence are also simulated in the program. HOPI can consider curved as well as straight walled boundaries. Both free-surface and confined flows can be calculated. The program was used to simulate five liquid reorientation cases. Three of these cases simulated actual NASA LeRC drop tower test conditions while two cases simulated full-scale Centaur tank conditions. It was concluded that while HOPI can be used to analytically determine the fluid motion in a typical settling problem, there is a current need to optimize HOPI. This includes both reducing the computer usage time and also reducing the core storage required for a given size problem.

  20. Effects of red-cell storage duration on patients undergoing cardiac surgery.

    PubMed

    Steiner, Marie E; Ness, Paul M; Assmann, Susan F; Triulzi, Darrell J; Sloan, Steven R; Delaney, Meghan; Granger, Suzanne; Bennett-Guerrero, Elliott; Blajchman, Morris A; Scavo, Vincent; Carson, Jeffrey L; Levy, Jerrold H; Whitman, Glenn; D'Andrea, Pamela; Pulkrabek, Shelley; Ortel, Thomas L; Bornikova, Larissa; Raife, Thomas; Puca, Kathleen E; Kaufman, Richard M; Nuttall, Gregory A; Young, Pampee P; Youssef, Samuel; Engelman, Richard; Greilich, Philip E; Miles, Ronald; Josephson, Cassandra D; Bracey, Arthur; Cooke, Rhonda; McCullough, Jeffrey; Hunsaker, Robert; Uhl, Lynne; McFarland, Janice G; Park, Yara; Cushing, Melissa M; Klodell, Charles T; Karanam, Ravindra; Roberts, Pamela R; Dyke, Cornelius; Hod, Eldad A; Stowell, Christopher P

    2015-04-09

    Some observational studies have reported that transfusion of red-cell units that have been stored for more than 2 to 3 weeks is associated with serious, even fatal, adverse events. Patients undergoing cardiac surgery may be especially vulnerable to the adverse effects of transfusion. We conducted a randomized trial at multiple sites from 2010 to 2014. Participants 12 years of age or older who were undergoing complex cardiac surgery and were likely to undergo transfusion of red cells were randomly assigned to receive leukocyte-reduced red cells stored for 10 days or less (shorter-term storage group) or for 21 days or more (longer-term storage group) for all intraoperative and postoperative transfusions. The primary outcome was the change in Multiple Organ Dysfunction Score (MODS; range, 0 to 24, with higher scores indicating more severe organ dysfunction) from the preoperative score to the highest composite score through day 7 or the time of death or discharge. The median storage time of red-cell units provided to the 1098 participants who received red-cell transfusion was 7 days in the shorter-term storage group and 28 days in the longer-term storage group. The mean change in MODS was an increase of 8.5 and 8.7 points, respectively (95% confidence interval for the difference, -0.6 to 0.3; P=0.44). The 7-day mortality was 2.8% in the shorter-term storage group and 2.0% in the longer-term storage group (P=0.43); 28-day mortality was 4.4% and 5.3%, respectively (P=0.57). Adverse events did not differ significantly between groups except that hyperbilirubinemia was more common in the longer-term storage group. The duration of red-cell storage was not associated with significant differences in the change in MODS. We did not find that the transfusion of red cells stored for 10 days or less was superior to the transfusion of red cells stored for 21 days or more among patients 12 years of age or older who were undergoing complex cardiac surgery. (Funded by the National Heart, Lung, and Blood Institute; RECESS ClinicalTrials.gov number, NCT00991341.).

  1. Effect of Storage Temperature on Structure and Function of Cultured Human Oral Keratinocytes

    PubMed Central

    Islam, Rakibul; Jackson, Catherine; Eidet, Jon R.; Messelt, Edward B.; Corraya, Rima Maria; Lyberg, Torstein; Griffith, May; Dartt, Darlene A.; Utheim, Tor P.

    2015-01-01

    Purpose/Aims To assess the effect of storage temperature on the viability, phenotype, metabolism, and morphology of cultured human oral keratinocytes (HOK). Materials and Methods Cultured HOK cells were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium (MEM) at nine temperatures in approximately 4°C increments from 4°C to 37°C for seven days. Cells were characterized for viability by calcein fluorescence, phenotype retention by immunocytochemistry, metabolic parameters (pH, glucose, lactate, and O2) within the storage medium by blood gas analysis, and morphology by scanning electron microscopy and light microscopy. Results Relative to the cultured, but non-stored control cells, a high percentage of viable cells were retained only in the 12°C and 16°C storage groups (85%±13% and 68%±10%, respectively). Expression of ABCG2, Bmi1, C/EBPδ, PCNA, cytokeratin 18, and caspase-3 were preserved after storage in the 5 groups between 4°C and 20°C, compared to the non-stored control. Glucose, pH and pO2 in the storage medium declined, whereas lactate increased with increasing storage temperature. Morphology was best preserved following storage of the three groups between 12°C, 16°C, and 20°C. Conclusion We conclude that storage temperatures of 12°C and 16°C were optimal for maintenance of cell viability, phenotype, and morphology of cultured HOK. The storage method described in the present study may be applicable for other cell types and tissues; thus its significance may extend beyond HOK and the field of ophthalmology. PMID:26052937

  2. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications

    PubMed Central

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria

    2017-01-01

    Abstract Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so‐called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3CN)4]PF6‐catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. PMID:28644559

  3. Compressed gas manifold

    DOEpatents

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  4. Surface water storage capacity of twenty tree species in Davis, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  5. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  6. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  7. Growth Characteristics of Organisms

    NASA Astrophysics Data System (ADS)

    Gatenby, Robert A.; Frieden, B. Roy

    In this chapter a systems viewpoint is taken of the growth characteristics of normal and malignant tissue. We find that such growth is well analyzed by the concepts of Shannon and Fisher information. In Section 3.1 conventional mechanisms of information transmission via DNA, RNA, and proteins are identified, as well as unconventional structures such as lipids and ion gradients. Information storage, flow, and utilization are analyzed, both within cells and over a system of cells. In Section 3.2, malignant tissue growth is found to be accurately described by the use of Fisher information in particular. Cancer growth is seen to occur as a disease of information, in fact an information catastrophe due to the regression of cells to a minimally ordered state consistent with life. The analysis yields many predictions about the growth of healthy tissue and cancerous tissue, some of which are nonintuitive and have a strong bearing on cancer diagnosis and treatment.

  8. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  9. A novel iron-lead redox flow battery for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  10. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  11. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 1

    DTIC Science & Technology

    1990-01-01

    There are three above ground storage tanks for the storage of JP-4 jet fuel with ancillary piping, pumps, loading and unloading facilities, and...time daily basis. Workers are present to transfer jet fuel from delivery tncks to the storage tanks and from the storage tanks to fueling trucks...Ground-water flow and contaminant migration at Site 4, the fuel storage area, is generally toward the drainage ditch located immediately north of the

  12. Data storage technology comparisons

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1990-01-01

    The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.

  13. Specimen Sample Preservation for Cell and Tissue Cultures

    NASA Technical Reports Server (NTRS)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  14. Mechanical properties of stored red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  15. Does Don Fisher's high-pressure manifold model account for phloem transport and resource partitioning?

    PubMed Central

    Patrick, John W.

    2013-01-01

    The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields. PMID:23802003

  16. Effect of postmortem time interval on in vitro culture potential of goat skin tissues stored at room temperature.

    PubMed

    Singh, Mahipal; Ma, Xiaoling; Sharma, Anil

    2012-09-01

    Animal cloning using somatic cell nuclear transfer technology has renewed the interest in postmortem tissue storage, since these tissues can be used to reintroduce the lost genes back into the breeding pool in animal agriculture, preserve the genetic diversity, and revive the endangered species. However, for successful cloning of animals, integrity of nuclear DNA is essential. Cell viability and their potential to in vitro culture ensure nuclear integrity. The aim of this study was to determine the limits of postmortem time interval within which live cells can be recovered from goat skin tissues. To test the postmortem tissue storage limits, we cultured 2-3 mm(2) skin pieces (n = 70) from the ears of three breeds of goats (n = 7) after 0, 2, 4, and 6 days of postmortem storage at 24°C. After 10 days of culture, outgrowth of fibroblast-like cells (>50 cells) around the explants was scored. All the explants irrespective of breed displayed outgrowth of cells on the dish containing fresh tissues (i.e., day 0 of storage). However, the number of explants exhibiting outgrowth reduced with increasing time interval. Only 53.85 % explants displayed outgrowth after 2 days of tissue storage. The number of explants displaying outgrowth was much smaller after 4 (16.67 %) and 6 days (13.3 %) of storage. In general, the number of outgrowing cells per explant, on a given day, also decreased with increasing postmortem storage time interval. To test the differences between cell cultures, we established secondary cultures from one of the goats exhibiting outgrowth of cells after 6 days of tissue storage and compared them to similar cells from fresh tissues. Comparison of both the cell lines revealed similar cell morphology and growth curves and had doubling times of 23.04 and 22.56 h, respectively. These results suggest that live cells can be recovered from goat (and perhaps other animal) tissues stored at room temperature even after 6 days of their death with comparable growth profiles and, thus, can be used for tissue banking for preservation of superior genetics, genetic diversity, and cloning of animals.

  17. PHYSIOLOGICAL, CYTOLOGICAL AND BIOCHEMICAL STABILITY OF Medicago sativa L. CELL CULTURE AFTER 27 YEARS OF CRYOGENIC STORAGE.

    PubMed

    Volkova, L A; Urmantseva, V V; Popova, E V; Nosov, A M

    2015-01-01

    The efficiency of long-term cryogenic storage to prevent somaclonal variations in plant cell cultures and retain their major cytogenetic and biochemical traits remains under debate. In particular, it is not clear how stress conditions associated with cryopreservation, such as low temperature, dehydration and toxic action of some cryoprotectants (DMSO in particular), affect post-storage regrowth and genetic integrity of cell samples. We assessed growth, cytogenetic and biochemical characteristics of the peroxidase-producing strain of Medicago sativa L. cell culture recovered after 27 years of cryogenic storage as compared to the same culture before cryopreservation. In 1984, M. sativa L. cell culture was cryopreserved using programmed freezing and 7% DMSO as a cryoprotectant. In 2011, after rewarming in a water bath at 40 degree C for 90 s, cell culture was recovered and proliferated. Viability, growth profile, mitotic index, ploidy level, peroxidase activity and cell response to hypothermia and osmotic stress were compared between the recovered and the initial cell cultures using the records available from 1984. Viability of alfalfa cell culture after rewarming was below 20% but it increased to 80% by the 27th subculture cycle. Recovered culture showed higher mitotic activity and increased number of haploid and diploid cells compared to the initial cell line. Both peroxidase activity and response to abiotic stress in the recovered cell culture were similar to that of the initial culture. Cryopreservation by programmed freezing was effective at retaining the main characteristics of M. sativa undifferentiated cell culture after 27 years of storage. According to available data, this is longest period of successful cryopreservation of plant cell cultures reported so far. After storage, there was no evidence that DMSO had any detrimental effect on cell viability, growth or cytogenetics.

  18. Initial blood storage experiment

    NASA Technical Reports Server (NTRS)

    Surgenor, Douglas MACN.

    1988-01-01

    The possibility of conducting experiments with the formed elements of the blood under conditions of microgravity opens up important opportunities to improve the understanding of basic formed element physiology, as well as, contribution to improved preservation of the formed elements for use in transfusion. The physiological, biochemical, and physical changes of the membrane of the erythrocyte, platelet, and leukocyte was studied during storage under two specific conditions: standard blood bank conditions and microgravity, utilizing three FDA approved plastic bags. Storage lesions; red cell storage on Earth; platelet storage on Earth; and leukocyte storage Earth were examined. The interaction of biomaterials and blood cells was studied during storage.

  19. Toward Optimal Cryopreservation and Storage for Achievement of High Cell Recovery and Maintenance of Cell Viability and T Cell Functionality.

    PubMed

    Angel, Stephanie; von Briesen, Hagen; Oh, Young-Joo; Baller, Marko K; Zimmermann, Heiko; Germann, Anja

    2016-12-01

    Cryopreservation of biological materials such as cells, tissues, and organs is a prevailing topic of high importance. It is employed not only in many research fields but also in the clinical area. Cryopreservation is of great importance for reproductive medicine and clinical studies, as well as for the development of vaccines. Peripheral blood mononuclear cells (PBMCs) are commonly used in vaccine research where comparable and reliable results between different research institutions and laboratories are of high importance. Whereas freezing and thawing processes are well studied, controlled, and standardized, storage conditions are often disregarded. To close this gap, we investigated the influence of suboptimal storage conditions during low-temperature storage on PBMC viability, recovery, and T cell functionality. For this purpose, PBMCs were isolated and exposed with help of a robotic system in a low-temperature environment from 0 up to 350 temperature fluctuation cycles in steps of 50 cycles to simulate storage conditions in large biorepositories with sample storage, removal, and sorting functions. After the simulation, the viability, recovery, and T cell functionality were analyzed to determine the number of temperature rises, which ultimately lead to significant cell damage. All studied parameters decreased with increasing number of temperature cycles. Sometimes after as little as only 50 temperature cycles, a significant effect was observed. These results are very important for all fields in which cell cryopreservation is employed, particularly for clinical and multicenter studies wherein the comparability and reproducibility of results play a crucial role. To obtain reliable results and to maintain the quality of the cells, not only the freezing and thawing processes but also the storage conditions should be controlled and standardized, and any deviations should be documented.

  20. Rejuvenating the Largest Treatment Wetland in Florida: Tracer Moment and Model Analysis of Wetland Hydraulic Performance

    NASA Astrophysics Data System (ADS)

    White, J. R.; Wang, H.; Jawitz, J. W.; Sees, M. D.

    2004-12-01

    The Orlando Easterly Wetland (OEW), the largest municipal treatment wetland in Florida, began operation in 1987 mainly for reducing nutrient loads in tertiary treated domestic wastewater produced by the city of Orlando. After more than ten years of operation, a decrease in total P removal effectiveness has occurred since 1999, even though the effluent concentration of the wetland has remained below the permitted limit of 0.2 mg/L,. Hydraulic inefficiency in the wetland, especially in the front-end cells of the north flow train, was identified as a primary cause of the reduced treatment effectiveness. In order to improve the hydraulic performance of the OEW and maintain its efficient phosphorus treatment, a rejuvenation program (including muck removal followed by re-vegetation) was initiated on the front-end cells of the north flow train in 2002. The effectiveness of this activity for the improvement of hydraulic performance was evaluated with a tracer test and subsequent moment and model analyses for the tracer resident time distribution (RTDs). Results were compared to similar tracer tests conducted prior to rejuvenation activities. The models included one-path tank-in-series (TIS), two-path TIS, one-dimensional transport with inflow and storage (OTIS), plug flow with dispersion (PFD), and plug flow with fractional dispersion (PFFD). The hydraulic performance was characterized by both wetland hydraulic efficiency and the spreading of tracers. The results demonstrated that the rejuvenation considerably improved the hydraulic performance in the restored area. Also presented is a comparison of the wetland response between both bromide and lithium tracers, and the determination of the complete moments of residence time distributions (RTD) in cell-network wetlands.

  1. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  2. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  3. Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties

    NASA Astrophysics Data System (ADS)

    Chouaib, Wafa; Caldwell, Peter V.; Alila, Younes

    2018-04-01

    This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the Sacramento model (SAC-SMA) to simulate soil moisture and flow components FDCs. The catchments classification based on storm characteristics pointed to the effect of catchments landscape properties on the precipitation variability and consequently on the FDC shapes. The landscape properties effect was pronounce such that low value of the slope of FDC (SFDC)-hinting at limited flow variability-were present in regions of high precipitation variability. Whereas, in regions with low precipitation variability the SFDCs were of larger values. The topographic index distribution, at the catchment scale, indicated that saturation excess overland flow mitigated the flow variability under conditions of low elevations with large soil moisture storage capacity and high infiltration rates. The SFDCs increased due to the predominant subsurface stormflow in catchments at high elevations with limited soil moisture storage capacity and low infiltration rates. Our analyses also highlighted the major role of soil infiltration rates on the FDC despite the impact of the predominant runoff generation mechanism and catchment elevation. In conditions of slow infiltration rates in soils of large moisture storage capacity (at low elevations) and predominant saturation excess, the SFDCs were of larger values. On the other hand, the SFDCs decreased in catchments of prevalent subsurface stormflow and poorly drained soils of small soil moisture storage capacity. The analysis of the flow components FDCs demonstrated that the interflow contribution to the response was the higher in catchments with large value of slope of the FDC. The surface flow FDC was the most affected by the precipitation as it tracked the precipitation duration curve (PDC). In catchments with low SFDCs, this became less applicable as surface flow FDC diverged from PDC at the upper tail (> 40% of the flow percentile). The interflow and baseflow FDCs illustrated most the filtering effect on the precipitation. The process understanding we achieved in this study is key for flow simulation and assessment in addition to future works focusing on process-based FDC predictions.

  4. The effect of atmospheric drag on the design of solar-cell power systems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Kyser, A. C.

    1983-01-01

    The feasibility of reducing the atmospheric drag of low orbit solar powered satellites by operating the solar-cell array in a minimum-drag attitude, rather than in the conventional Sun pointing attitude was determined. The weights of the solar array, the energy storage batteries, and the fuel required to overcome the drag of the solar array for a range of design life times in orbit were considered. The drag of the array was estimated by free molecule flow theory, and the system weights were calculated from unit weight estimates for 1990 technology. The trailing, minimum drag system was found to require 80% more solar array area, and 30% more battery capacity, the system weights for reasonable life times were dominated by the thruster fuel requirements.

  5. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    PubMed Central

    de Candia, Silvia; Morea, Maria; Baruzzi, Federico

    2015-01-01

    This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel, and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria sp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48 h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays. The addition of naturally contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria sp. strains, led to its complete inactivation after 4 days of treatment. To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly used material in food packaging. The results of this study could be useful for reducing pathogen cross-contamination phenomena during cold food storage. PMID:26236306

  6. Soil pipe flow tracer experiments: 2. Application of a transient storage zone model

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  7. Effect of moisture content on the flowability of crushed ores

    NASA Astrophysics Data System (ADS)

    Cabrejos, Francisco

    2017-06-01

    In many mining and industrial processes where large quantities of non-degrading bulk materials such as crushed ores are handled, silos, hoppers, stockpiles and chutes are widely used because they are economical and reliable (if properly designed and operated). However, they are not free of trouble and may experience flow problems such as arching, ratholing, erratic flow, limited storage capacity, limited discharge flow rate, caking, segregation and/or flooding. Moisture content and fine particles significantly affect the flowability of most ores, increasing their cohesive strength and turning them more prone to these problems. The purpose of this article is to highlight a proven, scientific method that can be utilized to ensure reliable storage, flow and discharge of bulk solids in these equipment based on Jenike's flow-of-solids theory and laboratory testing. Knowledge of the flow properties of the material handled provides a design basis to ensure mass flow, avoid arching and prevent the formation of "ratholes". The effect of an increase in water content of the ore is discussed with experimental results.

  8. [Promising technologies of packed red blood cells production and storage].

    PubMed

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.

  9. Thermochemical energy storage: Proceedings from the International Seminar on hermochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Wettermark, G.

    1980-10-01

    Energy storage problems are explored. Tomorrow's energy sources will provide a continuous flow of energy. Matching supply and demand will necessitate a wide range of storage capabilities. For storing heat thermochemical and economic solutions may take advantage of the various options inherent in this kind of storage, namely heat pumping, transport of heat and direct conversion to other desired forms of energy such as electricity and mechanical work. There is a need to regularly summarize the knowledge and research in the field of thermochemical energy storage in different parts of the world.

  10. Electrochemical Energy Storage for an Orbiting Space Station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.

  11. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  12. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  13. Modeling of rheological characteristics of the fermented dairy products obtained by novel and traditional starter cultures.

    PubMed

    Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G

    2018-06-01

    Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.

  14. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  15. The Chemistry of Redox-Flow Batteries.

    PubMed

    Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana; Fischer, Peter

    2015-08-17

    The development of various redox-flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox-flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermal and flow analysis of the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% effort of Title 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, R.G.; Mueller, C.; Knight, T.D.

    1998-03-01

    The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions.

  17. Flow characteristics of rivers in northern Australia: Implications for development

    NASA Astrophysics Data System (ADS)

    Petheram, Cuan; McMahon, Thomas A.; Peel, Murray C.

    2008-07-01

    SummaryAnnual, monthly and daily streamflows from 99 unregulated rivers across northern Australia were analysed to assess the general surface water resources of the region and their implications for development. The potential for carry-over storages was assessed using the Gould-Dincer Gamma method, which utilises the mean, standard deviation, skewness and lag-one serial correlation coefficient of annual flows. Runs Analysis was used to describe the characteristics of drought in northern Australia and the potential for 'active' water harvesting was evaluated by Base Flow Separation, Flow Duration Curves and Spells Analysis. These parameters for northern Australia were compared with data from southern Australia and data for similar Köppen class from around the world. Notably, the variability and seasonality of annual streamflow across northern Australia were observed to be high compared with that of similar Köppen classes from the rest of the world (RoW). The high inter-annual variability of runoff means that carry-over storages in northern Australia will need to be considerably larger than for rivers from the RoW (assuming similar mean annual runoff, yield and reliability). For example, in the three major Köppen zones across the North, it was possible (theoretically) to only exploit approximately 33% (Köppen Aw; n = 6), 25% (Köppen BSh; n = 12) and 13% (Köppen BWh; n = 11) of mean annual streamflow (assuming a hypothetical storage size equal to the mean annual flow). Over 90% of north Australian rivers had a Base Flow Index of less than 0.4, 72% had negative annual lag-one autocorrelation values and in half the rivers sampled greater than 80% of the total flow occurred during the 3-month peak period. These data confirm that flow in the rivers of northern Australia is largely event driven and that the north Australian environment has limited natural storage capacity. Hence, there is relatively little opportunity in many northern rivers to actively harvest water for on-farm storage, particularly under environmental flow rules that stipulate that water can only be extracted during the falling limb of a hydrograph. Streamflow drought severity, the product of drought length and magnitude, was found to be greater in northern Australia than in similar climatic regions of the RoW, due to higher inter-annual variability increasing the drought magnitude over the course of normal drought lengths. The high likelihood of severe drought means that agriculturalists seeking to irrigate from rivers in northern Australia should have especially well developed drought contingency plans.

  18. CDP-Diacylglycerol Synthetase Coordinates Cell Growth and Fat Storage through Phosphatidylinositol Metabolism and the Insulin Pathway

    PubMed Central

    Liu, Yuan; Wang, Wei; Shui, Guanghou; Huang, Xun

    2014-01-01

    During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA), which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI) synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi. PMID:24603715

  19. Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia

    NASA Astrophysics Data System (ADS)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.

    2005-10-01

    This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (<200 mg l-1). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.

  20. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty

    PubMed Central

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-01-01

    Purpose To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. Methods 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. Results 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Conclusion Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. PMID:27543290

  1. Systems biology of stored blood cells: can it help to extend the expiration date?

    PubMed

    Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E

    2012-12-05

    With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Integrated Building Energy Systems Design Considering Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function.more » These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.« less

  3. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  4. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  5. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    NASA Astrophysics Data System (ADS)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  6. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay.

    PubMed

    Ayers, Lisa; Kohler, Malcolm; Harrison, Paul; Sargent, Ian; Dragovic, Rebecca; Schaap, Marianne; Nieuwland, Rienk; Brooks, Susan A; Ferry, Berne

    2011-04-01

    Circulating cell-derived microparticles (MPs) have been implicated in several disease processes and elevated levels are found in many pathological conditions. The detection and accurate measurement of MPs, although attracting widespread interest, is hampered by a lack of standardisation. The aim of this study was to establish a reliable flow cytometric assay to measure distinct subtypes of MPs in disease and to identify any significant causes of variability in MP quantification. Circulating MPs within plasma were identified by their phenotype (platelet, endothelial, leukocyte and annexin-V positivity (AnnV+). The influence of key variables (i.e. time between venepuncture and centrifugation, washing steps, the number of centrifugation steps, freezing/long-term storage and temperature of thawing) on MP measurement were investigated. Increasing time between venepuncture and centrifugation leads to increased MP levels. Washing samples results in decreased AnnV+MPs (P=0.002) and platelet-derived MPs (PMPs) (P=0.002). Double centrifugation of MPs prior to freezing decreases numbers of AnnV+MPs (P=0.0004) and PMPs (P=0.0004). A single freeze thaw cycle of samples led to an increase in AnnV+MPs (P=0.0020) and PMPs (P=0.0039). Long-term storage of MP samples at -80° resulted in decreased MP levels. This study found that minor protocol changes significantly affected MP levels. This is one of the first studies attempting to standardise a method for obtaining and measuring circulating MPs. Standardisation will be essential for successful development of MP technologies, allowing direct comparison of results between studies and leading to a greater understanding of MPs in disease. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  7. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; G. K. Housley

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation upmore » to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.« less

  8. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  9. Annual Peak-Flow Frequency Characteristics and (or) Peak Dam-Pool-Elevation Frequency Characteristics of Dry Dams and Selected Streamflow-Gaging Stations in the Great Miami River Basin, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2009-01-01

    This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.

  10. A study of the Flint River, Michigan, as it relates to low-flow augmentation

    USGS Publications Warehouse

    Hulbert, Gordon C.

    1972-01-01

    One of the uses of the Flint River is dilution of waste-water. Population and industrial growth in the Flint area hah placed new demands on the stream and emphasized the need for an analysis of the surface water resources of the basin. This report describes selected streamflow characteristics of the Flint River and its tributaries, and presents draft-storage relations for the river basin. Flow characteristics for 17 sites show that the 7-day 2-year low flow ranges from 0 to 0.17 cfs (cubic feet per second) per square mile. Draft-storage relations for the basin show that existing storage, if fully utilized, could, on an average, provide a minimum discharge at Montrose of 160 cfs in 19 out of 20 years. The discharge, in conjunction with water diverted from Lake Huron to the Flint River through the Detroit and Flint water systems (about 60 cfs in 1971), indicates that low flows would seldom be less than about 200 cfs at Montrose. Diversions from the basin for irrigation may reduce low flows by about 12 cfs. Ground-water sources offer small potential for development of large supplies of water for streamflow augmentation, although wells in the glacial deposits may provide a supplemental source of water at some locations.

  11. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  12. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.« less

  13. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.

    PubMed

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2017-08-10

    Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Impact of blood manufacturing and donor characteristics on membrane water permeability and in vitro quality parameters during hypothermic storage of red blood cells.

    PubMed

    Alshalani, Abdulrahman; Howell, Anita; Acker, Jason P

    2018-02-01

    Several factors have been proposed to influence the red blood cell storage lesion including storage duration, blood component manufacturing methodology, and donor characteristics [1,18]. The objectives of this study were to determine the impact of manufacturing method and donor characteristics on water permeability and membrane quality parameters. Red blood cell units were obtained from volunteer blood donors and grouped according to the manufacturing method and donor characteristics of sex and age. Membrane water permeability and membrane quality parameters, including deformability, hemolysis, osmotic fragility, hematologic indices, supernatant potassium, and supernatant sodium, were determined on day 5 ± 2, day 21, and day 42. Regression analysis was applied to evaluate the contribution of storage duration, manufacturing method, and donor characteristics on storage lesion. This study found that units processed using a whole blood filtration manufacturing method exhibited significantly higher membrane water permeability throughout storage compared to units manufactured using red cell filtration. Additionally, significant differences in hemolysis, supernatant potassium, and supernatant sodium were seen between manufacturing methods, however there were no significance differences between donor age and sex groups. Findings of this study suggest that the membrane-related storage lesion is initiated prior to the first day of storage with contributions by both blood manufacturing process and donor variability. The findings of this work highlight the importance of characterizing membrane water permeability during storage as it can be a predictor of the biophysical and chemical changes that affect the quality of stored red blood cells during hypothermic storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Vertical electric field stimulation of neural cells on porous amorphous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2014-03-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to stimulate neuronal cell proliferation in presence of external electric field. The electric field was applied perpendicular to carbon electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm2) and low impedance (3.3 k Ω at 1 kHz). When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to stimulate neurite outgrowth and viability of nerve cells.

  16. Modelling reveals endogenous osmotic adaptation of storage tissue water potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa.

    PubMed

    Vandegehuchte, Maurits W; Guyot, Adrien; Hubeau, Michiel; De Swaef, Tom; Lockington, David A; Steppe, Kathy

    2014-09-01

    Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.

  17. A dimensionless parameter approach to the thermal behavior of an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.

    1982-09-01

    The purpose of aquifer thermal energy storage (ATES) site-characterization studies is to develop a general procedure whereby the energy recovery factor for a given site may be predicted readily for a wide range of operating conditions without doing detailed numerical simulations. The thermal behavior of a ATES system with steady radial fluid flow around a single injection/production well is discussed. Buoyancy flow is neglected, and the aquifer is confined above and below by impermeable confining layers.

  18. Protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm of cereals.

    PubMed

    Zheng, Yankun; Wang, Zhong

    2014-10-01

    There are mainly three endosperm storage tissues in the cereal endosperm: aleurone cells, sub-aleurone cells and the center starch endosperm. The protein accumulation is very different in the three endosperm storage tissues. The aleurone cells accumulate protein in aleurone granules. The sub-aleurone cells and the center starch endosperm accumulate protein in endoplasmic reticulum-derived protein bodies and vacuolar protein bodies. Proteins are deposited in different patterns within different endosperm storage tissues probably because of the special storage properties of these tissues. There are several special genes and other molecular factors to mediate the protein accumulation in these tissues. Different proteins have distinct functions in the protein body formation and the protein interactions determine protein body assembly. There are both cooperation and competition relationships between protein, starch and lipid in the cereal endosperm. This paper reviews the latest investigations on protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm. Useful information will be supplied for future investigations on the cereal endosperm development.

  19. Galileo probe lithium-sulfur dioxide cell life testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofland, L.M.; Stofel, E.J.; Taenaka, R.K.

    Several hundred D-sized, Li/SO{sub 2} battery cells have been in a carefully controlled quiescent storage test for up to 14 years, starting at Honeywell but completing at the NASA Ames Research Center, in support of the Atmospheric Probe portion of the Galileo Mission to the planet Jupiter. This population of cells includes similar samples from 8 different manufacturing lots; the earliest from October 1981, the latest from October 1988. The baseline samples have been divided among several storage chambers, each having its own constant temperature, respectively set between 0 to 40 C. Non-invasive measurements have been made repeatedly of openmore » circuit voltage and internal resistance (at 1,000 Hz). At intervals, a small portion of the cells has been removed from storage and fully discharged under repetitive conditions, thus assessing any storage related loss of discharge capacity. The results show that for storage up to 20 C the cells have excellent stability. Above 20 C noticeable degradation occurs.« less

  20. Capacity loss on storage and possible capacity recovery for HST nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Lowery, John E.

    1992-01-01

    Negatively precharged nickel hydrogen cells will experience a useable capacity loss during extended open circuit storage periods. Some of the lost capacity can be recovered through cycling. Capacity recovery through cycling can be enhanced by cycling at high depths of discharge (DOD). The most timely procedure for recovering the faded capacity is to charge the cell fully and allow the cell to sit open-circuit at room temperature. This procedure seems to be effective in part because of the enlarged structure of the active materials. The compounds that formed during storage at the low electrode potentials can more easily dissolve and redistribute. All of the original capacity cannot be recovered because the lattice structure of the active material is irreversibly altered during storage. The recommendation is to use positively precharged cells activated with 26 percent KOH if possible. In aerospace applications, the benefits of negative precharge are offset by the possibility of delays and storage periods.

  1. [In vitro study of the flow duration of antibiotics solutions prepared in elastomeric infusion devices: effect of cold storage for 3 to 7days].

    PubMed

    Grangeon-Chapon, C; Robein-Dobremez, M-J; Pin, I; Trouiller, P; Allenet, B; Foroni, L

    2015-09-01

    Within the cystic fibrosis patients' home care, EMERAA network ("Together against Cystic fibrosis in Rhone-Alpes and Auvergne") organizes parenteral antibiotics cures at home prepared in elastomeric infusion devices by hospital pharmacies. However, patients and nurses found that the durations of infusion with these devices were often longer than the nominal duration of infusion indicated by their manufacturer. This study aimed to identify the potential different causes in relation to these discordances. Three hundred and ninety devices of two different manufacturers are tested in different experimental conditions: three antibiotics each at two different doses, duration of cold storage (three days or seven days) or immediate tests without cold storage, preparation and storage of the solution in the device (protocol Device) or transfer in the device just before measurement (protocol Pocket). All tests highlighted a longer flow duration for devices prepared according to the protocol Device versus the protocol Pocket (P=0.004). Flow duration is increased in the case of high doses of antibiotics with high viscosity such as piperacilline/tazobactam. The results of this in vitro study showed the impact of: (1) the time between the filling of the device and the flow of the solution; (2) cold storage of elastomeric infusion devices; (3) concentration of antibiotics and therefore the viscosity of the solution to infuse. It is therefore essential that health care teams are aware of factors, which may lead to longer infusion durations with these infusion devices. When the additional time for infusion remain acceptable, it should be necessary to inform the patient and to relativize these lengthening compared to many benefits that these devices provide for home care. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Flow-duration-frequency behaviour of British rivers based on annual minima data

    NASA Astrophysics Data System (ADS)

    Zaidman, Maxine D.; Keller, Virginie; Young, Andrew R.; Cadman, Daniel

    2003-06-01

    A comparison of different probability distribution models for describing the flow-duration-frequency behaviour of annual minima flow events in British rivers is reported. Twenty-five catchments were included in the study, each having stable and natural flow records of at least 30 years in length. Time series of annual minima D-day average flows were derived for each record using durations ( D) of 1, 7, 30, 60, 90, and 365 days and used to construct low flow frequency curves. In each case the Gringorten plotting position formula was used to determine probabilities (of non-exceedance). Four distribution types—Generalised Extreme Value (GEV), Generalised Logistic (GL), Pearson Type-3 (PE3) and Generalised Pareto (GP)—were used to model the probability distribution function for each site. L-moments were used to parameterise individual models, whilst goodness-of-fit tests were used to assess their match to the sample data. The study showed that where short durations (i.e. 60 days or less) were considered, high storage catchments tended to be best represented by GL and GEV distribution models whilst low storage catchments were best described by PE3 or GEV models. However, these models produced reasonable results only within a limited range (e.g. models for high storage catchments did not produce sensible estimates of return periods where the prescribed flow was less than 10% of the mean flow). For annual minima series derived using long duration flow averages (e.g. more than 90 days), GP and GEV models were generally more applicable. The study suggests that longer duration minima do not conform to the same distribution types as short durations, and that catchment properties can influence the type of distribution selected.

  3. Age of Red Cells for Transfusion and Outcomes in Critically Ill Adults.

    PubMed

    Cooper, D James; McQuilten, Zoe K; Nichol, Alistair; Ady, Bridget; Aubron, Cécile; Bailey, Michael; Bellomo, Rinaldo; Gantner, Dashiell; Irving, David O; Kaukonen, Kirsi-Maija; McArthur, Colin; Murray, Lynne; Pettilä, Ville; French, Craig

    2017-11-09

    It is uncertain whether the duration of red-cell storage affects mortality after transfusion among critically ill adults. In an international, multicenter, randomized, double-blind trial, we assigned critically ill adults to receive either the freshest available, compatible, allogeneic red cells (short-term storage group) or standard-issue (oldest available), compatible, allogeneic red cells (long-term storage group). The primary outcome was 90-day mortality. From November 2012 through December 2016, at 59 centers in five countries, 4994 patients underwent randomization and 4919 (98.5%) were included in the primary analysis. Among the 2457 patients in the short-term storage group, the mean storage duration was 11.8 days. Among the 2462 patients in the long-term storage group, the mean storage duration was 22.4 days. At 90 days, there were 610 deaths (24.8%) in the short-term storage group and 594 (24.1%) in the long-term storage group (absolute risk difference, 0.7 percentage points; 95% confidence interval [CI], -1.7 to 3.1; P=0.57). At 180 days, the absolute risk difference was 0.4 percentage points (95% CI, -2.1 to 3.0; P=0.75). Most of the prespecified secondary measures showed no significant between-group differences in outcome. The age of transfused red cells did not affect 90-day mortality among critically ill adults. (Funded by the Australian National Health and Medical Research Council and others; TRANSFUSE Australian and New Zealand Clinical Trials Registry number, ACTRN12612000453886 ; ClinicalTrials.gov number, NCT01638416 .).

  4. Energy storage inherent in large tidal turbine farms

    PubMed Central

    Vennell, Ross; Adcock, Thomas A. A.

    2014-01-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  5. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-08

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.

  6. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  7. The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C.

    PubMed

    Martín-Hidalgo, D; Barón, F J; Bragado, M J; Carmona, P; Robina, A; García-Marín, L J; Gil, M C

    2011-05-01

    Melatonin (MLT) is an efficient antioxidant that protects cells and tissues and initiates a host of receptor-mediated effects. In order to enhance the life span of refrigerated boar semen, our aim was to evaluate the effects of addition of 1 μM MLT to commercially produced pig semen (33 seminal doses from 14 boars) that had been preserved at 17 °C for 7 days. Samples without MLT served as controls. On Days 1, 4 and 7, we evaluated motility parameters and the percentage of total motile and progressively motile spermatozoa by a computer-aided sperm analysis system. Viability (SYBR-14/PI), acrosomal status (FITC-PNA/PI), membrane fluidity (M-540/YoPro-1) and mitochondrial membrane potential status (JC-1) were evaluated by flow cytometry. MLT treatment significantly enhanced the percentage of static spermatozoa after 7 days of storage and significantly reduced the percentage of progressively motile spermatozoa on Day 7. The velocity characteristics (VCL, VSL and VAP) were significantly higher for MLT-treated samples on Day 1 and were their lowest on Day 7. With regard to flow cytometry results, the percentage of viable spermatozoa with an intact acrosome was higher in MLT samples throughout the entire storage period. In addition, there was a significantly higher proportion of live spermatozoa on Day 7 in the samples that had not been treated with MLT. The proportion of spermatozoa showing a high mitochondrial membrane potential remained at similar levels (P > 0.05) throughout the trial. Although the findings of the present study revealed that 1 μM MLT increased the proportion of live sperm with an intact acrosome, this treatment did not enhance the spermatic quality of refrigerated boar semen. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Exploring the dynamics of transit times and runoff source zones in a small agricultural catchment using a physically-based water flow model

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Yang, J.; Heidbuchel, I.; Musolff, A.

    2017-12-01

    Catchment-scale transit time distributions (TTDs) for discharge and residence time distributions (RTDs) of the water in storage are promising tools to characterize the discharge and mixing behavior of a catchment. TTDs and RTDs are dynamic in time, influenced by dynamic rainfall and evapotranspiration forcing, as well as changing groundwater storage in the catchment. In order to understand the links between the dynamics of TTDs and catchment mixing in an agricultural catchment in central Germany, a 3D hydrological model was set up using the fully coupled surface-subsurface numerical code HydroGeoSphere. The transient model is calibrated using discharge and groundwater level measurements, and is run for a period of 10 years from 1997 to 2007. A particle tracking tool was implemented in HydroGeoSphere to track the movement of water parcels in the subsurface, outputting TTDs of discharge and RTDs of groundwater storage at daily intervals. Results show the strong variability of the median age of discharge and median age of the water in storage, in response to the overall wetness of the catchment. Computed fractional StorAge Selection (fSAS, van der Velde et al. 2012, Rinaldo et al. 2015) functions suggest systematic changes in the preference of the catchment to discharge water of a certain age ranges from storage over the seasons: In the wet period, youngest water in storage is preferentially selected, and the preference shifts gradually to older water in storage when the catchment transitions into periods of post-wet, dry and pre-wet. Those changes are driven by distinct shifts in the dominant flow paths from deeper, slow flow paths during dry periods to faster shallow flow paths during the wet season. Changes in the shape of the fSAS functions are quantified in terms of changes in the two parameters of the Beta functions, which are used to approximate the fSAS functions. This provides an opportunity to generate quasi-continuous fSAS functions over the course of a year for the catchment. Our results provide new insights into the dynamics of TTDs and fSAS functions for a complex real-world catchment and can help to interpret the associated solute exports to the stream.

  9. Food powders flowability characterization: theory, methods, and applications.

    PubMed

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  10. A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.

    2015-01-01

    This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.

  11. Need to improve SWMM's subsurface flow routing algorithm for green infrastructure modeling

    EPA Science Inventory

    SWMM can simulate various subsurface flows, including groundwater (GW) release from a subcatchment to a node, percolation out of storage units and low impact development (LID) controls, and rainfall derived inflow and infiltration (RDII) at a node. Originally, the subsurface flow...

  12. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  13. Hydrological controls on transient aquifer storage in a karst watershed

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  14. Human periodontal fibroblasts viability stored in Custodiol® , coconut water and propolis. An ex vivo study.

    PubMed

    Awawdeh, Lama; Haimour, Rana Naman; Al-Jundi, Suhad Hussein; Al-Qaoud, Khaled

    2018-04-17

    Successful replantation of an avulsed tooth depends on the regeneration of periodontal ligament (PDL) attachment which is affected by the transport medium, dry time and storage time. Various storage media have been studied but the search for the optimum storage medium is still needed to determine the ideal material and storage time to maintain PDL cells. The aim of this study was to determine the ability of Custodiol ® , coconut water from different stages of maturity and propolis as storage media for avulsed teeth by evaluating the viability of PDL cells for different time intervals. PDL cultures were subjected to Cutodiol ® , immature, half mature, and mature coconut water, and different concentrations of propolis in DMEM. Culture plates with the tested media were incubated for 1, 2, 6, 24, 48, 72 and 168 h. PDL fibroblast cell viability was assessed by MTT assay. Coconut water showed significantly higher viability of cells than other groups at 6 h with half mature coconut water being superior. Propolis at 6.25 mg/mL in DMEM resulted in 138% viable PDL and it was able to preserve PDL cells for up to 168 h. Half mature and mature coconut water are superior storage media if replantation of avulsed teeth is within 6 h. Propolis in DMEM could be a potential storage media for prolonged storage intervals up to 48 h. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. [Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].

    PubMed

    Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian

    2011-07-01

    A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.

  16. Experiences with explicit finite-difference schemes for complex fluid dynamics problems on STAR-100 and CYBER-203 computers

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.

    1982-01-01

    Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.

  17. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  18. Prevention of red cell storage lesion: a comparison of five different additive solutions.

    PubMed

    Lagerberg, Johan W; Korsten, Herbert; Van Der Meer, Pieter F; De Korte, Dirk

    2017-09-01

    In Europe, red cell concentrates (RCC) are usually stored in SAGM (saline-adenine-glucose-mannitol). During storage, in vitro red cell quality declines, including lowered energy status and increased cell lysis. Recently, several additive solutions (ASs), designed to diminish the decline in in vitro quality during storage, have been developed. These new solutions have mainly been developed to better maintain red blood cell (RBC) 2,3-biphosphoglycerate (2,3 BPG) levels and energy status during storage. High levels of 2,3 BPG allow for better oxygen release while high energy status is necessary for function and survival of RBC in vivo. In a paired study design, RBC ASs were compared for their ability to provide improved in vitro quality during hypothermic storage. For each experiment, 5 whole blood units held overnight were pooled and split. The whole blood units were processed according to the buffy coat method. RBCs were resuspended in either SAGM, PAGGSM, PAG3M, E-Sol 5 or AS-7 and leucoreduced by filtration. RCCs were stored for eight weeks at 2-6 °C and sampled weekly for analysis of in vitro quality parameters. Red cell concentrates stored in PAG3M, E-Sol 5 and AS-7 showed significantly higher lactate production and higher levels of intracellular adenosine triphosphate (ATP) and total adenylate. 2,3 BPG levels rapidly declined during storage in SAGM and PAGGSM. The decline in 2,3 BPG was inhibited during storage in E-Sol 5 and AS-7, while in PAG3M, 2,3 BPG level increased above the initial level till day 35 and remained detectable till day 56. Haemolysis was comparable for all ASs until day 35, upon prolonged storage, haemolysis in SAGM was higher than with the other ASs. As compared to SAGM, storage in PAGGSM, PAG3M, E-Sol 5 and AS-7 better maintained morphological properties. Storage of RBCs in the new generation ASs yield RBCs with more stable metabolite levels and improved overall quality during storage as compared with RBCs stored in SAGM.

  19. Application of voltage oriented control technique in a fully renewable, wind powered, autonomous system with storage capabilities

    NASA Astrophysics Data System (ADS)

    Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.

    2017-02-01

    The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.

  20. Finite cell lines of turkey sperm storage tubule cells: ultrastructure and protein analysis

    USDA-ARS?s Scientific Manuscript database

    Cell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explants culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST ex...

  1. Analog storage integrated circuit

    DOEpatents

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  2. Analog storage integrated circuit

    DOEpatents

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  3. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells.

    PubMed

    Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui

    2014-02-15

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I - /I 3 - redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency ( η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g -1 . Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.

  4. Two-stage energy storage equalization system for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  5. Prolonged cold storage of red blood cells by oxygen removal and additive usage

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1998-08-04

    Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials. 8 figs.

  6. Prolonged cold storage of red blood cells by oxygen removal and additive usage

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1998-01-01

    Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials.

  7. Offsetting Water Requirements and Stress with Enhanced Water Recovery from CO 2 Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Kelsey Anne; Middleton, Richard

    2016-08-03

    These are the slides from a presentation at the Mickey Leland Energy Fellowship Forum. The following topics are discussed: motivation, Saline Aquifer Storage, Subsurface Flow, Baseline No Brine Production, Ongoing Work, and the accompanying data visualizations.

  8. Compressed-air energy-storage preliminary design and site-development program in an aquifer. Volume 9: Cost estimate and schedule

    NASA Astrophysics Data System (ADS)

    1982-12-01

    The behavior and suitability of aquifers as compressed-air energy-storage sites is discussed. The engineering and construction schedule, facilities capital-cost estimate, and corresponding cash-flow requirements are given.

  9. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  10. The Use of Flow Charts in Sediment Routing Analysis

    Treesearch

    Leslie M. Reid

    1982-01-01

    Flow charts are a widely used means of diagramming relationships among transport processes and storage sites during analyses of sediment routing. Because they have taken so many different forms, however, it is very difficult to use published flow charts to compare geomorphic systems. Though they generally are constructed to achieve the same purpose, flow charts...

  11. Evaluation of undersized bioretention stormwater control measures for treatment of highway bridge deck runoff.

    PubMed

    Luell, S K; Hunt, W F; Winston, R J

    2011-01-01

    Two grassed bioretention cells were constructed in the easement of a bridge deck in Knightdale, North Carolina, USA, in October, 2009. One was intentionally undersized ('small'), while the other was full sized ('large') per current North Carolina standards. The large and small cells captured runoff from the 25- and 8-mm events, respectively. Both bioretention cells employed average fill media depths of 0.65 m and internal water storage (IWS) zones of 0.6 m. Flow-proportional, composite water quality samples were collected and analyzed for nitrogen species, phosphorus species, and TSS. During 13 months of data collection, the large cell's median effluent concentrations and loads were less than those from the small cell. The small cell's TN and TSS load reductions were 84 and 50%, respectively, of those achieved by the large cell, with both cells significantly reducing TN and TSS. TP loads were not significantly reduced by either cell, likely due to low TP concentrations in the highway runoff which may have approached irreducible levels. Outflow pollutant loads from the large and small cell were not significantly different from one another for any of the examined pollutants. The small cell's relative performance provides support for retrofitting undersized systems in urbanized areas where there is insufficient space available for conventional full-sized stormwater treatment systems.

  12. Mesenchymal stem cells support hepatocyte function in engineered liver grafts.

    PubMed

    Kadota, Yoshie; Yagi, Hiroshi; Inomata, Kenta; Matsubara, Kentaro; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Shinoda, Masahiro; Obara, Hideaki; Itano, Osamu; Kitagawa, Yuko

    2014-01-01

    Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.

  13. Continuous monitoring of bacterial attachment

    NASA Technical Reports Server (NTRS)

    Koeing, D. W.; Mishra, S. K.; Pierson, D. L.

    1994-01-01

    A major concern with the Space Station Freedom (SSF) water supply system is the control of longterm microbial contamination and biofilm development in the water storage and distribution systems. These biofilms have the potential for harboring pathogens as well as microbial strains containing resistance factors that could negatively influence crew health. The proposed means for disinfecting the water system on SSF (iodine) may encourage the selection of resistant strains. In fact, biofilm bacteria were observed in water lines from the Space Shuttle Columbia (OV-102); therefore, an alternative remediation method is required to disinfect spacecraft water lines. A thorough understanding of colonization events and the physiological parameters that will influence bacteria adhesion is required. The limiting factor for development of this technology is the ability to continuously monitor adhesion events and the effects of biocides on sessile bacteria. Methods were developed to allow bacterial adhesion and subsequent biocidal treatment to be monitored continuously. This technique couples automated image analysis with a continuous flow of a bacterial suspension through an optical flow cell. A strain of Pseudomonas cepacia isolated from the water supply of the Space Shuttle Discovery (OV-103) during STS-39 was grown in a nitrogen-limited continuous culture. This culture was challenged continuously with iodine during growth, and the adhesion characteristics of this strain was measure with regard to flow rate. Various biocides (ozone, hypochlorite, and iodine) were added to the flow stream to evaluate how well each chemical removed the bacteria. After biocide treatment, a fresh bacterial suspension was introduced into the flow cell, and the attachment rate was evaluated on the previously treated surface. This secondary fouling was again treated with biocide to determine the efficacy of multiple batch chemical treatments in removing biofilm.

  14. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  15. Storage of cell samples for ToF-SIMS experiments-How to maintain sample integrity.

    PubMed

    Schaepe, Kaija; Kokesch-Himmelreich, Julia; Rohnke, Marcus; Wagner, Alena-Svenja; Schaaf, Thimo; Henss, Anja; Wenisch, Sabine; Janek, Jürgen

    2016-06-25

    In order to obtain comparable and reproducible results from time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of biological cells, the influence of sample preparation and storage has to be carefully considered. It has been previously shown that the impact of the chosen preparation routine is crucial. In continuation of this work, the impact of storage needs to be addressed, as besides the fact that degradation will unavoidably take place, the effects of different storage procedures in combination with specific sample preparations remain largely unknown. Therefore, this work examines different wet (buffer, water, and alcohol) and dry (air-dried, freeze-dried, and critical-point-dried) storage procedures on human mesenchymal stem cell cultures. All cell samples were analyzed by ToF-SIMS immediately after preparation and after a storage period of 4 weeks. The obtained spectra were compared by principal component analysis with lipid- and amino acid-related signals known from the literature. In all dry storage procedures, notable degradation effects were observed, especially for lipid-, but also for amino acid-signal intensities. This leads to the conclusion that dried samples are to some extent easier to handle, yet the procedure is not the optimal storage solution. Degradation proceeds faster, which is possibly caused by oxidation reactions and cleaving enzymes that might still be active. Just as well, wet stored samples in alcohol struggle with decreased signal intensities from lipids and amino acids after storage. Compared to that, the wet stored samples in a buffered or pure aqueous environment revealed no degradation effects after 4 weeks. However, this storage bears a higher risk of fungi/bacterial contamination, as sterile conditions are typically not maintained. Thus, regular solution change is recommended for optimized storage conditions. Not directly exposing the samples to air, wet storage seems to minimize oxidation effects, and hence, buffer or water storage with regular renewal of the solution is recommended for short storage periods.

  16. Storage of cell samples for ToF-SIMS experiments—How to maintain sample integrity

    PubMed Central

    Schaepe, Kaija; Kokesch-Himmelreich, Julia; Rohnke, Marcus; Wagner, Alena-Svenja; Schaaf, Thimo; Henss, Anja; Wenisch, Sabine; Janek, Jürgen

    2016-01-01

    In order to obtain comparable and reproducible results from time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of biological cells, the influence of sample preparation and storage has to be carefully considered. It has been previously shown that the impact of the chosen preparation routine is crucial. In continuation of this work, the impact of storage needs to be addressed, as besides the fact that degradation will unavoidably take place, the effects of different storage procedures in combination with specific sample preparations remain largely unknown. Therefore, this work examines different wet (buffer, water, and alcohol) and dry (air-dried, freeze-dried, and critical-point-dried) storage procedures on human mesenchymal stem cell cultures. All cell samples were analyzed by ToF-SIMS immediately after preparation and after a storage period of 4 weeks. The obtained spectra were compared by principal component analysis with lipid- and amino acid-related signals known from the literature. In all dry storage procedures, notable degradation effects were observed, especially for lipid-, but also for amino acid-signal intensities. This leads to the conclusion that dried samples are to some extent easier to handle, yet the procedure is not the optimal storage solution. Degradation proceeds faster, which is possibly caused by oxidation reactions and cleaving enzymes that might still be active. Just as well, wet stored samples in alcohol struggle with decreased signal intensities from lipids and amino acids after storage. Compared to that, the wet stored samples in a buffered or pure aqueous environment revealed no degradation effects after 4 weeks. However, this storage bears a higher risk of fungi/bacterial contamination, as sterile conditions are typically not maintained. Thus, regular solution change is recommended for optimized storage conditions. Not directly exposing the samples to air, wet storage seems to minimize oxidation effects, and hence, buffer or water storage with regular renewal of the solution is recommended for short storage periods. PMID:26810048

  17. Controls on Water Storage, Mixing and Release in a Nested Catchment Set-up with Clean and Mixed Physiographic Characteristics

    NASA Astrophysics Data System (ADS)

    Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.

    2015-12-01

    With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.

  18. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  19. Method and device for producing a tactile display using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1996-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  20. Tactile display device using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1994-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  1. An In vitro Comparison of Coconut Water, Milk, and Saline in Maintaining Periodontal Ligament Cell Viability

    PubMed Central

    D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna

    2017-01-01

    Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947

  2. Spatial and intertemporal arbitrage in the California natural gas transportation and storage network

    NASA Astrophysics Data System (ADS)

    Uria Martinez, Rocio

    Intertemporal and spatial price differentials should provide the necessary signals to allocate a commodity efficiently inside a network. This dissertation investigates the extent to which decisions in the California natural gas transportation and storage system are taken with an eye on arbitrage opportunities. Daily data about flows into and out of storage facilities in California over 2002-2006 and daily spreads on the NYMEX futures market are used to investigate whether the injection profile is consistent with the "supply-of-storage" curve first observed by Working for wheat. Spatial price differentials between California and producing regions fluctuate throughout the year, even though spot prices at trading hubs across North America are highly correlated. In an analysis of "residual supply", gas volumes directed to California are examined for the influence of those fluctuations in locational differentials. Daily storage decisions in California do seem to be influenced by a daily price signal that combines the intertemporal spread and the locational basis between California and the Henry Hub, in addition to strong seasonal and weekly cycles. The timing and magnitude of the response differs across storage facilities depending on the regulatory requirements they face and the type of customers they serve. In contrast, deviations in spatial price differentials from the levels dictated by relative seasonality in California versus competing regions do not trigger significant reallocations of flows into California. Available data for estimation of both the supply-of-storage and residual-supply curves aggregate the behavior of many individuals whose motivations and attentiveness to prices vary. The resulting inventory and flow profiles differ from those that a social planner would choose to minimize operating costs throughout the network. Such optimal allocation is deduced from a quadratic programming model, calibrated to 2004-2005, that acknowledges relative seasonality in demand, trade-offs between transportation and storage costs, infrastructure configuration and regulatory requirements. A comparison of the simulated equilibrium with observed behavior identifies where the arbitrage opportunities lie. Moreover, scenario analysis of such as a LNG terminal or additional storage capacity in California reveals the considerable indirect network effects brought about by changes at any node or arc.

  3. A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage

    NASA Astrophysics Data System (ADS)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2018-04-01

    Enhanced hillslope storage is utilised in natural flood management in order to retain overland storm run-off and to reduce connectivity between fast surface flow pathways and the channel. Examples include excavated ponds, deepened or bunded accumulation areas, and gullies and ephemeral channels blocked with wooden barriers or debris dams. The performance of large, distributed networks of such measures is poorly understood. Extensive schemes can potentially retain large quantities of run-off, but there are indications that much of their effectiveness can be attributed to desynchronisation of sub-catchment flood waves. Inappropriately sited measures may therefore increase, rather than mitigate, flood risk. Fully distributed hydrodynamic models have been applied in limited studies but introduce significant computational complexity. The longer run times of such models also restrict their use for uncertainty estimation or evaluation of the many potential configurations and storm sequences that may influence the timings and magnitudes of flood waves. Here a simplified overland flow-routing module and semi-distributed representation of enhanced hillslope storage is developed. It is applied to the headwaters of a large rural catchment in Cumbria, UK, where the use of an extensive network of storage features is proposed as a flood mitigation strategy. The models were run within a Monte Carlo framework against data for a 2-month period of extreme flood events that caused significant damage in areas downstream. Acceptable realisations and likelihood weightings were identified using the GLUE uncertainty estimation framework. Behavioural realisations were rerun against the catchment model modified with the addition of the hillslope storage. Three different drainage rate parameters were applied across the network of hillslope storage. The study demonstrates that schemes comprising widely distributed hillslope storage can be modelled effectively within such a reduced complexity framework. It shows the importance of drainage rates from storage features while operating through a sequence of events. We discuss limitations in the simplified representation of overland flow-routing and representation and storage, and how this could be improved using experimental evidence. We suggest ways in which features could be grouped more strategically and thus improve the performance of such schemes.

  4. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Crompton, Kyle R.

    There are inherent safety risks associated with inactive lithium ion batteries leading to greater restrictions and regulations on shipping and storage. Maintaining all cells of a lithium ion battery at near zero voltage with an applied fixed resistive load is one promising approach which can lessen (and potentially eliminate) the risk of a lithium ion battery entering thermal runaway when in an inactive state. However, in a conventional lithium ion cell, a near zero cell voltage can be damaging if the anode electrochemical potential increases to greater than the potential where dissolution of the standard copper current collector occurs (i.e. 3.1 V vs. Li/Li+ at room temperature). Past approaches to yield lithium ion cells that are resilient to a near zero volt state of charge involve use of secondary active materials or alternative current collectors which have anticipated tradeoffs in terms of cell performance and cost. In the the present dissertation work the approach of managing the amount of reversible lithium in a cell during construction to prevent the anode potential from increasing to greater than 3.1 V vs. Li/Li+ during near zero volt storage is introduced. Anode pre-lithiation was used in LiCoO 2/MCMB pouch cells to appropriately manage the amount of reversible lithium so that there is excess reversible lithium compared to the cathodes intercalation capacity (reversible lithium excess cell or RLE cell). RLE LiCoO 2/MCMB cells maintained 99% of their original capacity after three, 3-day and three, 7-day storage periods at near zero volts under fixed load. A LiCoO2/MCMB pouch cell fabricated with a pre-lithiated anode also maintained its original discharge performance after three, 3-day storage periods under fixed load at 45°C. The strong recharge performance after near zero volt storage is attributed to the anode potential remaining below the copper dissolution potential during near zero volt storage as informed by reference electrode measurements. Pulse discharge measurements were performed and show that double layer capacitance likely plays a major role in determining the behavior of electrode potentials during near zero volt storage. To further the viability of the anode pre-lithiation method in LiCoO2/MCMB cells, stabilization coatings on the cathode materials are being investigated to increase the tolerance of the cathode to the low potentials it may experience during near zero volt storage of an RLE lithium ion cell. Results show that an AlPO4 coating prevents cation exhange in the cathode crystal structure and substantially increases the cathode's resilience to low electrochemical potentials. Investigations into applying anode pre-lithiation to cells utilizing LiNiCoAlO2 (NCA) cathodes have also been initiated and found to maintain the anode potential below the copper dissolution potential during near zero volt storage. RLE NCA/MCMB cells showed strong recharge performance and improved rate capability retention over a conventional NCA/MCMB cell after ten, 3-day near zero volt storage periods. Scale up of reversible lithium management to NCA/MCMB x3450 pouch cells was achieved using bath lithium addition and rendered a cell that retained 100% of its discharge performance after a 14 day period at near zero volts under fixed load. The near zero volt storage tolerance of lithium ion cells utilizing an advanced, high energy density lithium rich cathode material (0.49Li2MnO3˙0.51LiNi 0.37Co0.24Mn0.39O2 or HE5050) has also been studied and found to be high at room temperature without the need for anode pre-lithiation. HE5050/MCMB cells maintained 100% of their discharge capacity after five, 3-day and five, 7-day near zero volt storage periods at room temperature. HE5050/MCMB also maintained 99% of their discharge capacity after two, 3-day near zero volt storage periods at 40°C. The high first cycle loss and lower intercalation potential of the HE5050 cathode lead to the anode potential remaining <2.8 V vs. Li/Li+ during near zero volt storage and as such, no copper dissolution is expected to be occurring. Finally, Carbon Nanotube (CNT) papers have been shown to be stable up to high potentials vs. Li/Li+ and thus, using them as an anode current collector in place of standard copper can generate lithium ion cells that can tolerate near zero volt storage. However, CNT papers suffer from significant irreversible loss due to their high surface area. An Al2O3 coating deposited by atomic layer deposition is investigated for its effect in reducing the irreversible losses of a CNT paper. The Al2O3 coating was found to reduce irreversible loss by 55% over 50 cycles and still serve as an effective current collector for a graphitic anode composite.

  5. Sharing the opportunity cost among power companies to support hydropower-to-environment water transfers

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2016-04-01

    Among the environmental impacts caused by dams, the alteration of flow regimes is one of the most critical to river ecosystems given its influence in long river reaches and its continuous pattern. Provided it is technically feasible, the reoperation of hydroelectric reservoir systems can, in principle, mitigate the impacts on degraded freshwater ecosystems by recovering some of the natural flow regime. The typical approach to implement hydropower-to-environment water transfers focuses on the reoperation of the dam located immediately upstream of the environmentally sensitive area, meaning that only one power station will bear the brunt of the benefits forgone for the power sector. By ignoring the contribution of upstream infrastructures to the alteration of the flow regime, the opportunity cost associated with the restoration of a flow regime is not equitably distributed among the power companies in the river basin, therefore slowing the establishment of environmental flow programs. Yet, there is no criterion, nor institutional mechanisms, to ensure a fair distribution of the opportunity cost among power stations. This paper addresses this issue by comparing four rules to redistribute the costs faced by the power sector when environmental flows must be implemented in a multireservoir system. The rules are based on the the installed capacity of the power plants, the live storage capacity of the reservoirs, the ratio between the incremental flows and the live storage capacity, and the extent of the storage services; that is, the volume of water effectively transferred by each reservoir. The analysis is carried out using the Parana River Basin (Brazil) as a case study.

  6. Feasibility of a Supporting-Salt-Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials.

    PubMed

    Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R

    2017-05-09

    Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  8. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.

  9. Stable phenotype of B-cell subsets following cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2015-01-01

    Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are no phenotypic differences between cryopreserved and fresh B-cell subsets." Subsequently, we performed an uncontrolled comparison of tonsil tissue samples. By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue-specific comparative analysis. © 2014 Clinical Cytometry Society.

  10. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank.

    PubMed

    Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik

    2014-09-20

    Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are phenotypic differences between cryopreserved and fresh B-cell subsets". Subsequently, we performed a consecutive uncontrolled comparison of tonsil tissue samples. Results By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. Conclusions We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue specific comparative analysis. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  11. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment.

    PubMed

    Sun, Jiongming; Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Li, Hongmin; Ma, Chunxia

    2018-06-09

    Benthic Oscillatoria sp. may form dense surface blooms especially under eutrophic and calm conditions, which poses a threat to drinking water safety because it can produce toxic and odorous metabolites. This is the first study to investigate the effect of the conventional coagulant polyaluminium ferric chloride (PAFC) on removal of Oscillatoria sp., and the behavior of Oscillatoria sp. cells in sludges formed from different dosages of PAFC (control, optimum, and overdose system) during storage was also studied. Oscillatoria sp. cells can be removed efficiently by coagulation of PAFC. The adverse environmental stresses of sludge, such as lack of light and anoxic environment, decrease cell viability and induce the increase of superoxide dismutase activity (SOD) and malondialdehyde content (MDA) in Oscillatoria sp. cells during the first 4 days. Because Oscillatoria sp. can adapt to the low-light and hypoxic circumstances in sludge gradually, the cells regrow with prolonged storage time. Compared to planktonic Microcystis aeruginosa and Cylindrospermopsis raciborskii, regrowth of Oscillatoria sp. during storage may present a bigger threat, even though Microcystis aeruginosa and Cylindrospermopsis raciborskii cells will be damaged and release toxic compounds. Growth rates of algae in coagulated systems were lower than that in control system because of the restriction of flocs. It is worth noting that the chlorophyll a level was increased by a factor of 3.5 in the optimal-dose system, and worse, the overdose system increased by a factor of 6 in chlorophyll a after 8 d storage due to the benefit of higher Fe levels. Concentrations of extracellular geosmin and cylindrospermopsin also increased during storage, especially after 4 d, and varied in the following sequence for a given storage duration: control system > overdose system > optimum system. Overall, due to decrease of SOD and MDA in Oscillatoria sp. cells after 4 d storage, algae cells regrew rapidly, especially in overdose system. Hence, sludge should be treated within 4 d and excess PAFC dosing should be avoided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Redox Species of Redox Flow Batteries: A Review.

    PubMed

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  13. Modelling CO2 flow in naturally fractured geological media using MINC and multiple subregion upscaling procedure

    NASA Astrophysics Data System (ADS)

    Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin

    2017-04-01

    Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model

  14. Lifetime assessment analysis of Galileo Li/SO2 cells: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, S.C.; Jaeger, C.D.; Bouchard, D.A.

    Galileo Li/SO2 cells from five lots and five storage temperatures were studied to establish a database from which the performance of flight modules may be predicted. Nondestructive tests consisting of complex impedance analysis and a 15-s pulse were performed on all cells. Chemical analysis was performed on one cell from each lot/storage group, and the remaining cells were discharged at Galileo mission loads. An additional number of cells were placed on high-temperature accelerated aging storage for 6 months and then discharged. All data were statistically analyzed. Results indicate that the present Galileo design Li/SO2 cell will satisfy electrical requirements formore » a 10-year mission. 10 figs., 4 tabs.« less

  15. Spatial Persistence of Macropores and Authigenic Clays in a Reservoir Sandstone: Implications for Enhanced Oil Recovery and CO2 Storage

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2015-12-01

    Multiphase flow in clay-rich sandstone reservoirs is important to enhanced oil recovery (EOR) and the geologic storage of CO2. Understanding geologic controls on pore structure allows for better identification of lithofacies that can contain, storage, and/or transmit hydrocarbons and CO2, and may result in better designs for EOR-CO2 storage. We examine three-dimensional pore structure and connectivity of sandstone samples from the Farnsworth Unit, Texas, the site of a combined EOR-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). We employ a unique set of methods, including: robotic serial polishing and reflected-light imaging for digital pore-structure reconstruction; electron microscopy; laser scanning confocal microscopy; mercury intrusion-extrusion porosimetry; and relative permeability and capillary pressure measurements using CO2 and synthetic formation fluid. Our results link pore size distributions, topology of porosity and clay-rich phases, and spatial persistence of connected flow paths to multiphase flow behavior. The authors gratefully acknowledge the U.S. Department of Energy's National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion.

    PubMed

    Södergren, A L; Tynngård, N; Berlin, G; Ramström, S

    2016-02-01

    Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.

  17. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty.

    PubMed

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-11-01

    To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. ON THE HYDRAULICS OF STREAM FLOW ROUTING WITH BANK STORAGE

    EPA Science Inventory

    Bank storage is a process in which volumes of water are temporally retained by alluvial stream banks during flood events, and gradually released to partially sustain baseflow. This process has important hydrologic and ecological implications. In this paper, analytical solutions a...

  19. Multiscale biomechanics of brain tumours favours cancer invasion by cell softening and tissue stiffening

    NASA Astrophysics Data System (ADS)

    Kas, Josef; Fritsch, Anatol; Grosser, Steffen; Friebe, Sabrina; Reiss-Zimmermann, Martin; Müller, Wolf; Hoffmann, Karl-Titus; Sack, Ingolf

    Cancer progression needs two contradictory mechanical prerequisites. For metastasis individual cancer cells or small clusters have to flow through the microenvironment by overcoming the yield stress exerted by the surrounding. On the other hand a tumour has to behave as a solid to permit cell proliferation and spreading of the tumour mass against its surrounding. We determine that the high mechanical adaptability of cancer cells and the scale controlled viscoelastic properties of tissues reconcile both conflicting properties, fluid and solid, simultaneously in brain tumours. We resolve why different techniques that assess cell and tissue mechanics have produced apparently conflicting results by our finding that tumours generate different viscoelastic behaviours on different length scales, which are in concert optimal for tumour spreading and metastasis. Single cancer cells become very soft in their elastic behavior which promotes cell unjamming. On the level of direct cell-to-cell interactions cells feel their micro-environment as rigid elastic substrate that stimulates cancer on the molecular level. All over a tumour has predominately a stiff elastic character in terms of viscoelastic behaviour caused by a solid backbone. Simultaneously, the tumour mass is characterized by a large local variability in the storage and loss modulus that is caused by areas of a more fluid nature.

  20. Liquid Storage at 4 deg C of Previously Frozen Red Cells

    DTIC Science & Technology

    1987-12-01

    adenosine tnphosphate (ATP). 2.3- acceptable red cell function. A post-thaw storage ca- diphosphoglycerate (2.3-DPG), glucose, supernatant hemo...and Received for publication September 22. 1986; revision received supernatant hemoglobin levels within the acceptable range, November 29, 1986, and...percent. All units were sterile at the end of the 21-day post- thaw storage period. 6.9 The mean red cell ATP and 2,3-DPG levels are shown in Figure 1

Top