Franz, Delbert D.; Melching, Charles S.
1997-01-01
The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.
Unsteady characteristics of low-Re flow past two tandem cylinders
NASA Astrophysics Data System (ADS)
Zhang, Wei; Dou, Hua-Shu; Zhu, Zuchao; Li, Yi
2018-06-01
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4-10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.
Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor
NASA Technical Reports Server (NTRS)
Mager, Artur; Mohoney, John J; Budinger, Ray E
1952-01-01
The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.
Characteristics of a separating confluent boundary layer and the downstream wake
NASA Technical Reports Server (NTRS)
Adair, Desmond; Horne, W. Clifton
1987-01-01
Measurements of pressure and velocity characteristics are presented and analyzed for flow over and downstream of a NACA 4412 airfoil equipped with a NACA 4415 single-slotted flap at high angle of attack and close to maximum lift. The flow remained attached over the main element while a large region of recirculating flow occurred over the aft 61 percent of the flap. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8x10 to the 6th power in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. Measurement of mean and fluctuation velocities were obtained in regions of recirculation and high turbulence intensity using 3-D laser velocimetry. In regions where the flow had a preferred direction and relatively low turbulence intensity, hot-wire anemometry was used. Emphasis was placed on obtaining characteristics in the confluent boundary layer, the region of recirculating flow, and in the downstream wake. Surface pressure measurements were made on the main airfoil, flap, wind tunnel roof and floor. It is thought likely that because the model is large when compared to the wind tunnel cross section, the wind tunnel floor and ceiling interference should be taken into account when the flow field is calculated.
Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.
2000-01-01
The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.
Unsteady aerodynamic interaction effects on turbomachinery blade life and performance
NASA Technical Reports Server (NTRS)
Adamczyk, John J.
1992-01-01
This paper is an attempt to address the impact of a class of unsteady flows on the life and performance of turbomachinery blading. These class of flows to be investigated are those whose characteristic frequency is an integral multiple of rotor shaft speed. Analysis of data recorded downstream of a compressor and turbine rotor will reveal that this class of flows can be highly three-dimensional and may lead to the generation of secondary flows within downstream blading. By explicitly accounting for these unsteady flows in the design of turbomachinery blading for multistage applications, it may be possible to bring about gains in performance and blade life.
Unstart phenomena induced by flow choking in scramjet inlet-isolators
NASA Astrophysics Data System (ADS)
Im, Seong-kyun; Do, Hyungrok
2018-02-01
A review of recent research outcomes in downstream flow choking-driven unstart is presented. Unstart is a flow phenomenon at the inlet that severely reduces the air mass flow rate through the engine, causing a loss of thrust and considerable transient mechanical loading. Therefore, unstart in a scramjet engine crucially affects the design and the operation range of hypersonic vehicles. Downstream flow choking is known to be one of the major mechanisms inducing inlet unstart, as confirmed by recent scramjet-powered flight tests. The current paper examines recent research progress in identifying flow choking mechanisms that trigger unstart. Three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions. Current research outcomes on the characteristic of unstarting flows, such as transient and quasi-steady motions, are reviewed for each flow choking mechanism. The characteristics of unstarted flows are described including Buzzing phenomena and oscillatory motions of unstarted shockwaves. Then, the state-of-the-art methods to predict, detect, and control unstart are presented. The review suggests that further investigations with high-enthalpy ground facilities will aid understanding of heat release-driven unstart.
Koltun, G.F.
2009-01-01
This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.
Flow Instabilities in Feather Seals due to Upstream Harmonic Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Deng, D.; Braun, M. J.; Henricks, Robert C.
2008-01-01
Feather seals (also called slot seals) typically found in turbine stators limit leakage from the platform into the core cavities and from the shroud to the case. They are of various geometric shapes, yet all are contoured to fit the aerodynamic shape of the stator and placed as close as thermomechanically reasonable the powerstream flow passage. Oscillations engendered in the compressor or combustor alter the steady leakage characteristics of these sealing elements and in some instances generate flow instabilities downstream of the seal interface. In this study, a generic feather seal geometry was studied numerically by imposing an upstream harmonic pressure disturbance on the simulated stator-blade gap. The flow and thermal characteristics were determined; it was found that for high pressure drops, large fluctuations in flows in the downstream blade-stator gap can occur. These leakages and pulsations in themselves are not all that significant, yet if coupled with cavity parameters, they could set up resonance events. Computationally generated time-dependent flow fields are captured in sequence video streaming.
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
The influence of distinct types of aquatic vegetation on the flow field
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Barcroft, Stephen; Yagci, Oral
2014-05-01
The Sustainable management of fluvial systems dealing with flood prevention, erosion protection and restoration of rivers and estuaries requires implementation of soft/green-engineering methods. In-stream aquatic vegetation can be regarded as one of these as it plays an important role for both river ecology (function) and geomorphology (form). The goal of this research is to offer insight gained from pilot experimental studies on the effects of a number of different elements modeling instream, aquatic vegetation on the local flow field. It is hypothesized that elements of the same effective "blockage" area but of distinct characteristics (structure, porosity and flexibility), will affect both the mean and fluctuating levels of the turbulent flow to a different degree. The above hypothesis is investigated through a set of rigorous set of experimental runs which are appropriately designed to assess the variability between the interaction of aquatic elements and flow, both quantitatively and qualitatively. In this investigation three elements are employed to model aquatic vegetation, namely a rigid cylinder, a porous but rigid structure and a flexible live plant (Cupressus Macrocarpa). Firstly, the flow field downstream each of the mentioned elements was measured under steady uniform flow conditions employing acoustic Doppler velocimetry. Three-dimensional flow velocities downstream the vegetation element are acquired along a measurement grid extending about five-fold the element's diameter. These measurements are analyzed to develop mean velocity and turbulent intensity profiles for all velocity components. A detailed comparison between the obtained results is demonstrative of the validity of the above hypothesis as each of the employed elements affects in a different manner and degree the flow field. Then a flow visualization technique, during which fluorescent dye is injected upstream of the element and images are captured for further analysis and comparison, was employed to visualize the flow structures shed downstream the aquatic elements. This method allows to further observe qualitatively and visually identify the different characteristics of the eddies advected downstream, conclusively confirming the results of the aforementioned experimental campaign.
Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow
NASA Technical Reports Server (NTRS)
Park, S.; Iversen, J. D.
1984-01-01
The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.
An in vitro experimental study of flow past aortic valve under varied pulsatile conditions
NASA Astrophysics Data System (ADS)
Zhang, Ruihang; Zhang, Yan
2017-11-01
Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
NASA Astrophysics Data System (ADS)
Qu, Aifang; Xiang, Wei
2018-05-01
In this paper, we study the stability of the three-dimensional jet created by a supersonic flow past a concave cornered wedge with the lower pressure at the downstream. The gas beyond the jet boundary is assumed to be static. It can be formulated as a nonlinear hyperbolic free boundary problem in a cornered domain with two characteristic free boundaries of different types: one is the rarefaction wave, while the other one is the contact discontinuity, which can be either a vortex sheet or an entropy wave. A more delicate argument is developed to establish the existence and stability of the square jet structure under the perturbation of the supersonic incoming flow and the pressure at the downstream. The methods and techniques developed here are also helpful for other problems involving similar difficulties.
NASA Astrophysics Data System (ADS)
Krishnan, Krishnamoorthy; Naqavi, Iftekhar Z.; Gurka, Roi
2017-11-01
Understanding the physics of flapping wings at moderate Reynolds number flows takes on greater importance in the context of avian aerodynamics as well as in the design of miniature-aerial-vehicles. Analyzing the characteristics of wake vortices generated downstream of flapping wings can help to explain the unsteady contribution to the aerodynamics loads. In this study, numerical simulations of flow over a bio-inspired pseudo-2D flapping wing model was conducted to characterize the evolution of unsteady flow structures in the downstream wake of flapping wing. The wing model was based on a European starling's wing and wingbeat kinematics were incorporated to simulate a free-forward flight. The starling's wingbeat kinematics were extracted from experiments conducted in a wind tunnel where freely flying starling was measured using high-speed PIV as well as high-speed imaging yielding a series of kinematic images sampled at 500 Hz. The average chord of the wing section was 6 cm and simulations were carried out at a Reynolds number of 54,000, reduced frequency of 0.17, and Strouhal number of 0.16. Large eddy simulation was performed using a second order, finite difference code ParLES. Characteristics of wake vortex structures during the different phases of the wing strokes were examined. The role of wingbeat kinematics in the configuration of downstream vortex patterns is discussed. Evaluated wake topology and lift-drag characteristics are compared with the starling's wind tunnel results.
PIV measurements and flow characteristics downstream of mangrove root models
NASA Astrophysics Data System (ADS)
Kazemi, Amirkhosro; Curet, Oscar
2016-11-01
Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.
NASA Astrophysics Data System (ADS)
Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro
2017-04-01
For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.
NASA Astrophysics Data System (ADS)
Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh
2018-06-01
The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.
How far downstream do dams impact streamflow?
NASA Astrophysics Data System (ADS)
Troy, T.
2017-12-01
Water infrastructure can be a double-edged sword. For example, dams can provide significant flood protection and stable water supplies, but they negatively impact river ecosystems. As the United States enters an era of dam decommissioning instead of dam building, it raises the question of how far downstream dams provide protection against flood peaks and sustaining environmental flows. This study uses USGS streamflow observations, the National Inventory of Dams, and VIC-modeled streamflow as a proxy for naturalized streamflow to evaluate the scale at which dams impact a variety of hydrologic signatures such as flood return period flows, streamflow variability, and low flows. Results over the Delaware River show that the impact of dams quickly dissipates as one moves downstream, but this is due to the basin's characteristics. This analysis is performed over the contiguous United States, quantifying the length scale of impact as a function of dam capacity, position on the river network, and the hydroclimatology.
NASA Astrophysics Data System (ADS)
Nelson, N. C.; Schmidt, J. C.
2006-05-01
Geomorphic and hydrologic analyses of the Snake River in Grand Teton National Park (GTNP) indicate that flow contributions of tributaries mitigate impacts of regulation. Since a flow regime change in 1958, regulation resulted in a 43 and 35% decrease in estimated unregulated flows immediately downstream of Jackson Lake Dam (JLD) and at Moose (43 km and 5 tributaries downstream of JLD), respectively. Geomorphic evidence indicates that some channel characteristics are more sensitive than others to this decreasing influence of flow regulation. First, entrainment of tracer rocks suggests that the ability of the Snake River to mobilize its bed increases downstream. A greater proportion of the bed became active, and the mobilized clasts moved further, in the two study reaches furthest downstream. Second, repeat mapping from aerial photographs suggest that some changes in channel form are the result of flow regulation and some are the result of climatically driven changes in runoff determined by tributaries. Initial decreases in flows due to regulation may have caused the observed channel narrowing between 1945 and 1969, and greater precipitation causing greater natural flows may have resulted in the subsequent channel widening between 1969 and 1990. Third, flow models were used to obtain the magnitudes of flows necessary to inundate two floodplain surfaces in 4 reaches from JLD to Moose. Recurrence intervals and inundation periods were similar for a narrow, inset floodplain in all 4 reaches, suggesting that this surface developed due to regulation. Recurrence intervals for a much broader and higher floodplain decreased downstream from 9 to 3.2 years and inundation periods increased downstream from 1.1 to 3 days immediately below JLD and at Moose, respectively. This suggests the upper floodplain was formed prior to regulation of the Snake River. Thus, the effects of flow regulation on bed mobility and connectivity between the channel and the upper floodplain decrease downstream as tributaries supply additional streamflow. However, the development of the inset floodplain associated with regulated flows has occurred throughout the study area. These studies indicate that tributaries may reduce most but not necessarily all of the impacts of flow regulation on the geomorphology of the Snake River in GTNP.
Method and apparatus for measuring flow velocity using matched filters
Raptis, Apostolos C.
1983-01-01
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.
Wind Tunnel Investigation of the Near-wake Flow Dynamics of a Horizontal Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Hashemi-Tari, P.; Siddiqui, K.; Refan, M.; Hangan, H.
2014-06-01
Experiments conducted in a large wind tunnel set-up investigate the 3D flow dynamics within the near-wake region of a horizontal axis wind turbine. Particle Image Velocimetry (PIV) measurements quantify the mean and turbulent components of the flow field. Measurements are performed in multiple adjacent horizontal planes in order to cover the area behind the rotor in a large radial interval, at several locations downstream of the rotor. The measurements were phase-locked in order to facilitate the re-construction of the threedimensional flow field. The mean velocity and turbulence characteristics clearly correlate with the near-wake vortex dynamics and in particular with the helical structure of the flow, formed immediately behind the turbine rotor. Due to the tip and root vortices, the mean and turbulent characteristics of the flow are highly dependent on the azimuth angle in regions close to the rotor and close to the blade tip and root. Further from the rotor, the characteristics of the flow become phase independent. This can be attributed to the breakdown of the vortical structure of the flow, resulting from the turbulent diffusion. In general, the highest levels of turbulence are observed in shear layer around the tip of the blades, which decrease rapidly downstream. The shear zone grows in the radial direction as the wake moves axially, resulting in velocity recovery toward the centre of the rotor due to momentum transport.
Experimental study of the spill and vaporization of a volatile liquid.
Bohl, Douglas; Jackson, Gregory
2007-02-09
Pool and vapor cloud characteristics of an acetone spill issuing from the downstream wall of a flow obstruction oriented perpendicular to a uniform flow were investigated experimentally. Data indicate that the spill event was largely governed by the temperature of the surface in relation to the boiling point of the spilled liquid. The free stream velocity (ranging from 0.75 to 3.0m/s) also impacted the spreading of the spill. Planar laser-induced fluorescence (PLIF) was used to measure acetone vapor concentrations during the transient pool spreading and vaporization in a window 60cm long by 50cm high and located downstream of the 16cm high obstruction. The recirculation region induced by the flow obstruction caused upstream transport of the acetone vapor along the spill surface, after which it was convected vertically along the obstruction wall before being entrained into the flow and convected downstream. The recirculating flow caused regions of vapor within the flammability limits to be localized near the flow obstruction. These regions moved into and out of the measurement plane by large three-dimensional flow structures. The flammable region of the evolved vapor cloud was observed to grow well past the downstream edge of the measurement domain. With decreasing wind speeds, both the mass of acetone vapor within the flammability limits and the total spill event time increased significantly. The data presented herein provides a basis for validating future spill models of hazardous chemical releases, where complex turbulent flow modeling must be coupled with spill spreading and vaporization dynamics.
NASA Astrophysics Data System (ADS)
Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.
2017-07-01
Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).
Method and apparatus for measuring flow velocity using matched filters
Raptis, A.C.
1983-09-06
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.
Van Wilson, K.
2004-01-01
An Acoustic Doppler Current Profiler (ADCP) was used on the Jourdan River at Interstate Highway 10 near Kiln, Mississippi, in 1996 to measure three-dimensional velocity vectors and water depths and in 1998, in combination with a global positioning system, to define channel bathymetry in the vicinity of the bridge. During a 25-hour period on September 19-20, 1996, 117 consecutive measurements of stage and discharge were obtained throughout a complete tidal cycle. These measurements were obtained during the time of year when headwater flows were minimal, and, therefore, the tidal-affected flow conditions were noticeable. The stage ranged from only 0.7 to 2.8 ft above sea level, but discharge ranged from 3,980 ft3/s flowing upstream to 5,580 ft 3/s flowing downstream. The average discharge during the 25-hour period was only 80 ft3/s flowing downstream. By using the ADCP, full downstream flow, bi-directional flow, and full upstream flow conditions were identified. If conventional measurement techniques had been used, the bi-directional flow conditions could not have been detected since flow direction would have been based on what was seen at the water surface. These measurements were used to define the lower range of the stage-storage-volume relation inland of the highway. On June 10, 1998, the ADCP, in combination with a global positional system, was used to define channel bathymetry for the river reach from about 3,500 ft upstream to about 2,500 ft downstream of the bridge. The bathymetry was compared to past soundings obtained in the vicinity of the bridge; as much as 18 ft of total scour was indicated to have occurred at a bridge pier. Copyright ASCE 2004.
Simeon T. Caskey; Tyanna S. Blaschak; Ellen Wohl; Elizabeth Schnackenberg; David M. Merritt; Kathleen A. Dwire
2015-01-01
Flow diversions are widespread and numerous throughout the semi-arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic...
Jet mixing into a heated cross flow in a cylindrical duct: Influence of geometry and flow variations
NASA Technical Reports Server (NTRS)
Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.
1992-01-01
To examine the mixing characteristics of jets in an axi-symmetric can geometry, temperature measurements were obtained downstream of a row of cold jets injected into a heated cross stream. Parametric, non-reacting experiments were conducted to determine the influence of geometry and flow variations on mixing patterns in a cylindrical configuration. Results show that jet to mainstream momentum flux ratio and orifice geometry significantly impact the mixing characteristics of jets in a can geometry. For a fixed number of orifices, the coupling between momentum flux ratio and injector determines (1) the degree of jet penetration at the injection plane, and (2) the extent of circumferential mixing downstream of the injection plane. The results also show that, at a fixed momentum flux ratio, jet penetration decreases with (1) an increase in slanted slot aspect ratio, and (2) an increase in the angle of the slots with respect to the mainstream direction.
Investigation of combustion characteristics in a scramjet combustor using a modified flamelet model
NASA Astrophysics Data System (ADS)
Zhao, Guoyan; Sun, Mingbo; Wang, Hongbo; Ouyang, Hao
2018-07-01
In this study, the characteristics of supersonic combustion inside an ethylene-fueled scramjet combustor equipped with multi-cavities were investigated with different injection schemes. Experimental results showed that the flames concentrated in the cavity and separated boundary layer downstream of the cavity, and they occupied the flow channel further enhancing the bulk flow compression. The flame structure in distributed injection scheme differed from that in centralized injection scheme. In numerical simulations, a modified flamelet model was introduced to consider that the pressure distribution is far from homogenous inside the scramjet combustor. Compared with original flamelet model, numerical predictions based on the modified model showed better agreement with the experimental results, validating the reliability of the calculations. Based on the modified model, the simulations with different injection schemes were analysed. The predicted flame agreed reasonably with the experimental observations in structure. The CO masses were concentrated in cavity and subsonic region adjacent to the cavity shear layer leading to intense heat release. Compared with centralized scheme, the higher jet mixing efficiency in distributed scheme induced an intense combustion in posterior upper cavity and downstream of the cavity. From streamline and isolation surfaces, the combustion at trail of lower cavity was depressed since the bulk flow downstream of the cavity is pushed down.
Investigation of Three-Dimensional Unsteady Flow Characteristics in Transonic Diffusers
NASA Astrophysics Data System (ADS)
Proshchanka, Dzianis; Yonezawa, Koichi; Tsujimoto, Yoshinobu
Three-dimensional characteristics of unsteady flow in supercritical transonic diffuser are investigated. For various pressure ratios three-dimensional flow containing a normal shock/turbulent boundary layer interaction regions with shockwave and pseudo-shockwaves fluctuating in longitudinal and spanwise directions is observed. Experimental and numerical investigations show details of the flowfield in the vicinity of terminal shock, interaction regions and downstream turbulent unsteady flow. Spectral analysis of pressure fluctuations reveals existence of two characteristic frequencies attributed to the shockwave fluctuation in longitudinal direction for the lower frequency case and acoustic resonance in spanwise direction for the higher one. Vortices appear at each corner in transversal sections modifying the core flow. As a result, size and depth of longitudinal and vertical penetration of separation regions impelled by the terminal shock is either increased or decreased.
An analysis of effect of land use change on river flow variability
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang
2018-02-01
Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.
Ruddy, Barbara C.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board, the Upper Colorado River Endangered Fish Recovery Program (UCREFRP), Colorado Division of Water Resources, and City of Craig studied the gain-loss characteristics of Elkhead Creek downstream from Elkhead Reservoir to the confluence with the Yampa River during August through October 2009. Earlier qualitative interpretation of streamflow data downstream from the reservoir indicated that there could be a transit loss of nearly 10 percent. This potential loss could be a significant portion of the releases from Elkhead Reservoir requested by UCREFRP during late summer and early fall for improving critical habitat for endangered fish downstream in the Yampa River. Information on the gain-loss characteristics was needed for the effective management of the reservoir releases. In order to determine streamflow gain-loss characteristics for Elkhead Creek, eight measurement sets were made at four strategic instream sites and at one diversion from August to early October 2009. An additional measurement set was made after the study period during low-flow conditions in November 2009. Streamflow measurements were made using an Acoustic Doppler Velocimeter to provide high accuracy and consistency, especially at low flows. During this study, streamflow ranged from about 5 cubic feet per second up to more than 90 cubic feet per second with step increments in between. Measurements were made at least 24 hours after a change in reservoir release (streamflow) during steady-state conditions. The instantaneous streamflow measurements and the streamflow volume comparisons show the reach of Elkhead Creek immediately downstream from Elkhead Reservoir to the streamflow-gaging station 09246500, Elkhead Creek near Craig, CO, is neither a gaining nor losing reach. The instantaneous measurements immediately downstream from the dam and the combined measurements of Norvell ditch plus streamflow-gaging station 09246500 are mostly within the plus or minus 5-percent measurement error of each other. The variability of data is such that sometimes the streamflow is greater upstream than downstream and sometimes the streamflow is greater downstream than upstream. Streamflow volumes were calculated for multiple time periods as determined by a change in release from the reservoir. Streamflow volumes were greater downstream than upstream for all but one time period. The predominance of greater streamflows downstream is due to the difference between the USGS instantaneous measurements and record computation with the Supervisory Control and Data Acquisition (SCADA) record at the dam. Immediately following an increase in streamflow from the reservoir, the downstream volume was smaller than the upstream volume, but this was an artifact of the traveltime between the two sites and possibly small amounts of water entering the streambank. Traveltimes were shorter at higher streamflows and when streamflow was increasing.
Features of separating turbulent boundary layers
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Agarwal, Naval K.; Simpson, Roger L.
1988-01-01
In the present study of two strong adverse pressure gradient flows, mean flow and turbulence characteristics are measured, together with frequency spectra, using hot-wire and laser anemometry. In these separating flows, reattachment occurs over a shorter distance than separation. It is noted that the outer flow variables form a unique set of scaling parameters for streamwise power spectra in adverse pressure gradient flows. The inner flow scaling of Perry et al. (1985) for streamwise spectra does not hold in the backflow region unless the value of the downstream-upstream intermittency in the flow is unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, F.W.; Back, G.G.; Burns, R.E.
1986-11-04
Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devicesmore » or methods is recommended.« less
NASA Astrophysics Data System (ADS)
Barakat, Mohammed; Lengsfeld, Corinne; Dvir, Danny; Azadani, Ali
2017-11-01
Transcatheter aortic valves provide superior systolic hemodynamic performance in terms of valvular pressure gradient and effective orifice area compared with equivalent size surgical bioprostheses. However, in depth investigation of the flow field structures is of interest to examine the flow field characteristics and provide experimental evidence necessary for validation of computational models. The goal of this study was to compare flow field characteristics of the three most commonly used transcatheter and surgical valves using phase-locked particle image velocimetry (PIV). 26mm SAPIEN 3, 26mm CoreValve, and 25mm PERIMOUNT Magna were examined in a pulse duplicator with input parameters matching ISO-5840. A 2D PIV system was used to obtain the velocity fields. Flow velocity and shear stress were obtained during the entire cardiac cycle. In-vitro testing showed that mean gradient was lowest for SAPIEN 3, followed by CoreValve and PERIMOUNT Magna. In all the valves, the peak jet velocity and maximum viscous shear stress were 2 m/s and 2 MPa, respectively. In conclusion, PIV was used to investigate flow field downstream of the three bioprostheses. Viscous shear stress was low and consequently shear-induced thrombotic trauma or shear-induced damage to red blood cells is unlikely.
VOC Emission Reduction Study at the Hill Air Force Base Building 515 Painting Facility
1990-09-01
occurs during painting. A system for decreasing the flow to a downstream VOC emission control device can be designed that takes advantage of this...paint application process. A flow-reducing ventilation system that takes advantage of this operating characteristic can be designed in which the...flow from the second duct is vented to a VOC emission control device. The advantage of this system is that the flow rate to a VOC emission contro
Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge
NASA Technical Reports Server (NTRS)
Sheeley, Joseph
1997-01-01
The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...
Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrolo...
NASA Astrophysics Data System (ADS)
Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo
2018-03-01
The sound generation mechanisms of sibilant fricatives were investigated with experimental measurements and large-eddy simulations using a simplified vocal tract model. The vocal tract geometry was simplified to a three-dimensional rectangular channel, and differences in the geometries while pronouncing fricatives /s/ and /∫/ were expressed by shifting the position of the tongue and its constricted flow channel. Experimental results showed that the characteristic peak frequency of the fricatives decreased when the distance between the tongue and teeth increased. Numerical simulations revealed that the jet flow generated from the constriction impinged on the upper teeth wall and caused the main sound source upstream and downstream from the gap between the teeth. While magnitudes of the sound source decreased with increments of the frequency, amplitudes of the pressure downstream from the constriction increased at the peak frequencies of the corresponding tongue position. These results indicate that the sound pressures at the peak frequencies increased by acoustic resonance in the channel downstream from the constriction, and the different frequency characteristics between /s/ and /∫/ were produced by changing the constriction and the acoustic node positions inside the vocal tract.
Flow over bedforms in a large sand-bed river: A field investigation
Holmes, Robert R.; Garcia, Marcelo H.
2008-01-01
An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.
NASA Astrophysics Data System (ADS)
Lee, Jeekuen; Kang, Shinjae; Rho, Byungjoon
The turbulent mixing flow characteristics of an intermittent diesel spray were investigated. A 5-hole diesel nozzle (dn=0.32mm) with a 2-spring nozzle holder, which is widely used in heavy-duty diesel engines, was tested. Time-resolved analysis of the turbulent mixing flow characteristics of the spray, injected intermittently into the still ambient air, was made under room temperature by using a 2-D PDPA system. The mean and the fluctuation velocities of the spray were measured. The axial velocity distribution shows similar to that of the free air jets at the downstream of the spray, and the distribution well coincides with the result proposed by Hinze at R/b<1.5. The turbulent intensity of the axial velocity component is high near the spray axis, and it decreases gradually with the increase in the radial distance. The turbulent shear stress increases with proceeding to the trailing edge as well as the downstream of the spray. The maximum value of the turbulent shear stress is observed near R/b≈1.0, regardless of the evolution time. The turbulent shear stress in the central parts of the spray is lower than that of the continuous free air jets, whereas that in the trailing edge is considerably higher.
Noise characteristics of upper surface blown configurations: Summary
NASA Technical Reports Server (NTRS)
Reddy, N. N.; Gibson, J. S.
1978-01-01
A systematic experimental program was conducted to develop a data base for the noise and related flow characteristics of upper surface blown configurations. The effect of various geometric and flow parameters was investigated experimentally. The dominant noise was identified from the measured flow and noise characteristics to be generated downstream of the trailing edge. The possibilities of noise reduction techniques were explored. An upper surface blown (USB) noise prediction program was developed to calculate noise levels at any point and noise contours (footprints). Using this noise prediction program and a cruise performance data base, aircraft design studies were conducted to integrate low noise and good performance characteristics. A theory was developed for the noise from the highly sheared layer of a trailing edge wake. Theoretical results compare favorably with the measured noise of the USB model.
Mothes, Patricia A; Vallance, James W.
2015-01-01
Lahars are volcanic debris flows that are dubbed primary when triggered by eruptive activity or secondary when triggered by other factors such as heavy rainfall after eruptive activity has waned. Variation in time and space of the proportion of sediment to water within a lahar dictates lahar flow phase and the resultant sedimentary character of deposits. Characteristics of source material and of debris eroded and incorporated during flow downstream may strongly affect the grain-size composition of flowing lahars and their deposits. Lahars borne on the flanks of two steep-sided stratocones in Ecuador exemplify two important lahar types. Glacier-clad Cotopaxi volcano has been a producer of primary lahars that flow great distances downstream. Such primary lahars include those of both clast-rich and matrix-rich composition—some of which have flowed as far as 325 km to the Pacific Ocean. Cotopaxi's last important eruption in 1877 generated formidable syneruptive lahars comparable in size to those that buried Armero, Colombia, following the 1985 eruption of Nevado del Ruiz volcano. In contrast, ash-producing eruptive activity during the past 15 years at Tungurahua volcano has generated a continual supply of fresh volcaniclastic debris that is regularly remobilized by precipitation. Between 2000 and 2011, 886 rain-generated lahars were registered at Tungurahua. These two volcanoes pose dramatically different hazards to nearby populations. At Tungurahua, the frequency and small sizes of lahars have resulted in effective mitigation measures. At Cotopaxi 137 years have passed since the last important lahar-producing eruption, and there is now a high-risk situation for more than 100,000 people living in downstream valleys.
NASA Astrophysics Data System (ADS)
Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya
2012-09-01
The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.
Weaver, J.C.
1997-01-01
Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.
Characterising and classifying agricultural drainage channels for sediment and phosphorus management
NASA Astrophysics Data System (ADS)
Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice
2016-04-01
In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were over-engineered, which likely reduces downstream P transfer. Streams had the greatest potential to convey fine sediment and associated P during event flows. Optimising these linear features for eutrophication management in headwaters, periodic removal of fine sediment and maintenance of channel vegetation in net attenuating and transferring channels, respectively, would help to minimise sediment and P transfers from these catchments.
Experimental investigation of cavitation induced air release
NASA Astrophysics Data System (ADS)
Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette
Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.
Streamflow losses along the Balcones Fault Zone, Nueces River basin, Texas
Land, L.F.; Boning, C.W.; Harmsen, Lynn; Reeves, R.D.
1983-01-01
Statistical evaluations of historical daily flow records for the streams that have gaging stations upstream and downstream from the recharge zone provided mathematical relationships that expressed downstream flow in terms of other significant parameters. For each stream, flow entering the recharge zone is most significant in defining downstream flow; for some streams, antecedent flows at the upstream site and ground-water levels are also significantly related to downstream flow. The analyses also determined the discharges required upstream from the recharge zone to sustain flow downstream from that zone. These discharges ranged from 355 cubic feet per second for the combined Frio and Dry Frio Rivers to 33 cubic feet per second for the Nueces River. The entire flows of lesser magnitude are generally lost to recharge to the aquifer.
Soap film flows: Statistics of two-dimensional turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobieff, P.; Rivera, M.; Ecke, R.E.
1999-08-01
Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity,more » vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.
2003-12-01
The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.
Parametric investigations of plasma characteristics in a remote inductively coupled plasma system
NASA Astrophysics Data System (ADS)
Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth
2016-09-01
Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.
Nelson, Jack L.; Perkins, R.W.; Haushild, W.L.
1966-01-01
Radioactive tracers introduced into the Columbia River in cooling water from the Hanford reactors were used to measure flow times downstream from Pasco, Washington, as far as Astoria, Oregon. The use of two tracer methods was investigated. One method used the decay of a steady release of Na24 (15-hour half-life) to determine flow times to various downstream locations, and flow times were also determined from the time required for peak concentration of instantaneous releases of I131 (8-day half-life) to reach these locations. Flow times determined from the simultaneous use of the two methods agreed closely. The measured flow times for the 224 miles from Pasco to Vancouver, Washington, ranged from 14.6 to 3.6 days, respectively, for discharges of 108,000 and 630,000 ft3/sec at Vancouver, Washington. A graphic relation for estimating flow times at discharges other than those measured and for several locations between Pasco and Vancouver was prepared from the data of tests made at four river discharges. Some limited data are also presented on the characteristics of dispersion of I131 in the Columbia River.
Experimental and analytical investigation of fan flow interaction with downstream struts
NASA Technical Reports Server (NTRS)
Olsen, T. L.; Ng, W. F.; Obrien, W. F., Jr.
1985-01-01
An investigation which was designed to provide insight into the fundamental aspects of fan rotor-downstream strut interaction was undertaken. High response, miniature pressure transducers were embedded in the rotor blades of an experimental fan rig. Five downstream struts were placed at several downstream locations in the discharge flow annulus of the single-stage machine. Significant interaction of the rotor blade surface pressures with the flow disturbance produced by the downstream struts was measured. Several numerical procedures for calculating the quasi-steady rotor response due to downstream flow obstructions were developed. A preliminary comparison of experimental and calculated fluctuating blade pressures on the rotor blades shows general agreement between the experimental and calculated values.
NASA Astrophysics Data System (ADS)
Kalumba, Mulenga; Nyirenda, Edwin
2017-12-01
The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s of riverflow is available. There is river flow available in the wet and dry seasons for e-flow allocation at ITT. On average per month 25 m3/s is allocated for e-flows at ITT for downstream purposes. On the other hand, it may be impossible to implement e-flows at KGS with the limited available outflow (river flow). The available river flow from ITT plays a very vital role in satisfying the current hydropower generating capacity at KGS. Therefore, the operations of KGS heavily depends on the available outflow (river flow) from ITT.
Payne, G.A.
1989-01-01
During March through October 1986, 52,560 acre-feet of water passed the continuous-record stream gaging station on the Clearwater River near Clearbrook, Minnesota, 4.8 river miles upstream from the Red Lake Indian Reservation. Flow at the downstream boundary of the Reservation totaled 93,770 acre-feet. The increase in Clearwater River flow in the reach bordering the Reservation equaled 32,950 acre-feet; 60 percent of the increase occurred during March, April, and May. During those months, flow in the Clearwater River was augmented by flow from Kiwosay Reservoir and Butcher Knife Creek, which are located on the Reservation. Daily streamflow records showed that flow in the river increased in the Reservation reach throughout the study except for 13 days during October when losses occurred. At the downstream Reservation boundary, all daily mean flows exceeded the 36 cubic feet per second minimum flow required by the Minnesota Department of Natural Resources for the gaging station at Plummer, Minnesota located 29.9 miles downstream from the Reservation boundary. Monthly flows generally followed expected seasonal trends, with the highest monthly totals occurring in April and May and the lowest monthly totals occurring during August, September, and October. Seasonal trends were modified by reservoir releases, withdrawals for irrigation, and return flows that resulted from drainage of adjacent wild-rice fields. A series of flow measurements showed that localized withdrawals and return flows at times exceeded 20 percent of total streamflow. Discharge measurements made during low flow indicated higher rates of groundwater discharge in the vicinity of the Kiwosay Reservoir than in other parts of the study reach. Measurements made during August indicated that groundwater discharge in the reach of the river bordering the Reservation resulted in a flow gain of about 20 percent. Analysis of long-term streamflow records showed that near-average hydrologic conditions prevailed during the study period.
Progress report number 2: investigations of some sedimentation characteristics of sand-bed streams
Hubbell, D.W.
1960-01-01
Hydraulic and sediment characteristics at six river sections upstream and downstream from the confluence of the Middle Loup and Dismal Rivers were measured and studied to determine some of the interrelationships between variables and the differences that exist between common variables when two flows unite. The two streams, which flow through the Sandhills region of Nebraska, have about the same water discharge, sediment concentration, and particle-size distribution of suspended sediment and bed material. Sediment discharges and flow resistances varied widely, although water discharges remained almost constant. The factor affecting the variations was water temperature, which ranged from 32° to 80° F. The bed form, which also varied with the water temperature, seemed to have a dominating influence on the sediment discharge, flow resistance, and possibly the vertical distribution of velocity and suspended sediment. Multiple regression with parameters derived from dimensional analysis yielded an expression for predicting the flow resistance and the widths and depths of individual channel sections. Contrary to those near many other confluences, slopes were steeper and channels were wider downstream from the junction of the two rivers than they were upstream. An investigation of specific sediment-transport phenomena and field procedures was made during 1956 and 1957 in cooperation with the U.S. Bureau of Reclamation. The purposes of this investigation were to provide information on the regime of rivers and to improve the procedures related to the collection of sediment data. The basic data and results of the studies made in 1956 were presented in progress report number 1, "Investigations of Some Sedimentation Characteristics of a Sand-Bed Stream." Some of the basic data and results of the studies made in 1957 are given in this report.
Enhanced viscous flow drag reduction using acoustic excitation
NASA Technical Reports Server (NTRS)
Nagel, R. T.
1988-01-01
Large eddy break up devices (LEBUs) constitute a promising method of obtaining drag reduction in a turbulent boundary layer. Enhancement of the LEBU effectiveness by exciting its trailing edge with acoustic waves phase locked to the large scale structure influencing the momentum transfer to the wall is sought. An initial estimate of the required sound pressure level for an effective pulse was obtained by considering the magnitude of the pressure perturbations at the near wake of a thin plate in inviscid flow. Detailed skin friction measurments were obtained in the flow region downstream of a LEBU excited with acoustic waves. The data are compared with skin friction measurements of a simply manipulated flow, without acoustic excitation and with a plain flow configuration. The properties and the scales of motion in the flow regime downstream of the acoustically excited LEBU are studied. A parametric study based upon the characteristics of the acoustic input was pursued in addition to the careful mapping of the drag reduction phenomenon within the acoustically manipulated boundary layer. This study of boundary layer manipulation has lead to improved skin friction drag reduction and further understanding of the turbulent boundary layer.
The effect of inlet boundary layer thickness on the flow within an annular S-shaped duct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonoda, T.; Arima, T.; Oana, M.
1999-07-01
Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the effect of the inlet boundary layer (IBL) on the flow. A duct with six struts and the geometry as that used to connect compressor spools on the experimental small two-spool turbofan engine was investigated. A curved downstream annular passage with similar meridional flow path geometry to that of the centrifugal compressor has been fitted at the exit of S-shaped duct. Two types of the IBL (i.e., thin and thick IBL) were used. Results showed that large differencesmore » of flow patterns were observed at the S-shaped duct exit between two types of IBL, though the value of net total pressure loss has not been remarkably changed. According to overall total pressure loss, which includes the IBL loss, the total pressure loss was greatly increased near the hub as compared to that for a thin one. For the thick IBL, a vortex pair related to the hub-side horseshoe vortex and the separated flow found at the strut trailing edge has been clearly captured in the form of the total pressure loss contours and secondary flow vectors, experimentally and numerically. The high-pressure loss regions on either side of the strut wake near the hub may act on a downstream compressor performance. There is a much-distorted three-dimensional flow patterns at the exit of S-shaped duct. This means that the aerodynamic sensitivity of S-shaped duct to the IBL thickness is very high. Therefore, sufficient care is needed to design not only downstream aerodynamic components (for example, centrifugal impeller) but also upstream aerodynamic components (LPC OGV).« less
Identifying crash-prone traffic conditions under different weather on freeways.
Xu, Chengcheng; Wang, Wei; Liu, Pan
2013-09-01
Understanding the relationships between traffic flow characteristics and crash risk under adverse weather conditions will help highway agencies develop proactive safety management strategies to improve traffic safety in adverse weather conditions. The primary objective is to develop separate crash risk prediction models for different weather conditions. The crash data, weather data, and traffic data used in this study were collected on the I-880N freeway in California in 2008 and 2010. This study considered three different weather conditions: clear weather, rainy weather, and reduced visibility weather. The preliminary analysis showed that there was some heterogeneity in the risk estimates for traffic flow characteristics by weather conditions, and that the crash risk prediction model for all weather conditions cannot capture the impacts of the traffic flow variables on crash risk under adverse weather conditions. The Bayesian random intercept logistic regression models were applied to link the likelihood of crash occurrence with various traffic flow characteristics under different weather conditions. The crash risk prediction models were compared to their corresponding logistic regression model. It was found that the random intercept model improved the goodness-of-fit of the crash risk prediction models. The model estimation results showed that the traffic flow characteristics contributing to crash risk were different across different weather conditions. The speed difference between upstream and downstream stations was found to be significant in each crash risk prediction model. Speed difference between upstream and downstream stations had the largest impact on crash risk in reduced visibility weather, followed by that in rainy weather. The ROC curves were further developed to evaluate the predictive performance of the crash risk prediction models under different weather conditions. The predictive performance of the crash risk model for clear weather was better than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Puzu, N.; Prasertsan, S.; Nuntadusit, C.
2017-09-01
The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.
Rybicki, N.B.; Reel, J.T.; Ruhl, H.; Gammon, P.T.; Carter, Virginia; Lee, J.K.
1999-01-01
The U.S. Geological Survey is studying vegetative resistance to flow in the south Florida Everglades as part of a multidisciplinary effort to restore the South Florida Ecosystem. In order to test the flow resistance of sawgrass, one of the dominant species in the Everglades, uniform, dense stands of sawgrass were grown in a tilting flume at Stennis Space Center, Mississippi. Depth of water in the flume was controlled by adding or removing metal plates at the downstream end of the flume. A series of experiments were conducted at various flow depths, and the velocity, flow depth, and water-surface slope were measured. During each set of experiments, the sawgrass was sampled in layers from the sediment water interface for vegetative characteristics, biomass, and leaf area index. The results of the vegetation sampling are summarized in a series of tables.
Auzerais, Anthony; Jarno, Armelle; Ezersky, Alexander; Marin, François
2016-11-01
The generation of localized, spatially periodic patterns on a sandy bottom is experimentally and theoretically studied. Tests are performed in a hydrodynamic flume where patterns are produced downstream from a vertical cylinder under a steady current. It is found that patterns appear as a result of a subcritical instability of the water-sand bottom interface. A dependence of the area shape occupied by the patterns on the flow velocity and the cylinder diameter is investigated. It is shown that the patterns' characteristics can be explained using the Swift-Hohenberg equation. Numerical simulations point out that for a correct description of the patterns, an additional term which takes into account the impact of vortices on the sandy bottom in the wake of a cylinder must be added in the Swift-Hohenberg equation.
Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.
2012-01-01
Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. (See CASI ID 20120009374 for Supplemental CD-ROM.)
Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.
2012-01-01
Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.
Characteristics of streamflow and ground-water conditions in the Boise River Valley, Idaho
Thomas, C.A.; Dion, N.P.
1974-01-01
The quantity, quality, and distribution in time of streamflow in Boise River below Lucky Peak Lake are drastically affected by storage reservoirs, diversions for irrigation, and by domestic, industrial, and agricultural wastes. Reservoirs usually fill during the nonirrigation season, and streamflow for several miles below Lucky Peak Lake is very low, sometimes less than 10 cubic feet per second (0.28 cubic meters per second). On November 18-19, 1971, when the gates at Lucky Peak Dam were closed, inflow to the Boise River in the study reach totaled 1010 ft3 /s. Practically all inflow was discharged ground water. During the growing season, several thousands of ft3 /s are released from Lucky Peak Lake, but diversions reduce the flows to near zero below some large diversion points in the study reach. Characteristics of streamflow are described by duration curves, duration hydrographs, and low-flow and high-flow frequency curves.Water released from Lucky Peak Lake is of excellent quality. Dissolved solids are usually less than 80 milligrams per liter. Discharged ground water increases the dissolved solids in the river downstream to 400 milligrams per liter or more when dilution from Lucky Peak Lake is slight. Other measures of water quality likewise show the deterioration in a downstream direction in the study reach.
Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow
NASA Astrophysics Data System (ADS)
Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.
2008-03-01
The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Seasholtz, R. G.; Mclallin, K. L.
1976-01-01
A laser Doppler velocimeter (LDV) was used to determine the flow conditions downstream of an annular cascade of stator blades operating at an exit critical velocity ratio of 0.87. Two modes of LDV operation (continuous scan and discrete point) were investigated. Conventional pressure probe measurements were also made for comparison with the LDV results. Biasing errors that occur in the LDV measurement of velocity components were also studied. In addition, the effect of pressure probe blockage on the flow conditions was determined with the LDV. Photographs and descriptions of the test equipment used are given.
Some Effects of Compressibility on the Flow Through Fans and Turbines
NASA Technical Reports Server (NTRS)
Perl, W.; Epstein, H. T.
1946-01-01
The laws of conservation of mass, momentum, and energy are applied to the compressible flow through a two-dimensional cascade of airfoils. A fundamental relation between the ultimate upstream and downstream flow angles, the inlet Mach number, and the pressure ratio across the cascade is derived. Comparison with the corresponding relation for incompressible flow shows large differences. The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, for which no ideal pressure ratio exists. One of these nonideal operating ranges is analogous to a similar type in incompressible flow. The other is characteristic only of compressible flow. The effect of variable axial-flow area is treated. Some implications of the basic conservation laws in the case of nonideal flow through cascades are discussed.
NASA Astrophysics Data System (ADS)
Johnson, M.
2015-12-01
Animals make decisions about the suitability of habitat and their reaction to other organisms based on the sensory information that they first obtain. This information is transmitted, masked and filtered by fluvial processes, such as turbulent flow. Despite governing how animals interact with the environment, limited attention has been paid to the controls on the propagation of sensory signals through rivers. Some animals interpret hydraulic events and use the characteristics of wakes to sense the presence of other organisms. This implies that at least some animals can differentiate turbulent flow generated by the presence of living organisms from ambient environmental turbulence. We investigate whether there are specific flow characteristics, distinct from the ambient environment, that potentially flag the presence of organisms to other animals. ADV and PIV measurements in a series of laboratory flume experiments quantified the flow around living Signal Crayfish (Pacifastacus leniusculus) and two inanimate objects of equivalent shape and size. Experiments were repeated across a gradient of turbulence intensities generated over nine combinations of flow velocity and relative submergence. Flows downstream of living crayfish were distinct from inanimate objects, with greater turbulent intensities, higher energy in low- to intermediate frequencies, and flow structures that were less coherent in comparison to those measured downstream of inanimate objects. However, the hydrodynamic signature of crayfish became masked as the intensity of ambient turbulence exceeded that generated by living crayfish. These results demonstrate the importance of the fluvial processes in the transmission of sensory information and suggest that the ability of animals to perceive hydraulic signatures is likely to be limited in many situations in rivers. Thus, animals may need to rely on other senses, such as sight or hearing, especially where depth is shallow relative to grain size.
Life cycles of persistent anomalies. I - Evolution of 500 mb height fields
NASA Technical Reports Server (NTRS)
Dole, Randall M.
1989-01-01
The life cycles of persistent anomalies of the extratropical Northern Hemisphere wintertime circulation are studied, focusing on the typical characteristics of the 500 mb height anomaly and flow patterns accompanying the development and breakdown of large-scale flow anomalies in the eastern North Atlantic and the northern Soviet Union. Following onset, anomaly centers develop and intensify in sequence downstream from the main center, forming a quasi-stationary wavetrain pattern. From development through decay, corresponding positive and negative patterns have similar evolutions.
An experimental investigation of delta wing vortex flow with and without external jet blowing
NASA Technical Reports Server (NTRS)
Iwanski, Kenneth P.; Ng, T. Terry; Nelson, Robert C.
1989-01-01
A visual and quantitative study of the vortex flow field over a 70-deg delta wing with an external jet blowing parallel to and at the leading edge was conducted. In the experiment, the vortex core was visually marked with TiCl4, and LDA was used to measure the velocity parallel and normal to the wing surface. It is found that jet blowing moved vortex breakdown farther downstream from its natural position and influenced the breakdown characteristics.
Use of thermoacoustic excitation for control of turbulent flow over a wall-mounted hump
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Munday, Phillip; Taira, Kunihiko
2014-11-01
We numerically examine the effectiveness of high-frequency acoustic excitation for drag reduction control of turbulent flow over a wall-mounted hump at a free stream Reynolds number of 500,000 and Mach number of 0.25. Actuation frequencies around Helmholtz number of 3 are considered based on the characteristics of recently developed graphene/carbon nanotube-based surface compliant loud speakers. The present study utilizes LES (CharLES) with an oscillatory heat flux boundary condition to produce high-intensity acoustic waves, which interact with the turbulent flow structures by introducing small-scale perturbations to the shear layer in the wake of the hump. With thermoacoustic control, the recirculation zone downstream of the hump becomes elongated with thinner shear layer profile compared to the uncontrolled case. This change in the flow shifts the low-pressure region of the wake further downstream and results in reduction in drag by 10% for two-dimensional and 15% for three-dimensional flows. The influence of actuation frequency and amplitude is also examined. This work is supported by the US Army Research Office (W911NF-13-1-0062, W911NF-14-1-0224).
Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.
1989-01-01
The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.
2003-01-01
Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.
Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278
Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation
NASA Astrophysics Data System (ADS)
Shiau, J.
2010-12-01
Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio and power generation and downstream hydrologic alterations in terms of ecological relevant indicators. The results show that the proposed methodology can mitigate hydro-peaking effects on natural variability, while maintains efficient reservoir operation.
Laser imaging in liquid-liquid flows
NASA Astrophysics Data System (ADS)
Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota
2016-11-01
In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Chung, King; Mongeau, Luc; McKibben, Nicholas
2009-04-01
Wind noise can be a significant problem for hearing instrument users. This study examined the polar characteristics of flow noise at outputs of two behind-the-ear digital hearing aids, and a microphone mounted on the surface of a cylinder at flow velocities ranging from a gentle breeze (4.5 m/s) to a strong gale (22.5 m/s) . The hearing aids were programed in an anechoic chamber, and tested in a quiet wind tunnel for flow noise recordings. Flow noise levels were estimated by normalizing the overall gain of the hearing aids to 0 dB. The results indicated that the two hearing aids had similar flow noise characteristics: The noise level was generally the lowest when the microphone faced upstream, higher when the microphone faced downstream, and the highest for frontal and rearward incidence angles. Directional microphones often generated higher flow noise level than omnidirectional microphones but they could reduce far-field background noise, resulting in a lower ambient noise level than omnidirectional microphones. Data for the academic microphone- on-cylinder configuration suggested that both turbulence and flow impingement might have contributed to the generation of flow noise in the hearing aids. Clinical and engineering design applications are discussed.
NASA Astrophysics Data System (ADS)
Hsieh, T.
1986-10-01
Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.
NASA Astrophysics Data System (ADS)
Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.
1982-04-01
An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang
2017-11-01
A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.
Castro, D M P; Hughes, R M; Callisto, M
2013-11-01
Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.
NASA Astrophysics Data System (ADS)
Carles Balasch Solanes, Josep; Lluís Ruiz-Bellet, Josep; Rodríguez, Rafael; Tuset, Jordi; Castelltort, Xavier; Barriendos, Mariano; Pino, David; Mazón, Jordi
2016-04-01
Historical and recent evidence shows that many floods in the interior of Catalonia (NE Iberian Peninsula) usually have such a great sediment load that can even alter the hydraulic behaviour of the flow. This is especially true in catchments with a great proportion of agricultural soils, which are the main source of sediment. The night of 2-3 November 2015 torrential rains fell on the headwaters of the Sió River catchment (508 km2); the subsequent flood caused four deaths and many damages along the stream. The hydrological, hydraulic and sedimentary characteristics of this recent flood have been analysed in order to gain a better insight on the characteristics of the major historical floods in the same catchment. The rainfall height on the headwaters was between 139 and 146 mm in ten hours, with a maximum intensity of about 50 mm·h-1. In the rest of the catchment it rained much less (22-71 mm). The agricultural soils in the headwaters show evidence of intense erosion by laminar and concentrated Hortonian overland flow in their superficial layer (Ap1; 10 cm), which uncovered the more compact underlying layer (Ap2). The peak flow in the headwaters (Oluges) was 90 m3·s-1 (that is, a specific peak flow near 1 m3·s-1·km-2) and it diminished downstream: 40 m3·s-1 in the centre of the catchment (Oluges + 27 km) and 15 m3·s-1 in the outlet (Oluges + 54 km). The suspended sediment load was 10-15% in volume in the headwaters and, judging from recorded images and eyewitnesses, it increased as the flow moved downstream, turning the flash flood into a mudflow. This concentration gain was most probably caused by the flood wave's water loss due to the dryness of the riverbed and translated in an increased viscosity that ultimately altered the hydraulic behaviour of the flow, slowing it down. This process of water loss has been observed in flash floods in dry riverbeds in arid and semiarid areas such as Negev (Israel) and Atacama (Chile). Historical floods in neighbouring catchments (Ondara and Corb Rivers) are known to have had hyperconcetrated flows.
Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.
Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P
2014-01-01
The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.
Holtschlag, David J.
2009-01-01
Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.
NASA Technical Reports Server (NTRS)
Schuster, P. R.
1984-01-01
Laser Doppler Anemometry (LDA) and accelerated fatigue testing were used in an attempt to assess the durability of two cardiac value bioprostheses. The LDA system was used to monitor the function of the cardiac valves over time. This was done through flow characterization in an aortic flow chamber, designed to closely simulate in vivo conditions, both in the near vicinity (sinuses of valsalva region) and also somewhat downstream (aortic region) from the values. The accelerated fatigue tester was operated by opening and closing the valves at a rate of 1300 R.P.M., about 18 x the normal rate. The results from the two test valves indicate a definite change in the flow characteristics downstream from the valve after certain accelerated test intervals. The high velocity cross-sectional flow area seems to increase over time in use, causing a decrease in the peak velocity. The tissue became more flaccid in certain areas, and tears were apparent at about 9.4 million cycles for the Ionescu-Shiley valve and at 24 million cycles for the Carpentier-Edwards valve. The use of Doppler ultrasound as a technique for monitoring the function of bioprostheses over time in vivo is also discussed.
National Mapping of Wetland Connectivity | Science Inventory ...
Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to represent tra
Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2003-01-01
The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.
Wetland Hydrological Connectivity: A Classification Approach ...
Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to repre
Classification of US hydropower dams by their modes of operation
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...
2016-02-19
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
Classification of US hydropower dams by their modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
Upstream and Downstream Influence in STBLI Instability
NASA Astrophysics Data System (ADS)
Martin, Pino; Priebe, Stephan; Helm, Clara
2016-11-01
Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Fang, Zhi; Liu, Feng; Zhou, Renwu; Zhou, Ruoyu
2018-06-01
Using an atmospheric pressure plasma jet array is an effective way for expanding the treatment area of a single jet, and generating arrays with well downstream uniformity is of great interest for its applications. In this paper, a plasma jet array in helium is generated in a linear-field jet array with a ring-ring electrode structure excited by alternating current. The characteristics and downstream uniformity of the array and their dependence on the applied voltage and gas flow rate are investigated through optical, electrical, and Schlieren diagnostics. The results are compared with those of our reported work of a cross-field jet array with a needle-ring electrode structure. The results show that the linear-field jet array can generate relatively large-scale plasma with better uniformity and longer plumes than the cross-field case. The divergences observed in gas channels and the plasma plume trajectories are much less than those of the cross-field one. The deflection angle of lateral plumes is less than 6°, which is independent of the gas flow rate and applied voltage. The maximum downstream plumes of 23 mm can be obtained at 7 kV peak applied voltage and 4 l/min gas flow rate. The better uniformity of linear-field jet arrays is due to the effective suppression of hydrodynamic and electrical interactions among the jets in the arrays with a more uniform electric field distribution. The hydrodynamic interaction induced by the gas heating in the linear-field jet array is less than that of the cross-field one. The more uniform electric field distribution in the linear-field jet arrays can reduce the divergence of the propagation trajectories of the plasma plumes. It will generate less residual charge between the adjacent discharges and thus can reduce the accumulation effect of Coulomb force between the plasma plumes. The reported results can help design controllable and scalable plasma jet arrays with well uniformity for material surface and biomedical treatments.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.
1989-01-01
The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.
1989-01-01
The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.
NASA Technical Reports Server (NTRS)
Sutton, K.
1973-01-01
A computational method was developed for the fully-coupled solution of nongray, radiating gas flows with ablation product effects about blunt bodies during planetary entries. The treatment of radiation accounts for molecular band, continuum, and atomic line transitions with a detailed frequency dependence of the absorption coefficient. The ablation of the entry body was solved as part of the solution for a steady-state ablation process. The method was applied by results at typical conditions during entry to Venus. The radiative heating rates along the downstream region of the body can exceed the stagnation point value. The radiative heating to the body is attenuated in the boundary layer at the downstream region of the body and at the stagnation point of the body. A study of the radiation, inviscid flow about spherically capped, conical bodies during planetary entries shows that the nondimensional, radiative heating distributions are nonsimilar with entry conditions. Caution should be exercised in attempting to extrapolate results from known distributions to other entry conditions for which solutions have not yet been obtained.
Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams
Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.
2011-01-01
Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.
NASA Technical Reports Server (NTRS)
Beke, Andrew; Allen, J L
1953-01-01
Aerodynamic and performance characteristics of a conical spike nacelle-type inlet with two bypasses are presented at Mach numbers of 1.6, 1.8, and 2.0 for angles of attach up to 90 degrees. The bypasses were located 6 inlet diameters downstream of the inlet and were designed to discharge the bypass mass flow outward from the body axis. The inlet was designed to attain a mass-flow ratio of unity at a Mach number of 2.0. It is shown that discharging the bypass mass flow outward from the body nearly doubles the critical drag of a similar configuration but with bypass discharge in an axial direction. As a result of this greater drag, the net force on the model in the flight direction is reduced when comparison is made with the axial discharge case. The lift and pitching-moment coefficients are slightly higher than those for a configuration without bypasses. Approximately 25 % of the maximum inlet mass flow was discharged through the bypasses, and the pressure-recovery and mass-flow characteristics were in qualitative and quantitative agreement with the results of an investigation of a similar configuration with axial discharge.
Water-quality assessment of Peruque Creek, St Charles County, Missouri, July 1983 and July 1984
Berkas, W.R.
1987-01-01
Physical, chemical, and biological data collected along the downstream 24.1-river-mi reach of Peruque Creek, Missouri, on July 18-19, 1983 and July 9-10, 1984, were used to characterize the water quality conditions in the creek. Wastewater discharges into the creek at the Lake St. Louis sewage-disposal ponds and at the O'Fallon wastewater-treatment facility. The effluent from the sewage disposal ponds did not have a substantial effect on downstream water quality but that from the wastewater treatment facility caused the Missouri un-ionized ammonia standard of 0.1 mg/l as nitrogen to be exceeded downstream from the outflow. Discharge from the O'Fallon facility also caused all dissolved-oxygen concentrations measured downstream from the outflow to be less than the Missouri dissolved-oxygen standard of 5.0 mg/L. Attempts were made to calibrate and verify the QUAL-II/SEMCOG version water quality model. The model could not be adequately calibrated or verified, because of the non-uniform hydraulic conditions in Peruque Creek, which is characterized by slow velocities; long, deep pools; and inadequate mixing characteristics; and also the non-uniform quantity and quality of effluent discharged from the O'Fallon wastewater treatment facility. Thus, the assumptions of one-dimensional flow and steady-state conditions necessary for the model were not valid. The attempt to calibrate and verify the model indicated that during low-flow conditions the waste-load assimilative capacity of the downstream 17.9 river miles of Peruque Creek was limited. (USGS)
Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds
NASA Astrophysics Data System (ADS)
Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.
2012-12-01
Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.
Hydraulic Physical Model of Debris Flow for Malaysia Case Study
NASA Astrophysics Data System (ADS)
Arif Zainol, M. R. R. Mohd; Awahab, M. K.
2018-06-01
In the recent decade, several debris flow events occurred and caused hundreds of deaths, missing or injury and damaged many facilities. In addition to causing significant morphological changes along riverbeds and mountain slopes, these flows are frequently reported to bring about extensive property damage and loss of life. Debris flow phenomena occasionally occur in Malaysia and numbers of death reported cause by this event. In order to investigate the debris flow and its deposition process, experiments were conducted at the School of Civil Engineering Laboratory, Universiti Sains Malaysia. The models consists of three main parts which are water tank, rectangular flume and deposition board. A high speed video camera (HSVC) had been placed nearly downstream of the rectangular flume to capture the movement characteristics of particle grain. From this study, the characteristics of particle routing segregation can be understand clearly, therefore this input will be a very useful information to other researchers for further investigation in terms of knowledge sharing between researchers. Catastrophic cause by debris flow event can be minimized therefore in term of economy losses can be reduce and human life can be safe.
Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control
NASA Technical Reports Server (NTRS)
Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.
2012-01-01
Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.
Jordan, P.R.; Hart, R.J.
1985-01-01
A streamflow routing model was used to calculate the transit losses and traveltimes. Channel and aquifer characteristics, and the model control parameters, were estimated from available data and then verified to the extent possible by comparing model simulated streamflow to observed streamflow at streamflow gaging stations. Transit losses and traveltimes for varying reservoir release rates and durations then were simulated for two different antecedent streamflow (drought) conditions. For the severe-drought antecedent-streamflow condition, it was assumed that only the downstream water use requirement would be released from the reservoir. For a less severe drought (LSD) antecedent streamflow condition, it was assumed than any releases from Marion Lake for water supply use downstream, would be in addition to a nominal dry weather release of 5 cu ft/sec. Water supply release rates of 10 and 25 cu ft/sec for the severe drought condition and 5, 10, and 25 cu ft/sec for the less severe drought condition were simulated for periods of 28 and 183 days commencing on July 1. Transit losses for the severe drought condition for all reservoir release rates and durations ranged from 12% to 78% of the maximum downstream flow rate and from 27% to 91% of the total volume of reservoir storage released. For the LSD condition, transit losses ranged from 7% to 29% of the maximum downstream flow rate and from 10% to 48% of the total volume of release. The 183-day releases had larger total transit losses, but losses on a percentage basis were less than the losses for the 28-day release period for both antecedent streamflow conditions. Traveltimes to full response (80% of the maximum downstream flow rate), however, showed considerable variation. For the release of 5 cu ft/sec during LSD conditions, base flow exceeded 80% of the maximum flow rate near the confluence; the traveltime to full response was undefined for those simulations. For the releases of 10 and 25 cu ft/sec during the same drought condition, traveltimes to full response ranged from 4.4 to 6.5 days. For releases of 10 and 25 cu ft/sec during severe drought conditions, traveltimes to full response near the confluence with the Neosho River ranged from 8.3 to 93 days. (Lantz-PTT)
Effects of woody vegetation on overbank sand transport during a large flood, Rio Puerco, New Mexico
Griffin, Eleanor R.; Perignon, Mariela C.; Friedman, Jonathan M.; Tucker, Gregory E.
2014-01-01
Distributions of woody vegetation on floodplain surfaces affect flood-flow erosion and deposition processes. A large flood along the lower Rio Puerco, New Mexico, in August 2006 caused extensive erosion in a reach that had been sprayed with herbicide in September 2003 for the purpose of saltcedar (Tamarix spp.) control. Large volumes of sediment, including a substantial fraction of sand, were delivered to the reach downstream, which had not been treated with herbicide. We applied physically based, one-dimensional models of flow and suspended-sediment transport to compute volume concentrations of sand in suspension in floodplain flow at a site within the sprayed reach and at a site downstream from the sprayed reach. We computed the effects of drag on woody stems in reducing the skin friction shear stress, velocity of flow, and suspended-sand transport from open paths into patches of dense stems. Total flow and suspended-sand fluxes were computed for each site using well-constrained flood-flow depths, water-surface slopes, and measured shrub characteristics. Results show that flow in open paths carried high concentrations of sand in suspension with nearly uniform vertical distributions. Drag on woody floodplain stems reduced skin friction shear stresses by two orders of magnitude, yet sufficient velocities were maintained to transport sand more than 50 m into fields of dense, free-surface-penetrating stems. An increase in shrub canopy extent from 31% in the sprayed reach site to 49% in the downstream site was found to account for 69% of the computed decrease in discharge between the two sites. The results demonstrate the need to compute the spatial distribution of skin friction shear stress in order to effectively compute suspended-sand transport and to predict the fate of sediment and contaminants carried in suspension during large floods.
NASA Astrophysics Data System (ADS)
Nittrouer, J. A.
2015-12-01
The downstream termination of gravel is measured for two fluvial-deltaic systems: the Selenga and Mississippi rivers. These end-members vary by an order of magnitude for slope, water and sediment discharge, and delta area. Moreover, the contrast between the tectonic regimes of the receiving basins is stark: the Selenga delta is located along the deep-water margin of Lake Baikal, which is an active half-graben rift basin, while the Mississippi discharges onto a passive margin with little tectonic influence. Nevertheless, the two rivers share a striking sedimentological similarity: near the delta apex, gravel is eliminated from the downstream dispersal system, and so sediment reaching the land-water interface is exclusively sand and mud. Field data for both rivers, including sediment samples and water discharge and flow velocity measurements, are used to validate morphodynamic models that assess the downstream changes in fluid stress and gravel transport. The analyses show that there are two distinct mechanisms that drive gravel deposition and prohibit dispersal throughout the delta. For the Selenga, water partitioning among bifurcating channels produces a non-linear reduction in shear stress and gravel deposition. For the Mississippi, backwater flow arrests the downstream movement of gravel during low and moderate water discharges, and although floods overcome backwater and produce uniform flow to the outlet, the duration of floods is too short to disperse gravel throughout the delta. Given sufficient time, model results indicate that both rivers should approach morphodynamic equilibrium, whereby aggradation due to sediment deposition raises local bed slope and sediment transport capacity, thereby facilitating downstream gravel movement. However, both systems possess unique characteristics that prevent this process from occurring. For the Selenga, tectonically induced movements regularly down drop portions of the delta below base level, forcing renewed delta sedimentation. For the Mississippi, channel filling produces regular avulsions, whereby mainstem channels are abandoned. In both cases, sediment is sequestered in perpetuity, and gravel dispersal within the delta begins anew. This presentation will discuss the stratigraphic implications for these different scenarios.
Characteristics of Helical Flow through Neck Cutoffs
NASA Astrophysics Data System (ADS)
Richards, D.; Konsoer, K. M.; Turnipseed, C.; Willson, C. S.
2017-12-01
Meander cutoffs and oxbows lakes are a ubiquitous feature of riverine landscapes yet there is a paucity of detailed investigations concentrated on the three-dimensional flow structure through evolving neck cutoffs. The purpose of this research is to investigate and characterize helical flow through neck cutoffs with two different planform configurations: elongate meander loops and serpentine loops. Three-dimensional velocity measurements was collected with an acoustic Doppler current profiler for five cutoffs on the White River, Arkansas. Pronounced helical flow was found through all elongate loop cutoff sites, formed from the balance between centrifugal force resulting from the curving of flow through the cutoff channel and pressure gradient force resulting from water surface super-elevation between primary flow and flow at the entrance and exit of the abandoned loop. The sense of motion of the helical flow caused near-surface fluid to travel outward toward the abandoned loop while near-bed fluid was redirected toward the downstream channel. Another characteristic of the helical flow structure for elongate loop cutoffs was the reversal of helical flow over a relatively short distance, causing patterns of secondary circulation that differed from typical patterns observed through curved channels with point bars. Lastly, helical flow was revealed within zones of strong flow recirculation, enhanced by an exchange of streamwise momentum between shear layers.
Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2016-08-01
Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
Stability of spanwise-modulated flows behind backward-facing steps
NASA Astrophysics Data System (ADS)
Boiko, A. V.; Dovgal, A. V.; Sorokin, A. M.
2017-10-01
An overview and synthesis of researches on development of local vortical disturbances in laminar separated flows downstream of backward-facing steps, in which the velocity field depends essentially on two variables are given. Peculiarities of transition to turbulence in such spatially inhomogeneous separated zones are discussed. The experimental data are supplemented by the linear stability characteristics of model velocity profiles of the separated flow computed using both the classical local formulation and the nonlocal approach based on the Floquet theory for partial differential equations with periodic coefficients. The results clarify the response of the local separated flows to their modulation with stationary geometrical and temperature inhomogeneities. The results can be useful for the development of new methods of laminar separation control.
Analysis of the low-flow characteristics of streams in Louisiana
Lee, Fred N.
1985-01-01
The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Public Works, used geologic maps, soils maps, precipitation data, and low-flow data to define four hydrographic regions in Louisiana having distinct low-flow characteristics. Equations were derived, using regression analyses, to estimate the 7Q2, 7Q10, and 7Q20 flow rates for basically unaltered stream basins smaller than 525 square miles. Independent variables in the equations include drainage area (square miles), mean annual precipitation index (inches), and main channel slope (feet per mile). Average standard errors of regression ranged from +44 to +61 percent. Graphs are given for estimating the 7Q2, 7Q10, and 7Q20 for stream basins for which the drainage area of the most downstream data-collection site is larger than 525 square miles. Detailed examples are given in this report for the use of the equations and graphs.
NASA Astrophysics Data System (ADS)
Liu, Mingyue; Xiao, Longfei; Yang, Lijun
2015-09-01
The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.
Analytical prediction of the unsteady lift on a rotor caused by downstream struts
NASA Technical Reports Server (NTRS)
Taylor, A. C., III; Ng, W. F.
1987-01-01
A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.
Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain
NASA Astrophysics Data System (ADS)
Prestegaard, K. L.; Gilbert, L.; Phemister, K.
2005-05-01
In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in much larger urban river channels further downstream. These downstream redox zonations, microbial habitats, and pH characteristics observed in channelized tributaries are very different from non-urban watersheds in the Maryland Coastal Plain, which have pH values less than 7 and do not have the prominent redox zonations and associated microbial habitats. These downstream changes in redox chemistry and pH in urban stream channels have implications for the transport and retention of heavy metals in urban streams.
Effect of external jet-flow deflector geometry on OTW aero-acoustic characteristics
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Groesbeck, D.
1976-01-01
The effect of geometry variations in the design of external deflectors for use with over-the-wing (OTW) configurations was studied at model scale and subsonic jet velocities. Included in the variations were deflector size and angle as well as wing size and flap setting. A conical nozzle (5.2-cm diameter) mounted at 0.1 chord above and downstream of the wing leading edges was used. The data indicate that external deflectors provide satisfactory takeoff and approach aerodynamic performance and acoustic characteristics for OTW configurations. These characteristics together with expected good cruise aerodynamics, since external deflectors are storable, may provide optimum OTW design configurations.
Hydraulic characteristics near streamside structures along the Kenai River, Alaska
Dorava, Joseph M.
1995-01-01
Hydraulic characteristics, water velocity, depth, and flow direction were measured near eight sites along the Kenai River in southcentral Alaska. Each of the eight sites contained a different type of structure: a road-type boat launch, a canal-type boat launch, a floating dock, a rock retaining wall, a pile-supported dock, a jetty, a concrete retaining wall, and a bank stabilization project near the city of Soldotna. Measurements of hydraulic characteristics were made to determine to what extent the structures affected natural or ambient stream hydraulic characteristics. The results will be used by the Alaska Department of Fish and Game to evaluate assumptions used in their Habitat Evaluation Procedure assessment of juvenile chinook salmon habitat along the river and to improve their understanding of stream hydraulics for use in permitting potential projects. The study included structures along the Kenai River from about 12 to 42 miles upstream from the mouth. Hydraulic characteristics were measured during medium-, high-, and low-flow conditions, as measured at the Kenai River at Soldotna: (1) discharge ranged from 6,310 to 6,480 cubic feet per second during medium flow conditions that were near mean annual flow on June 9-10, 1994; (2) discharge ranged from 14,000 to 14,400 cubic feet per second during high flow conditions that were near peak annual flow conditions on August 2-3, 1994; and (3) discharge ranged from 3,470 to 3,660 cubic feet per second during open-water low-flow conditions on May 8-9, 1995. Measurements made at the structures were compared with measurements made at nearby unaffected natural sites. The floating dock, pile-supported dock, road-type boat launch, and concrete retaining wall did not significantly alter the stream channel area. These structures contributed only hydraulic-roughness type changes. The structures occupied a much smaller area than that of the wetted perimeter of the channel and thus typically had little effect on velocity, depth, or flow direction. During this investigation, many of these subtle effects could not be separated from ambient hydraulic conditions. The jetty significantly altered stream channel area and therefore affected stream hydraulics more than the other structures that were investigated. Data indicated that velocity increased from 1.9 to 5.8 feet per second near the point of the jetty during measurements in May, June, and August. Rock wall and jetty structures also divert flow away from near-shore areas in proportion to their projection lengths into the river. For the jetty, the effect on surface flow was observed downstream for a distance of about 10 times the length of the jetty's projection into the river and upstream for about 4 to 5 times the length of the projection. For the rock wall, the diversion of flow was evident for 10 to 15 feet downstream.
Discharge rating equation and hydraulic characteristics of standard Denil fishways
Odeh, M.
2003-01-01
This paper introduces a new equation to predict discharge capacity in the commonly used Denil fishway using water surface elevation in the upstream reservoir and fishway width and slope as the independent variables. A dimensionless discharge coefficient based only on the physical slope of the fishway is introduced. The discharge equation is based on flow physics, dimensional analysis, and experiments with three full-scale fishways of different sizes. Hydraulic characteristics of flow inside these fishways are discussed. Water velocities decreased by more than 50% and remained relatively unchanged in the fully developed flow downstream of the vena contracta region, near the upstream baffle where fish exit the fishway. Engineers and biologists need to be aware of this fact and ensure that fish can negotiate the vena contracta velocities rather than velocities within the developed flow region only. Discharge capacity was directly proportional to the fishway width and slope. The new equation is a design tool for engineers and field biologists, especially when designing a fishway based on flow availability in conjunction with the swimming capabilities of target fish species.
Low-flow characteristics of streams in Virginia
Hayes, Donald C.
1991-01-01
Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.
METHOD AND APPARATUS FOR THE DETECTION OF LEAKS IN PIPE LINES
Jefferson, S.; Cameron, J.F.
1961-11-28
A method is described for detecting leaks in pipe lines carrying fluid. The steps include the following: injecting a radioactive solution into a fluid flowing in the line; flushing the line clear of the radioactive solution; introducing a detector-recorder unit, comprising a radioactivity radiation detector and a recorder which records the detector signal over a time period at a substantially constant speed, into the line in association with a go-devil capable of propelling the detector-recorder unit through the line in the direction of the fluid flow at a substantia1ly constant velocity; placing a series of sources of radioactivity at predetermined distances along the downstream part of the line to make a characteristic signal on the recorder record at intervals corresponding to the location of said sources; recovering the detector-recorder unit at a downstream point along the line; transcribing the recorder record of any radioactivity detected during the travel of the detector- recorder unit in terms of distance along the line. (AEC)
Sediment size of surface floodplain sediments along a large lowland river
NASA Astrophysics Data System (ADS)
Swanson, K. M.; Day, G.; Dietrich, W. E.
2007-12-01
Data on size distribution of surface sediment across a floodplain should place important constraints of modeling of floodplain deposition. Diffusive or advective models would predict that, generally, grain size should decrease away from channel banks. Variations in grain size downstream along floodplains may depend on downstream fining of river bed material, exchange rate with river banks and net deposition onto the floodplain. Here we report detailed grain size analyses taken from 17 floodplain transects along 450 km (along channel distance) reach of the middle Fly River, Papua New Guinea. Field studies have documented a systematic change in floodplain characteristics downstream from forested, more topographically elevated and topography bounded by an actively shifting mainstem channel to a downstream swamp grass, low elevation topography along which the river meanders are currently stagnant. Frequency and duration of flooding increase downstream. Flooding occurs both by overbank flows and by injections of floodwaters up tributary and tie channels connected to the mainstem. Previous studies show that about 40% of the total discharge of water passes across the floodplain, and, correspondingly, about 40% of the total load is deposited on the plain - decreasing exponentially from channel bank. We find that floodplain sediment is most sandy at the channel bank. Grain size rapidly declines away from the bank, but surprisingly two trends were also observed. A relatively short distance from the bank the surface material is finest, but with further distance from the bank (out to greater than 1 km from the 250 m wide channel) clay content decreases and silt content increases. The changes are small but repeated at most of the transects. The second trend is that bank material fines downstream, corresponding to a downstream finding bed material, but once away from the bank, there is a weak tendency for a given distance away from the bank the floodplain surface deposits to slightly coarsen downstream. We also find that sand is present (about 4%) in these surface sediments out to 1 km from the channel bank. These trends are not consistent with simple lateral transport models, and other factors, including effects of flocculation, local flow patterns, and possibly dry season wind effects may matter.
Wake characteristics of buildings in disturbed boundary layers
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Chang, J.
1980-01-01
Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. Field measurements of velocity and turbulence in the wake of a block building 3.2 m high and 26.8 m long are presented which show an apparent increase in momentum flow above the upwind value. Velocity-deficit and turbulence-excess decay characteristics of the disturbed or nonequilibrium layer are correlated with power law exponents and apparent roughness length at various distances downstream of the disturbance. Model wake profiles from the simulated building are compared at various stations for equilibrium and nonequilibrium upstream profiles. Empirical correlations relating building wake profiles to upstream nonequilibrium parameters are presented. The relationship of the data to the smooth-rough transition is discussed, and a flow model is presented.
NASA Astrophysics Data System (ADS)
Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen
2017-12-01
The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.
NASA Astrophysics Data System (ADS)
Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen
2018-04-01
The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.
Method of Simulating Flow-Through Area of a Pressure Regulator
NASA Technical Reports Server (NTRS)
Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)
2011-01-01
The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.
2013-05-01
multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have
NASA Astrophysics Data System (ADS)
Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto
2014-11-01
The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).
Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.
2011-07-01
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.
Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations
Minsley, Burke J.; Ikard, Scott
2010-01-01
Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and discussed in the context of, the geophysical work (Minsley and others, 2010) where appropriate.
Fluvial dike breaching due to overtopping: how different is it from dam breaching?
NASA Astrophysics Data System (ADS)
Rifai, Ismail; Erpicum, Sébastien; Archambeau, Pierre; Violeau, Damien; Pirotton, Michel; El kadi Abderrezzak, Kamal; Dewals, Benjamin
2017-04-01
During floods in large rivers, casualties and extent of damage are often aggravated by breach formation across fluvial dikes. The most frequent cause of breaching is flow overtopping. Predicting the breach geometry and associated outflow hydrograph is of critical importance for estimating the inundation characteristics in the floodplain and the resulting flood risk. Because fluvial dikes are built along a main channel that conveys flowing water, fluvial dike breaching differs from dam breaching, in which the embankment is built across the channel downstream of a reservoir. While a vast body of studies exists on dam breaching configuration (e.g., Schmocker et al. 2012, 2014, Müller et al. 2016), little is known on specific aspects of fluvial dike breaching. We performed laboratory experiments that highlight the specific erosion processes governing fluvial dike breaching (Rifai et al. 2017a). The experimental setup includes a 10 m long and 1 m wide main channel, separated from a floodplain by a 0.3 m high dike of trapezoidal cross-section. The dike material was homogeneous and made of uniform sand. A rectangular initial notch was cut in the crest to initiate 3D breaching. The breach development was monitored continuously using a self-developed laser profilometry technique (Rifai et al. 2016). The observations reveal that the breach develops in two stages. First, a combined breach deepening and widening occur, together with a gradual shift of the breach centreline toward the downstream side of the main channel. Later, the breach widening continues only toward the downstream side of the main channel, highlighting a significant influence of flow momentum in the main channel. Moreover, the breach cross-section is tilted toward the downstream end of the main channel, which is a signature of an asymmetric velocity distribution through the breach (Rifai et al. 2017b). When the inflow discharge in the main channel is increased, the breach development becomes much faster (e.g., seven times faster for a 150 % increase in the inflow discharge). When an equilibrium state is reached at the end of the test, the breach centreline orientation is found consistent with the theory of flow over a lateral weir. In the experiments, the boundary condition at the downstream end of the main channel is a lumped representation of river characteristics downstream of the breach section. In real-world conditions, these river characteristics influence the flow partition between the breach and the main channel. Therefore, we tested several downstream boundary conditions (perforated plane, rectilinear weir and sluice gate). For the same inflow discharge and water levels, they lead to significantly different breach geometries. The findings of this research shed light on key mechanisms occurring in fluvial dike breaching, which differ substantially from those in dam breaching. These specific features need to be incorporated in flood risk analyses involving fluvial dike breaching. This research also delivers a unique experimental database of high resolution continuous monitoring of the breach geometry under various flow conditions. The datasets are freely available for engineers and researchers willing to assess the performance of numerical models to simulate dike breaching and resulting flood. References Müller, C., Frank, P.-J., Hager, W.H. (2016). Dyke overtopping: effects of shape and headwater elevation. Journal of Hydraulic Research, 54(4), 410-422. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2016). Monitoring topography of laboratory fluvial dike models subjected to breaching based on a laser profilometry technique. Proc. International Symposium on River Sedimentation (ISRS), 19-22 September 2016, Stuttgart. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2017a). Overtopping induced failure of non-cohesive, homogenous fluvial dikes. Water Resources Research, under revision. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2017b). Discussion of: Laboratory Study on 3D Flow Structures Induced by Zero-Height Side Weir and Implications for 1D Modeling. Journal of Hydraulic Engineering, 07016010. doi: 10.1061/(ASCE)HY.1943-7900.0001256 Schmocker, L., Frank, P.-J., Hager, W.H. (2014). Overtopping dike-breach: Effect of grain size distribution. Journal of Hydraulic Research, 52(4), 559-564. Schmocker, L., Hager, W.H. (2012). Plane dike-breach due to overtopping: Effects of sediment, dike height and discharge. Journal of Hydraulic Research, 50(6), 576-586.
Calculations of unsteady turbulent boundary layers with flow reversal
NASA Technical Reports Server (NTRS)
Nash, J. F.; Patel, V. C.
1975-01-01
The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.
Turbulent statistics in flow field due to interaction of two plane parallel jets
NASA Astrophysics Data System (ADS)
Bisoi, Mukul; Das, Manab Kumar; Roy, Subhransu; Patel, Devendra Kumar
2017-12-01
Turbulent characteristics of flow fields due to the interaction of two plane parallel jets separated by the jet width distance are studied. Numerical simulation is carried out by large eddy simulation with a dynamic Smagorinsky model for the sub-grid scale stresses. The energy spectra are observed to follow the -5/3 power law for the inertial sub-range. A proper orthogonal decomposition study indicates that the energy carrying large coherent structures is present close to the nozzle exit. It is shown that these coherent structures interact with each other and finally disintegrate into smaller vortices further downstream. The turbulent fluctuations in the longitudinal and lateral directions are shown to follow a similarity. The mean flow at the same time also maintains a close similarity. Prandtl's mixing length, the Taylor microscale, and the Kolmogorov length scales are shown along the lateral direction for different downstream locations. The autocorrelation in the longitudinal and transverse directions is seen to follow a similarity profile. By plotting the probability density function, the skewness and the flatness (kurtosis) are analyzed. The Reynolds stress anisotropy tensor is calculated, and the anisotropy invariant map known as Lumley's triangle is presented and analyzed.
Flowfield measurements in a separated and reattached flat plate turbulent boundary layer
NASA Technical Reports Server (NTRS)
Patrick, William P.
1987-01-01
The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.
He, Wei; Huang, Ning; Xu, Bin; Wang, Wenbo
2018-04-23
A bridge built inside the reversed flow region of a sand dune will change the characteristics of wind-sand movement in this region. The Reynolds-averaged Navier-Stokes simulation and discrete particle tracing are used to simulate the wind-sand movement around a sand dune with a bridge built inside the reversed region. Three cases with different bridge positions are studied. The results show that 1) compared with the isolated dune case, a tall bridge built at the leeward toe leads to an increase in the deposition rate on the leeward slope and a longer reversed flow region downstream of the sand dune; meanwhile, the high speed of crosswind on the bridge indicates that some measures should be taken to protect trains from strong crosswind; 2) a low bridge at the leeward toe has little effect on the sand deposition and reversed flow region of the dune; however, low sand transport rate and crosswind speed on the bridge show that anti-crosswind/sand measures should be taken according to the actual situation and 3) a low bridge on the leeward slope has little effect on the length of reversed flow region, however, high crosswind speed and sand flux on the bridge reveal the need of anti-crosswind/sand measures on the bridge. Moreover, the bridges in the reversed flow region increase the sand flux near the leeward crest; as a result, the moving patterns of the sand dune are changed.
NASA Astrophysics Data System (ADS)
Yaghmaei, Hiva; Sadeghi, Seyed Hamidreza; Moradi, Hamidreza; Gholamalifard, Mehdi
2018-02-01
Trends in flow discharge, temperature and rainfall from the Qom Rood Watershed, Iran, for a period of 1979-2016 were analyzed at monthly and annual time scales. Trend analyses were conducted using the Mann-Kendall test, the double-mass curve of mean annual discharge versus rainfall, and rainfall-runoff relationship before and after the 15 Khordad Dam operation. Multiple regression of flow discharge against rainfall and temperature was used to determine the residual trend at four meteorological and hydrological stations located upstream and downstream of the Qom Rood Watershed. Results showed that the temperature at the upstream and downstream stations did not have any significant trend, but a significant decreasing trend (P < .05) in rainfall was detected only in May (z = -1.66) at the downstream stations. There was a significant positive trend (P < .05) in rainfall in February (z = 2.22) and July (z = 2.15) at the upstream stations, and in October (z = 2.3) and November (z = 1.8) at the downstream stations. However, there was a noticeable decrease in monthly and annual flow discharge, and residual trend at 99% significance level at the downstream stations. At the upstream stations, the flow discharges had significant (P < .05) declining trend in all months, but annual flow discharge did not change significantly. Analysis of double mass curve between runoff and rainfall at the downstream stations showed an inconsistency in the line slope concordant with the time of 15 Khordad Dam operation. Annual mean discharge at the upstream stations did not show a significant change before and after 15 Khordad Dam operation. However, annual flow magnitude decreased significantly by 87.5 and 81.7% in Shad Abad and KoohSefid, respectively. These results confirmed that natural driving forces did not affect flow discharge changes and the observed decreasing tendency in flow discharge at the downstream stations was due to 15 Khordad Dam, and at the upstream stations due to diversion/storage dams. These findings highlighted the role of human interference in changing the hydrologic regime in the study area based on which appropriate adaptive decisions can be made.
Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate
Reichert, David E; Kenis, Paul J. A.; Wheeler, Tobias D; Desai, Amit V; Zeng, Dexing; Onal, Birce C
2015-03-17
A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.
Jackman, A P; Green, J F
1990-01-01
We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.
Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam
NASA Astrophysics Data System (ADS)
Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.
2014-12-01
A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.
NASA Astrophysics Data System (ADS)
Johnson, Matthew; Rice, Stephen
2015-04-01
Animals make decisions about the suitability of habitat and their reaction to other organisms based on the sensory information that they first obtain from the environment and other organisms within that environment. Sensory information, such as sounds, scents, vibrations and visual cues, is transported, transmitted, masked and filtered by fluvial processes, such as turbulent flow. Despite the fundamental importance of this information in dictating how animals interact with the environment, only limited attention has been paid to the environmental controls on the propagation of sensory signals and cues through fluvial systems. Aquatic animals use and respond to hydraulic characteristics when navigating their environment and selecting habitat. There is evidence that some animals can also sense the presence of other organisms from the hydraulic characteristics of their wake. This implies that at least some aquatic animals can differentiate between the turbulent flow generated by the presence of living organisms and ambient turbulence generated by the environment. We investigate whether there are specific flow characteristics, distinct from the ambient environment, that potentially flag the presence of organisms to other animals. Acoustic Doppler and Particle Image Velocimetry measurements in a series of laboratory flume experiments quantified the flow around living Signal Crayfish (Pacifastacus leniusculus) and two inanimate objects of equivalent shape and size. Experiments were repeated across a gradient of turbulence intensities generated over nine combinations of flow velocity and relative submergence. Flows downstream of living crayfish were distinct from inanimate objects, with greater turbulent intensities, higher energy in low- to intermediate frequencies, and flow structures that were less coherent in comparison to those measured downstream of inanimate objects. However, the hydrodynamic signature of crayfish became masked as the intensity of ambient turbulence exceeded that generated by living crayfish. This was particularly the case at low relative submergence. These results demonstrate the importance of the fluvial environment in controlling the transmission of sensory information and suggest that the ability of organisms to sense the presence of crayfish from their hydraulic signature is likely to be limited in many situations in rivers. Thus, animals in rivers may have to rely on other senses, such as sight or hearing, especially where depth is low relative to substrate roughness and where velocities are relatively high.
Chaplin, Jeffrey J.; Brightbill, Robin A.; Bilger, Michael D.
2005-01-01
The implications of dam removal on channel characteris-tics, water quality, benthic invertebrates, and fish are not well understood because of the small number of removals that have been studied. Comprehensive studies that document the effects of dam removal are just beginning to be published, but most research has focused on larger dams or on the response of a sin-gle variable (such as benthic invertebrates). This report, pre-pared in cooperation with the Conodoguinet Creek Watershed Association, provides an evaluation of how channel morphol-ogy, bed-particle-size distribution, water quality, benthic inver-tebrates, fish, and aquatic habitat responded after removal of Good Hope Mill Dam (a small 'run of the river' dam) from Conodoguinet Creek in Cumberland County, Pa. Good Hope Mill Dam was a 6-foot high, 220-foot wide concrete structure demolished and removed over a 3-day period beginning with the initial breach on November 2, 2001, at 10:00 a.m. eastern standard time. To isolate the effects of dam removal, data were collected before and after dam removal at five monitoring stations and over selected reaches upstream, within, and downstream of the impoundment. Stations 1, 2, and 5 were at free-flowing control locations 4.9 miles upstream, 2.5 miles upstream, and 5 miles downstream of the dam, respec-tively. Stations 3 and 4 were located where the largest responses were anticipated, 115 feet upstream and 126 feet downstream of the dam, respectively Good Hope Mill Dam was not an effective barrier to sedi-ment transport. Less than 3 inches of sediment in the silt/clay-size range (less than 0.062 millimeters) coated bedrock within the 7,160-foot (1.4-mile) impoundment. The bedrock within the impoundment was not incised during or after dam removal, and the limited sediment supply resulted in no measurable change in the thalweg elevation downstream of the dam. The cross-sec-tional areas at stations 3 and 4, measured 17 days and 23 months after dam removal, were within 3 percent of the area measured before removal. Some of the impounded silt/clay at station 3 and other sed-iment in the work area downstream of the dam were initially entrained over the 3-day removal period and deposited on sub-strate at station 4. Remaining silt/clay at station 3 and deposits at station 4 were transported downstream by the flows mea-sured over the 23 months after removal (daily mean flow ranged from 38 to 5,180 cubic feet per second). The median bed-parti-cle size at station 3 increased by approximately 32 millimeters in the 23-month period after removal. Bed-particle-size distri-bution at station 4 became finer when silt/clay was initially deposited but coarsened as high flows flushed it downstream; median bed-particle size was 77.7 millimeters before removal compared to 31.3 millimeters 17 days after removal and 99 mil-limeters 23 months after removal. Good Hope Mill Dam had either no effect on water-quality characteristics or the effect was so small it was masked by sea-sonal and periodic variability. Measurements of daily mean temperature, dissolved-oxygen concentration, pH, and specific conductance on a short time scale (every 15 minutes) indicate the daily range of temperature was suppressed under impounded conditions and daily extremes of temperature, dis-solved-oxygen concentration, pH, and specific conductance at station 2 were out of phase by approximately 12 hours with station 3. Once the dam was removed, the pattern at station 3 shifted and converged with the pattern at station 2. The offset before removal may be related to a lag time resulting from a decrease in velocity through the impoundment. Total nitrogen and suspended-sediment concentrations increased upon the initial dam breach but were within the range of concentrations measured from March 2001 through April 2002 over varying flow conditions at station 1. Total nitrogen concentration at station 4 was 4.66 milligrams per liter upon the initial breach of the dam,
NASA Astrophysics Data System (ADS)
Leibowitz, S. G.; Hill, R. A.; Weber, M.; Jones, C., Jr.; Rains, M. C.; Creed, I. F.; Christensen, J.
2017-12-01
Connectivity has become a major focus of hydrological and ecological studies. Connectivity enhances fluxes among landscape features, whereas isolation eliminates or reduces such flows. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since chemical and biological flows are often associated with water movement. Wetlands have many important functions, and the degree to which they are hydrologically connected influences the effect they have on downstream waters. Wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved organic carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). We developed a system to classify wetlands based on type, magnitude, and frequency of hydrologic connectivity with downstream waters. We determined type (riparian, non-riparian surface, and non-riparian subsurface) by considering soil and bedrock permeability. For magnitude, we developed indices to represent travel time based on Manning's kinematic and Darcy's equations. We used soil drainage class as an indicator of frequency. We also included an index that assesses relative level of anthropogenic impacts to connectivity (e.g., presence of canals and ditches and impervious surfaces). The classification system was designed to be applied at various spatial scales using available data. The system was applied to 4.7 million wetlands in the conterminous United States, using the National Land Cover Dataset and other nationally available geospatial data, and the resulting maps were assessed for patterns in wetland connectivity. While wetland connectivity was dominated by fast, frequent riparian connections nationally, distributions of connectivity were characteristic for each region. Consideration of these distributions of connectivity should promote better management of watershed functions such as flood control and water quality improvement.
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David
2013-08-20
A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.
NASA Astrophysics Data System (ADS)
Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.
2006-12-01
Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural fining on spawning habitat depend on the size of sediment in the wave relative to that of the downstream channel; fining can improve spawning habitat availability in channels that are otherwise too coarse, or degrade habitat availability in finer-grained channels. Despite the perceived negative effects of sediment pulses, they can be important sources of gravel and wood debris, creating downstream spawning sites and productive wood-forced habitats. Field observations illustrate that opportunistic salmonids will spawn along the margins of recently deposited debris fans, emphasizing the biological value of such disturbances and the plasticity of salmonids to natural disturbances.
Andy Dolloff; Craig Roghair; Colin Krause; John Moran; Allison Cochran; Mel Warren; Susan Adams; Wendell Haag
2016-01-01
Dams convert riverine habitat to a series of reaches or zones where differences in flow, habitat, and biota, both downstream and in reservoirs, are obvious and well described. At the upstream extent of a reservoir, however, is a transitional reach or zone that contains characteristics of riverine habitat both in the upper reservoir and in tributaries connected to the...
Design Strategies to Mitigate Unsteady Forcing (Preprint)
2008-04-01
Verification and Validation of CFD Simulation of Pulsating Laminar Flow in a Straight Pipe ,” AIAA Paper No. 2005-4863. [48] Guide for the...reduce the heat load to downstream components [41-44]. Although there is no effect on the potential field inside the vane row [45], there is...effect of design changes on the time-mean characteristics of the machine (e.g. aero- performance or heat load) or to estimate resonant stresses on
Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W)
NASA Astrophysics Data System (ADS)
Kumer, V. M.; Reuder, J.; Svardal, B.; Eecen, P.
2014-12-01
WINTWEX-W is a cooperative wake measurement campaign conducted by the Norwegian Centre of Offshore Wind Energy (Norcowe) and the Energy Research Centre of the Netherlands (ECN). A scanning, four static Windcubes as well as a downstream looking nacelle LiDAR were placed for half a year downstream of one of five research wind turbines in ECNs' wind turbine test farm Wieringermeer. In order to capture wake characteristics under different weather conditions we scanned a 60˚ sector at three different elevations and two vertical cross-sections every minute. Windcubes v1 measured wind profiles every second at 2, 5 and 12 rotor diameter downstream distances. Another static Windcube, a forward-looking nacelle LiDAR and three Sonics were placed upstream to measure the undisturbed approaching flow field. The aim of the campaign is a qualitative and quantitative description of single wind turbine wake propagation and persistency, as well as to improve CFD wake models by delivering a detailed data set of several real atmospheric conditions.
Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor
Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.
2013-09-10
An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Torabi Haghighi, Ali; Kløve, Bjørn
2017-11-01
The natural flow regime of rivers has been strongly altered world-wide, resulting in ecosystem degradation and lakes drying up, especially in arid and semi-arid regions. Determining whether this is due mainly to climate change or to water withdrawal for direct human use (e.g. irrigation) is difficult, particularly for saline lake basins where hydrology data are scarce. In this study, we developed an approach for assessing climate and land use change impacts based on river flow records for headwater and lowland reaches of rivers, using the case of Lake Urmia basin, in north-westen Iran. Flow regimes at upstream and downstream stations were studied before and after major dam construction and irrigation projects. Data from 57 stations were used to establish five different time intervals representing 10 different land use development periods (scenarios) for upstream (not impacted) and downstream (impacted) systems. An existing river impact (RI) index was used to assess changes in three main characteristics of flow (magnitude, timing and, intra-annual variability). The results showed that irrigation was by far the main driving force for river flow regime changes in the lake basin. All stations close to the lake and on adjacent plains showed significantly higher impacts of land use change than headwaters. As headwaters are relatively unaffected by agriculture, the non-significant changes observed in headwater flow regimes indicate a minor effect of climate change on river flows in the region. The benefit of the method developed is clear interpretation of results based on river flow records, which is useful in communicating land use and climate change information to decision makers and lake restoration planners.
Experimental study of operation performance for hydrocarbon fuel pump with low specific speed
NASA Astrophysics Data System (ADS)
Wu, Xianyu; Yang, Jun; Jin, Xuan
2017-10-01
In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.
Rotor Aerodynamics in Ground Effect at Low Advance Ratios.
1982-07-27
the rotor wake flows entirely downstream. At test conditions were the recirculating flow or ground vortex is present there are marked departures...ILLUSTRATIONS Figure Page 1 Cross Section of Test Facilty 12 2 Overall View of Test Facility and Rotor Model 13 3 Flow Pattern in Ground Vortex Regime, (v...entirely flowing downstream splits and a portion of the rotor wake flows forward (upstream) and then recirculates through the rotor or forms a vortex or
NASA Technical Reports Server (NTRS)
Ferguson, T. V.; Havskjold, G. L.; Rojas, L.
1988-01-01
A laser two-focus velocimeter was used in an open-loop water test facility in order to map the flowfield downstream of the SSME's high-pressure oxidizer turbopump first-stage turbine nozzle; attention was given to the effects of the upstream strut-downstream nozzle configuration on the flow at the rotor inlet, in order to estimate dynamic loads on the first-stage rotor blades. Velocity and flow angles were plotted as a function of circumferential position, and were found to clearly display the periodic behavior of the wake flow field. The influence of the upstream centerbody-supporting struts on the vane nozzle wake pattern was evident.
NASA Technical Reports Server (NTRS)
Farokhi, S.; Taghavi, R.; Rice, E. J.
1988-01-01
An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.
Turbulent premixed flames on fractal-grid-generated turbulence
NASA Astrophysics Data System (ADS)
Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.
2013-12-01
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.
NASA Astrophysics Data System (ADS)
Hayakawa, Y. S.; Imaizumi, F.; Hotta, N.; Tsunetaka, H.
2013-12-01
Deformation of steep terrain has been occurring since the formation of Ohyakuzure landslide in 1707. Although erosion controls in recent decades have resulted in vegetation recovery in downstream portions of the landslide terrain, hillslope erosion and debris flows frequently occur in uppermost steep subwatersheds in the landslide area to yield vast amount of sediment downstream. Ichino-sawa subwatershed in the landslide terrain, where detailed monitoring of debris flows and related topographic changes have previously been performed, has particularly steep slopes, and geomorphic processes therein have been quite active. Freeze-thaw weathering of fractured bedrock on hillslopes made of shale and sandstone frequently occurs in winter to spring season, and resultant sediment particles are provided into channel beds, which act as a source of debris flows that frequently occurs in summer season with heavy or accumulated rainfalls. High-resolution assessment of erosion/deposition patterns in channel bed of the Ichinosawa catchment was performed using multi-temporal terrestrial laser scanning data covering 3 seasons for 2 years. Seasonal changes in spatial distribution of erosion and deposition in the channel bed is quantified using a 0.1-m DEM converted from the original point cloud by TLS. The multi-temporal datasets provides an estimate of annual sediment storage and yield on the order of 1,000 - 5,000 m3. Analysis of changes in elevation by transverse and longitudinal profiles shows contrasting patterns of erosion and deposition along the studied reach: in particular, changes in bed elevation is found to be less in a 50-m long reach, whose downstream part seems bounded by valley narrowing and a knickpoint. Several topographic metrics, including stream gradient, surface roughness and topographic openness, were examined to estimate the characteristics of differing transport processes induced by debris flows along the reaches.
Ernst, Anne G.; Baldigo, Barry P.; Schuler, George E.; Apse, Colin D.; Carter, James L.; Lester, Gary T.
2008-01-01
The Neversink River, in the Catskill Mountains of southeastern New York State, feeds the Neversink Reservoir, which diverts 85 percent of the river?s flow to New York City. Acidification of several headwater reaches has affected macroinvertebrate assemblages throughout the river system above the reservoir, and the alteration of flow conditions below the reservoir dam has affected macroinvertebrate assemblages for at least 10 kilometers downstream from the reservoir. In 1999, the U.S. Geological Survey, in cooperation with The Nature Conservancy, compiled data from 30 stream reaches to quantify the effects of acidification and of the reservoir on the structure and function of macroinvertebrate assemblages throughout the Neversink River. Acidic headwater reaches supported greater numbers of acid-tolerant chironomid taxa and fewer numbers of acid-sensitive Ephemeroptera and Trichoptera than neutral reaches, and fewer scraper individuals and more shredder individuals. The 14 reaches below the reservoir, with sharply decreased flows and altered flow patterns compared to reaches above the reservoir, supported more Chironomidae and fewer Ephemeroptera and Trichoptera than the upper reaches; they also had greater numbers of shredder individuals and fewer scraper and filterer individuals than reaches above the reservoir. Water-quality variables such as pH and aluminum concentration appear to have affected macroinvertebrate assemblages more strongly in the headwaters than below the reservoir, whereas physical-habitat variables such as mean channel width and water temperature have affected these assemblages more strongly downstream from the reservoir than in the headwaters. The water-quality changes due to acidification, combined with the decreased flows and lowered water temperatures below the reservoir, have disrupted downstream continuum of macroinvertebrate communities that would normally be observed from the headwaters to the mouth. The information presented herein provides a basis for further evaluation of the Neversink and similar river systems, and for assessment of the effectiveness of future conservation efforts.
Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail
NASA Technical Reports Server (NTRS)
Walker, R. C.; Lazarus, A. J.; Villante, U.
1975-01-01
The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.
An experimental investigation of two-dimensional thrust augmenting ejectors, part 2
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1984-01-01
The flow-field within a two-dimensional thrust augmenting ejector has been documented experimentally. Results are presented on the mean velocity field and the turbulent correlations by Laser Doppler Velocimeter, surface pressure distribution, surface temperature distribution, and thrust performance for two shroud geometries. The maximum primary nozzle pressure ratio tested was 3.0. The tests were conducted at primary nozzle temperature ratios of 1.0, 1.8 and 2.7. Two ejector characteristic lengths have been identified based on the dynamics of the ejector flow field, i.e., a minimum length L sub m below which no significant mixing occurs, and a critical length L sub c associated with the development of U'V' correlation in the ejector. These characteristic lengths divide the ejector flow field into three distinctive regions: the entrance region where there is no direct interaction between the primary flow and the ejector shroud; the interaction region where there is an increased momentum of induced flow near the shroud surface; and a pipe flow region characterized by an increased skin friction where x is the distance downstream from the ejector inlet. The effect of the coflowing induced flow has been shown to produce inside the ejector a centerline velocity that has increased over the free-jet data.
Energy Secretary Dedicates ESIF at NREL | News | NREL
-like screen how wind turbine blades can alter the wind flow as it approaches other turbines downstream flows downstream when the blades hit it. A man with his back to the camera explains the process, while
Impinging Jets and the Erodibility of Cohesive Sediment
NASA Astrophysics Data System (ADS)
Karamigolbaghi, M.; Bennett, S. J.; Ghaneeizad, S. M.; Atkinson, J. F.
2016-12-01
Defining the erodibility of cohesive sediment remains a critical challenge in Earth surface systems. The primary geomorphic law used in such applications relates erosion rate to an erodibility coefficient and an excess shear stress term. To assess erodibility, an inverse modeling approach can be adopted, wherein a known stress is applied to the cohesive sediment, and the erodibility parameters can be deduced through observation of erosion as a function of time. An impinging jet, as used in the jet erosion test, would appear to be an ideal flow (stress) source for erosion assessment. Recent work, however, has demonstrated that jet hydrodynamics can depart significantly from ideal flow conditions when employed for in situ erosion assessment. Here we will review jet theory and the use of jets for assessing the erodibility of cohesive sediment. Our results show that (1) flow confinement and the generation of secondary circulation can significantly change bed shear stress near and downstream of impingement, (2) the evolving scour hole shape, as conditioned by material characteristics and the erosion process, can significantly alter jet hydrodynamics and bed shear stress magnitudes and distributions near and downstream of impingement, and (3) incidental variations in material characteristics in carefully-executed, long-lived experiments can produce markedly different scour hole shapes and derived erodibility indices. Examples from experimental, numerical, and field observations will be used to illustrate these hydrodynamic and material effects on observed and predicted erosion rates. Because such effects are difficult to anticipate, the uncertainty of in situ cohesive sediment assessments using impinging jets can be quite large.
NASA Astrophysics Data System (ADS)
Gurer, M.; Sullivan, S.; Masteller, C.
2016-12-01
Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.
Intrinsic particle-induced lateral transport in microchannels
Amini, Hamed; Sollier, Elodie; Weaver, Westbrook M.; Di Carlo, Dino
2012-01-01
In microfluidic systems at low Reynolds number, the flow field around a particle is assumed to maintain fore-aft symmetry, with fluid diverted by the presence of a particle, returning to its original streamline downstream. This current model considers particles as passive components of the system. However, we demonstrate that at finite Reynolds number, when inertia is taken into consideration, particles are not passive elements in the flow but significantly disturb and modify it. In response to the flow field, particles translate downstream while rotating. The combined effect of the flow of fluid around particles, particle rotation, channel confinement (i.e., particle dimensions approaching those of the channel), and finite fluid inertia creates a net recirculating flow perpendicular to the primary flow direction within straight channels that resembles the well-known Dean flow in curved channels. Significantly, the particle generating this flow remains laterally fixed as it translates downstream and only the fluid is laterally transferred. Therefore, as the particles remain inertially focused, operations can be performed around the particles in a way that is compatible with downstream assays such as flow cytometry. We apply this particle-induced transfer to perform fluid switching and mixing around rigid microparticles as well as deformable cells. This transport phenomenon, requiring only a simple channel geometry with no external forces to operate, offers a practical approach for fluid transfer at high flow rates with a wide range of applications, including sample preparation, flow reaction, and heat transfer. PMID:22761309
Supply Chain Modeling for Fluorspar and Hydroflouric Acid and Implications for Further Analyses
2015-04-01
Critical Materials, Volume 1 Chapter 2. Fluorspar-HF Supply Chain 4 Foreign Supply Other usesUS Supply Fluorspar Mining HF Production Downstream...analysis are listed across the top: Fluorspar Mining , HF Production, and (pro- duction of) Downstream Products (using HF). • U.S. supply is represented by...material flows from fluorspar mining , to HF production, to downstream fluorine-containing products. – Black lines are material flows included in the supply
Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile
NASA Technical Reports Server (NTRS)
Labus, T. L.; Symons, E. P.
1972-01-01
An experimental investigation was conducted to determine the flow characteristics of a circular free helium jet having an initially uniform velocity profile. Complete velocity profiles are presented at Reynolds numbers of 1027 and 4571 at 0, 3, 6, 10, 15, and 20 nozzle diameters (where possible) from the nozzle exit. Centerline velocity decay and potential core length were obtained over a range of Reynolds numbers from 155 to 5349 at distances up to and including 25 nozzle diameters from the nozzle exit. The angles of spread associated with the diffusion of the jet downstream of the nozzle are also given. Axial jet momentum flux and entrained mass flux, at various distances downstream of the nozzle, are presented as a function of the jet Reynolds number.
NASA Astrophysics Data System (ADS)
Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.
2014-12-01
Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.
Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis.
Hutton, Laura A; Vidotti, Marcio; Iacobini, James G; Kelly, Chris; Newton, Mark E; Unwin, Patrick R; Macpherson, Julie V
2011-07-15
The development of the first all-diamond hydrodynamic flow device for electroanalytical applications is described. Here alternate layers of intrinsic (insulating), conducting (heavily boron doped), and intrinsic polycrystalline diamond are grown to create a sandwich structure. By laser cutting a hole through the material, it is possible to produce a tubular flow ring electrode of a characteristic length defined by the thickness of the conducting layer (for these studies ∼90 μm). The inside of the tube can be polished to 17 ± 10 nm surface roughness using a diamond impregnanted wire resulting in a coplanar, smooth, all-diamond surface. The steady-state limiting current versus volume flow rate characteristics for the one electron oxidation of FcTMA(+) are in agreement with those expected for laminar flow in a tubular electrode geometry. For dopamine detection, it is shown that the combination of the reduced fouling properties of boron doped diamond, coupled with the flow geometry design where the products of electrolysis are washed away downstream of the electrode, completely eradicates fouling during electrolysis. This paves the way for incorporation of this flow design into online electroanalytical detection systems. Finally, the all diamond tubular flow electrode system described here provides a platform for future developments including the development of ultrathin ring electrodes, multiple apertures for increased current response, and multiple, individually addressable ring electrodes incorporated into the same flow tube.
Passive control of coherent structures in a modified backwards-facing step flow
NASA Astrophysics Data System (ADS)
Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.
2018-05-01
We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.
Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W
2014-08-19
Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.
NASA Technical Reports Server (NTRS)
Back, L. H.; Massier, P. F.; Roschke, E. J.
1972-01-01
Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.
The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)
NASA Astrophysics Data System (ADS)
Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.
2017-09-01
Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.
An inverse method to estimate the flow through a levee breach
NASA Astrophysics Data System (ADS)
D'Oria, Marco; Mignosa, Paolo; Tanda, Maria Giovanna
2015-08-01
We propose a procedure to estimate the flow through a levee breach based on water levels recorded in river stations downstream and/or upstream of the failure site. The inverse problem is solved using a Bayesian approach and requires the execution of several forward unsteady flow simulations. For this purpose, we have used the well-known 1-D HEC-RAS model, but any unsteady flow model could be adopted in the same way. The procedure has been tested using four synthetic examples. Levee breaches with different characteristics (free flow, flow with tailwater effects, etc.) have been simulated to collect the synthetic level data used at a later stage in the inverse procedure. The method was able to accurately reproduce the flow through the breach in all cases. The practicability of the procedure was then confirmed applying it to the inundation of the Polesine Region (Northern Italy) which occurred in 1951 and was caused by three contiguous and almost simultaneous breaches on the left embankment of the Po River.
On the Feedback Phenomenon of an Impinging Jet
1979-09-01
the double-structured nature of turbulent flows: time dependent quasi- ordered large scale structures, and fine-scale random structures. Numerous ...downstream and upstream waves d Nozzle diameter f Frequency (Hz) Gf Normalized power si.c ,ur’ of i G ,(f) Normalized cr,- tr bee -en i(t) and J(t) I ,j xiv...1975) suggested that these quasi- ordered structures are deterministic, in the sense that they have a characteristic shape, size and convection motion
Investigation on the effect of diaphragm on the combustion characteristics of solid-fuel ramjet
NASA Astrophysics Data System (ADS)
Gong, Lunkun; Chen, Xiong; Yang, Haitao; Li, Weixuan; Zhou, Changsheng
2017-10-01
The flow field characteristics and the regression rate distribution of solid-fuel ramjet with three-hole diaphragm were investigated by numerical and experimental methods. The experimental data were obtained by burning high-density polyethylene using a connected-pipe facility to validate the numerical model and analyze the combustion efficiency of the solid-fuel ramjet. The three-dimensional code developed in the present study adopted three-order MUSCL and central difference schemes, AUSMPW + flux vector splitting method, and second-order moment turbulence-chemistry model, together with k-ω shear stress transport (SST) turbulence model. The solid fuel surface temperature was calculated with fluid-solid heat coupling method. The numerical results show that strong circumferential flow exists in the region upstream of the diaphragm. The diaphragm can enhance the regression rate of the solid fuel in the region downstream of the diaphragm significantly, which mainly results from the increase of turbulent viscosity. As the diaphragm port area decreases, the regression rate of the solid fuel downstream of the diaphragm increases. The diaphragm can result in more sufficient mixing between the incoming air and fuel pyrolysis gases, while inevitably producing some pressure loss. The experimental results indicate that the effect of the diaphragm on the combustion efficiency of hydrocarbon fuels is slightly negative. It is conjectured that the diaphragm may have some positive effects on the combustion efficiency of the solid fuel with metal particles.
Binary agonist surface patterns prime platelets for downstream adhesion in flowing whole blood.
Eichinger, Colin D; Hlady, Vladimir
2017-04-28
As platelets encounter damaged vessels or biomaterials, they interact with a complex milieu of surface-bound agonists, from exposed subendothelium to adsorbed plasma proteins. It has been shown that an upstream, surface-immobilized agonist is capable of priming platelets for enhanced adhesion downstream. In this study, binary agonists were integrated into the upstream position of flow cells and the platelet priming response was measured by downstream adhesion in flowing whole blood. A nonadditive response was observed in which platelets transiently exposed to two agonists exhibited greater activation and downstream adhesion than that from the sum of either agonist alone. Antibody blocking of one of the two upstream agonists eliminated nonadditive activation and downstream adhesion. Crosstalk between platelet activation pathways likely led to a synergistic effect which created an enhanced activation response in the platelet population. The existence of synergy between platelet priming pathways is a concept that has broad implications for the field of biomaterials hemocompatibility and platelet activity testing.
Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.
2015-01-01
Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, S.; Wang, Z.; Huang, Q.
2013-02-15
Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generatedmore » by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.« less
NASA Astrophysics Data System (ADS)
Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro
2018-04-01
Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.
Simulation of wake effects between two wind farms
NASA Astrophysics Data System (ADS)
Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.
2015-06-01
SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.
Hoogestraat, Galen K.
2011-01-01
Extensive information about the construction of dams or potential downstream hazards in the event of a dam breach is not available for many small reservoirs within the Black Hills National Forest. In 2009, the U.S. Forest Service identified the need for reconnaissance-level dam-breach assessments for four of these reservoirs within the Black Hills National Forest (Iron Creek, Horsethief, Lakota, and Mitchell Lakes) with the potential to flood downstream structures. Flood hydrology and dam-breach hydraulic analyses for the four selected reservoirs were conducted by the U.S. Geological Survey in cooperation with the U.S. Forest service to estimate the areal extent of downstream inundation. Three high-flow breach scenarios were considered for cases when the dam is in place (overtopped) and when a dam break (failure) occurs: the 100-year recurrence 24-hour precipitation, 500-year recurrence peak flow, and the probable maximum precipitation. Inundation maps were developed that show the estimated extent of downstream floodwaters from simulated scenarios. Simulation results were used to determine the hazard classification of a dam break (high, significant, or low), based primarily on the potential for loss of life or property damage resulting from downstream inundation because of the flood surge.The inflow design floods resulting from the two simulated storm events (100-year 24-hour and probable maximum precipitation) were determined using the U.S. Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). The inflow design flood for the 500-year recurrence peak flow was determined by using regional regression equations developed for streamflow-gaging stations with similar watershed characteristics. The step-backwater hydraulic analysis model, Hydrologic Engineering Center's River Analysis System (HEC-RAS), was used to determine water-surface profiles of in-place and dam-break scenarios for the three inflow design floods that were simulated. Inundation maps for in-place and dam-break scenarios were developed for the area downstream from the dam to the mouth of each stream.Dam-break scenarios for three of the four reservoirs assessed in this study were rated as low hazards owing to absence of permanent structures downstream from the dams. Iron Creek Lake's downstream channel to its mouth does not include any permanent structures within the inundation flood plains. For the two reservoirs with the largest watershed areas, Lakota and Mitchell Lake, the additional floodwater surge resulting from a dam break would be minor relative to the magnitude of the large flood streamflow into the reservoirs, based on the similar areal extent of inundation for the in-place and dam-break scenarios as indicated by the developed maps. A dam-break scenario at Horsethief Lake is rated as a significant hazard because of potential lives-in-jeopardy in downstream dwellings and appreciable economic loss.
Flow and temperature fields following injection of a jet normal to a cross stream
NASA Technical Reports Server (NTRS)
Goldstein, R. J.; Ramsey, J. W.; Eriksen, V. L.
1978-01-01
The interaction of a jet entering into a freestream normal to the main flow direction has been studied with particular attention directed to visualization of the large-scale flow interactions and to measurement of the film-cooling performance. Large eddies are apparent downstream of the entering jet even at moderate blowing rate (defined as the ratio of the mass velocity of the jet to the mass velocity of the freestream). At higher blowing rate, there is only intermittent contact between the mass from the jet and the downstream wall. The film cooling downstream from a single normal jet yields a lower centerline effectiveness compared to an inclined jet through a greater lateral spreading. The greater spreading provides a more uniform effectiveness across the span of the downstream wall, in particular at large blowing rate.
Measurement of turbulent flow upstream and downstream of a circular pipe bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakakibara, Jun; Machida, Nobuteru
2012-04-15
We measured velocity distribution in cross sections of a fully developed turbulent pipe flow upstream and downstream of a 90 degree sign bend by synchronizing two sets of a particle image velocimetry (PIV) system. Unsteady undulation of Dean vortices formed downstream from the bend was characterized by the azimuthal position of the stagnation point found on the inner and outer sides of the bend. Linear stochastic estimation was applied to capture the upstream flow field conditioned by the azimuthal location of the stagnation point downstream from the bend. When the inner-side stagnation point stayed below (above) the symmetry plane, themore » conditional streamwise velocity upstream from the bend exhibited high-speed streaks extended in a quasi-streamwise direction on the outer side of the curvature above (below) the symmetry plane.« less
Schaffer, Chris B; Friedman, Beth; Nishimura, Nozomi; Schroeder, Lee F; Tsai, Philbert S; Ebner, Ford F; Lyden, Patrick D
2006-01-01
A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology. PMID:16379497
Flow in a porous nozzle with massive wall injection
NASA Technical Reports Server (NTRS)
Kinney, R. B.
1973-01-01
An analytical and experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a nozzle. The experiments were performed on a water table with a porous-nozzle test section. This had 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. An analysis of the water table flow was made using a one-dimensional flow assumption in the continuity and momentum equations. An analysis of a compressible flow in a nozzle was made in a manner analogous to that for the water flow. It is shown that the effect of blowing is to move the sonic position downstream of the geometric throat. Similar results were determined for the incompressible water table flow. Limited photographic results are presented for an injection of air, CO2, and Freon-12 into a main-stream air flow in a convergent-divergent nozzle. Schlieren photographs were used to visualize the flow.
Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.
2008-01-01
The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a wastewater-treatment plant discharge and concentrations at sites farther downstream probably had lesser concentrations because of dilution effects and from algal uptake. Nutrient concentrations generally were significantly greater during high-flow conditions compared to base-flow conditions. Flow-weighted nutrient concentrations were computed for the three streamflow sites and were compared to 82 relatively undeveloped sites identified across the Nation, to the Alum Fork of the Saline River near Reform, Arkansas, and to the Illinois River south of Siloam Springs, Arkansas, a site influenced by numerous point and nonpoint sources of nutrients. Annual flow-weighted nutrient concentrations for MFS06, MFS05, and MFS02 were greater than relatively undeveloped sites, but were substantially less than the Illinois River south of Siloam Springs. Fecal indicator bacteria concentrations were slightly greater at MFS06 and MFS05 compared to concentrations at MFS02 for October 2003 to October 2006. MFS05 had the greatest E.coli concentrations and MFS06 had the greatest fecal coliform concentrations. Overall, fecal indicator bacteria concentrations were significantly greater for samples collected during high-flow conditions compared to samples collected during low-flow conditions at all three sites. Suspended-sediment concentrations did not vary significantly among MFS06, MFS05, and MFS02 for all the samples collected from October 2003 to October 2006. Suspended-sediment concentrations were significantly greater in samples collected during high-flow conditions compared to samples collected during base-flow conditions. Synoptic samples indicated varied total suspended-solids distributions from upstream to downstream in the Middle Fork between January 2004 and October 2006. Overall, total suspended-solids values were the greatest at site MFS02 and decreased at sites upstream and downstream. Turbidity measured when water-quality samples were
Evolution and transition mechanisms of internal swirling flows with tangential entry
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Wang, Xingjian; Yang, Vigor
2018-01-01
The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.
Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R
2018-06-07
Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological processes in upstream areas and downstream flow and, therefore, protecting GIWs is important for enhanced hydrological resilience to extreme flow conditions in this region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cartwright, Jennifer M.; Caldwell, Casey; Nebiker, Steven; Knight, Rodney
2017-01-01
This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.
NASA Technical Reports Server (NTRS)
Thompson, D.; Mogili, P.; Chalasani, S.; Addy, H.; Choo, Y.
2004-01-01
Steady-state solutions of the Reynolds-averaged Navier-Stokes (RANS) equations were computed using the Colbalt flow solver for a constant-section, rectangular wing based on an extruded two-dimensional glaze ice shape. The one equation Spalart-Allmaras turbulence model was used. The results were compared with data obtained from a recent wind tunnel test. Computed results indicate that the steady RANS solutions do not accurately capture the recirculating region downstream of the ice accretion, even after a mesh refinement. The resulting predicted reattachment is farther downstream than indicated by the experimental data. Additionally, the solutions computed on a relatively coarse baseline mesh had detailed flow characteristics that were different from those computed on the refined mesh or the experimental data. Steady RANS solutions were also computed to investigate the effects of spanwise variation in the ice shape. The spanwise variation was obtained via a bleeding function that merged the ice shape with the clean wing using a sinusoidal spanwise variation. For these configurations, the results predicted for the extruded shape provided conservative estimates for the performance degradation of the wing. Additionally, the spanwise variation in the ice shape and the resulting differences in the flow fields did not significantly change the location of the primary reattachment.
NASA Astrophysics Data System (ADS)
Wang, Yu-hang; Song, Wen-yan; Shi, De-yong
2017-11-01
The flameholding characteristics in a kerosene-fueled scramjet combustor with a tandem dual-cavity were investigated experimentally under various inlet stagnation pressure conditions. Flame stabilization locations were judged by the pressure distributions and flame luminescence images. The results show that at lower and higher equivalence ratios, the flame was stabilized in the downstream and upstream cavities, respectively. While at intermediate range of equivalence ratio the flame was oscillating between the two cavities. The inlet stagnation pressure has a significant impact on the flameholding characteristics by affecting the relative pressure rise and the flame speed. The transition of flame stabilization location can occur in a higher local flow Mach number in the case of the higher inlet stagnation pressure.
Characterization of pulsed flow attenuation on a regulated montane river
NASA Astrophysics Data System (ADS)
Fong, C. S.; Yarnell, S. M.; Fleenor, W. E.; Viers, J. H.
2013-12-01
A major benefit of hydropower is its ability to respond quickly to fluctuating electrical loads. However, the sharp changes in discharge caused by this practice have detrimental environmental effects downstream. This study investigated the effects of hydrograph shape on attenuation of regulated pulsed flow events by first categorizing, then modeling the downstream movement of representative pulses on the upper Tuolumne River below Holm Powerhouse in the Sierra Nevada mountains of California. This system was managed by a public utility and produced flow pulses primarily for hydroelectricity generation and/or whitewater recreation. Operations were highly influenced by a system-wide "Water First" policy, which prioritized drinking water supply and quality over other beneficial uses. Pulses were therefore associated with a spectrum of time scales, from predetermined schedules decided far in advance to hydropeaking operations responding to real-time demands. We extracted underlying hydrograph shape patterns using principal component analysis on individual pulsed flow events released from 1988-2012 (n=4439). From principal component loadings, six shape categories were determined: rectangular, front-step, back-step, goalpost, centered tower, and other. The rectangular and stepped shapes were the most frequent, composing 62% and 24% of total events, respectively. The rectangular shape was often produced by 'standard' hydropeaking or recreational releases, while the stepped shapes were often used for water conservation or were recreational flows bordered by periods of electricity generation. The stepped shape increased in occurrence after the "Water First" policy took effect in 1993 and dominated two drier years (2007 and 2009). After categorization by shape, magnitude and durational indices were used to fabricate representative pulsed flow events. Attenuation of these representative pulses was then modeled using a 1D hydraulic model of 42 river km prepared in HEC-RAS. As no operational measures or physical structures existed within the system to counter the adverse effects of pulsed flow events, natural attenuation was the only potential major mitigation agent. However, model results demonstrated a clear durational threshold for representative pulses (~ 3-5 hrs) over which the degree of attenuation of ramping rates and peak discharge approached a limit. These thresholds were unique to the study reach and were dependent upon river morphology, bed characteristics, and flow rates. Increasing baseflows did not necessarily increase attenuation of pulses, most likely due to minimal increases in bed friction forces in this fairly steep and confined channel. Simulations of front and back-step representative pulses showed trade-offs between attenuation of peak magnitudes and steepness of ramping rates. Finally, a range of rising ramping rates were shown to steepen downstream above initial rates due to the study reach's channel morphology. Reshaping pulses to be more ecologically benign at all points downstream was infeasible if the system was required to maintain current electricity production and recreational service levels.
Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Wellborn, Steven R.; Okiishi, Theodore H.
1996-01-01
Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily in the circumferential direction at about 40% of the hub wheel speed. Measurements indicated that the flow within both cavities was much more complex than first envisioned. A vortical flow structure in the meridional plane, similar to a driven cavity, existed within the upstream cavity Furthermore, other spatial and temporal variations in Row properties existed. the most prominent being caused by the upstream potential influence of the downstream blade. This influence caused the fluid within cavities near the leading edges of either stator blades in space or rotor blades in time to be driven radially inward relative to fluid near blade mid-pitch. This influence also produced large unsteady velocity fluctuations in the downstream cavity because of the passing of the downstream rotor blade.
Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.
1994-01-01
A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Al-aswadi, A. A.; Yusoff, M. Z.; Saidur, R.
2012-03-01
Laminar mixed convective buoyancy assisting flow through a two-dimensional vertical duct with a backward-facing step using nanofluids as a medium is numerically simulated using finite volume technique. Different types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2 and TiO2 with 5 % volume fraction are used. The wall downstream of the step was maintained at a uniform wall temperature, while the straight wall that forms the other side of the duct was maintained at constant temperature equivalent to the inlet fluid temperature. The walls upstream of the step and the backward-facing step were considered as adiabatic surfaces. The duct has a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The downstream wall was fixed at uniform wall temperature 0 ≤ Δ T≤ 30 °C, which was higher than the inlet flow temperature. The Reynolds number in the range of 75 ≤ Re ≤ 225 was considered. It is found that a recirculation region was developed straight behind the backward-facing step which appeared between the edge of the step and few millimeters before the corner which connect the step and the downstream wall. In the few millimeters gap between the recirculation region and the downstream wall, a U-turn flow was developed opposite to the recirculation flow which mixed with the unrecirculated flow and traveled along the channel. Two maximum and one minimum peaks in Nusselt number were developed along the heated downstream wall. It is inferred that Au nanofluid has the highest maximum peaks while diamond nanofluid has the highest minimum peak. Nanofluids with a higher Prandtl number have a higher peak of Nusselt numbers after the separation and the recirculation flow disappeared.
NASA Astrophysics Data System (ADS)
Caskey, S. T.; Wohl, E. E.; Dwire, K. A.; Merritt, D. M.; Schnackenberg, L.
2012-12-01
The relationship between riparian vegetation and changes in fluvial processes as a response to flow diversion is not well understood. Water extraction affects the hydrologic flow regime (i.e., magnitude, duration, and frequency of flows) reducing peak and base-flows, which could negatively impact riparian vegetation. Vegetation communities are temporally and spatially variable and are strongly interrelated with alluvial landforms and hydrograph variability. This research compares riparian community characteristics on diverted and undiverted pool-riffle channels and low gradient valleys to examine changes associated with flow diversion in the Routt National Forest (RNF). The RNF is the only under-appropriated area in Colorado, making future water extraction proposals likely. Many small extraction canals siphon water from small, headwater streams in the RNF, but the site-specific or cumulative effects of these diversions on riverine ecosystems have not been investigated. Systematic investigation is necessary, however, to determine whether existing flow diversions have influenced riparian communities and, if so, which communities are most sensitive to diversions. A total of 36 sites were sampled with five channel cross sections established per site, extending into the riparian zone at distance of two times the active channel width, and vegetation was sampled using the line-point intercept method. Preliminary results suggest a shift in vegetation communities from typical riparian species composition to more upland vegetation. The relative sensitivity of these responses are different depending on valley type; low- gradient, unconfined areas are less tolerant of diversion than steeper, confined reaches. Additionally, when stratified by plant assemblage, Salix abundance is significantly reduced downstream of diversion. The results of this study contribute to the collective understanding of mountain headwater riparian vegetation community response to changes in flow regimes and fluvial processes related directly to water extraction by diversion dams.
40 CFR 63.323 - Test methods and monitoring.
Code of Federal Regulations, 2012 CFR
2012-07-01
... downstream from any flow disturbance such as a bend, expansion, contraction, or outlet; downstream from no other inlet; and 2 stack or duct diameters upstream from any flow disturbance such as a bend, expansion... monitoring by inserting the colorimetric detector or PCE gas analyzer tube into the open space above the...
40 CFR 63.323 - Test methods and monitoring.
Code of Federal Regulations, 2014 CFR
2014-07-01
... downstream from any flow disturbance such as a bend, expansion, contraction, or outlet; downstream from no other inlet; and 2 stack or duct diameters upstream from any flow disturbance such as a bend, expansion... monitoring by inserting the colorimetric detector or PCE gas analyzer tube into the open space above the...
40 CFR 63.323 - Test methods and monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... downstream from any flow disturbance such as a bend, expansion, contraction, or outlet; downstream from no other inlet; and 2 stack or duct diameters upstream from any flow disturbance such as a bend, expansion... monitoring by inserting the colorimetric detector or PCE gas analyzer tube into the open space above the...
NASA Astrophysics Data System (ADS)
Sibari, Hayat; Haida, Souad; Foutlane, Mohamed
2018-05-01
This work aims to estimate the contributions of the Inaouene River during the floods. It is in this context that the dissolved and particulate matter flows were measured during the flood periods followed by the 1996/97 study year at the two hydrological stations Bab Marzouka (upstream) and El Kouchat (downstream). The specific flows of dissolved materials calculated upstream and downstream of the Inaouene watershed correspond respectively to 257 t/ km2/year and 117 t/ km2/year. Chlorides represent 30% and 41% respectively of the total dissolved transport upstream and downstream. The potential mechanical degradation affecting the Inaouene watershed can deliver a solid load estimated at 6.106 t/year corresponding to a specific flow of 2142 t/km2/year.
Transient response in granular bounded heap flows
NASA Astrophysics Data System (ADS)
Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.
2017-11-01
Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.
NASA Technical Reports Server (NTRS)
Gorton, C. A.; Lakshminarayana, B.
1980-01-01
The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.
Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaou, G.; Livadiotis, G.
2017-03-20
We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying alongmore » the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.« less
Wind tunnel investigation of a 14 foot vertical axis windmill
NASA Technical Reports Server (NTRS)
Muraca, R. J.; Guillotte, R. J.
1976-01-01
A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.
Investigation of flow turning phenomenon - Effect of upstream and downstream propagation
NASA Astrophysics Data System (ADS)
Baum, Joseph D.
1988-01-01
Upstream acoustic-wave propagation in flow injected laterally through the boundary layer of a tube (simulating the flow in a solid-rocket motor) is investigated analytically. A noniterative linearized-block implicit scheme is used to solve the time-dependent compressible Navier-Stokes equations, and the results are presented in extensive graphs and characterized. Acoustic streaming interaction is shown to be significantly greater for upstream than for downstream propagation.
Kinetic theory analysis of rarefied gas flow through finite length slots
NASA Technical Reports Server (NTRS)
Raghuraman, P.
1972-01-01
An analytic study is made of the flow a rarefied monatomic gas through a two dimensional slot. The parameters of the problem are the ratios of downstream to upstream pressures, the Knudsen number at the high pressure end (based on slot half width) and the length to slot half width ratio. A moment method of solution is used by assuming a discontinuous distribution function consisting of four Maxwellians split equally in angular space. Numerical solutions are obtained for the resulting equations. The characteristics of the transition regime are portrayed. The solutions in the free molecule limit are systematically lower than the results obtained in that limit by more accurate numerical methods.
Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity
NASA Technical Reports Server (NTRS)
Mell, W. E.; Olson, S. L.; Kashiwagi, T.
2000-01-01
The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.
Reduction of turbomachinery noise
NASA Technical Reports Server (NTRS)
Waitz, Ian A. (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor)
1999-01-01
In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.
NASA Astrophysics Data System (ADS)
Leary, K. C. P.; Schmeeckle, M. W.
2017-12-01
Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.
Wehmeyer, Loren L.; Bales, Jerad D.
2009-01-01
Understanding the relation between dam release characteristics and downstream water quality in the lower Roanoke River, North Carolina, is important for natural-resource management and ecosystem protection. Data from four raingages, four water-quality monitoring sites, and one streamflow-measurement site were used to identify statistical relations and discernible quantitative or qualitative patterns linking Roanoke River instream dissolved-oxygen (DO) levels to releases at Roanoke Rapids Dam for the period 1998-2005. The time-series DO data, complicated by the occurrence of major hurricanes in the short period of hourly DO data collection at the dam, present a mixed picture of the effects of hydropower peaking (a technique used by hydropower dam operators to produce electricity when consumption is high by passing a large volume of water through the dam turbines, which dramatically increases the volume of flow below the dam) on downstream DO. Other than in 2003 when dissolved-oxygen concentrations in the Roanoke River were likely affected by runoff from Hurricane Isabel rains, there were not consistent, statistically significant differences detected in the annual medians of hourly and(or) daily DO values during peaking versus nonpeaking periods. Along the Roanoke River, downstream of Roanoke Rapids Dam at Oak City, North Carolina, using a 95-percent confidence interval, the median value of the May-November daily mean DO concentrations for each year was lower during peaking periods for 2 years, higher for 2 years, and not significantly different for 4 years. Downstream at Jamesville, North Carolina, also using a 95-percent confidence interval, the median value of the annual May-November daily mean DO concentrations during hydropower peaking was lower for 4 years, higher for 2 years, and not significantly different for 2 years. In summary, the effect of hydropower peaking on downstream DO was inconsistent. Conversely, large precipitation events downstream from the dam resulted in consistent, statistically significant decreases in DO in the mainstem of the Roanoke River at Oak City and Jamesville.
Dam regulation and riverine food-web structure in a Mediterranean river.
Mor, Jordi-René; Ruhí, Albert; Tornés, Elisabet; Valcárcel, Héctor; Muñoz, Isabel; Sabater, Sergi
2018-06-01
Flow regimes are a major driver of community composition and structure in riverine ecosystems, and flow regulation by dams often induces artificially-stable flow regimes downstream. This represents a major source of hydrological alteration, particularly in regions where biota is adapted to strong seasonal and interannual flow variability. We hypothesized that dam-induced hydrological stability should increase the availability of autochthonous resources at the base of the food web. This, in turn, should favour herbivorous over detritivorous strategies, increasing the diversity of primary consumers, and the food-web width and length. We tested this hypothesis by studying the longitudinal variation in food-web structure in a highly-seasonal Mediterranean river affected by an irrigation dam. We compared an unregulated reach to several reaches downstream of the dam. Hydrological and sedimentological stability increased downstream of the dam, and altered the type and quantity of available resources downstream, prompting a change from a detritus-based to an algae-based food web. The fraction of links between top and intermediate species also increased, and the food web became longer and wider at the intermediate trophic levels. Food-web structure did not recover 14km downstream of the dam, despite a partial restitution of the flow regime. Our results advance the notion that hydrologic alteration affects riverine food webs via additions/deletions of taxa and variation in the strength and distribution of food-web interactions. Thus, flow regulation by dams may not only impact individual facets of biodiversity, but also food-web level properties across river networks. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Patterns and age distribution of ground-water flow to streams
Modica, E.; Reilly, T.E.; Pollock, D.W.
1997-01-01
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.
Geomorphic status of regulated rivers in the Iberian Peninsula.
Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J
2015-03-01
River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation, challenging the successful long-term implementation of river basin management programmes. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of free-stream turbulence on boundary layer transition.
Goldstein, M E
2014-07-28
This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Hongwei; Yu, Sen
2018-04-01
The rapid urbanization and industrialization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, according to the data obtained from the monitoring stations in the Songhua River basin, the multivariate statistical analysis methods are applied to the hydrological data of the Songhua River basin in order to examine the relation between human activities and the spatio-temporal change of heavy metals (Pb and Cu) in water. By comparing the concentrations at different flow periods, the minimum Pb concentrations are found to have occurred most frequently in low flow periods while the maximum values mostly appeared in average flow periods. Moreover, the minimum Cu concentration in the water frequently occurred in high flow periods. The results show there are low Pb and Cu concentrations in upstream and downstream sections and high concentrations in mid-stream sections, and high concentrations are most frequently measured in the sections of Ashihe' downstream and estuary. Moreover, we have predicted the future (during 2018-2025) trend of the change for the heavy metals pollution in the rivers. The results demonstrated intense human activities are the most important factor causing jump features of typical heavy metal pollution in the different periods for different sections of this study area. The research would provide decision-making and planning for the Songhua River basin during the period of China's 13th Five-Year Plan.
Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus
Holtschlag, David J.
2009-01-01
AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.
Colangelo, David J; Jones, Bradley L
2005-03-01
Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.
Moran, Clinton J; Gerry, Shannon P; O'Neill, Matthew W; Rzucidlo, Caroline L; Gibb, Alice C
2018-05-18
Morphological streamlining is often associated with physiological advantages for steady swimming in fishes. Though most commonly studied in pelagic fishes, streamlining also occurs in fishes that occupy high-flow environments. Before the installation of dams and water diversions, bonytail (Cyprinidae, Gila elegans ), a fish endemic to the Colorado River (USA), regularly experienced massive, seasonal flooding events. Individuals of G. elegans display morphological characteristics that may facilitate swimming in high-flow conditions, including a narrow caudal peduncle and a high aspect ratio caudal fin. We tested the hypothesis that these features improve sustained swimming performance in bonytail by comparing locomotor performance in G. elegans with that of the closely related roundtail chub ( Gila robusta ) and two non-native species, rainbow trout ( Oncorhynchus mykiss ) and smallmouth bass ( Micropterus dolomieu ), using a Brett-style respirometer and locomotor step-tests. Gila elegans had the lowest estimated drag coefficient and the highest sustained swimming speeds relative to the other three species. There were no detectible differences in locomotor energetics during steady swimming among the four species. When challenged by high-velocity water flows, the second native species examined in this study, G. robusta , exploited the boundary effects in the flow tank by pitching forward and bracing the pelvic and pectoral fins against the acrylic tank bottom to 'hold station'. Because G. robusta can station hold to prevent being swept downstream during high flows and G. elegans can maintain swimming speeds greater than those of smallmouth bass and rainbow trout with comparable metabolic costs, we suggest that management agencies could use artificial flooding events to wash non-native competitors downstream and out of the Colorado River habitat. © 2018. Published by The Company of Biologists Ltd.
Singer, M.B.
2007-01-01
This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.
Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets
NASA Astrophysics Data System (ADS)
Brownell, C. J.; Su, L. K.
2008-03-01
Planar laser Rayleigh scattering yields quantitative, two-dimensional measurements of differential diffusion in a turbulent propane-helium jet issuing into air. The jet exit Reynolds number ranges from 1000 to 3000, corresponding to estimated outer-scale Reynolds numbers from 4300 to 13 000. Using a technique originally proposed by Bilger and Dibble [Combust. Sci. Technol. 28, 161 (1982)], the imaging measurements allow direct determination of a normalized scalar difference quantity ξ. For the lower Re, significant differential diffusion develops in the pretransitional portion of the flow. Downstream of the turbulent transition, radial profiles of mean ξ take on a characteristic form, with an excess of the less-diffusive propane on the jet boundary. This characteristic form is independent of Reynolds number, and is thus apparently independent of the degree of differential diffusion in the pretransition range. Evolution of the ξ fields in the turbulent part of the flow is surprisingly consistent with the mixing of conventional scalar quantities. Fluctuation profiles of ξ have a self-similar, bimodal shape for each Re, and power spectra of ξ are monotonically decreasing, with a distinct k-5/3 inertial range. This spectral form is at odds with prior analytical and computational results in isotropic turbulence, which predicted that the spectrum would show a peak intermediate between the diffusive cutoffs of the individual scalars. The discrepancy appears to be due to the forcing applied in the simulations; the differential diffusion in the experiments preferentially develops in the jet near field, so the resulting evolution is more akin to a decay process. This is further emphasized by the observation that the thickness of ξ structures in the jet decreases with downstream distance. The present results indicate that consideration of differential diffusion must account for the details of the flow configuration, particularly the uniformity of turbulence levels. This has important implications for reacting flows, where local laminarization by heat release can be significant.
Flow Structures and Efficiency of Swimming Fish school: Numerical Study
NASA Astrophysics Data System (ADS)
Yatagai, Yuzuru; Hattori, Yuji
2013-11-01
The flow structure and energy-saving mechanism in fish school is numerically investigated by using the volume penalization method. We calculate the various patterns of configuration of fishes and investigate the relation between spatial arrangement and the performance of fish. It is found that the down-stream fish gains a hydrodynamic advantage from the upstream wake shed by the upstream fish. The most efficient configuration is that the downstream fish is placed in the wake. It reduces the drag force of the downstream fish in comparison with that in solo swimming.
DNS of flow in stenosed carotid artery
NASA Astrophysics Data System (ADS)
Grinberg, Leopold; Yakhot, Alexander; Karniadakis, George
2006-11-01
Direct numerical simulation (DNS) of a three-dimensional flow through a stenosed carotid artery has been performed. Onset of turbulence downstream of the occlusion has been observed. The developing turbulence is characterized by an alternating spatio-temporal transitional regime. The transition to turbulence occurs during the systolic phase approximately five throat-diameters downstream of the throat, while laminarization occurs during the diastolic phase. Transition in space is first enhanced and subsequently decays downstream. The wall shear stress increases in the stenosed internal carotid artery due to the vessel occlusion and as the result of turbulence.
Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars
Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.
2006-01-01
Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.
Numerical Simulation of a Complete Low-Speed Wind Tunnel Circuit
NASA Technical Reports Server (NTRS)
Nayani, Sudheer N.; Sellers, William L., III; Tinetti, Ana F.; Brynildsen, Scott E.; Walker, Eric L.
2016-01-01
A numerical simulation of the complete circuit of the NASA Langley 14 x 22-ft low-speed wind tunnel is described. Inside the circuit, all turning vanes are modeled as well as the five flow control vanes downstream of the 1st corner. The fan drive system is modeled using an actuator disk for the fan blades coupled with the fan nacelle. All the surfaces are modeled as viscous walls except the turning vanes, which were modeled as inviscid surfaces. NASA Langley's TetrUSS unstructured grid software was used for grid generation and flow simulation. Two turbulence models were employed in the present study, namely, the one-equation Spalart-Allmaras model and the shear stress transport (SST) model of Menter. The paper shows the flow characteristics in the circuit and compares the results with experimental data where available.
Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas
Asquith, William H.
1998-01-01
Peak-flow frequency for 38 stations with at least 8 years of data in natural (unregulated and nonurbanized) basins was estimated on the basis of annual peak-streamflow data through water year 1995. Peak-flow frequency represents the peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 250, and 500 years. The peak-flow frequency and drainage basin characteristics for the stations were used to develop two sets of regression equations to estimate peak-flow frequency for tributaries of the Colorado River in the study area. One set of equations was developed for contributing drainage areas less than 32 square miles, and another set was developed for contributing drainage areas greater than 32 square miles. A procedure is presented to estimate the peak discharge at sites where both sets of equations are considered applicable. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent prediction interval for any estimation from the equations.
NASA Astrophysics Data System (ADS)
Žic, E.; Arbanas, Ž.; Bićanić, N.; Ožanić, N.
2015-02-01
Mudflows regularly generate significant human and property losses. Analyzing mudflows is important to assess the risks and to delimit vulnerable areas where mitigation measures are required. The smoothed-particle hydrodynamics (SPH) model adopted here considers, in two phases, a granular skeleton with voids filled with either water or mud. The SPH depth-integrated numerical model (Pastor et al., 2009a) used for the present simulations is a 2-D model capable of predicting the runout distance, flow velocity, deposition pattern and the final volume of mudflows. It is based on mathematical and rheological models. In this study, the main characteristics of mudflow processes that have emerged in the past (1908) in the area downstream of the Grohovo landslide are examined, and the more relevant parameters and attributes describing the mudflow are presented. Principal equations that form the basis of the SPH depth-integrated model are reviewed and applied to analyze the Grohovo landslide and the propagation of the mudflow wave downstream of the landslide. Based on the SPH method, the runout distance, quantities of the deposited materials and the velocity of mudflow progression which occurred in the past at the observed area are analyzed and qualitatively compared to the recorded consequences of the actual event. Within the SPH simulation, the Newtonian rheological model in the turbulent flow regime and the Bingham rheological model were adopted and a comparison was made of the application of the Egashira and Hungr erosion law.
PIV measurements in the near wakes of hollow cylinders with holes
NASA Astrophysics Data System (ADS)
Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin
2017-05-01
The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.
Griffin, Eleanor R.; Wiele, Stephen M.
1996-01-01
A one-dimensional model of unsteady discharge waves was applied to research flowr that were released from Glen Canyon Dam in support of the Glen Canyon Environmental Studies. These research flows extended over periods of 11 days during which the discharge followed specific, regular patterns repeated on a daily cycle that were similar to the daily releases for power generation. The model was used to produce discharge hydrographs at 38 selected sites in Marble and Grand Canyons for each of nine unsteady flows released from the dam in 1990 and 1991. In each case, the discharge computed from stage measurements and the associated stage-discharge relation at the streamflow-gaging station just below the dam (09379910 Colorado River Hlow Glen Canyon Dam) was routed to Diamond Creek, which is 386 kilometers downstream. Steady and unsteady tributary inflows downstream from the dam were included in the model calculations. Steady inflow to the river from tributaries downstream from the dam was determined for each case by comparing the steady base flow preceding and following the unsteady flow measured at six streamflow-gaging stations between Glen Canyon Dam and Diamond Creek. During three flow periods, significant unsteady inflow was received from the Paria River, or the Little Colorado River, or both. The amount and timing of unsteady inflow was determined using the discharge computed from records of streamflow-gaging stations on the tributaries. Unsteady flow then was added to the flow calculated by the model at the appropriate location. Hydrographs were calculated using the model at 5 streamflow-gaging stations downstream from the dam and at 33 beach study sites. Accuracy of model results was evaluated by comparing the results to discharge hydrographs computed from the records of the five streamflow-gaging stations between Lees Ferry and Lake Mead. Results show that model predictions of wave speed and shape agree well with data from the five streamflow-gaging stations.
Mass and momentum turbulent transport experiments with confined swirling coaxial jets
NASA Technical Reports Server (NTRS)
Roback, R.; Johnson, B. V.
1983-01-01
Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.
Flow control of micro-ramps on supersonic forward-facing step flow
NASA Astrophysics Data System (ADS)
Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu
2016-05-01
The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).
Physical mechanisms in shock-induced turbulent separated flow
NASA Astrophysics Data System (ADS)
Dolling, D. S.
1987-12-01
It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.
NASA Technical Reports Server (NTRS)
Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.
1986-01-01
A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.
Downstream change of velocity in rivers
Leopold, Luna Bergere
1953-01-01
Because river slope generally decreases in a downstream direction, it is generally supposed that velocity of flow also decreases downstream. Analysis of some of the large number of velocity measurements made at stream-gaging stations demonstrates that mean velocity generally tends to increase downstream. Although there are many reaches in nearly all rivers where mean velocity decreases downstream, the general tendency for conservation or for downstream increase was found in all data studied.Computations of bed velocity indicate that this parameter also tends to increase downstream.Near the streambed, shear in the vertical profile of velocity (rate of decrease of velocity with depth) tends to decrease downstream. This down-valley decrease of shear implies decreasing competence downstream.
NASA Astrophysics Data System (ADS)
Shi, Deyong; Song, Wenyan; Wang, Yuhang; Wang, Yanhua
2017-08-01
In this work, the effects of cavity flameholder configurations on flameholding and performances of kerosene fueled scramjet combustor were studied experimentally and numerically. For experiments, a directly connected ground facility was used and clean high enthalpy air, with a total temperature of 800 K and a total pressure of 800 Kpa, was provided by an electricity resistance heater. To investigate the effects of cavity configurations on flameholding capacity and reacting-flow characteristics, three different flameholders, one single cavity flameholder and two tandem cavity flameholders, were used in experiments. For the two combustors with tandem cavity flameholders, the location and configurations of its up-stream cavity were same with the single cavity flameholder, and the length-to-depth ratios for down-stream cavities were 9 and 11 respectively. The experimental results showed that stabilize kerosene combustion were achieved for combustor with tandem cavity flameholders mounted, and none for that with single cavity flameholder. The none-reacting and reacting flows of combustor models with tandem cavity flameholders were compared and studied with numerical and experimental results. The results showed that higher combustion efficiencies and pressure recovery ratios were achieved for the combustor with down-stream cavity length-to-depth ratio of 9.
Cooling system having dual suction port compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guolian
2017-08-29
A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less
Refrigeration system having dual suction port compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guolian
A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less
Turbine exhaust diffuser flow path with region of reduced total flow area
Orosa, John A.
2012-12-25
An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.
NASA Technical Reports Server (NTRS)
Samuelsen, G. S.; Sowa, W. A.; Hatch, M. S.
1996-01-01
A series of non-reacting parametric experiments was conducted to investigate the effect of geometric and flow variations on mixing of cold jets in an axis-symmetric, heated cross flow. The confined, cylindrical geometries tested represent the quick mix region of a Rich-Burn/Quick-Mix/Lean-Burn (RQL) combustor. The experiments show that orifice geometry and jet to mainstream momentum-flux ratio significantly impact the mixing characteristic of jets in a cylindrical cross stream. A computational code was used to extrapolate the results of the non-reacting experiments to reacting conditions in order to examine the nitric oxide (NO) formation potential of the configurations examined. The results show that the rate of NO formation is highest immediately downstream of the injection plane. For a given momentum-flux ratio, the orifice geometry that mixes effectively in both the immediate vicinity of the injection plane, and in the wall regions at downstream locations, has the potential to produce the lowest NO emissions. The results suggest that further study may not necessarily lead to a universal guideline for designing a low NO mixer. Instead, an assessment of each application may be required to determine the optimum combination of momentum-flux ratio and orifice geometry to minimize NO formation. Experiments at reacting conditions are needed to verify the present results.
Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA
NASA Astrophysics Data System (ADS)
Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.
2011-12-01
Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low-DOC groundwater. Primary production was 5 to 25 times higher during high and low flow, respectively, in the lower than in the upper SFRW. No decrease in DOC with a concomitant increase in DIC was observed, however, suggesting observations of microbial consumption of OM is masked by primary production and gain of DIC-rich and DOC-poor groundwater. The upper SFRW has lower saturation index (SI; -2.9 and -0.7 for high and low flow, respectively) than the lower SFRW (0.0 and 0.3 for high and low flow, respectively). The downstream shift in SI reflects dissolution of the carbonate minerals and gain of water from the Floridan Aquifer that had equilibrated with carbonate minerals. OM dynamics in the SFRW are closely linked to the allochthonous OM derived from the upper SFRW, as well as primary production in the lower watershed. Both allochthonous and autochthonous OM can be important in abiotic processes such as carbonate mineral dissolution, but flow conditions mediate the magnitudes of the reactions.
Effects of small impoundments on downstream crayfish assemblages
Susan B. Adams
2013-01-01
Dams and impoundments, both large and small, affect downstream physicochemical characteristics and up- and downstream biotic communities. I tested whether small dams and their impoundments altered downstream crayfish assemblages in northern Mississippi. I sampled crayfish and measured physicochemical variables at 4 sites downstream of impoundments (outlet sites) and 4...
Holtschlag, D.J.; Koschik, J.A.
2001-01-01
St. Clair and Detroit Rivers are connecting channels between Lake Huron and Lake Erie in the Great Lakes waterway, and form part of the boundary between the United States and Canada. St. Clair River, the upper connecting channel, drains 222,400 square miles and has an average flow of about 182,000 cubic feet per second. Water from St. Clair River combines with local inflows and discharges into Lake St. Clair before flowing into Detroit River. In some reaches of St. Clair and Detroit Rivers, islands and dikes split the flow into two to four branches. Even when the flow in a reach is known, proportions of flows within individual branches of a reach are uncertain. Simple linear regression equations, subject to a flow continuity constraint, are developed to provide estimators of these proportions and flows. The equations are based on 533 paired measurements of flow in 13 reaches forming 31 branches. The equations provide a means for computing the expected values and uncertainties of steady-state flows on the basis of flow conditions specified at the upstream boundaries of the waterway. In 7 upstream reaches, flow is considered fixed because it can be determined on the basis of flows specified at waterway boundaries and flow continuity. In these reaches, the uncertainties of flow proportions indicated by the regression equations can be used directly to determine the uncertainties of the corresponding flows. In the remaining 6 downstream reaches, flow is considered uncertain because these reaches do not receive flow from all the branches of an upstream reach, or they receive flow from some branches of more than one upstream reach. Monte Carlo simulation analysis is used to quantify this increase in uncertainty associated with the propagation of uncertainties from upstream reaches to downstream reaches. To eliminate the need for Monte Carlo simulations for routine calculations, polynomial regression equations are developed to approximate the variation in uncertainties as a function of flow at the headwaters of St. Clair River. Finally, monthly flow-duration data on the main channels of St. Clair and Detroit Rivers are used with the equations developed in this report to estimate the steady-state flow-duration characteristics of selected branches.
Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling
NASA Astrophysics Data System (ADS)
Liu, D.; Guo, S.; Lian, Y.
2014-12-01
Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.
NASA Astrophysics Data System (ADS)
Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki
2018-02-01
Three-dimensional growth morphologies of equiaxed dendrites growing under forced convection, with their preferred growth direction inclined from the flow direction, were investigated by performing large-scale phase-field lattice Boltzmann simulations on a graphical-processing-unit supercomputer. The tip velocities of the dendrite arms with their preferred growth directions inclined toward the upstream and downstream directions increased and decreased, respectively, as a result of forced convection. In addition, the tip velocities decreased monotonically as the angle between the preferred growth direction and the upstream direction increased. Here, the degree of acceleration of the upstream tips was larger than the degree of deceleration of the downstream tips. The angles between the actual tip growth directions and the preferred growth direction of the dendrite arms exhibited a characteristic change with two local maxima and two local minima.
Klaver, Gerard; van Os, Bertil; Negrel, Philippe; Petelet-Giraud, Emmanuelle
2007-08-01
Large hydropower dams have major impacts on flow regime, sediment transport and the characteristics of water and sediment in downstream rivers. The Gabcikovo and Iron Gate dams divide the studied Danube transect (rkm 1895-795) into three parts. In the Gabcikovo Reservoir (length of 40km) only a part of the incoming suspended sediments were deposited. Contrary to this, in the much larger Iron Gate backwater zone and reservoir (length of 310km) all riverine suspended sediments were deposited within the reservoir. Subsequently, suspended sediments were transported by tributaries into the Iron Gate backwater zone. Here they were modified by fractional sedimentation before they transgressed downstream via the dams. Compared with undammed Danube sections, Iron Gate reservoir sediment and suspended matter showed higher clay contents and different K/Ga and Metal/Ga ratios. These findings emphasize the importance of reservoir-river sediment-fractionation.
Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus.
Pan, Yang; Zhang, Libin; Lin, Chenggang; Sun, Jiamin; Kan, Rentao; Yang, Hongsheng
2015-05-15
The influence of flow velocity on the motor behavior of the sea cucumber, Apostichopus japonicus was investigated in the laboratory. Cameras were used to record sea cucumber movements and behavior analysis software was used to measure the distance traveled, time spent, upstream or downstream of the start position and the speed of movements. In general, the mean velocity of A. japonicus was below 0.7mms(-1). The maximum velocity recorded for all the sea cucumbers tested was for a large individual (89.25±17.11g), at a flow rate of 4.6±0.5cms(-1). Medium sized (19.68±5.53g) and large individuals moved significantly faster than small individuals (2.65±1.24g) at the same flow rate. A. japonicus moved significantly faster when there was a moderate current (4.6±0.5cms(-1) and 14.7±0.3cms(-1)), compared with the fast flow rate (29.3±3.7cms(-1)) and when there was no flow (0cms(-1)). Sea cucumbers did not show positive rheotaxis in general, but did move in a downstream direction at faster current speeds. Large, medium and small sized individuals moved downstream at the fastest current speed tested, 29.3±3.7cms(-1). When there was no water flow, sea cucumbers tended to move in an irregular pattern. The movement patterns show that the sea cucumber, A. japonicus can move across the direction of flow, and can move both upstream and downstream along the direction of flow. Copyright © 2015. Published by Elsevier Inc.
Defining ecosystem flow requirements for the Bill Williams River, Arizona
Shafroth, Patrick B.; Beauchamp, Vanessa B.
2006-01-01
Alteration of natural river flows resulting from the construction and operation of dams can result in substantial changes to downstream aquatic and bottomland ecosystems and undermine the long-term health of native species and communities (for general review, cf. Ward and Stanford, 1995; Baron and others, 2002; Nilsson and Svedmark, 2002). Increasingly, land and water managers are seeking ways to manage reservoir releases to produce flow regimes that simultaneously meet human needs and maintain the health and sustainability of downstream biotaa.
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.
2013-12-01
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.
Hydrodynamic cavitation in microsystems. II. Simulations and optical observations
NASA Astrophysics Data System (ADS)
Medrano, M.; Pellone, C.; Zermatten, P. J.; Ayela, F.
2012-04-01
Numerical calculations in the single liquid phase and optical observations in the two-phase cavitating flow regime have been performed on microdiaphragms and microventuris fed with deionized water. Simulations have confirmed the influence of the shape of the shrinkage upon the contraction of the jet, and so on the localisation of possible cavitating area downstream. Observations of cavitating flow patterns through hybrid silicon-pyrex microdevices have been performed either via a laser excitation with a pulse duration of 6 ns, or with the help of a high-speed camera. Recorded snapshots and movies are presented. Concerning microdiaphragms, it is confirmed that very high shear rates downstream the diaphragms are the cause of bubbly flows. Concerning microventuris, a gaseous cavity forms on a boundary downstream the throat. As a consequence of a microsystem instability, the cavity displays a high frequency pulsation. Low values Strouhal numbers are associated to such a sheet cavitation. Moreover, when the intensity of the cavitating flow is reduced, there is a mismatch between the frequency of the pulsation of the cavity and the frequency of shedded clouds downstream the channel. That may be the consequence of viscous effects limiting the impingement of a re-entrant liquid jet on the attached cavity.
Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)
2000-01-01
The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.
1950-05-11
available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same
NASA Technical Reports Server (NTRS)
Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.
2013-01-01
The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.
McDougall, Craig A.; Welsh, Amy B.; Gosselin, Thierry; Anderson, W. Gary; Nelson, Patrick A.
2017-01-01
Many hydroelectric dams have been in place for 50 - >100 years, which for most fish species means that enough generations have passed for fragmentation induced divergence to have accumulated. However, for long-lived species such as Lake Sturgeon, Acipenser fulvescens, it should be possible to discriminate between historical population structuring and contemporary gene flow and improve the broader understanding of anthropogenic influence. On the Winnipeg River, Manitoba, two hypotheses were tested: 1) Measureable quantities of former reservoir dwelling Lake Sturgeon now reside downstream of the Slave Falls Generating Station, and 2) genetically differentiated populations of Lake Sturgeon occur upstream and downstream, a result of historical structuring. Genetic methods based on ten microsatellite markers were employed, and simulations were conducted to provide context. With regards to contemporary upstream to downstream contributions, the inclusion of length-at-age data proved informative. Both pairwise relatedness and Bayesian clustering analysis substantiated that fast-growing outliers, apparently entrained after residing in the upstream reservoir for several years, accounted for ~15% of the Lake Sturgeon 525–750 mm fork length captured downstream. With regards to historical structuring, upstream and downstream populations were found to be differentiated (FST = 0.011, and 0.013–0.014 when fast-growing outliers were excluded), and heterozygosity metrics were higher for downstream versus upstream juveniles. Historical asymmetric (downstream) gene flow in the vicinity of the generating station was the most logical explanation for the observed genetic structuring. In this section of the Winnipeg River, construction of a major dam does not appear to have fragmented a previously panmictic Lake Sturgeon population, but alterations to habitat may be influencing upstream to downstream contributions in unexpected ways. PMID:28329005
McDougall, Craig A; Welsh, Amy B; Gosselin, Thierry; Anderson, W Gary; Nelson, Patrick A
2017-01-01
Many hydroelectric dams have been in place for 50 - >100 years, which for most fish species means that enough generations have passed for fragmentation induced divergence to have accumulated. However, for long-lived species such as Lake Sturgeon, Acipenser fulvescens, it should be possible to discriminate between historical population structuring and contemporary gene flow and improve the broader understanding of anthropogenic influence. On the Winnipeg River, Manitoba, two hypotheses were tested: 1) Measureable quantities of former reservoir dwelling Lake Sturgeon now reside downstream of the Slave Falls Generating Station, and 2) genetically differentiated populations of Lake Sturgeon occur upstream and downstream, a result of historical structuring. Genetic methods based on ten microsatellite markers were employed, and simulations were conducted to provide context. With regards to contemporary upstream to downstream contributions, the inclusion of length-at-age data proved informative. Both pairwise relatedness and Bayesian clustering analysis substantiated that fast-growing outliers, apparently entrained after residing in the upstream reservoir for several years, accounted for ~15% of the Lake Sturgeon 525-750 mm fork length captured downstream. With regards to historical structuring, upstream and downstream populations were found to be differentiated (FST = 0.011, and 0.013-0.014 when fast-growing outliers were excluded), and heterozygosity metrics were higher for downstream versus upstream juveniles. Historical asymmetric (downstream) gene flow in the vicinity of the generating station was the most logical explanation for the observed genetic structuring. In this section of the Winnipeg River, construction of a major dam does not appear to have fragmented a previously panmictic Lake Sturgeon population, but alterations to habitat may be influencing upstream to downstream contributions in unexpected ways.
Downstream anastomotic hyperplasia. A mechanism of failure in Dacron arterial grafts.
LoGerfo, F W; Quist, W C; Nowak, M D; Crawshaw, H M; Haudenschild, C C
1983-01-01
The precise location and progression of anastomotic hyperplasia and its possible relationship to flow disturbances was investigated in femoro-femoral Dacron grafts in 28 dogs. In 13 grafts, the outflow from the end-to-side downstream anastomosis was bidirectional (BDO), and in 15 it was unidirectional (UDO) (distally). Grafts were electively removed at intervals of two to 196 days or at the time of thrombosis. Each anastomosis and adjacent artery was perfusion-fixed and sectioned sagittally. The mean sagittal section was projected onto a digitized pad, and the total area of hyperplasia internal to the arterial internal elastic lamina and within the adjacent graft was integrated by computer. The location of the hyperplasia was compared with previously established sites of flow separation and stagnation. The observation was made that hyperplasia is significantly greater at the downstream, as compared with the upstream, anastomosis in both groups (BDO = p less than 0.001 and UDO = p less than 0.001) (analysis of variance for independent groups). Furthermore, this downstream hyperplasia was progressive with time (BDO p less than 0.01) (UDO p less than 0.01); Spearman Rank Correlation. There was no significant increase in the extent of downstream hyperplasia where flow separation was known to be greater (BDO). Five grafts failed (three BDO, two UDO), as a result of complete occlusion of the downstream anastomosis by fibrous hyperplasia. Transmission electron microscopy showed the hyperplasia to consist of collagen-producing smooth muscle cells. Anastomotic hyperplasia is significantly greater at the downstream anastomosis, is progressive with time, and is the primary cause of failure of Dacron arterial grafts in this model. Quantitative analysis of downstream anastomotic hyperplasia may be a valuable measure of the biocompatibility of Dacron grafts. Images Fig. 2. Fig. 3. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6219641
Performance of the high speed anechoic wind tunnel at Lyon University
NASA Technical Reports Server (NTRS)
Sunyach, M.; Brunel, B.; Comte-Bellot, G.
1986-01-01
The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.
Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K.; Swirski, Filip K.; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J.; Libby, Peter
2017-01-01
Rationale Superficial erosion currently causes up to a third of acute coronary syndromes (ACS), yet we lack understanding of its mechanisms. Thrombi due to superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. Objective This study tested in vivo the involvement of disturbed flow, and of neutrophils, hyaluronan, and TLR2 ligation in superficial intimal injury, a process implicated in superficial erosion. Methods and Results : In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell (EC) activation, neutrophil accumulation, EC death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. TLR2 agonism activated luminal ECs, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing EC injury and local thrombosis (p<0.05). Conclusions These results implicate flow disturbance, neutrophils, and TLR2 signaling as mechanisms that contribute to superficial erosion, a cause of ACS of likely growing importance in the statin era. PMID:28428204
Characteristics of the flow around tandem flapping wings
NASA Astrophysics Data System (ADS)
Muscutt, Luke; Ganapathisubramani, Bharathram; Weymouth, Gabriel; The University of Southampton Team
2014-11-01
Vortex recapture is a fundamental fluid mechanics phenomenon which is important to many fields. Any large scale vorticity contained within a freestream flow may affect the aerodynamic properties of a downstream body. In the case of tandem flapping wings, the front wing generates strong large scale vorticity which impinges on the hind wing. The characteristics of this interaction are greatly affected by the spacing, and the phase of flapping between the front and rear wings. The interaction of the vorticity of the rear wing with the shed vorticity of the front wing may be constructive or destructive, increasing thrust or efficiency of the hind wing when compared to a wing operating in isolation. Knowledge of the parameter space where the maximum increases in these are obtained is important for the development of tandem wing unmanned air and underwater vehicles, commercial aerospace and renewable energy applications. This question is addressed with a combined computational and experimental approach, and a discussion of these is presented.
Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations
NASA Technical Reports Server (NTRS)
Lazos, Barry S.; Visser, Kenneth D.
2006-01-01
An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.
System and method for injecting fuel
Uhm, Jong Ho; Johnson, Thomas Edward
2012-12-04
According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly.
Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.
2002-01-01
Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.
Measurements of Supersonic Wing Tip Vortices
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James
1994-01-01
An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.
Investigation of Particle Sampling Bias in the Shear Flow Field Downstream of a Backward Facing Step
NASA Technical Reports Server (NTRS)
Meyers, James F.; Kjelgaard, Scott O.; Hepner, Timothy E.
1990-01-01
The flow field about a backward facing step was investigated to determine the characteristics of particle sampling bias in the various flow phenomena. The investigation used the calculation of the velocity:data rate correlation coefficient as a measure of statistical dependence and thus the degree of velocity bias. While the investigation found negligible dependence within the free stream region, increased dependence was found within the boundary and shear layers. Full classic correction techniques over-compensated the data since the dependence was weak, even in the boundary layer and shear regions. The paper emphasizes the necessity to determine the degree of particle sampling bias for each measurement ensemble and not use generalized assumptions to correct the data. Further, it recommends the calculation of the velocity:data rate correlation coefficient become a standard statistical calculation in the analysis of all laser velocimeter data.
Normal injection of helium from swept struts into ducted supersonic flow
NASA Technical Reports Server (NTRS)
Mcclinton, C. R.; Torrence, M. G.
1975-01-01
Recent design studies have shown that airframe-integrated scramjets should include instream mounted, swept-back strut fuel injectors to obtain short combustors. Because there was no data in the literature on mixing characteristics of swept strut fuel injectors, the present investigation was undertaken to provide such data. This investigation was made with two swept struts in a closed duct at Mach number of 4.4 and nominal jet-to-air mass flow ratio of 0.029 with helium used to simulate hydrogen fuel. The data is compared with flat plate mounted normal injector data to obtain the effect of swept struts on mixing. Three injector patterns were evaluated representing the range of hole spacing and jet-to-freestream dynamic pressure ratio of interest. Measured helium concentration, pitot pressure, and static pressure in the downstream mixing region are used to generate contour plots necessary to define the mixing region flow field and the mixing parameters.
Fluid shear stress activates YAP1 to promote cancer cell motility
NASA Astrophysics Data System (ADS)
Lee, Hyun Jung; Diaz, Miguel F.; Price, Katherine M.; Ozuna, Joyce A.; Zhang, Songlin; Sevick-Muraca, Eva M.; Hagan, John P.; Wenzel, Pamela L.
2017-01-01
Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid wall shear stress (WSS) typical of venous or arterial flow inhibit taxis. YAP1, but not TAZ, is strictly required for WSS-enhanced cell movement, as blockade of YAP1, TEAD1-4 or the YAP1-TEAD interaction reduces cellular velocity to levels observed without flow. Silencing of TEAD phenocopies loss of YAP1, implicating transcriptional transactivation function in mediating force-enhanced cell migration. WSS dictates expression of a network of YAP1 effectors with executive roles in invasion, chemotaxis and adhesion downstream of the ROCK-LIMK-cofilin signalling axis. Altogether, these data implicate YAP1 as a fluid mechanosensor that functions to regulate genes that promote metastasis.
NASA Astrophysics Data System (ADS)
Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.
2017-12-01
Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil
NASA Technical Reports Server (NTRS)
Adair, Desmond; Horne, W. Clifton
1988-01-01
Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.
NASA Astrophysics Data System (ADS)
Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei
2017-08-01
Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.
NASA Astrophysics Data System (ADS)
Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Hughes Clarke, John E.
2016-01-01
Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503
On the wake flow of asymmetrically beveled trailing edges
NASA Astrophysics Data System (ADS)
Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.
2016-05-01
Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.
Movement of reservoir-stocked riverine fish between tailwaters and rivers
Spoelstra, J.A.; Stein, R.A.; Royle, J. Andrew; Marschall, E.A.
2008-01-01
The movement of fish from onstream impoundments into connected streams and rivers has traditionally been overlooked in fish stocking decisions but is critical to the ultimate impact of stocking riverine species into reservoirs. Hybrid saugeyes (female walleye Sander vitreus x male sauger S. canadensis) stocked into Deer Creek Reservoir, Ohio, readily move from the reservoir to the tailwater below. Downstream movement of these saugeyes from the tailwater may have consequences for native prey species and parental stocks downstream. We used fixed-station radiotelemetry to quantify the temporal movement patterns of 203 reservoir-stocked saugeyes from the tailwater of the reservoir, the stream flowing from the tailwater, and the river into which the stream flowed. From October 1998 through July 2000, most (75%) saugeyes never left the tailwater, and those that left returned 75% of the time. Overall, saugeyes spent 90% of their time in the tailwater, 7-8% of their time downstream in small streams, and 2-3% of their time farther downstream in the Scioto River (45 km downstream). No radio-tagged saugeyes moved to the Ohio River (155 km downstream). The probability of downstream movement generally increased with increasing flow and when dissolved oxygen dropped to lethal levels in summer. The probability of movement was highest in winter and spring, when it was probably related to spawning, and low in summer (except when dissolved oxygen was low) and fall. The patterns of movement seemed to reflect the relative suitability of tailwater over stream habitat. The predominant use of and return to tailwater habitat after downstream movement limited overall stream and river residence time. Although the daily movement probability for an individual was low, when we apply these rates to all of the stocked saugeyes in the Ohio River drainage, we cannot safely conclude that only small numbers move from reservoir tailwaters to downstream river systems. We recommend that managers refrain from stocking systems for which there are concerns about native species in connected drainages.
Optimal control of suspended sediment distribution model of Talaga lake
NASA Astrophysics Data System (ADS)
Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.
2017-08-01
Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.
Effect of drooped-nose flaps on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Lovette, G. H.
1976-01-01
Six-component experimental force and moment data are presented for a low aspect ratio, oblique wing equipped with drooped-nose flaps and mounted on top of a body of revolution. These flaps were investigated on the downstream wing panel with the nose drooped 5 deg, 10 deg, 20 deg, and 30 deg, and on both wing panels with the nose drooped 30 deg. It was to determine if such flaps would make the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients. The wing was elliptical in planform and had an aspect ratio of 6.0 (based on the unswept wing span). The wing was tested at sweep angles of 45 deg and 50 deg throughout the Mach number range from 0.25 to 0.95. The drooped-nose flaps alone were not effective in making the moment curves more linear; however, a previous study showed that Kruger nose flaps improved the linearity of the moment curves when the Kruger flaps were used on only the downstream wing panel equipped with drooped-nose flaps deflected 5 deg.
Effect of Krueger nose flaps on the experimental force and moment characteristics of an oblique wing
NASA Technical Reports Server (NTRS)
Hopkins, E. J.; Lovette, G. H.
1976-01-01
Experimental force and moment data are presented for an oblique wing mounted on a body of revolution and equipped with Krueger type nose flaps. The effectiveness of these flaps in making the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients was determined. The investigation of the effects of the Krueger flaps covered two cases: (1) use of the flaps on the downstream wing panel only and (2) use of the flaps on both wing panels. For part of the tests, the Krueger flaps were mounted on nose flaps that were drooped either 5 deg or 10 deg. The wing was elliptical in planform, had an aspect ratio of 6.0 (based on the unswept span) and was tested at sweep angles of 0, 45 deg, and 50 deg. The Mach-number range covered was from 0.25 to 0.95. It was found that the most effective arrangement of the Krueger flaps for making the pitching-, rolling-, and yawing-moment curves more linear at high lift coefficients was having the Krueger flaps mounted on the nose flaps drooped 5 deg and only on the downstream wing panel.
The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Ristic, D.; Chu, S.
1998-01-01
A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.
Mihalevich, Bryce A; Horsburgh, Jeffery S; Melcher, Anthony A
2017-10-30
Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.
Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.
Taylor, Kenneth R.; James, Robert W.; Helinsky, Bernard M.
1985-01-01
A travel-time and dispersion study using rhodamine dye was conducted on the Potomac River between Cumberland, Maryland, and Washington, D.C., a distance of 189 miles. The flow during the study was at approximately the 90-percent flow-duration level. A similar study was conducted by Wilson and Forrest in 1964 at a flow duration of approximately 60 percent. The two sets of data were used to develop a generalized procedure for predicting travel-times and downstream concentrations resulting from spillage of water-soluble substances at any point along the river. The procedure will allow the user to calculate travel-time and concentration data for almost any spillage problem that occurs during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration was derived. The new procedure depends on an analogy between a time-concentration curve and a scalene triangle. As a result of this analogy, the unit peak concentration can be expressed in terms of the length of the _lye or contaminant cloud. The new procedure facilitates the calculation of unit peak concentration for long reaches of river. Previously, there was no way to link unit peak concentration curves for studies in which the river was divided into subreaches for study. Variable dispersive characteristics caused mainly by low-head dams precluded useful extrapolation of the unit peak-concentration attenuation curves, as has been done in previous studies. The procedure is applied to a hypothetical situation in which 20,000 pounds of contaminant is spilled at a railroad crossing at Magnolia, West Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach Point of Rocks, Maryland (110 river miles downstream), are 295, 375, and 540 hours respectively, during a period when flow is at the 80-percent flow-duration level. The peak conservative concentration would be approximately 340 micrograms per liter at Point of Rocks.
Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos
2016-11-01
The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 <= Re <= 325 (based on the diameter of the cylinder) where steady-state solutions have been obtained. Direct numerical simulations were computed using an in-house parallel finite element code. Results indicate that symmetry breaking occurs at Re = 1 , while the first prominent structure is a horseshoe vortex downstream from the cylinder. At Re = 150 , two foci are observed, indicating the formation of two tornadolike vortices downstream. Concurrently, another horseshoe vortex is formed upstream from the cylinder. For higher Reynolds numbers, the flow downstream is segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder
2016-05-08
unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4. TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray
2016-10-05
unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4. TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray
Status of downstream fish passage at hydroelectric projects in the northeast, USA
Odeh, Mufeed; Orvis, Curtis
1997-01-01
In the northeastern United States several guidance, protection, and conveyance methods have been employed to assist downstream migrating fish. Overlay racks, standard bar racks with close spacing, louvers, curtain walls, guide walls, netting, and other means have been used to guide and protect fish from entrainment. The design process of these facilities comprises consideration of various factors, including flow approach, attraction flow, guidance and protection devices, bypass location, conveyance mechanism, and plunge pool conditions. This paper presents the status of the design criteria for downstream fish passage facilities at hydroelectric sites in the northeast part of the United States. Examples of existing facilities are given.
Tornés, E; Pérez, M C; Durán, C; Sabater, S
2014-03-15
Water hydrology, temperature and transparency, as well as nutrient retention downstream of the reservoirs alter the temporal and spatial distribution patterns of phytoplankton communities in regulated rivers. The seasonal dynamics of phytoplankton communities in the Ebro was analysed in contrasting water flow periods in sections upstream and downstream of three large reservoirs, as well as in an intermediate site. Phytoplankton communities changed in response to seasonal variations in the areas not influenced by the reservoirs, but the phytoplankton distribution downstream of the reservoirs was driven by their particular hydrodynamics. The change in environmental conditions promoted by reservoirs influenced the pattern of replacement between diatoms and green algae of the upstream section. Differences in the phytoplankton community structure, abundance and environmental variables between upstream and downstream sites were maximal during low flow periods. Chlorophytes and dinoflagellates were present during low flow periods upstream of the reservoirs and in the intermediate site. Cocconeis cf. placentula characterized the downstream section, associated to the presence of macrophytes in that section. The present study sheds light on the consequences of river regulation under potential scenarios of climate change, and results could be used to anticipate ecological problems in large regulated rivers under these circumstances. Copyright © 2013 Elsevier B.V. All rights reserved.
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David
2015-09-01
A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.
Vortex generating flow passage design for increased film cooling effectiveness
NASA Astrophysics Data System (ADS)
Papell, S. S.
1985-07-01
It is an object of the invention to provide a film cooling apparatus of increased effectiveness and efficiency. In accordance with the invention, a cooling fluid is injected into a hot flowing gas through a passageway in a wall which contains and is subject to the hot gas. The passageway is slanted in a downstream direction at an acute angle to the wall. A cusp shape is provided in the passageway to generate vortices in the injected cooling fluid thereby reducing the energy extracted from the hot gas for that purpose. The cusp shape increases both film cooling effectiveness and wall area coverage. The cusp may be at either the downstream or upstream side of the passageway, the former substantially eliminating flow separation of the cooling fluid from the wall immediately downstream of the passageway.
Vortex generating flow passage design for increased film cooling effectiveness
NASA Technical Reports Server (NTRS)
Papell, S. S. (Inventor)
1985-01-01
It is an object of the invention to provide a film cooling apparatus of increased effectiveness and efficiency. In accordance with the invention, a cooling fluid is injected into a hot flowing gas through a passageway in a wall which contains and is subject to the hot gas. The passageway is slanted in a downstream direction at an acute angle to the wall. A cusp shape is provided in the passageway to generate vortices in the injected cooling fluid thereby reducing the energy extracted from the hot gas for that purpose. The cusp shape increases both film cooling effectiveness and wall area coverage. The cusp may be at either the downstream or upstream side of the passageway, the former substantially eliminating flow separation of the cooling fluid from the wall immediately downstream of the passageway.
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan
2015-01-01
A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maze, Grace M.
STREAM II is the aqueous transport model of the Weather Information Display (WIND) emergency response system at Savannah River Site. It is used to calculate transport in the event of a chemical or radiological spill into the waterways on the Savannah River Site. Improvements were made to the code (STREAM II V7) to include flow from all site tributaries to the Savannah River total flow and utilize a 4 digit year input. The predicted downstream concentrations using V7 were generally on the same order of magnitude as V6 with slightly lower concentrations and quicker arrival times when all onsite streammore » flows are contributing to the Savannah River flow. The downstream arrival time at the Savannah River Water Plant ranges from no change to an increase of 8.77%, with minimum changes typically in March/April and maximum changes typically in October/November. The downstream concentrations are generally no more than 15% lower using V7 with the maximum percent change in January through April and minimum changes in June/July.« less
NASA Astrophysics Data System (ADS)
Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.
2011-12-01
Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single turbine. The tip vortices entrain the high speed free-stream fluids and subsequently replenish the loss of momentum into the wake. Such a mechanism is greatly mitigated in the multiple-turbine scenarios. On-going analysis is to elucidate the generation, evolution and dissipation of the tip vortices in the various configurations.
Downstream influence of swept slot injection in hypersonic turbulent flow
NASA Technical Reports Server (NTRS)
Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. B.
1977-01-01
Results of an experimental and numerical investigation of tangential swept slot injection into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection were investigated. The data were compared with that for unswept slots, and it was found that cooling effectiveness and skin friction reductions are not significantly affected by sweeping the slot.
Stevens, Michael R.; Sprague, Lori A.
2003-01-01
A water-quality monitoring program was begun in March 1985 on Muddy Creek in anticipation of the construction of a reservoir water-storage project. Wolford Mountain Reservoir was constructed by the Colorado River Water Conservation District during 1992-94. The reservoir began to be filled in 1995. Water quality generally was good in Muddy Creek and Wolford Mountain Reservoir throughout the period of record (collectively, 1990 through 2001), with low concentrations of nutrients (median total nitrogen less than 0.6 and median total phosphorus less than 0.05 milligrams per liter) and trace elements (median dissolved copper less than 2, median dissolved lead less than 1, and median dissolved zinc less than 20 micrograms per liter). Specific conductance ranged from 99 to 1,720 microsiemens per centimeter. Cation compositions at Muddy Creek sites were mixed calcium-magnesium-sodium. Anion compositions were primarily bicarbonate and sulfate. Suspended-sediment concentrations ranged from less than 50 milligrams per liter during low-flow periods to hundreds of milligrams per liter during snowmelt. Turbidity in prereservoir Muddy Creek generally was measured at less than 10 nephelometric turbidity units during low-flow periods and ranged to more than 360 nephelometric turbidity units during snowmelt. Compared to prereservoir conditions, turbidity in Muddy Creek downstream from the reservoir was substantially reduced because the reservoir acted as a sediment trap. During most years, peak flows were slightly reduced by the reservoir or similar to peaks upstream from the reservoir. The upper first to fifteenth percentiles of flows were decreased by operation of the reservoir compared to prereservoir flows. Generally, the fifteenth to one-hundredth percentiles of flow were increased by operation of the reservoir outflow compared to prereservoir flows. Nutrient transport in the inflow is proportional to the amount of inflow-water discharge in a given year. Some nitrogen was stored in the water column and gain/loss patterns for total nitrogen were somewhat related to reservoir storage. Nitrogen tended to move through the reservoir, whereas phosphorus was mostly trapped within the reservoir in bottom sediments. The reservoir gained phosphorus every year (1996- 2001) and, as a percentage, more phosphorus was retained than nitrogen in years when both were retained in the reservoir due to stronger phosphorus tendencies for adsorption, coprecipitation, and settling. Only small amounts of phosphorus were available in the water column at the outflow, and reservoir water-column storage did not influence phosphorus outflowloading patterns as much as settling further upstream in the reservoir. From 1990 to 2001, upstream from the reservoir, concentrations and values of dissolved solids, turbidity, some major ions, and dissolved iron increased (p-value less than 0.10), and acid-neutralizing capacity decreased. From 1990 to 2001, there were no significant (p-value less than 0.10) trends in nutrient concentrations upstream from the reservoir. From 1990 to 2001, downstream from the reservoir, trends in concentrations and values of dissolved solids, turbidity, major ions, total ammonia plus organic nitrogen, dissolved and total-recoverable iron, and total-recoverable manganese were downward. Upstream and downstream water-quality constituents for the prereservoir (1990 to 1995) period were compared. Concentrations and values of dissolved solids, major ions, turbidity, and manganese were greater (p-value less than 0.10) at the downstream site. From 1995 to 2001 (postconstruction), upstream and downstream water-quality constituents also were compared. Concentrations of specific conductance and major ions increased at the downstream site when compared to the upstream site (p-value less than 0.10), except for acid-neutralizing capacity and silica, which decreased. Turbidity, concentrations of total-recoverable and dissolved manganese, and
Assessment of bridge abutment scour and sediment transport under various flow conditions
NASA Astrophysics Data System (ADS)
Gilja, Gordon; Valyrakis, Manousos; Michalis, Panagiotis; Bekić, Damir; Kuspilić, Neven; McKeogh, Eamon
2017-04-01
Safety of bridges over watercourses can be compromised by flow characteristics and bridge hydraulics. Scour process around bridge foundations can develop rapidly during low-recurrence interval floods when structural elements are exposed to increased flows. Variations in riverbed geometry, as a result of sediment removal and deposition processes, can increase flood-induced hazard at bridge sites with catastrophic failures and destructive consequences for civil infrastructure. The quantification of flood induced hazard on bridge safety generally involves coupled hydrodynamic and sediment transport models (i.e. 2D numerical or physical models) for a range of hydrological events covering both high and low flows. Modelled boundary conditions are usually estimated for their probability of occurrence using frequency analysis of long-term recordings at gauging stations. At smaller rivers gauging station records are scarce, especially in upper courses of rivers where weirs, drops and rapids are common elements of river bathymetry. As a result, boundary conditions that accurately represent flow patterns on modelled river reach cannot be often reliably acquired. Sediment transport process is also more complicated to describe due to its complexity and dependence to local flow field making scour hazard assessment a particularly challenging issue. This study investigates the influence of flow characteristics to the development of scour and sedimentation processes around bridge abutments of a single span masonry arch bridge in south Ireland. The impact of downstream weirs on bridge hydraulics through variation of downstream model domain type is also considered in this study. The numerical model is established based on detailed bathymetry data surveyed along a rectangular grid of 50cm spacing. Acquired data also consist of riverbed morphology and water level variations which are monitored continuously on bridge site. The obtained data are then used to compare and calibrate numerical models for several flood scenarios. The determination of the boundary conditions is followed by physical modelling to investigate the development of scour around bridge elements. The comparison of surveyed data with the obtained numerical and physical modelling results provide an insight of various flow patterns and their influence on riverbed morphology. This can deliver important information needed for assessment of structural risk associated with flood events. Acknowledgement: The authors wish to acknowledge the financial support of the European Commission, through the Marie Curie action Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.
Effects of simulated flight on the structure and noise of underexpanded jets
NASA Technical Reports Server (NTRS)
Norum, T. D.; Shearin, J. G.
1984-01-01
Mean plume static and pitot pressures and far-field acoustic pressure were measured for an underexpanded convergent nozzle in simulated flight. Results show that supersonic jet mixing noise behaves in flight in the same way that subsonic jet mixing noise does. Regarding shock-associated noise, the frequencies of both screech and peak broadband shock noise were found to decrease with flight speed. The external flow determines the dominant screech mode over a wide range of nozzle pressure rations. Change in the screech mode strongly affects both the development of the downstream shock structure and the characteristic frequency of the broadband shock-associated noise. When no mode change occurs, the main effect of the external flow is to stretch the axial development of the shock cells.
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Yao, Chung-Sheng
2017-01-01
Stereo particle image velocimetry measurements were performed downstream of a backward-facing step in a stationary-cross flow dominated flow. The PIV measurements exhibit excellent quantitative and qualitative agreement with the previously acquired hotwire data. Instantaneous PIV snapshots reveal new information about the nature and cause of the \\spikes" that occurred prior to breakdown in both the hotwire and PIV data. The PIV snapshots show that the events occur simultaneously across multiple stationary cross flow wavelengths, indicating that this is not simply a local event, but is likely caused by the 2D Tollmien-Schlichting instability that is introduced by the step. While the TS instability is a 2D instability, it is also modulated in the spanwise direction due to interactions with the stationary cross flow, as are the other unsteady disturbances present. Because of this modulation, the "spike" events cause an instantaneous increase of the spanwise modulation of the streamwise and spanwise velocity initially caused by the stationary cross flow. Breakdown appears to be caused by this instantaneous modulation, possibly due to a high-frequency secondary instability similar to a traveling-cross flow breakdown scenario. These results further illuminate the respective roles of the stationary cross flow and unsteady disturbances in transition downstream of a backward-facing step.
Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture
NASA Astrophysics Data System (ADS)
Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.
2017-05-01
In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.
Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach
NASA Astrophysics Data System (ADS)
Lodermeyer, Alexander; Tautz, Matthias; Becker, Stefan; Döllinger, Michael; Birk, Veronika; Kniesburges, Stefan
2018-01-01
The detailed analysis of sound generation in human phonation is severely limited as the accessibility to the laryngeal flow region is highly restricted. Consequently, the physical basis of the underlying fluid-structure-acoustic interaction that describes the primary mechanism of sound production is not yet fully understood. Therefore, we propose the implementation of a hybrid acoustic PIV procedure to evaluate aeroacoustic sound generation during voice production within a synthetic larynx model. Focusing on the flow field downstream of synthetic, aerodynamically driven vocal folds, we calculated acoustic source terms based on the velocity fields obtained by time-resolved high-speed PIV applied to the mid-coronal plane. The radiation of these sources into the acoustic far field was numerically simulated and the resulting acoustic pressure was finally compared with experimental microphone measurements. We identified the tonal sound to be generated downstream in a small region close to the vocal folds. The simulation of the sound propagation underestimated the tonal components, whereas the broadband sound was well reproduced. Our results demonstrate the feasibility to locate aeroacoustic sound sources inside a synthetic larynx using a hybrid acoustic PIV approach. Although the technique employs a 2D-limited flow field, it accurately reproduces the basic characteristics of the aeroacoustic field in our larynx model. In future studies, not only the aeroacoustic mechanisms of normal phonation will be assessable, but also the sound generation of voice disorders can be investigated more profoundly.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Hu, Fan; Wang, Donghui; Okolo. N, Patrick; Zhang, Weihua
2017-07-01
Numerical simulations on processes within a hybrid rocket motor were conducted in the past, where most of these simulations carried out majorly focused on steady state analysis. Solid fuel regression rate strongly depends on complicated physicochemical processes and internal fluid dynamic behavior within the rocket motor, which changes with both space and time during its operation, and are therefore more unsteady in characteristics. Numerical simulations on the unsteady operational processes of N2O/HTPB hybrid rocket motor with and without diaphragm are conducted within this research paper. A numerical model is established based on two dimensional axisymmetric unsteady Navier-Stokes equations having turbulence, combustion and coupled gas/solid phase formulations. Discrete phase model is used to simulate injection and vaporization of the liquid oxidizer. A dynamic mesh technique is applied to the non-uniform regression of fuel grain, while results of unsteady flow field, variation of regression rate distribution with time, regression process of burning surface and internal ballistics are all obtained. Due to presence of eddy flow, the diaphragm increases regression rate further downstream. Peak regression rates are observed close to flow reattachment regions, while these peak values decrease gradually, and peak position shift further downstream with time advancement. Motor performance is analyzed accordingly, and it is noticed that the case with diaphragm included results in combustion efficiency and specific impulse efficiency increase of roughly 10%, and ground thrust increase of 17.8%.
Three occurred debris flows in North-Eastern Italian Alps: documentation and modeling
NASA Astrophysics Data System (ADS)
Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino
2015-04-01
Three occurred events of debris flows are documented and modeled by back-analysis. The three debris flows events are those occurred at Rio Lazer on the 4th of November 1966, at Fiames on the 5th of July 2006 and at Rovina di Cancia on the 18th of July 2009. All the three sites are located in the North-Eastern Italian Alps. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. Map of deposition pattern of sediments are built by using post-events photos through stereoscopy techniques. The second event concerns the routing of debris flow along the main channel descending from Pomagagnon Fork. Due to the obstruction of the cross-section debris flow deviated from the original path on the left side and routed downstream by cutting a new channel on the fan. It dispersed in multiple paths when met the wooden area. Map of erosion and deposition depths are built after using a combination of Lidar and GPS data. The third event concerns the routing of debris flow in the Rovina di Cancia channel that filled the reservoir built at the end of the channel and locally overtopped the retaining wall on the left side. A wave of mud and debris inundated the area downstream the overtopping point. Map of erosion and deposition depths are obtained by subtracting two GPS surveys, pre and post event. All the three occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph downstream the triggering areas. The routing of the solid-liquid hydrograph was simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. The same parameters for computing erosion and deposition were used for the three occurred events.
DBD Actuated Flow Control of Wall-Jet and Cross-Flow Interaction for Film Cooling Applications
NASA Astrophysics Data System (ADS)
Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva
2014-11-01
In this work, we use surface DBD actuators to control the interaction between a wall jet and mainstream flow in film cooling applications. The intention of the study is to improve the contact of the jet with the wall and enhance the convective heat transfer coefficient downstream of the jet exit. A 2D wall jet (10 mm height) is injected into the mainstream flow at an angle of 30°. With an injected jet velocity (Ui) of 5 m/s, two blowing ratios M (=ρi Ui / ρ∞U∞) of 1.0 and 0.5 are studied corresponding to the mainstream flow velocity (U∞) of 5 m/s and 10 m/s respectively. Different configurations of the DBD actuator are studied, positioned both inside the jet and on the downstream side. PIV measurements are conducted to investigate the flow field of the interaction between the jet and cross flow. Streamwise velocity profiles at different downstream locations are compared to analyze the efficacy of the plasma actuator in improving the contact between the injected jet stream and the wall surface. Reynolds shear stress measurements are also conducted to study the mixing regions in the plasma-jet-mainstream flow interaction. Work was partially funded by the French government program ``Investissements d'avenir'' (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).
Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.
2000-01-01
The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location upstream of the liner to some distance downstream of the liner. All probes used here had to be calibrated with respect to a standard microphone equipped with a nose cone to allow for the effects of flow.
Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.
2010-01-01
Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify potential seepage in that area. This report is primarily a summary of the field geophysical data acquisition, with some preliminary results and interpretation. Further work will involve a more rigorous analysis of the geophysical datasets and an examination of a large dataset of historical observations of water levels in a number of observation wells and piezometers compared with reservoir elevation. In addition, a partially saturated flow model will be developed to better understand seepage patterns given the available information about dam construction, geophysical results, and data from installed observation wells and piezometers.
Plasma spray nozzle with low overspray and collimated flow
NASA Technical Reports Server (NTRS)
Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)
1996-01-01
An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.
The importance of dynamic stall in aerodynamic modeling of the Darrieus rotor
NASA Astrophysics Data System (ADS)
Fraunie, P.; Beguier, C.; Paraschivoiu, I.
The CAARDEX program is defined for analyzing the behavior of Darrieus wind turbines in terms of the Reynolds number, the geometrical characteristics of the wind turbine and the spreading of the stream tubes traversing the rotor volume. It is demonstrated that the maximum power conversion efficiency of the Darrieus rotor is 0.4, with the energy capture being divided at a 4:1 ratio upstream to downstream rotor. The model shows that the velocity induced on the rotor is a function of the specific velocity and solidity, and that previous stream tube theories are valid only at low values of these parameters. CARDAAX treats the rotor disk in terms of horizontal slices of stream tubes modeled separately for the upstream and downstream segments. Account is taken of the velocity profile in the atmospheric boundary layer, which can vary significantly in the case of large wind turbines, i.e., several hundred feet high. When applied to predicting the performance of a 1 kW, 2.6 m diam prototype Darrieus wind turbine in a 10 mps flow, fair agreement is obtained for power capture/wind velocity and cyclic aerodynamic forces. Additional flow visualization data is provided to illustrate the production of turbulence in the form of vortices shed between the blades.
NASA Astrophysics Data System (ADS)
van de Wall, Allan George
The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. A transport model assuming incompressible flow and using linear theory was developed to take this process into account in the computation of time-average multistage turbomachinery flows. The upstream vortical structures are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (Uke ) associated with the incoming disturbance. The model was applied to compressor and turbine geometry. For compressors, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows is reduced as a result of the interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the Uke by inviscid effects but results in a substantial loss. Any disturbance passing through a turbine blade row results in a larger loss than if the disturbance was mixedout prior to entering the blade row.
Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.
2009-01-01
In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.
Galloway, Joel M.; Vecchia, Aldo V.; Vining, Kevin C.; Densmore, Brenda K.; Lundgren, Robert F.
2012-01-01
In response to the need to examine the large amount of historic water-quality data comprehensively across North Dakota and evaluate the efficiency of the State-wide sampling programs, a study was done by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission and the North Dakota Department of Health to describe the water-quality data collected for the various programs and determine an efficient State-wide sampling design for monitoring future water-quality conditions. Although data collected for the North Dakota State Water Commission High-Low Sampling Program, the North Dakota Department of Health Ambient Water-Quality Network, and other projects and programs provide valuable information on the quality of water in streams in North Dakota, the objectives vary among the programs, some of the programs overlap spatially and temporally, and the various sampling designs may not be the most efficient or relevant to the objectives of the individual programs as they have changed through time. One objective of a State-wide sampling program was to evaluate ways to describe the spatial variability of water-quality conditions across the State in the most efficient manner. Weighted least-squares regression analysis was used to relate the average absolute difference between paired downstream and upstream concentrations, expressed as a percent of the average downstream concentration, to the average absolute difference in daily flow between the downstream and upstream pairs, expressed as a percent of the average downstream flow. The analysis showed that a reasonable spatial network would consist of including the most downstream sites in large basins first, followed by the next upstream site(s) that roughly bisect the downstream flows at the first sites, followed by the next upstream site(s) that roughly bisect flows for the second sites. Sampling sites to be included in a potential State-wide network were prioritized into 3 design levels: level 1 (highest priority), level 2 (second priority), and level 3 (third priority). Given the spatial distribution and priority designation (levels 1–3) of sites in the potential spatial network, the next consideration was to determine the appropriate temporal sampling frequency to use for monitoring future water-quality conditions. The time-series model used to detect concentration trends for this report also was used to evaluate sampling designs to monitor future water-quality trends. Sampling designs were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three 4-month seasons—March through June, July through October, and November through February. For the 34 level-1 sites, samples would be collected for major ions, trace metals, nutrients, bacteria, and sediment eight times per year, with samples in January, April (2 samples),May, June, July, August, and October. For the 21 level-2 sites, samples would be collected for major ions, trace metals, and nutrients six times per year (January, April, May, June, August, and October), and for the 26 level-3 sites, samples would be collected for these constituents four times per year (April, June, August, and October).
NASA Technical Reports Server (NTRS)
Catalano, G. D.; Morton, J. B.; Humphris, R. R.
1976-01-01
The flow development of an axisymmetric jet exhausting into a moving airstream has been studied. The jet has a Reynolds number of 22,600, and the ratio of the jet velocity to the wind tunnel velocity is 5.1 to 1. The flow field of the axisymmetric jet was examined at locations varying from approximately zero to eight diameters downstream of the orifice. Of primary concern at each downstream location was the mapping of the one point statistical properties of the flow, including mean velocity, turbulent intensity, and intermittency. Autocorrelations and power spectral density curves were determined for both the fluctuating velocity field and the concentration signal at various distances from the jet's center line for different downstream locations. A laser Doppler velocimeter, using a phase locked loop processor, was used to make the desired velocity field measurements which were compared with hot wire anemometer and pressure probe data.
NASA Technical Reports Server (NTRS)
Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy
2013-01-01
Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.
Computation of the turbulent boundary layer downstream of vortex generators
NASA Astrophysics Data System (ADS)
Chang, Paul K.
1987-12-01
The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.
Melis, Theodore S.; Grams, Paul E.; Kennedy, Theodore A.; Ralston, Barbara E.; Robinson, Christopher T.; Schmidt, John C.; Schmit, Lara M.; Valdez, Richard A.; Wright, Scott A.
2011-01-01
Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. Also known as artificial or controlled floods, these scheduled releases of water above the dam's powerplant capacity were designed to mimic pre-dam seasonal flooding on the Colorado River. The goal of the HFEs was to determine whether high flows could be used to benefit important downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park that have been affected by the existence and operation of Glen Canyon Dam. These downstream resources include native fish, particularly endangered humpback chub (Gila cypha), terrestrial and aquatic sandbar habitats, cultural sites, and recreational resources. This Fact Sheet summarizes HFE-related studies published since 1996 and outlines a possible strategy for implementing future HFEs.
The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.
1997-01-01
The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.
Crevasse Patterns and Grounding Line Change Along the Siple and Gould Coasts, West Antarctica
NASA Astrophysics Data System (ADS)
Hulbe, C. L.; Fahnestock, M. A.
2003-12-01
Crevasses and strealklines observed in composite MODIS imagery of the Ross Ice Shelf have been used to infer changes in flow across the transition from ice sheet to ice shelf. We focus on changes in crevasse type and orientation as a guide to recent (100s of years) changes grounding line dynamics and location at the now-quiescent Kamb, and fast flowing Whillans and Mercer Ice Stream outlets. Across the grounding line of a rapidly flowing ice stream, the transition in the basal stress condition is slight so few (if any) crevasses are formed. In contrast, along-flow tension is relatively large across downstream no-slip/slip transitions (i.e. the downstream ends of ice rises and interstream ridges, and the current Kamb grounding line) and will produce crevasses transverse to flow. This is distinctly different from the upstream pointing orientation of crevasses that form due to shear at lateral boundaries. At a no-slip/slip grounding line that is transverse to flow, only tensional crevasses may form so the presence of other crevasse types in the ice stream effluent, or the transition from one type to another, indicates a change in flow style. The Kamb Ice Stream grounding line is now generating transverse crevasses while most of the Mercer/Whillans ice plain grounding line is not. The southern end of the current Kamb grounding line was established as a no-slip/slip boundary sometime after Steershead became an ice rise, as evidenced by the change from shear crevasses to tension crevasses about 20 km downstream from its present location. At the northern end of the grounding line, the first tensional crevasses are only a few km downstream from its present location. If, as seems likely, ice stream deceleration coincided with the transition from a Mercer/Whillans type grounding zone to a no-slip/slip grounding line, then the oldest tensional crevasses should have advected about 1.5 km downstream (the present speed is ~10 m/a and the stream shut down ~150 years ago). The observed and computed advection distances are similar at the northern end of the Kamb grounding line, but crevasses are an order of magnitude too far downstream at its southern end. Previously measured grounding line retreat of ~30 m/a (Thomas and others,1988) in combination with downstream advection of crevasses still cannot account for the change in crevasse style at the southern edge of the ice stream. The implication is that the grounding line was substantially seaward of its present location several hundred years ago and that it has retreated rapidly since that time.
Hydromorphological assessment and catchment characterisation in the headwaters of the Volga River
NASA Astrophysics Data System (ADS)
Marquez, Fabian; Kuzovlev, Vyacheslav. V.; Schletterer, Martin
2017-04-01
Keywords: hydromorphological assessment, lowland river, reference conditions. The Volga River and its watershed represent the largest river system in Europe. The river is considered as the Russian lifeline, and various anthropogenic activities influenced the river. Nevertheless, its headwaters remained in least disturbed conditions. We present an assessment as well as an evaluation of hydromorphological conditions in the headwaters of the Volga River regarding (1) channel, (2) banks/riparian zone and (3) floodplain. The assessment follows European standards (CEN 2004) and also includes the Habitat Quality Survey (HQA). Historical flows from five gauging stations along the studied reach were analysed to determine the hydrological characteristics. The highest flows are observed during March and April, followed by summer low flows, higher flows during October and November and low flows again during winter. A decreasing tendency of the mean annual discharge is noted throughout the observation time as it accentuates in the downstream direction when comparing the stations. Based on the specific discharge (volume of water per unit time per unit area) from these gauging stations , a flow reconstruction for the Tudovka River was carried out. These analyses contribute to the REFCOND_VOLGA project, a long-term ecological monitoring programme in the headwaters of the Volga River. The research area is characterised by large forests and low population densities, thus the results provide data about reference or least impacted sites. Due to the hydromorphological characteristics the headwaters of the Volga River, i.e. the free-flowing section between the Upper Volga Lakes and Tver represents an intact lowland river and comprises a refugial system for potamalic flora and fauna.
NASA Astrophysics Data System (ADS)
Prakash, Ram; Gai, Sudhir L.; O'Byrne, Sean; Brown, Melrose
2016-11-01
The flow over a `tick' shaped configuration is performed using two Direct Simulation Monte Carlo codes: the DS2V code of Bird and the code from Sandia National Laboratory, called SPARTA. The configuration creates a flow field, where the flow is expanded initially but then is affected by the adverse pressure gradient induced by a compression surface. The flow field is challenging in the sense that the full flow domain is comprised of localized areas spanning continuum and transitional regimes. The present work focuses on the capability of SPARTA to model such flow conditions and also towards a comparative evaluation with results from DS2V. An extensive grid adaptation study is performed using both the codes on a model with a sharp leading edge and the converged results are then compared. The computational predictions are evaluated in terms of surface parameters such as heat flux, shear stress, pressure and velocity slip. SPARTA consistently predicts higher values for these surface properties. The skin friction predictions of both the codes don't give any indication of separation but the velocity slip plots indicate an incipient separation behavior at the corner. The differences in the results are attributed towards the flow resolution at the leading edge that dictates the downstream flow characteristics.
NASA Astrophysics Data System (ADS)
Jensen, C.; McGuire, K. J.
2017-12-01
Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between computational and measurement data in the bypass duct show that they are in good agreement, thus providing a partial validation of the computational results.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.
2003-01-01
A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.
Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; ...
2015-08-27
In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σ u, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σ u , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less
Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.
2017-09-06
Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.
Some potential blood flow experiments for space
NASA Technical Reports Server (NTRS)
Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.
1979-01-01
Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.
NASA Technical Reports Server (NTRS)
Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)
1999-01-01
A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.
Lateral and vertical distribution of downstream migrating juvenile sea lamprey
Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen
2018-01-01
Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.
NASA Astrophysics Data System (ADS)
Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.
2017-08-01
In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.
NASA Astrophysics Data System (ADS)
Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.
2014-10-01
Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited no significant difference, but the water use and consumption of Populus euphratica in the downstream of the Tarim River in the day was significantly higher than that in the downstream of the Heihe River, and the essential reason for this is the groundwater depth. The ecology in the downstream of the Heihe River has been in balance in the maintenance and development stage, while desert riparian forest plants in the downstream of the Tarim River are still in severe arid stress.
NASA Astrophysics Data System (ADS)
Yu, J.; Du, C.; Zhang, Y.; Liu, X.
2014-12-01
Green water flows, a key ecohydrological process, dominates the hydrological cycle in arid region. The structure of green water flows reflects the landscape water consumption characteristics and can be easily obtained by means of remote sensing approach. In arid region, limited fresh water and fragile environment resulted in sharp contradictions between economy and natural ecosystem concerning water demands. To rationally allocate economic and ecological water use, to maximize the regional freshwater use efficiency, is the route one must take for sustainable development in arid area. The pursuit of the most necessary ecological protection function and the maximum ecological water use efficiency is the key to ecological water allocation. However, we are short of simple and quick detectable variables or indexes to assess ecological water allocation decision. This paper introduced the green water flows structure as a decision variable, chose Heihe river flow allocation to downstream Ejina Delta for ecological protection as an example, put forward why and how green water flows structure could be used for ecological water allocation decision. The authors expect to provide reference for integrated fresh water resources management practice in arid region.
NASA Astrophysics Data System (ADS)
Hattanji, T.; Wasklewicz, T.
2006-12-01
We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.
Impeller tandem blade study with grid embedding for local grid refinement
NASA Technical Reports Server (NTRS)
Bache, George
1992-01-01
Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.
Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K; Swirski, Filip K; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J; Libby, Peter
2017-06-23
Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis ( P <0.05). These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era. © 2017 American Heart Association, Inc.
Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations
NASA Astrophysics Data System (ADS)
Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas
2016-09-01
Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.
On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force
NASA Astrophysics Data System (ADS)
di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes
2014-11-01
In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.
Transition Induced by a Streamwise Array of Roughness Elements on a Supersonic Flat Plate
NASA Technical Reports Server (NTRS)
Chou, Amanda; Kegerise, Michael A.
2017-01-01
Roughness is unavoidable on practical high-speed vehicles, so it is critical to determine its impact on boundary layer transition. The flow field downstream of a streamwise array of cylindrical roughness elements is probed with hot-wire anemometry in this experiment. Mean flow distortion is examined in several measurement planes in the wake of the cylindrical roughness using the streak strength profiles and contour plots of the mass flux and total temperature. The roughness element heights and spacings were varied and their instability modes were examined. Cylindrical roughness elements approximately 140 micron tall produce an odd instability mode that grows weakly with downstream distance in the measurement range of this experiment. Cylindrical roughness elements approximately 280 micron tall produce an even instability mode that grows, becomes nonlinear, and then breaks down. Transition onset remains constant relative to the most downstream roughness in the streamwise array when the 280 micron roughness elements are spaced 2 diameters apart. Transition onset occurs at an earlier upstream location relative to the most downstream roughness in the streamwise array when the roughness elements are spaced 4 diameters appear to recover before the next downstream roughness element, so the location of transition shifts with the location of the most downstream roughness element in the array. When the rough- apart. The wake behind roughness elements spaced 2 diameters apart do not ness elements are spaced 4 diameters apart, the flow behind the first roughness element has enough space to recover before feeding into the second roughness element, and thus, moves transition forward.
Bendix, J.; Hupp, C.R.
2000-01-01
Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community The results are discussed in relation to the role of flow variability in shaping instream communities and management implications. Copyright ?? 2000 John Wiley & Sons, Ltd.Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community. The results are discussed in relation to the role of flow variability in shaping instream communities and management implications.
NASA Astrophysics Data System (ADS)
Lebon, Benoit; Nguyen, Minh Quan; Peixinho, Jorge; Shadloo, Mostafa Safdari; Hadjadj, Abdellah
2018-03-01
We report the results of a combined experimental and numerical study of specific finite-amplitude disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion. The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with the Reynolds number with a power law exponent of -2.3 for experiments and -2.8 for simulations. A new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow visualizations show a simple flow pattern of three waves forming, growing, and bursting.
NASA Astrophysics Data System (ADS)
Al-Faraj, Furat A. M.; Al-Dabbagh, Bassam N. S.
2015-11-01
Rapid population growth and socio-economic development coupled with climate change and variability have observably impaired the natural characteristics of hydrological regimes of most of large rivers worldwide. The Lesser Zab shared between Iraq and Iran was one of the few remaining rather intact transboundary river watersheds. The unregulated natural flow pattern, however, has been shifted mainly due to recent upstream anthropogenic factors incorporated with successive droughts. A new generic approach was introduced through integrating a subset of the Indicators of Hydrologic Alteration (IHA) into three generic empirical equations coupled with the application of two universally endorsed drought indices to assess the changes in hydrological patterns prior to, and after upstream watershed development twinned with consecutive drought spells. A departure of about -16% was detected in the long-term median annual runoff in the artificially impaired periods. Alterations ranged from -3.4% to -41.7% were linked to monthly medians. The 1- to 90-day minimum runoffs were dropped between -33.3% and -53.8% over the regulated period. More substantial shifts were perceived between 1999 and 2013. The rates of anomaly ranged from -55.6% to -73.1%. The extreme minimum flows were experienced low to high alterations, while low to moderate degree of anomalies were associated with 1- to 90-day maximum flows. This rate of increased water withdrawal is anticipated to develop and the vulnerability degree of the downstream riparian country is projected to increase. Findings reveal that the impact of successive basin-wide drought episodes has considerably outweighed the effect of current recent upstream damming and water withdrawals.
The Predictability of Extratropical Transition and of its Impact on the Downstream Flow
2008-03-28
is predicted to reach a continent as an extratropical storm . Arguably the larger impact on predictability, however, occurs due to the above mentioned...Office of Naval Research Project The Predictability of Extratropical Transition and of its Impact on the Downstream Flow Award Number: N00014-06-1...12 0 76128 Karlsruhe 0 March 28, 2008 1 * 4 -d 60-( CONTENTS 3 Contents 1 Objectives 5 2 Scientific Importance 6 3 Extratropical Transition in
Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.
2014-01-01
Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.
Lee, S.; Churchfield, M.; Sirnivas, S.; ...
2015-06-18
A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less
NASA Astrophysics Data System (ADS)
Bai, Tao; Ma, Pan-pan; Kan, Yan-bin; Huang, Qiang
2017-12-01
Ecological risk assessment of river is an important content for protection and improvement of ecological environment. In this paper, taking Xiaolangdi reservoir for example, ecological risk assessments are studied based on the 1956-1997 and 2002-2008 dairy runoff data as the pre and post of construction of Xiaolangdi reservoir. Considering pre and post hydrological regime of construction of Xiaolangdi, ecological risk assessment index systems of downstream are established based on Index of Hydrologic Alteration-Range of Variability Approach method (IHA-RVA), which considering characters of flow, time, frequency, delay and change rate. Then ecological risk fuzzy comprehensive evaluation assessment model downstream is established based on risk index and RVA method. The results show that after the construction of Xiaolangdi reservoir, ecological risk occurred in the downstream of Yellow River for changed hydrological indexes, such as monthly average flow, frequency and duration of extreme annual flow and so on, which probably destroy the whole ecosystems of the river. For example, ecological risk downstream of Xiaolangdi reservoir upgrade to level two in 2008. Research results make reference values and scientific basis both in ecological risk assessment and management of reservoir after construction.
Data collection and documentation of flooding downstream of a dam failure in Mississippi
Van Wilson, K.; ,
2005-01-01
On March 12, 2004, the Big Bay Lake dam failed, releasing water and affecting lives and property downstream in southern Mississippi. The dam is located near Purvis, Mississippi, on Bay Creek, which flows into Lower Little Creek about 1.9 miles downstream from the dam. Lower Little Creek flows into Pearl River about 16.9 miles downstream from the dam. Knowledge of the hydrology and hydraulics of floods caused by dam breaks is essential to the design of dams. A better understanding of the risks associated with possible dam failures may help limit the loss of life and property that often occurs downstream of a dam failure. The USGS recovered flood marks at the one crossing of Bay Creek and eight crossings of Lower Little Creek. Additional flood marks were also flagged at three other bridges crossing tributaries where backwater occurred. Flood marks were recovered throughout the stream reach of about 3/4 to 15 miles downstream of the dam. Flood marks that were flagged will be surveyed so that a flood profile can be documented downstream of the Big Bay Lake dam failure. Peak discharges are also to be estimated where possible. News reports stated that the peak discharge at the dam was about 67,000 cubic feet per second. Preliminary data suggest the peak discharge from the dam failure attenuated to about 13,000 cubic feet per second at Lower Little Creek at State Highway 43, about 15 miles downstream of the dam.
Impacts of anthropogenic activities on different hydrological drought characteristics
NASA Astrophysics Data System (ADS)
Tijdeman, Erik; Stahl, Kerstin; Bachmair, Sophie
2015-04-01
The natural hazard drought can have severe impacts on a variety of sectors and at a variety of scales. Droughts, here defined as below average water availability, occur everywhere. However, the impact of a drought event is not only influenced by its severity but also by the vulnerability of an area to droughts. Research in catchments with natural flow conditions is crucial to gain process understanding about hydrological droughts. However, the locations of catchments with natural flow are often not representative for regions with a socioeconomic sector that is highly vulnerable to droughts. In these more vulnerable areas, human activities like groundwater extraction can intensify hydrological droughts. On the other hand, human activities can also mitigate or limit the magnitude of drought events. The aim of this study is to assess the impact of different anthropogenic influences on streamflow droughts by comparing hydrological drought characteristics between catchments with natural streamflow and with regulated or otherwise altered streamflow. The study is based on a large set of streamflow records from catchments in Germany, the UK and the USA with either known anthropogenic influences or natural streamflow conditions. Different drought characteristics (duration, deficit, frequency and timing of drought events) are computed for the selected stations. The drought characteristics in catchments influenced by various anthropogenic activities are stratified by the characteristics of anthropogenic influence, but also by similar physical and climatological properties. These stratified groups are then compared to drought characteristics in natural catchments with similar properties. Results show both negative and positive impacts of different human activities on droughts. For example, urbanized areas with low flow regulations show hydrological droughts with shorter durations and lower deficit volumes compared to nearby natural catchments, while records downstream of reservoirs show intensified drought characteristics. The differences between droughts in natural and regulated flow regimes, however, appear to be non-linear and variable with the severity of drought events. In conclusion, this study shows systematic impacts of human activities on different drought characteristics and furthermore reveals that management patterns have limits during severe droughts.
Assessing the Responses of Streamflow to Pollution Release in South Carolina
NASA Astrophysics Data System (ADS)
Maze, G.; Chovancak, N. A.; Samadi, S. Z.
2017-12-01
The purpose of this investigation was to examine the effects of various stream flows on the transport of a pollutant downstream and to evaluate the uncertainty associated with using a single stream flow value when the true flow is unknown in the model. The area used for this study was Horse Creek in South Carolina where a chlorine pollutant spill has occurred in the past resulting from a train derailment in Graniteville, SC. In the example scenario used, the chlorine gas pollutant was released into the environment, where it killed plants, infected groundwater, and caused evacuation of the city. Tracking the movement and concentrations at various points downstream in the river system is crucial to understanding how a single accidental pollutant release can affect the surrounding areas. As a result of the lack of real-time data available this emergency response model uses historical monthly averages, however, these monthly averages do not reflect how widely the flow can vary within that month. Therefore, the assumption to use the historical monthly average flow data may not be accurate, and this investigation aims at quantifying the uncertainty associated with using a single stream flow value when the true stream flow may vary greatly. For the purpose of this investigation, the event in Graniteville was used as a case study to evaluate the emergency response model. This investigation was conducted by adjusting the STREAM II V7 program developed by Savannah River National Laboratory (SRNL) to model a confluence at the Horse Creek and the Savannah River system. This adjusted program was utilized to track the progress of the chlorine pollutant release and examine how it was transported downstream. By adjusting this program, the concentrations and time taken to reach various points downstream of the release were obtained and can be used not only to analyze this particular pollutant release in Graniteville, but can continue to be adjusted and used as a technical tool for emergency responders in future accidents. Further, the program was run with monthly maximum, minimum, and average advective flows and an uncertainty analysis was conducted to examine the error associated with the input data. These results underscore to profound influence that streamflow magnitudes (maximum, minimum, and average) have on shaping downstream water quality.
Influence of vortical flow structures on the glottal jet location in the supraglottal region.
Kniesburges, Stefan; Hesselmann, Christina; Becker, Stefan; Schlücker, Eberhard; Döllinger, Michael
2013-09-01
Within the fully coupled multiphysics phonation process, the fluid flow plays an important role for sound production. This study addresses phenomena in the flow downstream of synthetic self-oscillating vocal folds. An experimental setup consisting of devices for producing and conditioning the flow including the main test channel was applied. The supraglottal channel was designed to prevent an acoustic coupling to the vocal folds. Hence, the oscillations were aerodynamically driven. The cross-section of the supraglottal channel was systematically varied by increasing the distance between the lateral channel walls. The vocal folds consisted of silicone rubber of homogenous material distribution generating self-sustained oscillations. The airflow was visualized in the immediate supraglottal region using a laser-sheet technique and a digital high-speed camera. Furthermore, the flow was studied by measuring the static pressure distributions on both lateral supraglottal channel walls. The results clearly showed different flow characteristics depending on the supraglottal configuration. In all cases with supraglottal channel, the jet was located asymmetrical and bent in medial-lateral direction. Furthermore, the side to which the jet was deflected changed in between the consecutive cycles showing a bifurcational behavior. Previously, this phenomenon was explained by the Coanda effect. However, the present data suggest that the deflection of the jet was mainly caused by large air vortices in the supraglottal channel produced by the flow field of previous oscillations. In contrast, for the case without supraglottal channel, the air jet was found totally symmetrical stabilized by the constant pressure in the ambient region. The emitted sound signal showed additional subharmonic tonal peaks for the asymmetric flow cases, which are characteristics for diplophonia. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.
2016-11-01
Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.
Direct numerical simulation of shockwave and turbulent boundary layer interactions
NASA Astrophysics Data System (ADS)
Wu, Minwei
Direct numerical simulations (DNS) of a shockwave/turbulent boundary layer interaction (STBLI) at Mach number 3 and Reynolds number based on the momentum thickness of 2300 are performed. A 4th-order accurate, bandwidth-optimized weighted-essentially-non-oscillatory (WENO) scheme is used and the method is found to be too dissipative for the STBLI simulation due to the over-adaptation properties of this original WENO scheme. In turn, a relative limiter is introduced to mitigate the problem. Tests on the Shu-Osher problem show that the modified WENO scheme decreases the numerical dissipation significantly. By utilizing a combination of the relative limiter and the absolute limiter described by Jiang & Shu [32], the DNS results are improved further. The DNS data agree well with the reference experiments of Bookey et al. [10] in the size of the separation bubble, the separation and reattachment point, the mean wall-pressure distribution, and the velocity profiles both upstream and downstream of the interaction region. The DNS data show that velocity profiles change dramatically along the streamwise direction. Downstream of the interaction, the velocity profiles show a characteristic "dip" in the logarithmic region, as shown by the experiments of Smits & Muck [66] at much higher Reynolds number. In the separation region, the velocity profiles are found to resemble those of a laminar flow, yet the flow does not fully relaminarize. The mass-flux turbulence intensity is amplified by a factor of about 5 throughout the interaction, which is consistent with that found in higher Reynolds experiments of Selig et al. [52]. All Reynolds stress components are greatly amplified by the interaction. Assuming that the ow is still two dimensional downstream of the interaction, the components rhou'u', rhov'v', rho w'w', and rho u'w' are amplified by factors of 6, 6, 12, and 24, respectively, where u is the streamwise and w is the wall-normal velocity. However, analyses of the turbulence structure show that the ow is not uniform in the spanwise direction downstream of the interaction. A pair of counter-rotating vortices is observed in streamwise-wall-normal planes in the mean ow downstream of the ramp corner. Taking the three-dimensionality into account, the amplification factors of the Reynolds stresses are greatly decreased. The component rhou'w' is amplified by a factor of about 10, which is comparable to that found in the experiments of Smits & Muck [66]. Strong Reynolds analogy (SRA) relations are also studied using the DNS data. The SRA is found to hold in the incoming boundary layer of the DNS. However, inside and downstream of the interaction region, the SRA relations are not satisfied. From the DNS analyses, the shock motion is characterized by a low frequency component (of order 0.01Uinfinity/delta). In addition, the motion of the shock is found to have two aspects: a spanwise wrinkling motion and a streamwise oscillatory motion. The spanwise wrinkling is observed to be a local feature with high frequencies (of order Uinfinity /delta). Two-point correlations reveal that the spanwise wrinkling is closely related to the low momentum motions in the incoming boundary layer as they convect through the shock. The low frequency shock motion is found to be a streamwise oscillation motion. Conditional statistics show that there is no significant difference in the mean properties of the incoming boundary layer when the shock is at an upstream or downstream location. However, analyses of the unsteadiness of the separation bubble reveal that the low frequency shock motion is driven by the downstream flow.
Long-term macroinvertebrate response to flow abstraction at Alpine water intakes
NASA Astrophysics Data System (ADS)
Gabbud, Chrystelle; Savioz, Amélie; Lane, Stuart
2016-04-01
The natural flow hydrological characteristics of Alpine streams, dominated by snowmelt and glacier melt, have been established for many years. More recently, the ecosystems that they sustain have been described and explained, following the hydrological, biochemical, morphodynamic, and biotic elements specific to Alpine streams. However, natural Alpine flow regimes may be strongly modified by hydroelectric power production, which impacts upon both river discharge and sediment transfer, and hence on downstream flora and fauna. These kinds of impacts are well studied where river are regulated by dams, with sediments retained behind walls, but they are much less focus on water intakes, whose storage capacity is very smaller and thus have to flush flow and sediment regularly. Here we focus on the impacts of flow abstraction on macroinvertebrates, the most widely ecological group used in freshwater biomonitoring as they act typically as indicators of environmental health. Some key generalizations can be made. For instance, in European glacially fed river systems, Plecoptera, Chironomidae, Ephemeroptera, Simuliidae, and Diptera are the main taxa found in spring as they are better adapted to cold conditions. Petts and Bickerton (1994) published macroinvertebrate samples from the upper part of the glacial stream system the Borgne d'Arolla (Valais, Switzerland), highlighting that: (1) taxa variability and productivity decline in the river because of flow abstraction, (2) 60 % of the communities were provided by tributaries, (3) there is migration upstream of the species in response to the passage from a dominant ice-melt to a snow-melt regime, (4) the colonisation is difficult because of a significant modification of the habitat in the river by sediment transport, until it becomes warmer, clearer and more stable further downstream. In order to establish the long-term impacts of flow abstraction upon instream ecology where sediment delivery is maintained but transport capacity is reduced, and to determine if the above trends are accelerated, maintained or reversed, we revisited the study of Petts and Bickerton (1994) by repeating transects of interest for both the river and the tributaries during summer 2015. Based on macroinvertebrate sampling, determinations and statistics, preliminary results show that these trends have been maintained, with macroinvertebrate presence restricted to zones immediately downstream of unregulated tributaries. Despite the river having been protected as an alluvial zone of national importance since the 1990s, there is no evidence of life in the river except in isolated tributary-fed hotspots. The data suggest that restoring this kind of system will need new approaches to manage sediment, ones that environmental flows alone are unlikely to be able to address. Reference Petts GE, Bickerton MA (1994). Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream system: La Borgne d'Arolla, Valais, Switzerland. Freshwater Biology, 32:375-386.
Atmospheric dispersion of a heavier-than-air gas near a two-dimensional obstacle
NASA Astrophysics Data System (ADS)
Sutton, S. B.; Brandt, H.; White, B. R.
1986-04-01
Flow over a two-dimensional obstacle and dispersion of a heavier-than-air gas near the obstacle were studied. Two species, one representing air and the other representing the heavier-than-air gas were treated. Equations for mass and momentum were cast in mass-averaged form, with turbulent Reynolds stresses and mass fluxes modeled using eddy-viscosity and diffusivity hypotheses. A two-equation k-ɛ turbulence model was used to determine the effective turbulent viscosity. Streamline curvature and buoyancy corrections were added to the basic turbulence formulation. The model equations were solved using finite difference techniques. An alternating-direction-implicit (ADI) technique was used to solve the parabolic transport equations and a direct matrix solver was used to solve the elliptic pressure equation. Mesh sensitivities were investigated to determine the optimum mesh requirements for the final calculations. It was concluded that at least 10 grid spaces were required across the obstacle width and 15 across the obstacle height to obtain valid solutions. A non-uniform mesh was used to concentrate the grid points at the top of the obstacle. Experimental measurements were made with air flow over a 7.6 by 7.6 cm obstacle in a boundary-layer wind tunnel. Smoke visualization revealed a low-frequency oscillation of the bubble downstream of the obstacle. Hot-wire anemometer data are presented for the mean velocity and turbulent kinetic energy at the mid-plane of the obstacle and the mid-plane of the downstream recirculation bubble. A single hot-wire probe was found to be suitable for determining mean streamwise velocities with an accuracy of 11 %. The downstream recirculation bubble was unsteady and had a length range from 3 to 8 obstacle lengths. The experimental results for flow over the obstacle were compared with numerical calculations to validate the numerical solution procedure. A sensitivity study on the effect of curvature correction and variation of turbulence model constants on the numerical solution was conducted. Calculations that included the curvature correction model gave a downstream recirculation bubble length of 5.9 obstacle lengths while excluding the correction reduced this length to 4.4. In the second part of the study, numerical calculations were performed for the dispersion of a heavier-than-air gas in the vicinity of the two-dimensional obstacle. Characteristics of an adiabatic boundary layer were used in these calculations. The densities of the contaminant gases were 0, 25 and 50% greater than the air density. Calculations were performed with the contaminant injection source upstream and downstream of the obstacle. Use of the pressure gradient model reduced the size of the dense gas cloud by as much as 12%. The curvature correction model also affected the cloud expanse by reducing the effective turbulent viscosity in the downstream recirculation bubble. The location of the injection source had the largest impact on the cloud size. The area of the cloud within the 5 % contour was three times larger for downstream injection than for upstream injection.
A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions
NASA Technical Reports Server (NTRS)
Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.
2010-01-01
The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for draining the bulk fluid in a continuous circuit. The functional operation of the SPS involves introducing liquid flow (from a human body, a syringe, or other source) to the two-phase inlet while an air fan pulls on the air exit lines. The fan is operated until the liquid is fully introduced. The system is drained by negative pressure on the liquid drain lines when the SPS containment system is full.
Bulusu, Kartik V; Plesniak, Michael W
2016-07-19
The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.; Hendricks, Robert C.; Lattime, Scott B.; Steinetz, Bruce M.
2006-01-01
Clearance control is of paramount importance to turbomachinery designers and is required to meet today's aggressive power output, efficiency, and operational life goals. Excessive clearances lead to losses in cycle efficiency, flow instabilities, and hot gas ingestion into disk cavities. Insufficient clearances limit coolant flows and cause interface rubbing, overheating downstream components and damaging interfaces, thus limiting component life. Designers have put renewed attention on clearance control, as it is often the most cost effective method to enhance system performance. Advanced concepts and proper material selection continue to play important roles in maintaining interface clearances to enable the system to meet design goals. This work presents an overview of turbomachinery sealing to control clearances. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues.
Turner, Richard; Joseph, Adrian; Titchener-Hooker, Nigel; Bender, Jean
2017-08-04
Cell harvesting is the separation or retention of cells and cellular debris from the supernatant containing the target molecule Selection of harvest method strongly depends on the type of cells, mode of bioreactor operation, process scale, and characteristics of the product and cell culture fluid. Most traditional harvesting methods use some form of filtration, centrifugation, or a combination of both for cell separation and/or retention. Filtration methods include normal flow depth filtration and tangential flow microfiltration. The ability to scale down predictably the selected harvest method helps to ensure successful production and is critical for conducting small-scale characterization studies for confirming parameter targets and ranges. In this chapter we describe centrifugation and depth filtration harvesting methods, share strategies for harvest optimization, present recent developments in centrifugation scale-down models, and review alternative harvesting technologies.
Determining the effects of dams on subdaily variation in river flows at a whole-basin scale
Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.
2010-01-01
River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.
PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling
Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen
2016-01-01
Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435
High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen
2011-05-01
High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to themore » different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.« less
Integration of Magnetic Bead-Based Cell Selection into Complex Isolations
2018-01-01
Magnetic bead-based analyte capture has emerged as a ubiquitous method in cell isolation, enabling the highly specific capture of target populations through simple magnetic manipulation. To date, no “one-size fits all” magnetic bead has been widely adopted leading to an overwhelming number of commercial beads. Ultimately, the ideal bead is one that not only facilitates cell isolation but also proves compatible with the widest range of downstream applications and analytic endpoints. Despite the diverse offering of sizes, coatings, and conjugation chemistries, few studies exist to benchmark the performance characteristics of different commercially available beads; importantly, these bead characteristics ultimately determine the ability of a bead to integrate into the user’s assay. In this report, we evaluate bead-based cell isolation considerations, approaches, and results across a subset of commercially available magnetic beads (Dynabeads FlowComps, Dynabeads CELLection, GE Healthcare Sera-Mag SpeedBeads streptavidin-blocked magnetic particles, Dynabeads M-270s, Dynabeads M-280s) to compare and contrast both capture-specific traits (i.e., purity, capture efficacy, and contaminant isolations) and endpoint compatibility (i.e., protein localization, fluorescence imaging, and nucleic acid extraction). We identify specific advantages and contexts of use in which distinct bead products may facilitate experimental goals and integrate into downstream applications. PMID:29732449
Zhang, Shurong; Bai, Yijuan; Wen, Xin; Ding, Aizhong; Zhi, Jianhui
2018-04-22
Human activities impose important disturbances on both organic and inorganic chemistry in fluvial systems. In this study, we investigated the intra-annual and downstream variations of dissolved organic carbon (DOC), dissolved organic matter (DOM) excitation-emission matrix fluorescence (EEM) with parallel factor analysis (PARAFAC), major ions, and dissolved inorganic nitrogen (DIN) species in a mountainous tributary of the Yellow River, China. Both DOM quantity and quality, as represented by DOC and DOM fluorescence respectively, changed spatially and seasonally in the studied region. Fluorescence intensity of tryptophan-like components (C3) were found much higher at the populated downstream regions than in the undisturbed forested upstream regions. Seasonally, stronger fluorescence intensity of protein-like components (C3 and C4) was observed in the low-flow period (December) and in the medium-flow period (March) than in the high-flow period (May), particularly for the downstream reaches, reflecting the dominant impacts of wastewater pollution in the downstream regions. In contrast to the protein-like fluorescence, humic-like fluorescence components C1 and C2 exhibited distinctly higher intensity in the high-flow period with smaller spatial variation indicating strong flushing effect of increasing water discharge on terrestrial-sourced humic-like materials in the high-flow period. Pollution-affected dissolved inorganic ions, particularly Na + , Cl - , and NH 4 + -N, showed similar spatial and seasonal variations with protein-like fluorescence of DOM. The significant positive correlations between protein-like fluorescence of DOM and pollution-affected ions, particularly Na + , Cl - , and NH 4 + -N, suggested that there were similar pollution sources and transportation pathways of both inorganic and organic pollutants in the region. The combination of DOM fluorescence properties and inorganic ions could provide an important reference for the pollution source characterization and river basin management.
Spatio-temporal changes in river bank mass failures in the Lockyer Valley, Queensland, Australia
NASA Astrophysics Data System (ADS)
Thompson, Chris; Croke, Jacky; Grove, James; Khanal, Giri
2013-06-01
Wet-flow river bank failure processes are poorly understood relative to the more commonly studied processes of fluvial entrainment and gravity-induced mass failures. Using high resolution topographic data (LiDAR) and near coincident aerial photography, this study documents the downstream distribution of river bank mass failures which occurred as a result of a catastrophic flood in the Lockyer Valley in January 2011. In addition, this distribution is compared with wet flow mass failure features from previous large floods. The downstream analysis of these two temporal data sets indicated that they occur across a range of river lengths, catchment areas, bank heights and angles and do not appear to be scale-dependent or spatially restricted to certain downstream zones. The downstream trends of each bank failure distribution show limited spatial overlap with only 17% of wet flows common to both distributions. The modification of these features during the catastrophic flood of January 2011 also indicated that such features tend to form at some 'optimum' shape and show limited evidence of subsequent enlargement even when flow and energy conditions within the banks and channel were high. Elevation changes indicate that such features show evidence for infilling during subsequent floods. The preservation of these features in the landscape for a period of at least 150 years suggests that the seepage processes dominant in their initial formation appear to have limited role in their continuing enlargement over time. No evidence of gully extension or headwall retreat is evident. It is estimated that at least 12 inundation events would be required to fill these failures based on the average net elevation change recorded for the 2011 event. Existing conceptual models of downstream bank erosion process zones may need to consider a wider array of mass failure processes to accommodate for wet flow failures.
Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian
2009-01-01
Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.
Braatne, Jeffrey H.; Goater, Lori A.; Blair, Charles L.
2007-01-01
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies. PMID:18043964
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Yao, Chung-Sheng
2017-01-01
Time-resolved particle image velocimetry (TRPIV) measurements are performed down-stream of a swept backward-facing step, with a height of 49% of the boundary-layer thickness. The results agree well qualitatively with previously reported hotwire measurements, though the amplitudes of the fluctuating components measured using TRPIV are higher. Nonetheless, the low-amplitude instabilities in the flow are fairly well resolved using TR- PIV. Proper orthogonal decomposition is used to study the development of the traveling cross flow and Tollmien-Schlichting (TS) instabilities downstream of the step and to study how they interact to form the large velocity spikes that ultimately lead to transition. A secondary mode within the traveling cross flow frequency band develops with a wavelength close to that of the stationary cross flow instability, so that at a certain point in the phase, it causes an increase in the spanwise modulation initially caused by the stationary cross flow mode. This increased modulation leads to an increase in the amplitude of the TS mode, which, itself, is highly modulated through interactions with the stationary cross flow. When the traveling cross flow and TS modes align in time and space, the large velocity spikes occur. Thus, these three instabilities, which are individually of low amplitude when the spikes start to occur (U'rms/Ue <0.03), interact and combine to cause a large flow disturbance that eventually leads to transition.
Auble, Gregor T.; Bowen, Zachary H.
2008-01-01
In June 2006, an opportunistic high-flow release was made from Tiber Dam on the Marias River in Mont., to investigate possible alternatives for partially restoring the river's natural flow pattern and variability. At two sites along the river, we measured channel geometry before and after the high-flow release to evaluate channel change and alteration of physical habitat. Streamflow downstream from Tiber Dam has been stabilized by reduction of high flows and augmentation of low flows. This has produced flood-control benefits as well as some possible adverse environmental effects downstream from the dam. The 2006 high-flow release resulted in a downstream hydrograph with high flows of above-average magnitude in the post-dam flow regime of the Marias River. Timing of the peak and the declining limb of the release hydrograph were very similar to a historical, unregulated hydrograph of the Marias River. Furthermore, the high flow produced many of the qualitative elements of ecologically important physical processes that can be diminished or lost due to flow stabilization downstream from a dam. Typically dry back channels were occupied by flowing water. Islands were inundated, resulting in vegetation removal and sediment accretion that produced new disturbance patches of bare, moist substrate. Cut banks were eroded, and large woody debris was added to the river and redistributed. Flood-plain surfaces were inundated, producing substantial increases in wetted perimeter and spatially distinctive patterns of deposition associated with natural levee formation. The scale of the 2006 high flow - in terms of peak magnitude and the lateral extent of bottomland influenced by inundation or lateral channel movement - was roughly an order of magnitude smaller than the scale of an infrequent high flow in the pre-dam regime. Overall extent and composition of riparian vegetation will continue to change under a scaled-down, post-dam flow regime. For example, the importance of the non-native Russian-olive (Elaeagnus angustifolia) will likely increase. Reestablishing a more natural pattern of flows, however, should promote the increase of native cottonwood and willow (Salix spp.) in the new-albeit smaller-post-dam riparian ecosystem. A more natural flow regime will also likely provide improved habitat for native fish in the Marias River. Response of fish communities to such flows is the subject of current fisheries studies being conducted in cooperation with Bureau of Reclamation.
Focusing of active particles in a converging flow
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid; ...
2017-10-20
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David
2016-11-29
A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.
Simpkins, D.G.; Hubert, W.A.; Wesche, T.A.
2000-01-01
The controlled release of dammed water, designed to produce a flushing flow that would remove fine sediments from spawning habitat in a flow-regulated river, did not displace juvenile rainbow trout Oncorhynchus mykiss (20-25 cm total length) downstream. Of eight naturally spawned (wild) and nine hatchery fish that were radio-tagged, only one wild fish and two hatchery fish were found in different locations after an eight-fold increase in flow. These three fish moved upstream and the greatest movement was 96 m. Cobble and boulder substrates in main-channel pools were thought to provide slow-water-velocity refuges during the flushing flow. Our findings and the findings of other researchers suggest that flushing flows can be conducted to enhance spawning habitat for rainbow trout without causing extensive downstream movements or habitat displacement of small fish in regulated rivers.
21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow... device is placed in a cardiopulmonary bypass circuit downstream from the oxygenator. (b) Classification...
21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow... device is placed in a cardiopulmonary bypass circuit downstream from the oxygenator. (b) Classification...
NASA Astrophysics Data System (ADS)
De Padova, Diana; Mossa, Michele; Sibilla, Stefano
2018-02-01
This paper shows the results of the smooth particle hydrodynamics (SPH) modelling of the hydraulic jump at an abrupt drop, where the transition from supercritical to subcritical flow is characterised by several flow patterns depending upon the inflow and tailwater conditions. SPH simulations are obtained by a pseudo-compressible XSPH scheme with pressure smoothing; turbulent stresses are represented either by an algebraic mixing-length model, or by a two-equation k- ɛ model. The numerical model is applied to analyse the occurrence of oscillatory flow conditions between two different jump types characterised by quasi-periodic oscillation, and the results are compared with experiments performed at the hydraulics laboratory of Bari Technical University. The purpose of this paper is to obtain a deeper understanding of the physical features of a flow which is in general difficult to be reproduced numerically, owing to its unstable character: in particular, vorticity and turbulent kinetic energy fields, velocity, water depth and pressure spectra downstream of the jump, and velocity and pressure cross-correlations can be computed and analysed.
Experimental study of phase separation in dividing two phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian Yong; Yang Zhilin; Xu Jijun
1996-12-31
Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separationmore » phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.« less
Turbulence characteristics of swirling flowfields. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Jackson, T. W.; Lilley, D. G.
1985-01-01
The time mean and turbulence properties of a confined swirling jet using the six orientation, single hot wire technique were obtained. The effect of swirl on a confined, expanding jet is to reduce the size of the corner recirculation zone and generate a central recirculation zone followed by a precessing vortex core. The effect of introducing a contraction nozzle of area ratio four, located two test section diameters downstream of the inlet, is to dramatically reduce the size and shape of the central recirculation zone for the swirling flows considered. The shear stresses are found to increase by an order of magnitude in the region of the contraction nozzle because of large radial gradients of axial velocity. Reduction of the expansion ratio to D/o = 1 causes the time mean flow field to be homogeneous throughout the entire test section with the tangential velocity dominating in the swirling cases. No recirculation zones were observed for these particular flows. Turbulence levels and dissipation rates were found to be low except in the entrance regions and in areas of acceleration in the swirling flow cases.
Whittington, P N; George, N
1992-08-05
The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.
Investigation of powder injection moulded oblique fin heat sinks
NASA Astrophysics Data System (ADS)
Sai, Vadri Siva
The present work attempts to study the fluid flow and heat transfer characteristics of PIM oblique finned microchannel heat sink both numerically and experimentally. Experimental results such as thermal resistance and pressure drop have been well validated with ANSYS FLUENT simulations. Hot spots are observed at the most downstream location of the channel is due to the effect of flow migration. Finally, a novel technique has been proposed to reduce the pressure drop on creating additional channels by removing some material at the middle portion of oblique fins. It is found that the creation of oblique cuts incurred a reduction in both pressure drop and Nuavg up to 31.36 % and 16.66 % respectively at a flow rate of 500 ml/min. Nevertheless, for all the flowrates considered in this analysis. % reduction in pressure drop is almost double as compared with % reduction in Nuavg. Therefore, this analysis is beneflcial in reducing the additional cost incurs due to pressure drop penalty.
Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi
2008-05-16
The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.
Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1991-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.
Control of buffet onset by plasma-based actuators
NASA Astrophysics Data System (ADS)
Vishnyakov, O. I.; Polivanov, P. A.; Budovskiy, A. D.; Sidorenko, A. A.; Maslov, A. A.
2016-10-01
The paper is devoted to the experimental investigations of the influence of electrical discharges which produces local area of unsteady energy deposition and density variations on transonic flow, namely, buffet onset. Experiments are carried out in T-112 wind tunnel in TsAGI using model of rectangular wing with chord of 200 mm and span 599 mm. The profile of the wing is supercritical airfoil P184-15SR with max thickness 15% of chord length. Experiments were carried out in the range of Mach number 0.73÷0.78 for several angles of attack of the model. The flow around the model was studied by schlieren visualization, surface pressure distribution measurements and Pitot measurements in the wake of the wing using wake rake located downstream of the model. The experimentally data obtained show that excitation of plasma actuator based on spark discharge effectively influence on mean flow and characteristics of shock wave oscillations. It was found that control efficiency depends on frequency of discharge.
Local and non-local effects of spanwise finite perturbations in erodible river bathymetries
NASA Astrophysics Data System (ADS)
Musa, Mirko; Hill, Craig; Guala, Michele
2015-11-01
Laboratory experiments were performed to study the effect of axial-flow hydrokinetic turbine models on an erodible river bed under live-bed conditions. Results indicate that the presence of an operating turbine rotor creates a blockage in the mean flow which produces a remarkable geomorphic signature in the migrating bedforms. These impacts affect a local area downstream of the turbines when placed symmetrically with respect to the cross section of the channel. On the other hand, more interesting results are observed with an asymmetric installation of the turbines. This configuration demonstrates a stronger effect on the mean flow, resulting in a larger plan-wise distortion of the mean topography and differential migration patterns of bedforms. Different turbine installation arrangements and hub heights above the mean bed were investigated, focusing mainly on the perturbation of sediment transport characteristics influenced by the turbine wake. Additional results with spanwise modulated submerged walls explore the possibility to control river topography harvesting this type of geomorphic destabilization.
On the stability of a time dependent boundary layer
NASA Technical Reports Server (NTRS)
Otto, S. R.
1993-01-01
The aim of this article is to determine the stability characteristics of a Rayleigh layer, which is known to occur when the fluid above a flat plate has a velocity imparted to it (parallel to the plate). This situation is intrinsically unsteady, however, as a first approximation we consider the instantaneous stability of the flow. The Orr-Sommerfeld equation is found to govern fixed downstream wavelength linear perturbations to the basic flow profile. By the solution of this equation, we can determine the Reynolds numbers at which the flow is neutrally stable; this quasisteady approach is only formally applicable for infinite Reynolds numbers. We shall consider the large Reynolds number limit of the original problem and use a three deck mentality to determine the form of the modes. The results of the two calculations are compared, and the linear large Reynolds number analysis is extended to consider the effect of weak nonlinearity in order to determine whether the system is subcritical or supercritical.
Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1993-01-01
Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Rong
2014-12-01
A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.
Supersonic flow gradients at an overexpanded nozzle lip
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.
2018-07-01
The flowfield of a planar, overexpanded jet flow and an axisymmetric one are analyzed theoretically for a wide range of governing flow parameters (such as the nozzle divergence angle, the initial flow Mach number, the jet expansion ratio, and the ratio of specific heats). Significant differences are discovered between these parameters of the incident shock and the downstream flow for a planar jet and for an axisymmetric overexpanded jet flow. Incident shock curvature, shock strength variation, the geometrical curvature of the jet boundary, gradients of total and static pressure and Mach number, and flow vorticity parameters in post-shock flow are studied theoretically for non-separated nozzle flows. Flow parameters indicating zero and extrema values of these gradients are reported. Some theoretical results (such as concavities of incident shock and jet boundary, local decreases in the incident shock strength, increases and decreases in the static pressure, and the Mach number downstream of the incident shock) seem rather specific and non-evident at first sight. The theoretical results, achieved while using an inviscid flow model, are compared and confirmed with experimental data obtained by other authors.
Laminar supersonic flow over a backstep - A numerical solution at higher Reynolds numbers
NASA Technical Reports Server (NTRS)
Kronzon, Y.; Rom, J.; Seginer, A.
1976-01-01
The Allen-Cheng solution of the flow over a backward facing step is extended to Reynolds numbers up to 16,000 and to inflow boundary-layer height ratios as low as 0.1 by moving the downstream boundary into the recompression region and by smoothing the resulting errors. The boundary conditions in the supersonic outer flow and the downstream boundary conditions in the wake are determined by an extrapolation procedure. Computational results are compared with relevant experimental data. Fair agreement is found between the calculated base pressures and the experimental values, whereas agreement between heat transfer rates appears to be qualitative only.
Transient response in granular quasi-two-dimensional bounded heap flow.
Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B
2017-10-01
We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.
Tortorelli, Robert L.
2006-01-01
The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component
StreamStats: A water resources web application
Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.
2008-01-01
Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
NASA Astrophysics Data System (ADS)
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.
Medalie, Laura
2007-01-01
The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.
Effects of bileaflet mechanical heart valve orientation on coronary flow
NASA Astrophysics Data System (ADS)
Haya, Laura; Tavoularis, Stavros
2015-11-01
The aortic sinus is approximately tri-radially symmetric, but bileaflet mechanical heart valves (BMHVs), which are commonly used to replace diseased aortic valves, are bilaterally symmetric. This mismatch in symmetry suggests that the orientation in which a BMHV is implanted within the aortic sinus affects the flow characteristics downstream of it. This study examines the effect of BMHV orientation on the flow in the coronary arteries, which originate in the aortic sinus and supply the heart tissue with blood. Planar particle image velocimetry measurements were made past a BMHV mounted at the inlet of an anatomical aorta model under physiological flow conditions. The complex interactions between the valve jets, the sinus vortex and the flow in the right coronary artery were elucidated for three valve orientations. The coronary flow rate was directly affected by the size, orientation, and time evolution of the vortex in the sinus, all of which were sensitive to the valve's orientation. The total flow through the artery was highest when the valve was oriented with its axis of symmetry intersecting the artery's opening. The findings of this research may assist surgeons in choosing the best orientation for BMHV implantation. The bileaflet valve was donated by St. Jude Medical. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Gilbert, W. P.
1983-01-01
An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.
Jacobson, R.; Faust, T.
2014-01-01
Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2-year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain-connecting events decrease. Flow durations above the active-channel shelf vary little with increasing drainage area, indicating that the active-channel shelf is in quasi-equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape-scale variations in composition of floodplain forest communities in northern Missouri. Faust (2006) had tentatively explained increases of flood-dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain-connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood-dependent trees at larger drainage area result from increasing size of disturbance patches. Bank-overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade-intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non-incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape-scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities.
NASA Astrophysics Data System (ADS)
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
NASA Astrophysics Data System (ADS)
Mishra, Chandan; Peles, Yoav
2005-11-01
Multifarious hydrodynamic cavitating flow patterns have been detected in the flow of de-ionized water through a 40.5μm wide and 100.8μm deep rectangular slot micro-orifice established inside a 202.6μm wide and 20 000μm long microchannel. This article presents and discusses the flow patterns observed at various stages of cavitation in the aforementioned micrometer-sized silicon device. Cavitation inception occurs with the appearance of inchoate bubbles that emerge from two thin vapor cavities that emanate from the boundaries of the constriction element. A reduction in the cavitation number beyond inception results in the development of twin coherent unsteady large vapor cavities, which appear just downstream of the micro-orifice and engulf the liquid jet. The shedding of both spherical and nonspherical vapor bubbles and their subsequent collapse into vapor plumes downstream of the orifice occurs intermittently. A further reduction in the exit pressure only aids in the elongation of the two coherent cavities and produces two stable vapor pockets. Additionally, interference fringes are clearly observed, showing that the vapor pocket has a curved interface with liquid. At low cavitation numbers, the flow undergoes a flip downstream and the two vapor pockets coalesce and form a single vapor pocket that is encircled by the liquid and extends until the exit of the microchannel. The cavitating flow patterns are unique and are markedly different from those reported for their macroworld counterparts. Evidence of pitting due to cavitation has been observed on the silicon just downstream of the micro-orifice. It is therefore apparent that cavitation will continue to influence/impact the design of high-speed MEMS hydraulic machines, and the pernicious effects of cavitation in terms of erosion, choking, and a reduction in performance will persist in microfluidic systems if apposite hydrodynamic conditions develop.
Hydrologic alteration affects aquatic plant assemblages in an arid-land river
Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.
2014-01-01
We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-06-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Luther, Douglas S.
2016-05-01
Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.
Cooling system with compressor bleed and ambient air for gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, Jan H.; Marra, John J.
A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less
Near-field flow structures about subcritical surface roughness
NASA Astrophysics Data System (ADS)
Doolittle, Charles J.; Drews, Scott D.; Goldstein, David B.
2014-12-01
Laminar flow over a periodic array of cylindrical surface roughness elements is simulated with an immersed boundary spectral method both to validate the method for subsequent studies and to examine how persistent streamwise vortices are introduced by a low Reynolds number roughness element. Direct comparisons are made with prior studies at a roughness-based Reynolds number Rek (=U(k) k/ν) of 205 and a diameter to spanwise spacing ratio d/λ of 1/3. Downstream velocity contours match present and past experiments very well. The shear layer developed over the top of the roughness element produces the downstream velocity deficit. Upstream of the roughness element, the vortex topology is found to be consistent with juncture flow experiments, creating three cores along the recirculation line. Streamtraces stemming from these upstream cores, however, have unexpectedly little effect on the downstream flowfield as lateral divergence of the boundary layer quickly dissipates their vorticity. Long physical relaxation time of the recirculating wake behind the roughness remains a prominent issue for simulating this type of flowfield.
An investigation of the flow characteristics in the blade endwall corner region
NASA Technical Reports Server (NTRS)
Hazarika, Birinchi K.; Raj, Rishi S.
1987-01-01
Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.
NASA Technical Reports Server (NTRS)
Rose, W. C.
1973-01-01
The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.
Process and apparatus for analyzing specimens for the presence of microorganisms therein
NASA Technical Reports Server (NTRS)
Vannest, Richard D. (Inventor); Meyer, Michael C. (Inventor); Gibson, Sandra F. (Inventor); Keyser, George F. (Inventor); Jones, Paul W. (Inventor); Aldridge, Jr., Clifton (Inventor); Holen, James T. (Inventor)
1980-01-01
Microorganisms in a specimen are detected, identified, and enumerated by introducing the specimen into a sampling cartridge and diluting the specimen with a known volume of water within the cartridge. The cartridge has a manifold and several cassettes attached to the manifold. Each cassette contains a serpentine flow channel having a series of filters therein and a detection cell located downstream from each filter. The flow channel in each cassette also contains a culture medium which is freeze dried and is highly selective in the sense that it promotes the growth of one type of microorganism, but not others. The mixture of the specimen and water flows from the manifold into the flow channel of each cassette where it rehydrates the culture medium therein and further flows through the filters. Each filter removes a known proportion of the microorganisms from the mixture of specimen, water and medium, thereby effecting a serial dilution. After the cassettes are heated to incubate the microoganisms, the detection cells are observed for growth of the microorganisms therein which is manifested in a change in the light transmitting characteristics of the mixtures within the cells.
Experimental investigation of flow over two-dimensional multiple hill models.
Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke
2017-12-31
The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.
Injection Characteristics of Non-Swirling and Swirling Annular Liquid Sheets
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Ibrahim, E. A.; McKinney, T. R.
2004-01-01
A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.
Wyeth, Russell C; Woodward, Owen M; Willows, A O Dennis
2006-04-01
Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.
NASA Astrophysics Data System (ADS)
Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.
2014-06-01
The frequency and intensity of extreme hydrological events in alpine regions is projected to increase with climate change. The goal of this study was to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal valley (German Alps), where runoff from a karst spring infiltrates into a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks dampened by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in alpine regions.
NASA Astrophysics Data System (ADS)
Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.
2014-11-01
The frequency and intensity of extreme hydrological events in Alpine regions is projected to increase with climate change. The goal of this study is to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in Alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal (German Alps), where runoff from a karst spring infiltrates a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other Alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks damped by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in Alpine regions.
Effect of flow rate and lead/copper pipe sequence on lead release from service lines.
Cartier, Clément; Arnold, Roger B; Triantafyllidou, Simoni; Prévost, Michèle; Edwards, Marc
2012-09-01
A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.
2017-01-01
The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not restored, and relatively few new open surfaces were created for establishment of native riparian vegetation. Because water in the Colorado River basin is completely allocated, exceptional floods from the Gila River basin are the most likely mechanism for major changes to delta geomorphology for the foreseeable future.
Prediction of the run out extents of the Slano Blato landslide for future debris flow events
NASA Astrophysics Data System (ADS)
Askarinejad, Amin; Leu, Pascal; Macek, Matej; Petkovsek, Ana; Springman, Sarah
2013-04-01
The Slano Blato landslide has a volume of about 1 mio m3 and is located in the western part of Slovenia. It has been considered to be a potential natural hazard for the village of Lokavec for more than 200 years. Several mud flows, exhibiting a range of volumes and velocities, have originated from the landslide body since the year 2000, when the landslide was reactivated due to an intense rainfall event. A series of obstacles, including safety dams and deposition ponds, have been constructed for the remediation of the landslide. These obstacles are designed to absorb and contain future debris flow hazard. A prerequisite to any risk analysis is to establish the vulnerability to the hazard event. The aim of this work is to simulate possible future debris flow scenarios in order to predict the run out distances, flow heights, impact pressures and potential effects on the downstream village buildings and infrastructure. The simulations were carried out using the RAMMS program (RApid Mass MovementS, www.ramms.slf.ch). A three dimensional terrain model of the landslide area and the downstream zones, with or without the inclusion of the obstacles, was made for the simulations and different scenarios concerning the released volume, the internal friction and viscosity of the sliding mass were studied. The results indicate that low viscosity mudflows with a volume of 5,000 m3 endanger some parts of Lokavec village. However, the simulations with volumes of 15,000 and 50,000 m3 predict catastrophic effects in terms of either impact pressures or deposition heights for the majority of houses. Moreover, the simulations confirmed that the choice of the material properties (internal friction and viscosity), the characteristics of the release hydrograph, event location, and natural or man-made obstacles play major roles in the run out distances and impact pressures.
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.
2006-01-01
A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.
Debris flows resulting from glacial-lake outburst floods in tibet, China
Cui, P.; Dang, C.; Cheng, Z.; Scott, K.
2010-01-01
During the last 70 years of general climatic amelioration, 18 glacial-lake outburst floods (GLOFs) and related debris flows have occurred from 15 moraine-dammed lakes in Tibet, China. Catastrophic loss of life and property has occurred because of the following factors: the large volumes of water discharged, the steep gradients of the U-shaped channels, and the amount and texture of the downstream channel bed and bank material. The peak discharge of each GLOF exceeded 1000 m3/s. These flood discharges transformed to non-cohesive debris flows if the channels contained sufficient loose sediment for entrainment (bulking) and if their gradients were >1%. We focus on this key element, transformation, and suggest that it be included in evaluating future GLOF-related risk, the probability of transformation to debris flow and hyperconcentrated flow. The general, sequential evolution of the flows can be described as from proximal GLOFs, to sedimentladen streamflow, to hyperconcentrated flow, to non-cohesive debris flow (viscous or cohesive debris flow only if sufficient fine sediment is present), and then, distally, back to hyperconcentrated flow and sediment-laden streamflow as sediment is progressively deposited. Most of the Tibet examples transformed only to non-cohesive debris flows. The important lesson for future hazard assessment and mitigation planning is that, as a GLOF entrains (bulks) enough sediment to become a debris flow, the flow volume must increase by at least three times (the "bulking factor"). In fact, the transforming flow waves overrun and mix with downstream streamflow, in addition to adding the entrained sediment (and thus enabling addition of yet more sediment and a bulking factor in excess of three times). To effectively reduce the risk of GLOF debris flows, reducing the level of a potentially dangerous lake with a siphon or excavated spillway or installing gabions in combination with a downstream debris dam are the primary approaches.
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-01-01
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-10-15
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.
Drop size distribution and air velocity measurements in air assist swirl atomizer sprays
NASA Technical Reports Server (NTRS)
Mao, C.-P.; Oechsle, V.; Chigier, N.
1987-01-01
Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.
Mean velocities and Reynolds stresses upstream of a simulated wing-fuselage juncture
NASA Technical Reports Server (NTRS)
Mcmahon, H.; Hubbartt, J.; Kubendran, L. R.
1983-01-01
Values of three mean velocity components and six turbulence stresses measured in a turbulent shear layer upstream of a simulated wing-fuselage juncture and immediately downstream of the start of the juncture are presented nd discussed. Two single-sensor hot-wire probes were used in the measurements. The separated region just upstream of the wing contains an area of reversed flow near the fuselage surface where the turbulence level is high. Outside of this area the flow skews as it passes around the body, and in this skewed region the magnitude and distribution of the turbulent normal and shear stresses within the shear layer are modified slightly by the skewing and deceleration of the flow. A short distance downstream of the wing leading edge the secondary flow vortext is tightly rolled up and redistributes both mean flow and turbulence in the juncture. The data acquisition technique employed here allows a hot wire to be used in a reversed flow region to indicate flow direction.
NASA Technical Reports Server (NTRS)
Nosek, S. M.; Straight, D. M.
1976-01-01
Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe.
The role of headwater streams in downstream water quality
Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.
The Role of Headwater Streams in Downstream Water Quality1
Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565
Espisodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brain, D A; Baker, A H; Briggs, J
2009-06-02
We present an analysis of magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft that reveals isolated magnetic structures filled with Martian atmospheric plasma located downstream from strong crustal magnetic fields with respect to the flowing solar wind. The structures are characterized by magnetic field enhancements and rotations characteristic of magnetic flux ropes, and characteristic ionospheric electron energy distributions with angular distributions distinct from surrounding regions. These observations indicate that significant amounts of atmosphere are intermittently being carried away from Mars by a bulk removal process: the top portions of crustal field loops are stretched throughmore » interaction with the solar wind and detach via magnetic reconnection. This process occurs frequently and may account for as much as 10% of the total present-day ion escape from Mars.« less
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Apparatus for real-time airborne particulate radionuclide collection and analysis
Smart, John E.; Perkins, Richard W.
2001-01-01
An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.
NASA Astrophysics Data System (ADS)
Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean
2008-04-01
SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.
Sterk, Ankie; de Man, Heleen; Schijven, Jack F; de Nijs, Ton; de Roda Husman, Ana Maria
2016-11-15
Climate change is expected to influence infection risks while bathing downstream of sewage emissions from combined sewage overflows (CSOs) or waste water treatment plants (WWTPs) due to changes in pathogen influx, rising temperatures and changing flow rates of the receiving waters. In this study, climate change impacts on the surface water concentrations of Campylobacter, Cryptosporidium and norovirus originating from sewage were modelled. Quantitative microbial risk assessment (QMRA) was used to assess changes in risks of infection. In general, infection risks downstream of WWTPs are higher than downstream CSOs. Even though model outputs show an increase in CSO influxes, in combination with changes in pathogen survival, dilution within the sewage system and bathing behaviour, the effects on the infection risks are limited. However, a decrease in dilution capacity of surface waters could have significant impact on the infection risks of relatively stable pathogens like Cryptosporidium and norovirus. Overall, average risks are found to be higher downstream WWTPs compared to CSOs. Especially with regard to decreased flow rates, adaptation measures on treatment at WWTPs may be more beneficial for human health than decreasing CSO events. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Microfluidic method for measuring viscosity using images from smartphone
NASA Astrophysics Data System (ADS)
Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop
2018-05-01
The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.
Impact of stream restoration on flood waves
NASA Astrophysics Data System (ADS)
Sholtes, J.; Doyle, M.
2008-12-01
Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.
NASA Astrophysics Data System (ADS)
Battin, Tom J.
1999-10-01
The objective of the present paper was to link reach-scale streambed reactive uptake of dissolved organic carbon (DOC) and dissolved oxygen (DO) to subsurface flow paths in an alpine stream (Oberer Seebach (OSB)). The topography adjacent to the stream channel largely determined flow paths, with shallow hillslope groundwater flowing beneath the stream and entering the alluvial groundwater at the opposite bank. As computed from hydrometric data, OSB consistently lost stream water to groundwater with fluxes out of the stream averaging 943 ± 47 and 664 ± 45 L m-2 h-1 at low (Q < 600 L s-1) and high (Q > 600 L s-1) flow, respectively. Hydrometric segregation of streambed fluxes and physicochemical mixing analysis indicated that stream water was the major input component to the streambed with average contributions of 70-80% to the hyporheic zone (i.e., the subsurface zone where shallow groundwater and stream water mix). Surface water was also the major source of DOC with 0.512 ± 0.043 mg C m-2 h-1 to the streambed. The DOC flux from shallow riparian groundwater was lower (0.309 ± 0.071 mg C m-2 h-1) and peaked in autumn with 1.011 mg C m-2 h-1. I computed the relative proportion of downstream discharge through the streambed as the ratio of the downstream length (Ssw) a stream water parcel travels before entering the streambed to the downstream length (Shyp) a streambed water parcel travels before returning to the stream water. The relative streambed DOC retention efficiency, calculated as (input-output)/input of interstitial DOC, correlated with the proportion (Ssw/Shyp) of downstream discharge (r2 = 0.76, p = 0.006). Also, did the streambed metabolism (calculated as DO uptake from mass balance) decrease with low subsurface downstream routing, whereas elevated downstream discharge through the streambed stimulated DO uptake (r2 = 0.69, p = 0.019)? Despite the very short DOC turnover times (˜0.05 days, calculated as mean standing stock/annual input) within the streambed, the latter constitutes a net sink of DOC (˜14 mg C m-2 h-1). Along with high standing stocks of sediment associated particulate organic carbon, these results suggest microbial biofilms as the major retention and storage site of DOC in an alpine stream where large hydrologic exchange controls DOC fluxes.
NASA Astrophysics Data System (ADS)
Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.
2016-12-01
Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (<100 km2) of the River Thames (southern UK) is described. Temperature, conductivity, turbidity, dissolved oxygen (DO) and ammonium (NH4) were measured at downstream locations where long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (< 8 mg L-1) as a response to pollutant first flushes was particularly apparent in urban streams but this was followed by a rapid recovery. Chronic effects lasting for three to four weeks were only seen downstream of a sewage treatment works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.
Water balance in irrigation districts. Uncertainty in on-demand pressurized networks
NASA Astrophysics Data System (ADS)
Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente
2015-04-01
In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.
NASA Astrophysics Data System (ADS)
Pasternack, Gregory B.; Bounrisavong, Michael K.; Parikh, Kaushal K.
2008-07-01
SummaryThe importance of channel non-uniformity to natural hydrogeomorphic and ecological processes in gravel-bed rivers is becoming increasingly known, but its use in channel rehabilitation lags behind. Many projects still use methods that assume steady, uniform flow and simple channel geometries. One aspect of channel non-uniformity that has not been considered much is its role in controlling backwater conditions and thus potentially influencing patterns of physical habitat and channel stability in sequences of riffles and pools. In this study, 2D hydrodynamic models of two non-uniform pool-riffle-pool configurations were used to systematically explore the effects of four different downstream water surface elevations at three different discharges (24 total simulations) on riffle-pool ecohydraulics. Downstream water surface elevations tested included backwater, uniform, accelerating, and critical conditions, which are naturally set by downstream riffle-crest morphology but may also be re-engineered artificially. Discharges included a fish-spawning low flow, summer fish-attraction flow, and a peak snowmelt pulse. It was found that the occurrence of a significant area of high-quality fish spawning habitat at low flow depends on riffles being imposed upon by backwater conditions, which also delay the onset of full bed mobility on riffles during floods. The assumption of steady, uniform flow was found to be inappropriate for gravel-bed rivers, since their non-uniformity controls spatial patterns of habitat and sediment transport. Also, model results indicated that a "reverse domino" mechanism can explain catastrophic failure and re-organization of a sequence of riffles based on the water surface elevation response to scour on downstream riffles, which then increases scour on upstream riffles.
Experimental study of the free surface velocity field in an asymmetrical confluence
NASA Astrophysics Data System (ADS)
Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom
2017-04-01
The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows disappears quite quickly, because of the severe flow contraction that aids the flow uniformization. This is also accelerated because of a flow redistribution process that starts already upstream of the confluence, resulting in a lower than expected velocity difference over the shear layer between the bulk of the incoming flows. In contrast, the shear layer between the contracted section and the separation zone proves to be of a significantly higher order of magnitude, with large turbulent structures appearing that get transported far downstream. In conclusion, the resulting understanding of this analysis of velocity fields with a larger field of view shows that when analyzing confluence hydrodynamics, one should pay ample attention to analyze data far enough up and downstream to assess all the relevant processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
Estimating the waiting time of multi-priority emergency patients with downstream blocking.
Lin, Di; Patrick, Jonathan; Labeau, Fabrice
2014-03-01
To characterize the coupling effect between patient flow to access the emergency department (ED) and that to access the inpatient unit (IU), we develop a model with two connected queues: one upstream queue for the patient flow to access the ED and one downstream queue for the patient flow to access the IU. Building on this patient flow model, we employ queueing theory to estimate the average waiting time across patients. Using priority specific wait time targets, we further estimate the necessary number of ED and IU resources. Finally, we investigate how an alternative way of accessing ED (Fast Track) impacts the average waiting time of patients as well as the necessary number of ED/IU resources. This model as well as the analysis on patient flow can help the designer or manager of a hospital make decisions on the allocation of ED/IU resources in a hospital.
NASA Technical Reports Server (NTRS)
Sehgal, A. K.; Tiwari, S. N.; Singh, D. J.
1991-01-01
Hypersonic flows over cones and straight biconic configurations are calculated for a wide range of free stream conditions in which the gas behind the shock is treated as perfect. Effect of angle of attack and nose bluntness on these slender cones in air is studied extensively. The numerical procedures are based on the solution of complete Navier-Stokes equations at the nose section and parabolized Navier-Stokes equations further downstream. The flow field variables and surface quantities show significant differences when the angle of attack and nose bluntness are varied. The complete flow field is thoroughly analyzed with respect to velocity, temperature, pressure, and entropy profiles. The post shock flow field is studied in detail from the contour plots of Mach number, density, pressure, and temperature. The effect of nose bluntness for slender cones persists as far as 200 nose radii downstream.
Control of flow separation in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Choi, Sangho; Choi, Haecheon
2015-11-01
Towards the development of successful control methods for separation delay in a turbulent boundary layer, we adopt a model flow field, in which a turbulent separation occurs above a flat plate (Na and Moin 1998 JFM), and apply controls to this flow for reducing the size of the separation bubble and investigating the interaction between the forcing and flow near the separation bubble. We provide a single-frequency forcing with zero net mass flow rate at the upstream of the separation bubble. At low forcing frequencies, spanwise vortices are generated and travel downstream, bringing high momentum toward the wall and reducing the size of the separation bubble. Also, these vortices cause the separation and reattachment points to travel downstream. On the other hand, at high forcing frequencies, the size of the separation bubble becomes smaller and larger in time, respectively, due to the pressure gradient alternating favorably and adversely in time. Supported by NRF-2011-0028032 and 2014048162.
Discrete sonic jets used as boundary-layer trips at Mach numbers of 6 and 8.5
NASA Technical Reports Server (NTRS)
Stone, D. R.; Cary, A. M., Jr.
1972-01-01
The effect of discrete three-dimensional sonic jets used to promote transition on a sharp-leading-edge flat plate at Mach numbers of 6 and 8.5 and unit Reynolds numbers as high as 2.5 x 100,000 per cm in the Langley 20-inch hypersonic tunnels is discussed. An examination of the downstream flow-field distortions associated with the discrete jets for the Mach 8.5 flow was also conducted. Jet trips are found to produce lengths of turbulent flow comparable to those obtained for spherical-roughness-element trips while significantly reducing the downstream flow distortions. A Reynolds number based upon secondary jet penetration into a supersonic main flow is used to correlate jet-trip effectiveness just as a Reynolds number based upon roughness height is used to correlate spherical-trip effectiveness. Measured heat-transfer data are in agreement with the predictions.
NASA Technical Reports Server (NTRS)
Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.; Gelder, Thomas F.
1987-01-01
Detailed flow surveys downstream of the corner turning vanes and downstream of the fan inlet guide vanes have been obtained in a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel. Two turning vane designs were evaluated in both corners 1 and 2 (the corners between the test section and the drive fan). Vane A was a controlled-diffusion airfoil and vane B was a circular-arc airfoil. At given flows the turning vane wakes were surveyed to determine the vane pressure losses. For both corners the vane A turning vane configuration gave lower losses than the vane B configuration in the regions where the flow regime should be representative of two-dimensional flow. For both vane sets the vane loss coefficient increased rapidly near the walls.
Hydraulic jump and Bernoulli equation in nonlinear shallow water model
NASA Astrophysics Data System (ADS)
Sun, Wen-Yih
2018-06-01
A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.
Characteristics of strongly-forced turbulent jets and non-premixed jet flames
NASA Astrophysics Data System (ADS)
Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.
2006-10-01
Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.
Spray characteristics of two combined jet atomizers
NASA Astrophysics Data System (ADS)
Tambour, Y.; Portnoy, D.
The downstream changes in droplet volume concentration of a vaporizing fuel spray produced by two jet atomizers which form an overlapping zone of influence is theoretically analyzed, employing experimental data of Yule et al. (1982) for a single jet atomizer as initial conditions. One of the atomizers is located below the other at a certain distance downstream. Such an injection geometry can be found in afterburners of modern jet engines. The influence of various vertical and horizontal distances between the two atomizers on the downstream spray characteristics is investigated for a vaporizing kerosene spray in a 'cold' (293 K) and a 'hot' (450 K) environment. The analysis shows how one can control the downstream spray characteristics via the geometry of injection. Such geometrical considerations may be of great importance in the design of afterburner wall geometry and in the reduction of wall thermal damage. The injection geometry may also affect the intensity of the spray distribution which determines the mode of droplet group combustion. The latter plays an important role in improving afterburner combustion efficiency.
NASA Astrophysics Data System (ADS)
Qiao, Huiting; Zhang, Mingliang; Jiang, Hengzhi; Xu, Tianping; Zhang, Hongxing
2018-06-01
Interaction studies of vegetation within flow environments are essential for the determination of bank protection, morphological characteristics and ecological conditions for wetlands. This paper uses the MIKE 21 hydrodynamic and salinity model to simulate the hydrodynamic characteristics and salinity transport processes in the Pink Beach wetlands of the Liao River estuary. The effect of wetland plants on tidal flow in wetland areas is represented by a varying Manning coefficient in the bottom friction term. Acquisition of the vegetation distribution is based on Landsat TM satellites by remote sensing techniques. Detailed comparisons between field observation and simulated results of water depth, salinity and tidal currents are presented in the vegetated domain of the Pink Beach wetlands. Satisfactory results were obtained from simulations of both flow characteristics and salinity concentration, with or without vegetation. A numerical experiment was conducted based on variations in vegetation density, and compared with the tidal currents in non-vegetated areas; the computed current speed decreased remarkably with an increase in vegetation density. The impact of vegetation on water depth and salinity was simulated, and the findings revealed that wetland vegetation has an insignificant effect on the water depth and salinity in this wetland domain. Several stations (from upstream to downstream) in the Pink Beach wetlands were selected to estimate the longitudinal variation of salinity under different river runoff conditions; the results showed that salinity concentration decreases with an increase in river runoff. This study can consequently help increase the understanding of favourable salinity conditions for particular vegetation growth in the Pink Beach wetlands of the Liao River estuary. The results also provide crucial guidance for related interaction studies of vegetation, flow and salinity in other wetland systems.
Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.
2015-01-01
The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate that mixed alluvial–bedrock channels exhibit first-order lithologic controls (lithologic resistance and valley confinement) of channel geometry, second-order hydrologic (flow regime) control of channel dimensions, and third-order sedimentary controls that exert subsidiary influence on channel shape and bed configuration.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Schirmer, Alberto W.
1993-01-01
An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.
Time of travel of solutes in selected reaches of the Sandusky River Basin, Ohio, 1972 and 1973
Westfall, Arthur O.
1976-01-01
A time of travel study of a 106-mile (171-kilometer) reach of the Sandusky River and a 39-mile (63-kilometer) reach of Tymochtee Creek was made to determine the time required for water released from Killdeer Reservoir on Tymochtee Creek to reach selected downstream points. In general, two dye sample runs were made through each subreach to define the time-discharge relation for approximating travel times at selected discharges within the measured range, and time-discharge graphs are presented for 38 subreaches. Graphs of dye dispersion and variation in relation to time are given for three selected sampling sites. For estimating travel time and velocities between points in the study reach, tables for selected flow durations are given. Duration curves of daily discharge for four index stations are presented to indicate the lo-flow characteristics and for use in shaping downward extensions of the time-discharge curves.
NASA Astrophysics Data System (ADS)
Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.
2018-06-01
The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.
Modeling unsteady sound refraction by coherent structures in a high-speed jet
NASA Astrophysics Data System (ADS)
Kan, Pinqing; Lewalle, Jacques
2011-11-01
We construct a visual model for the unsteady refraction of sound waves from point sources in a Ma = 0.6 jet. The mass and inviscid momentum equations give an equation governing acoustic fluctuations, including anisotropic propagation, attenuation and sources; differences with Lighthill's equation will be discussed. On this basis, the theory of characteristics gives canonical equations for the acoustic paths from any source into the far field. We model a steady mean flow in the near-jet region including the potential core and the mixing region downstream of its collapse, and model the convection of coherent structures as traveling wave perturbations of this mean flow. For a regular distribution of point sources in this region, we present a visual rendition of fluctuating distortion, lensing and deaf spots from the viewpoint of a far-field observer. Supported in part by AFOSR Grant FA-9550-10-1-0536 and by a Syracuse University Graduate Fellowship.
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
A preliminary evaluation of regional ground-water flow in south-central Washington
La Sala, A. M.; Doty, G.C.; Pearson, F.J.
1973-01-01
The characteristics of regional ground-water flow were investigated in a 4,500-square-mile region of south-central Washington, centered on the U.S. Atomic Energy Commission Hanford Reservation. The investigation is part of the Commission's feasibility study on storing high-level radioactive waste in chambers mined in basaltic rocks at a. depth of about 3,000 feet or more below the surface. Ground-water flow., on a regional scale, occurs principally in the basalt and-in interbedded sediments of the Columbia River Group, and is controlled by topography, the structure of the basalt, and the large streams--the Columbia, Snake, and Yakima Rivers. The ground water beneath the main part of the Hanford Reservation, south and west of the Columbia River, inures southeastward from recharge areas in the uplands, including Cold Creek and Dry Creek valleys, and ultimately discharges to the Columbia River south of the reservation: East and southeast of the Columbia River, ground water flows generally southwestward and discharges to the River. The Yakima River valley contains a distinct flow system in which movement is toward the Yakima River from the topographic divides. A large southward-flowing ground-water system beneath the southern flank of the Horse Heaven Hills discharges to the Columbia River in the westward-trending reach downstream from Wallula Gap.
NASA Astrophysics Data System (ADS)
Yu, Jianyang; Chen, Fu; Liu, Huaping; Song, Yanping
2015-12-01
An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations (DNS). A simplified model of dielectric barrier discharge (DBD) plasma was applied and its parameters were calibrated with the experimental results. In the simulations, effects of the actuation frequency on the flow were examined. The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow. The result shows that induced by the unsteady actuation, a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer. The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer. They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity. The distance of the neighboring vortices was found to be determined by the actuation frequency. Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference. supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51121004) and National Natural Science Foundation of China (No. 50976026)
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer
NASA Technical Reports Server (NTRS)
Bhat, M. K.; Vakili, A. D.; Wu, J. M.
1990-01-01
The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.
From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems
NASA Astrophysics Data System (ADS)
Gabbud, C.; Lane, S. N.
2017-12-01
The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.
Characterization of flow in a scroll duct
NASA Technical Reports Server (NTRS)
Begg, E. K.; Bennett, J. C.
1985-01-01
A quantitative, flow visualization study was made of a partially elliptic cross section, inward curving duct (scroll duct), with an axial outflow through a vaneless annular cutlet. The working fluid was water, with a Re(d) of 40,000 at the inlet to the scroll duct, this Reynolds number being representative of the conditions in an actual gas turbine scroll. Both still and high speed moving pictures of fluorescein dye injected into the flow and illuminated by an argon ion laser were used to document the flow. Strong secondary flow, similar to the secondary flow in a pipe bend, was found in the bottom half of the scroll within the first 180 degs of turning. The pressure field set up by the turning duct was strong enough to affect the inlet flow condition. At 90 degs downstream, the large scale secondary flow was found to be oscillatory in nature. The exit flow was nonuniform in the annular exit. By 270 degs downstream, the flow appeared unorganized with no distinctive secondary flow pattern. Large scale structures from the upstream core region appeared by 90 degs and continued through the duct to reenter at the inlet section.
Sand Transport, Flow Turbulence, and Bed Forms over an Immobile Gravel Bed
USDA-ARS?s Scientific Manuscript database
Channels downstream of dams often become armored because the sediment supply from upstream is cut off. Sand is generally supplied to these armored reaches intermittently from tributaries downstream of the dam or from sand bypassing. Accurate predictions of the rate of transport of sand over and th...
Geographically isolated wetlands (GIW), defined as depressional wetlands completely surrounded by uplands, support an array of ecological processes. A solid scientific understanding of the hydrologic effects of GIWs upon downstream waterways is important for legal and policy-mak...
DOT National Transportation Integrated Search
2017-11-01
The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...
Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim
2008-07-19
Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.
Ruddy, Barbara C.; Williams, Cory A.
2007-01-01
In 2007, the U.S. Geological Survey, in cooperation with Bowie Mining Company, initiated a study to characterize the streamflow and streamflow gain-loss in a reach of Hubbard Creek in Delta County, Colorado, in the vicinity of a mine-permit area planned for future coal mining. Premining streamflow characteristics and streamflow gain-loss variation were determined so that pre- and postmining gain-loss characteristics could be compared. This report describes the methods used in this study and the results of two streamflow-measurement sets collected during low-flow conditions. Streamflow gain-loss measurements were collected using rhodamine WT and sodium bromide tracers at four sites spanning the mine-permit area on June 26-28, 2007. Streamflows were estimated and compared between four measurement sites within three stream subreaches of the study reach. Data from two streamflow-gaging stations on Hubbard Creek upstream and downstream from the mine-permit area were evaluated. Streamflows at the stations were continuous, and flow at the upstream station nearly always exceeded the streamflow at the downstream station. Furthermore, streamflow at both stations showed similar diurnal patterns with traveltime offsets. On June 26, streamflow from the gain-loss measurements was greater at site 1 (most upstream site) than at site 4 (most downstream site); on June 27, streamflow was greater at site 4 than at site 2; and on June 27, there was no difference in streamflow between sites 2 and 3. Data from streamflow-gaging stations 09132940 and 09132960 showed diurnal variations and overall decreasing streamflow over time. The data indicate a dynamic system, and streamflow can increase or decrease depending on hydrologic conditions. The streamflow within the study reach was greater than the streamflows at either the upstream or downstream stations. A second set of gain-loss measurements was collected at sites 2 and 4 on November 8-9, 2007. On November 8, streamflow was greater at site 4 than at site 2, and on the following day, November 9, streamflow was greater at site 2 than at site 4. Data collection on November 8 occurred while the streamflow was increasing due to contributions from stream ice melting throughout different parts of the basin. Data collection on November 9 occurred earlier in the day with less stream ice melting and more steady-state conditions, so the indication that streamflow decreased between sites 2 and 4 may be more accurate. Diurnal variations in streamflow are common at both the upper and the lower streamflow-gaging stations. The upper streamflow-gaging station shows a melt-freeze influence from tributaries to Hubbard Creek during the winter season. Downstream from the study reach, observed diurnal variation is likely due to evapotranspiration associated with dense flood-plain vegetation, which consumes water from the creek during the middle of the day. Varying diurnal patterns in streamflow, combined with possible variations in tributary inflows to Hubbard Creek in the study reach, probably account for the observed variations in streamflow at the tracer measurement sites. During both sampling periods in June and November 2007, conditions were less than ideal and not steady state. The June 27 sampling indicates that the streamflow was increasing between measurement sites 2 and 4, and the November 9 sampling indicates that the streamflow was decreasing between measurement sites 2 and 4. The data collected during the diurnal and day-to-day variations in streamflow indicated that the streamflow reach is dynamic and can be gaining, losing, or constant.
Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1981-01-01
Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.
Compact Instruments Measure Helium-Leak Rates
NASA Technical Reports Server (NTRS)
Stout, Stephen; Immer, Christopher
2003-01-01
Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.
Fuel control for gas turbine with continuous pilot flame
Swick, Robert M.
1983-01-01
An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.
NASA Astrophysics Data System (ADS)
Wildmann, N.; Kigle, S.; Hagen, M.; Gerz, T.
2017-12-01
As the resource wind is increasingly exploited to produce electricity, wind energy converter (WEC) deployment relocates to more complex terrain such as hilltops or mountain ridges. In that context, it is crucial to understand the interaction between the atmospheric boundary layer (ABL) flow and the WEC in order to predict downstream flow characteristics. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) performed full-scale wake measurements on a single WEC of type Enercon E82 with three Leosphere Windcube 200S long-range scanning lidar systems. The experimental setup covers two parallel ridges 1.4 km apart, separated by a 200 m deep valley. The ridges are oriented in NW-SE direction, perpendicular to main wind direction, which is SW. Two of the three scanning lidar systems are positioned downstream of the WEC in line with main wind direction to span a vertical plane, perpendicular to the ridges, with RHI scans. This allows investigating wake events with single or dual-doppler lidar techniques. The third lidar system, which is positioned along the WEC ridge, is used to measure the wake position outside the before mentioned measurement plane. Wake events in three different ABL regimes (neutral, stable and convective) are evaluated with respect to wake position, dispersion, propagation and the wind-speed deficit. It is found that wake position and propagation are strongly influenced by the atmospheric stability, forcing the wake to deviate from hub height, migrating to higher levels for convective regimes. For stable ABL conditions wakes descend into the valley, and are clearly detectable up to at least eight rotor diameters downstream of the WEC. The coplanar scanning strategy furthermore allows to calculate the two-dimensional wind vector in the vertical scanning plane, indicating that vertical wind components with up to 2 ms-1 play an important role in the interaction between ABL flow and WEC. With the help of the third lidar system on the WEC ridge, wake meandering can be quantified. The presentation will provide a thorough analysis of three exemplary measurement days.
Direct Numerical Simulation of Flow Over Passive Geometric Disturbances
NASA Astrophysics Data System (ADS)
Vizard, Alexander
It is well understood that delaying flow separation on a bluff body allows significant drag reduction, which is attractive in many applications. With this in mind, many separation control mechanisms, both active and passive, have been developed and tested to optimize the effects of this phenomenon. Although this idea is generally accepted, the physical occurrences in the near-wall region during transition that lead to separation delay are not well understood. The current study evaluates the impact of both spherical dimples, and sandgrain style roughness on downstream flow by performing direct numerical simulations over such geometries on a zero pressure gradient flat plate. It is shown that although dimples and random roughness of similar characteristic length scales exhibit similar boundary layer characteristics, dimples are more successful in developing high momentum in the vicinity of the wall. Additionally it is shown that increasing the relative size of the rough elements does not increase the near-wall momentum, and is undesirable in controlling separation. Finally, it is shown that the impact of roughness elements on the flow is more immediate, and that, for the case of one row of dimples and an equivalent area of roughness, the roughness patch is more successful in transitioning the near-wall region to a non-laminar state. It can be concluded from variation in the span of the flowfield for a single row of dimples that the size and orientation of the disturbance region is significant to the results.
Digital flow model of the Chowan River estuary, North Carolina
Daniel, C.C.
1977-01-01
A one-dimensional deterministic flow model based on the continuity equation had been developed to provide estimates of daily flow past a number of points on the Chowan River estuary of northeast North Carolina. The digital model, programmed in Fortran IV, computes daily average discharge for nine sites; four of these represent inflow at the mouths of major tributaries, the five other sites are at stage stations along the estuary. Because flows within the Chowan River and the lower reaches of its tributaries are tidally affected, flows occur in both upstream and downstream directions. The period of record generated by the model extends from April 1, 1974, to March 31, 1976. During the two years of model operation the average discharge at Edenhouse near the mouth of the estuary was 5,830 cfs (cubic feet per second). Daily average flows during this period ranged from 55,900 cfs in the downstream direction on July 17, 1975, to 14,200 cfs in the upstream direction on November 30, 1974
Measurement of flow separation in a human vocal folds model
NASA Astrophysics Data System (ADS)
Šidlof, Petr; Doaré, Olivier; Cadot, Olivier; Chaigne, Antoine
2011-07-01
The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid-structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.
Measurement and analysis of a small nozzle plume in vacuum
NASA Technical Reports Server (NTRS)
Penko, P. F.; Boyd, I. D.; Meissner, D. L.; Dewitt, K. J.
1993-01-01
Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area.
Flow-driven instabilities during pattern formation of Dictyostelium discoideum
NASA Astrophysics Data System (ADS)
Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.
2015-06-01
The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.
NASA Astrophysics Data System (ADS)
Grams, P. E.; Schmeeckle, M. W.; Mueller, E. R.; Buscombe, D.; Kasprak, A.; Leary, K. P.
2016-12-01
The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.
NASA Astrophysics Data System (ADS)
Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael
2017-11-01
The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.
Conditions for a steady ice sheet ice shelf junction
NASA Astrophysics Data System (ADS)
Nowicki, S. M. J.; Wingham, D. J.
2008-01-01
This paper investigates the conditions under which a marine ice sheet may adopt a steady profile. The ice is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to ice sheet and ice shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream ice commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the extent that the numerical, linearly viscous treatment may be applied to the case of ice flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.
A normal shock-wave turbulent boundary-layer interaction at transonic speeds
NASA Technical Reports Server (NTRS)
Mateer, G. G.; Brosh, A.; Viegas, J. R.
1976-01-01
Experimental results, including surveys of the mean and fluctuating flow, and measurements of surface pressure, skin friction, and separation length, are compared with solutions to the Navier-Stokes equations utilizing various algebraic eddy viscosity models to describe the Reynolds shear stresses. The experimental data, obtained at a free-stream Mach number of 1.5 and Reynolds numbers between 10 million and 80 million, show that a separated zone forms near the foot of the shock and that its length is proportional to the initial boundary-layer thickness; that a supersonic region forms downstream of the shock; and that the shear stress increases significantly through the interaction and subsequently decays downstream. The computations adequately represent the qualitative features of the flow field throughout the interaction but quantitatively underpredict the extent of separation and the downstream level of skin friction.
Improvement of trout streams in Wisconsin by augmenting low flows with ground water
Novitzki, R.P.
1973-01-01
Approximately 2 cubic feet per second of ground water were introduced into the Little Plover River in 1968 when natural streamflow ranged from 3 to 4 cubic feet per second. These augmentation flows were retained undiminished through the 2-mile reach of stream monitored. Maximum stream temperatures were reduced as much as 5?F (3?C) at the augmentation site during the test period, although changes became insignificant more than 1 mile downstream. Maximum temperatures might be reduced as much as 10?F (6?C) during critical periods, based on estimates using a stream temperature model developed as part of the study. During critical periods significant temperature improvement may extend 2 miles or more downstream. Changes in minimum DO (dissolved oxygen) levels were slight, primarily because of the high natural DO levels occurring during the test period. Criteria for considering other streams for flow augmentation are developed on the basis of the observed hydrologic responses in the Little Plover River. Augmentation flows of nearly 2? cubic feet per second of ground water were introduced into the headwater reach of Black Earth Creek from the end of June through mid-October 1969. Streamflow ranged from 1 to 2 cubic feet per second at the augmentation site, and the average flow at the gaging station at Black Earth, approximately 8 miles downstream, ranged from 25 to 50 cubic feet per second. Augmentation flows were retained through the 8-mile reach of stream. Temperature of the augmentation flow as it entered the stream ranged from 60? to 70?F (about 16? to 21?C) during the test period, and minimum stream temperatures were raised 5?F (3?C) or more at the augmentation site, with changes extending from 2 to 3 miles downstream. Augmentation during critical periods could maintain stream temperatures between 40? and 70?F (4? and 21?C) through most of the study reach. DO levels were increased by as much as 2 milligrams per liter or more below the augmentation site, although the improvement diminished to approximately 1 milligram per liter downstream in the problem reach. During critical periods DO improvement in the problem reach would be somewhat greater. Flow augmentation would not be necessary during normal conditions in either of the streams studied. Critical DO and temperature levels are not known to occur in the Little Plover River. Since the construction of secondary treatment facilities at the Cross Plains sewage-treatment plant, critical DO levels are no longer expected to be a problem in Black Earth Creek. However, results from this study may be used to estimate the effectiveness of flow augmentation in other streams in similar areas in which critical DO or temperature levels may occur.
Kroening, Sharon E.
2004-01-01
To meet water-supply needs in central Florida for 2020, the St. Johns River is being considered as a source of water supply to augment ground water from the Floridan aquifer system. Current (2004) information on streamflow and water-quality characteristics of the St. Johns River in east-central Florida is needed by water resources planners to assess the feasibility of using the river as an alternate source of water supply and to design water treatment facilities. To address this need, streamflow and water quality of the 90-mile-long middle reach of the St. Johns River, Florida, from downstream of Lake Poinsett to near DeLand, were characterized by using retrospective (1991-99) and recently collected data (2000-02). Streamflow characteristics were determined by using data from water years 1933-2000. Water-quality characteristics were described using data from 1991-99 at 15 sites on the St. Johns River and 1 site each near the mouths of the Econlockhatchee and Wekiva Rivers. Data were augmented with biweekly water-quality data and continuous physical properties data at four St. Johns River sites and quarterly data from sites on the Wekiva River, Blackwater Creek, and downstream of Blue Springs from 2000-02. Water-quality constituents described were limited to information on physical properties, major ions and other inorganic constituents, nutrients, organic carbon, suspended solids, and phytoplankton chlorophyll-a. The occurrence of antibiotics, human prescription and nonprescription drugs, pesticides, and a suite of organic constituents, which may indicate domestic or industrial waste, were described at two St. Johns River sites using limited data collected in water years 2002-03. The occurrence of these same constituents in water from a pilot water treatment facility on Lake Monroe also was described using data from one sampling event conducted in March 2003. Dissolved oxygen concentration and water pH values in the St. Johns River were significantly lower during high-flow conditions than during low-flow conditions. Low dissolved oxygen concentrations may have resulted from the input of water from marsh areas or the subsequent decomposition of organic matter transported to the river during high-flow events. Low water pH values during high-flow conditions likely resulted from the increased dissolved organic carbon concentrations in the river. Concentrations of total dissolved solids and other inorganic constituents in the St. Johns River were inversely related with streamflow. Most major ion concentrations, total dissolved solids concentrations, and specific conductance values varied substantially at the Christmas, Sanford, and DeLand sites during low-flow periods in 2000-01 probably reflecting wind and tidal effects. Sulfide concentrations as high as 6 milligrams per liter (mg/L) were measured in the St. Johns River during high-flow periods. Increased sulfide concentrations likely resulted from the decomposition of organic matter or the reduction of sulfate. Bromide concentrations as high as 17 mg/L were measured at the most upstream site on the St. Johns River during 2000-02. Temporal variations in bromide were characterized by sharp peaks in concentration during low-flow periods. Peaks in bromide concentrations tended to coincide with peaks in chloride concentrations because the likely source of both constituents is ground water affected by relict seawater. Median dissolved organic carbon concentrations ranged from 15 to 26 mg/L during 2000-02, and concentrations as high as 42 mg/L were measured. Water color values and dissolved organic carbon concentrations generally were significantly greater during high-flow conditions than during low-flow conditions. Specific ultraviolet light absorbance data indicated the organic carbon during high-flow events was more aromatic in composition and likely originated from terrestrially derived sources compared to organic carbon in the river during other times of the year. D
Low coke fuel injector for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.R.
This patent describes a gas turbine carbureting device for disposal in a down-stream flowing compressor discharge air flow. It comprises: a spin chamber defined by a generally annular housing including a closed forward end having a continuous unobstructed inner surface and an open aft end wherein the forward end is upstream of the aft end with respect tot he compressor discharge airflow; at least one exhaust tube having an inlet disposed within the spin chamber wherein the exhaust tube is radially spaced apart from the annular housing and which together with the annular housing forms at least in part amore » first annular air passage leading to the forward end; the housing having a fuel entrance and a swirling air entrance to the first annular air passage and spaced axially apart from each other, and wherein the swirling air entrance and fuel entrance are downstream of the closer forward end with respect to the compressor discharge flow; and wherein the first air passage is formed for flowing swirling air from the swirling air passage to the aft end in an upstream direction with respect to the compressor discharge flow and the exhaust tube inlet is disposed within the swirl chamber so as to reverse the axial direction of the swirling air off the forward end from an upstream direction to a downstream direction through the exhaust tube.« less
To what extent can green infrastructure mitigate downstream flooding in a peri-urban catchment?
NASA Astrophysics Data System (ADS)
Schubert, J. E.; Burns, M.; Sanders, B. F.; Flethcher, T.
2016-12-01
In this research, we couple an urban hydrologic model (MUSIC, eWater, AUS) with a fine resolution 2D hydrodynamic model (BreZo, UC Irvine, USA) to test to what extent retrofitting an urban watershed with stormwater control measures (SCMs) can propagate flood management benefits downstream. Our study site is the peri-urban Little Stringybark Creek (LSC) catchment in eastern Melbourne, AUS, with an area of 4.5 km2 and connected impervious area of 9%. Urban development is mainly limited to the upper 2 km2of the catchment. Since 2009 the LSC catchment has been the subject of a large-scale experiment aiming to restore morenatural flow by implementing over 300 SCMs, such as rain tanks and infiltration trenches, resulting in runoff from 50% of connected impervious areas now being intercepted by some form of SCM. For our study we calibrated the hydrologic and hydraulic models based on current catchment conditions, then we developed models representing alternative SCM scenarios including a complete lack of SCMs versus a full implementation of SCMs. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 63-1% and durations between 10 min to 24 hr. Metrics of SCM efficacy in changing flood regime include flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Results indicate that across the range of AEPs tested and for storm durations equal or less than 3 hours, current SCM conditions reduce downstream flooded area on average by 29%, while a full implementation of SCMs would reduce downstream flooded area on average by 91%. A full implementation of SCMs could also lower maximum flow intensities by 83% on average, reducing damage potential to structures in the flow path and increasing the ability for vehicles to evacuate flooded streets. We also found that for storm durations longer than 3 hours, the SCMs capacity to retain rainfall runoff volumes is much decreased, with a full implementation of SCMs only reducing flooded area by 8% and flow intensity by 5.5%. Therefore additional measures are required for downstream flood hazard mitigation from long duration events.
NASA Astrophysics Data System (ADS)
Curtis, Katherine E.; Renshaw, Carl E.; Magilligan, Francis J.; Dade, William B.
2010-05-01
Because of the combined effects of reduced sediment transport capacity and competency following flow regulation, morphological changes are expected to occur in channels downstream from dams and, specifically, at tributary junctions where local inputs of water and sediment occur. Using a combination of historical aerial photographs, mainstem- and tributary-channel pebble counts, and HEC-RAS flow modeling for two watersheds in south-central VT, one unregulated and the other regulated since 1961, we document the time series of post-regulation channel narrowing and associated bar growth due to the influx of tributary sediment. Channel adjustments at regulated tributary junctions have been significant in ca. 50 years following impoundment, with channels downstream of the confluences narrowing over 15% after an initial ca. 20-year lag before the onset of accelerated narrowing. Moreover, flow modeling suggests that downstream of regulated confluences, the modern median grain size ( d50) along the channel bed is immobile. No significant channel narrowing has occurred either above or below unregulated tributary junctions or on the mainstem upstream of regulated confluences. However, greater channel sediment fining is observed upstream of regulated confluences than above unregulated confluences. Thus, the primary mode of mainstem channel adjustment differs up- and downstream of regulated tributaries. These confluence effects have occurred where the tributary drainage area is only 0.2 times that of the mainstem, well below the threshold ratio of 0.6 required for significant geomorphic effects at unregulated confluences, highlighting the geomorphic scale shift of dams. Lastly, we evaluate the downstream length required for a river to recover from the impacts of impoundment and demonstrate that even distal locations are impacted by flow regulation. Unlike the impacts of flow regulation in the western US where channel incision and bar erosion predominate following impoundment, we find that in situations where bed incision is minimal and where sediment loads are low but bed caliber high, bar growth and channel narrowing are significant adjustments at tributary junctions following impoundment. Therefore, at our sites the effects of dams on reduced competency may be more profound than on reduced sediment transport capacity, highlighting the importance of geologic and geomorphic settings in understanding fluvial responses to impoundment.
NASA Astrophysics Data System (ADS)
Nanson, G. C.; Young, R. W.
1981-07-01
Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.
Identification of temporal and spatial signatures of broadband shock-associated noise
NASA Astrophysics Data System (ADS)
Pérez Arroyo, C.; Daviller, G.; Puigt, G.; Airiau, C.; Moreau, S.
2018-02-01
Broadband shock-associated noise (BBSAN) is a particular high-frequency noise that is generated in imperfectly expanded jets. BBSAN results from the interaction of turbulent structures and the series of expansion and compression waves which appears downstream of the convergent nozzle exit of moderately under-expanded jets. This paper focuses on the impact of the pressure waves generated by BBSAN from a large eddy simulation of a non-screeching supersonic round jet in the near-field. The flow is under-expanded and is characterized by a high Reynolds number Re_j = 1.25× 10^6 and a transonic Mach number M_j=1.15 . It is shown that BBSAN propagates upstream outside the jet and enters the supersonic region leaving a characteristic pattern in the physical plane. This pattern, also called signature, travels upstream through the shock-cell system with a group velocity between the acoustic speed Uc-a_∞ and the sound speed a_∞ in the frequency-wavenumber domain (U_c is the convective jet velocity). To investigate these characteristic patterns, the pressure signals in the jet and the near-field are decomposed into waves traveling downstream (p^+ ) and waves traveling upstream (p^- ). A novel study based on a wavelet technique is finally applied on such signals in order to extract the BBSAN signatures generated by the most energetic events of the supersonic jet.
Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA
NASA Astrophysics Data System (ADS)
Levine, Rebekah; Meyer, Grant A.
2014-01-01
Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment within the main channel on Odell Creek is limited by frequent breaching (< 1-5 years), so in-channel sediment storage because of damming has not caused measurable channel aggradation over the study period. Enhanced overbank flow by dams, however, likely increases fine-grained floodplain sedimentation and riparian habitat. Contrasts between beaver-damming impacts on Odell Creek and other stream systems of different scales suggest a high sensitivity to hydrologic, geomorphic, and environmental controls, complicating predictions of the longer-term effects of beaver restoration.
Headwater Influences on Downstream Water Quality
Oakes, Robert M.
2007-01-01
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality. PMID:17999108
Mason, Rod S; Mitchell, David J; Dickinson, Paul M
2010-04-21
Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical model, the complex electrical (and mass spectrometric) behaviour fits qualitatively, but can be understood well, with the Rydberg gas model described in papers II and III (R. S. Mason, and R. S. Mason and P. Douglas, PCCP, 2010, DOI: 10.1039/b918081h and b918083d) over a wide range of probe bias voltages. The full cycle of behavior is then described for the development of a true secondary discharge within the downstream plasma.
Computational Fluid Dynamics Analysis for the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.
2005-01-01
In phase II, additional inducer rotations are simulated in order to understand the root cause of the flowliner crack problem. CFD results confirmed that there is a strong unsteady interaction between the backflow regions caused by the LPFTP inducer and secondary flow regions in the bellows cavity through the flowliner slots. It is observed that the swirl on the duct side of the downstream flowliner is stronger than on the duct side of the upstream flowliner. Due to this swirl, there are more significant unsteady flow interactions through the downstream slots than those observed in the upstream slots. Averaged values of the local velocity at the slots were provided to the NESC-ITA flow physics acoustics team to guide them in designing the acoustics experiment. A parametric study was performed to compare the flow field in the flowliner area when one upstream slot and one corresponding downstream slot were enlarged. No significant differences were observed between the flow field obtained from the enlarged slot configuration when compared with the original configuration. More cases must be analyzed with various enlarged slot configurations to generalize this observation. The flow through the A1 test stand and the flow through the orbiter fuel feedline manifold were simulated without the LPFTP. It was observed that incoming flow to the flowliner and inducer was more uniform in the A1 test stand then in the orbiter manifold. Additionally, each engine LPFTP in the orbiter receives significantly different velocity distributions. Because of the differences observed in the computed results, it is not possible for the A1 test stand to represent the three different engine feedlines simultaneously.
NASA Astrophysics Data System (ADS)
Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi
2017-12-01
A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
NASA Astrophysics Data System (ADS)
Hackney, C. R.; Aalto, R. E.; Darby, S. E.; Parsons, D. R.; Leyland, J.; Nicholas, A. P.; Best, J.
2016-12-01
Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during peak flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose a new conceptual model of bifurcation stability that incorporates varying flood discharge and in which the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, are controlled by the variations in flood discharge.
NASA Astrophysics Data System (ADS)
Hackney, Christopher; Darby, Stephen; Parsons, Daniel; Leyland, Julian; Aalto, Rolf; Nicholas, Andrew; Best, Jim
2017-04-01
Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during high flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose, therefore, that the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, is therefore controlled by annual monsoonal flood pulses and the associated variations in discharge.
Anomalous Hydrodynamic Drafting of Interacting Flapping Flags
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Zhang, Jun
2008-11-01
In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.
1977-02-01
conditi ons for machanical displacement . Hence a flow of air depending on the thermal regime of the dam itself is formed in the downstream should .w of a...The constant coefficients of basic finite—difference equations (33) , , — (34), (35), (38), and (40) were
Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven
2009-11-01
An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).
Internal flows and force matrices in axial flow inducers
NASA Astrophysics Data System (ADS)
Bhattacharyya, Abhijit
1994-01-01
Axial flow inducers such as those used in high speed rocket engine turbopumps are subject to complex internal flows and fluid-induced lateral and rotordynamic forces. An investigation of these internal flows was conducted using boundary layer flow visualization on the blades, hub and housing of unshrouded and shrouded inducers. Results showed that the blade boundary layer flows have strong radial components at off-design conditions and remain attached to the blade surface at all flow coefficients tested. The origin of upstream swirling backflow was found to be at the discharge plane of the inducer. In addition, flow reversal was observed at the suction side blade tip near the leading edge in a shrouded inducer. Re-entry of the hub boundary layer flow, a downstream backflow, into the blade passage area was observed at flow coefficients below design. For unshrouded inducers the radially outward flow near the blade tip mixed with the leakage flow to form the upstream backflow. The lateral and rotordynamic forces acting on an inducer due to an imposed whirl motion was also investigated at various flow coefficients. It was found that the rotordynamic force data at various whirl frequency ratios does not allow a normal quadratic fit; consequently the conventional inertial, stiffness and damping coefficients cannot be obtained and a definite whirl ratio describing the instability region does not result. Application of an actuator disk theory proved to be inaccurate in estimating the rotordynamic tangential force in a non-whirling inducer. The effect of upstream and downstream flow distortions on the rotordynamic and lateral forces on an inducer were studied. It was found that at flow coefficients below design, large lateral forces occurred in the presence of a downstream asymmetry. Results of inlet distortion experiments show that a strong inlet shear causes a significant increase in the lateral force. Cavitation was found to have important consequences for fluid-induced rotordynamic forces. These forces become destabilizing for both forward and reverse whirl. Decreasing cavitation numbers caused an increase in the magnitudes of the destabilizing forces.
NASA Astrophysics Data System (ADS)
Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.
2016-04-01
The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle.
NASA Astrophysics Data System (ADS)
Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David
2016-01-01
A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.
40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor with a... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...
40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor with a... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...
40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) through (v) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...
40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) through (v) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...
40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) through (v) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...
Flow in out-of-plane double S-bonds
NASA Technical Reports Server (NTRS)
Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.
1986-01-01
Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.
Flow and Acoustic Features of a Mach 0.9 Free Jet Using High-Frequency Excitation
NASA Astrophysics Data System (ADS)
Upadhyay, Puja; Alvi, Farrukh
2016-11-01
This study focuses on active control of a Mach 0.9 (ReD = 6 ×105) free jet using high-frequency excitation for noise reduction. Eight resonance-enhanced microjet actuators with nominal frequencies of 25 kHz (StD 2 . 2) are used to excite the shear layer at frequencies that are approximately an order of magnitude higher than the jet preferred frequency. The influence of control on mean and turbulent characteristics of the jet is studied using Particle Image Velocimetry. Additionally, far-field acoustic measurements are acquired to estimate the effect of pulsed injection on noise characteristics of the jet. Flow field measurements revealed that strong streamwise vortex pairs, formed as a result of control, result in a significantly thicker initial shear layer. This excited shear layer is also prominently undulated, resulting in a modified initial velocity profile. Also, the distribution of turbulent kinetic energy revealed that forcing results in increased turbulence levels for near-injection regions, followed by a global reduction for all downstream locations. Far-field acoustic measurements showed noise reductions at low to moderate frequencies. Additionally, an increase in high-frequency noise, mostly dominated by the actuators' resonant noise, was observed. AFOSR and ARO.
The Green's function in a channel with a sound-absorbing cover in the case of a uniform flow
NASA Astrophysics Data System (ADS)
Sobolev, A. F.
2012-07-01
We study the modal structure of an acoustic field of a point source as function of channel wall admittance in the case of a two-dimensional channel. The characteristic equation for determining the eigen-values corresponding to the boundary problem is studied in the form of this equation's dependence on the admittance, which varies in the entire complex plane. All modes, without exception, existing in the channel and forming the source field are classified based on the obtained topography of the characteristic equation. The expressions that describe the amplitudes and spatial distribution of the hydrodynamic modes, attenuation rate (for stable modes), or increment (for unstable modes) were obtained as functions of the wall admittance and flow velocity. It is shown that in addition to the hydrodynamic unstable modes existing downstream from the source, hydrodynamic unstable modes exist upstream from the source at any admittance. They appear only when the admittance has an elastic character. It is shown that hydrodynamic modes are induced only in the case when the source is located close to the wall or on the wall. The amplitude of these modes decreases exponentially with distance from the wall.
Trade-offs Between Socio-economic Development and Ecosystem Health under Changing Water Availability
NASA Astrophysics Data System (ADS)
Nazemi, A.; Hassanzadeh, E.; Elshorbagy, A. A.; Wheater, H. S.; Gober, P.; Jardine, T.; Lindenschmidt, K. E.
2017-12-01
Natural and human water systems at regional scales are often developed around key characteristics of streamflow. As a result, changes in streamflow regime can affect both socio-economic activities and freshwater ecosystems. In addition to natural variability and/or climate change, extensive water resource management to support socio-economic growth has also changed streamflow regimes. This study aims at understanding the trade-offs between agricultural expansion in the province of Saskatchewan, Canada, and alterations in the ecohydrological characteristics of the Saskatchewan River Delta (SRD) located downstream. Changes in climate along with extensive water resource management have altered the upstream flow regime. Moreover, Saskatchewan is investigating the possible expansion of irrigated agriculture to boost the provincial economy. To evaluate trade-offs across a range of possible scenarios for streamflow changes, the potential increase in provincial net benefit versus potential vulnerability of the SRD was assessed using perturbed flow realizations along with scenarios of irrigation expansion as input to an integrated water resource system model. This study sheds light on the potential variability in trade-offs between economic benefits and ecosystem health under a range of streamflow conditions, with the aim of informing decisions that can benefit both natural and human water systems.
NASA Astrophysics Data System (ADS)
Ghopa, Wan Aizon W.; Harun, Zambri; Funazaki, Ken-ichi; Miura, Takemitsu
2015-02-01
The existence of a gap between combustor and turbine endwall in the real gas turbine induces to the leakages phenomenon. However, the leakages could be used as a coolant to protect the endwall surfaces from the hot gas since it could not be completely prevented. Thus, present study investigated the potential of leakage flows as a function of film cooling. In present study, the flow field at the downstream of high-pressure turbine blade has been investigated by 5-holes pitot tube. This is to reveal the aerodynamic performances under the influenced of leakage flows while the temperature measurement was conducted by thermochromic liquid crystal (TLC). Experimental has significantly captured theaerodynamics effect of leakage flows near the blade downstream. Furthermore, TLC measurement illustrated that the film cooling effectiveness contours were strongly influenced by the secondary flows behavior on the endwall region. Aero-thermal results were validated by the numerical simulation adopted by commercial software, ANSYS CFX 13. Both experimental and numerical simulation indicated almost similar trendinaero and also thermal behavior as the amount of leakage flows increases.
Simulations of blood flow through a stenosed carotid artery
NASA Astrophysics Data System (ADS)
Lundin, Staffan; Meder, Samuel; Metcalfe, Ralph
2000-11-01
The human carotid artery is often the site of the formation of atherosclerotic lesions that can lead to severe reduction of blood flow to the brain, frequently resulting in a stroke. There is strong evidence that hemodynamic variables such as the wall shear stress and its spatial and temporal derivatives play a role in fostering atherosclerosis. To investigate the potential of these effects, we have performed unsteady, three-dimensional numerical simulations of blood flow through the carotid bifurcation in the presence of stenoses of varying degrees and eccentricities. The simulations indicate that regions of low maximum and minimum shear stress correlate better with lesion prone sites than low average wall shear stress. As the degree of stenosis increases, it is found that the downstream flow changes drastically for stenoses greater than about 25Downstream eddies are generated during systole that create local shear stress peaks on the internal carotid artery wall, resulting in significant reduction in flow rates through the internal carotid artery. Large secondary flows develop, and there are also periods of flow reversal during the systolic/diastolic cycle.