Conversion of blackbody radiation into laser energy
NASA Technical Reports Server (NTRS)
Mcinville, R. M.; Hassan, H. A.
1982-01-01
By employing detailed kinetic models, three concepts which utilize a blackbody cavity for the conversion of solar energy into laser energy using a CO2 lasant are analyzed and compared. In the first, the blackbody radiation is used to excite flowing CO2 directly. The second and third employ a mixing laser concept with CO and N2 being the donor gases. The CO is optically pumped while thermal heating excites the N2. Blackbody temperatures ranging from 1500 deg K - 2500 deg K are considered. Based on calculated laser power output per unit flow rate of CO2, it appears that the N2-CO2 mixing laser is the most attractive system.
Recent developments in CO2 lasers
NASA Astrophysics Data System (ADS)
Du, Keming
1993-05-01
CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.
REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation
NASA Astrophysics Data System (ADS)
Gordiets, B. F.; Panchenko, Vladislav Ya
1986-07-01
CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717
NASA Technical Reports Server (NTRS)
Opower, Hans (Editor)
1990-01-01
Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.
Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shwartz, J; Kulkarny, V A; Ausherman, D A
1980-01-01
Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional,more » low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.« less
Effects of contaminants in CO2 lasers.
NASA Technical Reports Server (NTRS)
Smith, N. S.
1973-01-01
A theoretical model which includes the effects of contaminants is developed for the high flow electric discharge CO2-N2-He laser. The model couples the excitation and relaxation processes, CO2 dissociation, and negative ion formation with the flow processes. An analysis of the effects of CO, O2, NO, and N2O impurities on the average small signal gain is presented. CO decreases the gain by collisional depopulation of the upper laser level, and O2, NO, and N2O reduce the gain by decreasing the electron density by forming stable negative ions. In particular, N2O exhibits a strong quenching effect because of its large dissociation cross section for the formation of O(-).
'Design of CO-O2 recombination catalysts for closed-cycle CO2 lasers'
NASA Technical Reports Server (NTRS)
Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.
1989-01-01
Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. This paper will discuss the performance criteria and constraints involved in the design of monolith catalyst configurations for use in a closed-cycle laser and will present a design study performed with a computerized design program that had been written. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables will be discussed.
A computer program for the design of optimum catalytic monoliths for CO2 lasers
NASA Technical Reports Server (NTRS)
Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.
1990-01-01
Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. The performance criteria and constraints involved in the design of catalyst configurations for use in a closed-cycle laser are discussed, and several design studies performed with a computerized design program that was written are presented. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables are discussed.
Peng, Wen Yu; Goldenstein, Christopher S; Mitchell Spearrin, R; Jeffries, Jay B; Hanson, Ronald K
2016-11-20
The development and demonstration of a four-color single-ended mid-infrared tunable laser-absorption sensor for simultaneous measurements of H2O, CO2, CO, and temperature in combustion flows is described. This sensor operates by transmitting laser light through a single optical port and measuring the backscattered radiation from within the combustion device. Scanned-wavelength-modulation spectroscopy with second-harmonic detection and first-harmonic normalization (scanned-WMS-2f/1f) was used to account for variable signal collection and nonabsorption losses in the harsh environment. Two tunable diode lasers operating near 2551 and 2482 nm were utilized to measure H2O concentration and temperature, while an interband cascade laser near 4176 nm and a quantum cascade laser near 4865 nm were used for measuring CO2 and CO, respectively. The lasers were modulated at either 90 or 112 kHz and scanned across the peaks of their respective absorption features at 1 kHz, leading to a measurement rate of 2 kHz. A hybrid demultiplexing strategy involving both spectral filtering and frequency-domain demodulation was used to decouple the backscattered radiation into its constituent signals. Demonstration measurements were made in the exhaust of a laboratory-scale laminar methane-air flat-flame burner at atmospheric pressure and equivalence ratios ranging from 0.7 to 1.2. A stainless steel reflective plate was placed 0.78 cm away from the sensor head within the combustion exhaust, leading to a total absorption path length of 1.56 cm. Detection limits of 1.4% H2O, 0.6% CO2, and 0.4% CO by mole were reported. To the best of the authors' knowledge, this work represents the first demonstration of a mid-infrared laser-absorption sensor using a single-ended architecture in combustion flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobarykina, T A; Malov, A N; Orishich, A M
We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters thatmore » ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)« less
Stereotactic CO2 laser therapy for hydrocephalus
NASA Astrophysics Data System (ADS)
Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.
1994-05-01
A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.
Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow
NASA Technical Reports Server (NTRS)
Srinivasan, G.; Smith, J. A.
1976-01-01
Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.
Synthesis of the Plasma Chemistry Occurring in High Power CO2 Lasers
1978-12-01
AFIT/GEP/PH/78D-13 44 SYNTHESIS OF THE PLASMA CHEMISTRY D D C OCCURRING IN HIGH POWER CO 2 LASERS ’Una CTHESIS David E. Toodle AFIT/GEP/PH/78D-13 2nd...inves- tivation is the plasma chemistry occurring in the laser discharge. These studies are ultimately related to the development of flowing and...aids in the understanding of plasma chemistry pro- cesses in the CO2 laser discharge. I would like to thank the whole staff of the Advanced Concepts
Can transmyocardial CO2 laser channels supply nutritive blood flow into adjacent myocardium?
NASA Astrophysics Data System (ADS)
Kohmoto, Takushi; Fisher, Peter E.; DeRosa, Carolyn; Smith, Craig R.; Burkhoff, Daniel
1996-05-01
Clinical reports of transmyocardial laser revascularization (TMLR) suggest that this procedure is effective in relieving angina. However, experimental evidence of nutritive blood flow through the TMLR channels is not available. The purpose of this study was to test whether blood could flow through the TMLR channels created with the carbon-dioxide laser.
Control system of an excitation power supply for fast axial flow CO2 lasersupda
NASA Astrophysics Data System (ADS)
Li, Bo; Jia, Xinting; Yuan, Hao; Gao, Yuhu; Wang, Youqing
2009-08-01
A switching power control system of fast axial flow CO2 lasers based on DSP is presented. The key techniques are described in detail, include the control principle, realization method and program design. The experiment showed that the system make the laser discharge stably and work in multi-mode. The discharge current can be adjusted from 3mA to 85mA continuously. 20-2000Hz frequency, 0-100% duty cycle laser pulse is achieved. The power supply can improve the processing efficiency and quality.
Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser.
Ling, Dongxiong; Chen, Junruo; Li, Junchang
2006-05-01
A Gaussian-reflectivity mirror resonator is proposed to achieve high-quality laser beams. To analyze the laser fields in a Gaussian-reflectivity mirror resonator, the diffraction integral equations of a Gaussian-reflectivity mirror resonator are converted to the finite-sum matrix equations. Consequently, according to the Fox-Li laser self-reproducing principle, we describe the mode fields and their losses in the proposed resonator as eigenvectors and eigenvalues of a transfer matrix. The conclusion can be drawn from the numerical results that, if a Gaussian-reflectivity mirror is adopted for a plano-concave resonator, a fundamental mode can easily be obtained from a transverse-flow CO2 laser and high-quality laser beams can be expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, Aleksei N; Orishich, Anatolii M
Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less
CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology
NASA Astrophysics Data System (ADS)
Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.
2013-12-01
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.
Closed cycle electric discharge laser design investigation
NASA Technical Reports Server (NTRS)
Baily, P. K.; Smith, R. C.
1978-01-01
Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.
Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperber, David; Eckel, Hans-Albert; Moessinger, Peter
Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocitiesmore » of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.« less
A radiatively pumped CW CO2 laser
NASA Technical Reports Server (NTRS)
Insuik, R. J.; Christiansen, W. H.
1984-01-01
A proof of principle experiment to demonstrate the physics of a radiatively pumped laser has been carried out. For the first time, a blackbody cavity has optically pumped a CW CO2 laser. Results are presented from a series of experiments using mixtures of CO2, He, and Ar in which maximum output power was obtained with a 20 percent CO2-15 percent He-65 percent Ar mixture. The dependence of the output power on the blackbody temperature and the cooling gas flow rate is also discussed. By appropriately varying these parameters, continuous output powers of 8-10 mW have been achieved.
IR multiphoton absorption of SF6 in flow with Ar at moderate energy fluences
NASA Astrophysics Data System (ADS)
Makarov, G. N.; Ronander, E.; van Heerden, S. P.; Gouws, M.; van der Merwe, K.
1997-10-01
IR multiple photon absorption (MPA) of SF6 in flow with Ar (SF6: Ar=1:100) in conditions of a large vibrational/rotational temperature difference (TV𪒮 K, TR䏐 K) was studied at moderate energy fluences from ۂ.1 to 𪐬 mJ/cm2, which are of interest for isotope selective two-step dissociation of molecules. A 50 cm Laval-type slit nozzle for the flow cooling, and a TEA CO2-laser for excitation of molecules were used in the experiments. The laser energy fluence dependences of the SF6 MPA were studied for several CO2-laser lines which are in a good resonance with the linear absorption spectrum of the Ƚ vibration of SF6 at low temperature. The effect of the laser pulse duration (intensity) on MPA of flow cooled SF6 with Ar was also studied. The results are compared with those obtained in earlier studies.
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Nowak, Martin; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A. C.; Jost, Hj
2016-04-01
A newly developed and commercially available isotope ratio laser spectrometer for CO2 analyses has been tested during a 10-day field monitoring campaign at the Ketzin pilot site for CO2 storage in northern Germany. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10-day carbon stable isotope data set with 30 minutes resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within 2σ analytical precision (<0.3 ‰). This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time table isotope data directly in the field. The injected CO2 tracer had a distinct δ13C value that was largely different from the reservoir background value. The laser spectroscopy data revealed a prior to this study unknown, intensive dynamic with fast changing δ13C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The new technique might contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber.
Liu, Zhengyong; Htein, Lin; Cheng, Lun-Kai; Martina, Quincy; Jansen, Rob; Tam, Hwa-Yaw
2017-02-20
In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and 0.578 nm/(m/s) for water and oil, flowing at v = 0.2 m/s. The sensitivity can be increased with higher laser power launched to the Co2+-doped multimode fibers. A small flow rate of 0.005 m/s and 0.002 m/s can be distinguished for a particular phase of water or oil, respectively, at a certain laser power (i.e. ~1.43W). The flow sensor can measure volume speed up to 30 L/min, which is limited by the test rig. The experimental results show that the sensor can discriminate slight variation of flow rates as small as 0.002m/s.
Scaling studies of solar pumped lasers
NASA Astrophysics Data System (ADS)
Christiansen, W. H.; Chang, J.
1985-08-01
A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.
Scaling studies of solar pumped lasers
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Chang, J.
1985-01-01
A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochuli, U.; McGuire, D.
1982-10-01
The properties of a compact, transversely excited, pulsed CO/sub 2/ waveguide laser are studied experimentally with the application of such a laser for an optical fuze transmitter in mind. Such parameters as peak power, pulse width, pulse shape, pulse jitter, repetition rate, beam profile, polarization, laser life, and optimum as mixture are investigated both for 10.6 and 9.6 micron output wavelengths, and for both sealed-off and flowing-gas operation of the laser. A computer simulation of the laser's operation is compared with the experimental results.
NASA Technical Reports Server (NTRS)
Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.
1986-01-01
This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.
Industrial 30-kW CO2 laser with fast axial gas flow and rf excitation
NASA Astrophysics Data System (ADS)
Habich, Uwe; Loosen, Peter; Hertzler, Christoph; Wollermann-Windgasse, Reinhard
1996-03-01
A CO2 laser with fast axial gas flow was set up and operated with a maximum cw output power above 30 kW. The laser makes use of 8 rf-excited discharges which were optimized regarding to the gas-flow, to the discharge homogeneity and to the optical properties of the gain medium. Results of experimental investigation of these topics are described as well as performance characteristics of the laser system equipped with a stable and an unstable resonator, respectively. With an unstable resonator and an aerodynamic window for the extraction of the beam the laser system gives a beam quality which is close to the diffraction limit for this type of resonator. Disregarding the difficulties which are related to the definition and measurement of beam quality for unstable resonators, the beam quality could be described as M2 equals 3. Measured far field intensity profiles in the focal plane of a focusing optics are presented as well as the beam propagation behavior near focus. First results of applications in materials processing are discussed.
NASA Astrophysics Data System (ADS)
Wei, Chuyu; Pineda, Daniel I.; Paxton, Laurel; Egolfopoulos, Fokion N.; Spearrin, R. Mitchell
2018-06-01
A tomographic laser absorption spectroscopy technique, utilizing mid-infrared light sources, is presented as a quantitative method to spatially resolve species and temperature profiles in small-diameter reacting flows relevant to combustion systems. Here, tunable quantum and interband cascade lasers are used to spectrally resolve select rovibrational transitions near 4.98 and 4.19 μm to measure CO and {CO2}, respectively, as well as their vibrational temperatures, in piloted premixed jet flames. Signal processing methods are detailed for the reconstruction of axial and radial profiles of thermochemical structure in a canonical ethylene-air jet flame. The method is further demonstrated to quantitatively distinguish between different turbulent flow conditions.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Li, X. W.; Chen, C. G.; Zhang, X. Z.; Zhan, Z. L.; Xie, S. S.
2015-01-01
To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse.
Theory of low transitions in CO discharge lasers
NASA Technical Reports Server (NTRS)
Sidney, B. D.; Mcinuille, R. M.; Smith, N. S.; Hassan, H. A.
1976-01-01
A self consistent theoretical model which couples the electron and heavy particle finite rate kinetics with the optical and fluid dynamic processes has been employed to identify the various parameters and explain the mechanism responsible for producing low lying transitions in slow flowing CO lasers. It is found that lasing on low lying transitions can be achieved at low temperatures for low pressures (or low flow rates) together with high partial pressures of the He and N2. The role of N2 has been identified as an additive responsible for reducing the electron temperature to a range where the transfer of electrical power to the lower vibrational modes of CO is optimum.
Fast-axial turbulent flow CO2 laser output characteristics and scaling parameters
NASA Astrophysics Data System (ADS)
Dembovetsky, V. V.; Zavalova, Valentina Y.; Zavalov, Yuri N.
1996-04-01
The paper presents the experimental results of evaluating the output characteristics of TLA- 600 carbon-dioxide laser with axial turbulent gas flow, as well as the results of numerical modeling. The output characteristic and spatial distribution of laser beam were measured with regard to specific energy input, working mixture pressure, active media length and output mirror reflection. The paper presents the results of experimental and theoretical study and design decisions on a succession of similar type industrial carbon-dioxide lasers with fast-axial gas-flow and dc discharge excitation of active medium developed at NICTL RAN. As an illustration, characteristics of the TLA-600 laser are cited.
Quasi-cw 20-W tunable 1-sec pulse CO/sub 2/ laser for optical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, L.E.; Barkley, H.J.
1984-05-01
A four-section CO/sub 2/ laser is described which can produce 20 W in fundamental mode during a 1-sec pulse with a frequency tuning range of +- 300 MHz. It operates at 200-Torr pressure using sonic axial flow to inhibit the discharge column from filamenting. The input power density is 598 W cm/sup -3/ corresponding to an efficiency of 2%.
Performance of a CW double electric discharge for supersonic CO lasers
NASA Technical Reports Server (NTRS)
Stanton, A. C.; Hanson, R. K.; Mitchner, M.
1980-01-01
The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.
NASA Astrophysics Data System (ADS)
Spearrin, R. M.; Goldenstein, C. S.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-07-01
A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4-5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene-air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
NASA Astrophysics Data System (ADS)
Baranov, G. A.; Efremov, Yu V.; Smirnov, A. S.; Frolov, K. S.; Shevchenko, Yu I.
1989-02-01
An investigation was made of the distributions of the gain and input energy per unit volume along the discharge chamber length in a CO2-N2-He mixture stream excited by an rf discharge. The dependences of the gain and discharge luminescence intensity on the coordinate x were determined along the direction of the gas flow. The discharge luminescence intensity was shown to characterize the input energy distribution along the X axis. Calculations were made of the small-signal gain in the rf discharge. Experimental data on the distributions of the input energy and of the electric field in the discharge and the average values of the kinetic coefficients were used in the calculations. The efficiency of pumping CO2 lasers with an rf discharge was found to be close to the dc pumping efficiency. The results obtained provide evidence of promising prospects for using an rf discharge in fast-flow industrial lasers.
[Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyring, E.M.
1992-01-01
The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd[sup 3+] + L(ligand), [RuL[sub 5]H[sub 2]O][sup 2+], laser flash photolysis of Mo(CO)[sub 6] + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd[sup 3+] ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO)[sub 6]-2,2'-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.
[Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyring, E.M.
1992-10-01
The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd{sup 3+} + L(ligand), [RuL{sub 5}H{sub 2}O]{sup 2+}, laser flash photolysis of Mo(CO){sub 6} + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd{sup 3+} ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO){sub 6}-2,2`-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.
Laser-absorption sensing of gas composition of products from coal gasification
NASA Astrophysics Data System (ADS)
Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.
2014-06-01
A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.
Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser
NASA Astrophysics Data System (ADS)
Abel, W.; Wallter, B.
1984-03-01
The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.
Thermodynamic analysis of a possible CO{sub 2}-laser plant included in a heat engine cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisio, G.; Rubatto, G.
1998-07-01
In these last years, several plants have been realized in some industrialized countries to recover pressure exergy from various fluids. That has been done by means of suitable turbines in particular for blast-furnace top gas and natural gas. Various papers have examined the topic, considering pros and cons. High-power CO{sub 2}-lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future different kinds of metal surface treatments will probably become routine practice with laser units. The industries benefiting most from high power lasers will be: the automotive industry, shipbuilding, the offshoremore » industry, the aerospace industry, the nuclear and the chemical processing industries. Both degradation and cooling problems may be alleviated by allowing the gas to flow through the laser tube and by reducing its pressure outside this tube. Thus, a thermodynamic analysis on high-power CO{sub 2}-lasers with particular reference to a possible energy recovery is justified. In previous papers the critical examination of the concept of efficiency has led one of the present authors to the definition of an operational domain in which the process can be achieved. This domain is confined by regions of no entropy production (upper limit) and no useful effects (lower limit). On the basis of these concepts and of what has been done for pressure exergy recovery from other fluids, exergy investigations and an analysis of losses are performed for a cyclic process including a high performance CO2 laser. Thermodynamic analysis of flow processes in a CO{sub 2}-laser plant shows that the inclusion of a turbine in this plant allows us to recover the most part of the exergy necessary for the compressor; in addition, the water consumption for the refrigeration in the heat exchanger is reduced.« less
NASA Astrophysics Data System (ADS)
Golov, V. K.; Ivanchenko, A. I.; Krasheninnikov, V. V.; Ponomarenko, A. G.; Shepelenko, A. A.
1986-06-01
A fast-flow laser is reported in which the active medium is excited by a self-sustained dc discharge produced by an electric-discharge device with nonsectioned electrodes. In the laser, two discharge gaps are formed by a flat anode and two cathodes, one on each side of the anode. A gas mixture is driven through the gasdynamic channel by a centrifugal fan rotating at 6000 rpm/min. With a mixture of CO2:N2:He = 2.5:7.5:5 mm Hg, the rated power is 2.5 kW; the maximum power is 4 kW with the mixture 2.5:7.5:10 mm Hg. The general design of the laser is described, and its principal performance characteristics are given.
Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Offenhaeuser, F.
1987-01-01
The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.
NASA Astrophysics Data System (ADS)
Sane, Anup; Satija, Aman; Lucht, Robert P.; Gore, Jay P.
2014-10-01
Simultaneous measurements of carbon monoxide (CO) mole fraction and temperature using tunable diode laser absorption spectroscopy (TDLAS) near 2.3 μm are reported. The measurement method uses ro-vibrational transitions [R(27): v″ = 1 → v' = 3] and [R(6): v″ = 0 → v' = 2] in the first overtone band of CO near 2.3 μm (~4,278 cm-1). The measurements were performed in the post flame environment of fuel rich premixed ethylene-air flames with a N2 co-flow, stabilized over a water cooled McKenna burner. Non-uniformity in the temperature and CO mole fraction, along the absorption line of sight, in the mixing layer of the co-flow, was considered during data analysis. The TDLAS based temperature measurements (±80 K) were in good agreement with those obtained using N2 vibrational coherent anti-Stokes Raman scattering (±20 K), and the CO mole fraction measurements were in good agreement with the equilibrium values, for equivalence ratios lower than 1.8. A signal to noise ratio of 45 was achieved at an equivalence ratio of 1 for a CO concentration of 0.8 % at 1,854 K.
NASA Astrophysics Data System (ADS)
Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.
2006-01-01
We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minucci, M. A. S.
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat fluxmore » measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.« less
NASA Astrophysics Data System (ADS)
Minucci, M. A. S.
2008-04-01
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.
Effects of argon gas flow rate on laser-welding.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2012-01-01
The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.
Hecht, Nils; Woitzik, Johannes; König, Susanne; Horn, Peter; Vajkoczy, Peter
2013-07-01
Currently, there is no adequate technique for intraoperative monitoring of cerebral blood flow (CBF). To evaluate laser speckle imaging (LSI) for assessment of relative CBF, LSI was performed in 30 patients who underwent direct surgical revascularization for treatment of arteriosclerotic cerebrovascular disease (ACVD), Moyamoya disease (MMD), or giant aneurysms, and in 8 control patients who underwent intracranial surgery for reasons other than hemodynamic compromise. The applicability and sensitivity of LSI was investigated through baseline perfusion and CO2 reactivity testing. The dynamics of LSI were assessed during bypass test occlusion and flow initiation procedures. Laser speckle imaging permitted robust (pseudo-) quantitative assessment of relative microcirculatory flow and standard bypass grafting resulted in significantly higher postoperative baseline perfusion values in ACVD and MMD. The applicability and sensitivity of LSI was shown by a significantly reduced CO2 reactivity in ACVD (9.6±9%) and MMD (8.5±8%) compared with control (31.2±5%; P<0.0001). In high- and intermediate-flow bypass patients, LSI was characterized by a dynamic real-time response to acute perfusion changes and ultimately confirmed a sufficient flow substitution through the bypass graft. Thus, LSI can be used for sensitive and continuous, non-invasive real-time visualization and measurement of relative cortical CBF in excellent spatial-temporal resolution.
Copper Gas Diffusers For Purging Line-Focus Laser Welds
NASA Technical Reports Server (NTRS)
Fonteyne, Steve L.; Hosking, Timothy J.; Shelley, D. Mark
1996-01-01
Modified flow diffusers built for inert-gas purging of welds made with 5-kW CO(2) lasers operating with line-focus optics in conduction mode instead of with point-focus optics in customary keyhole mode. Diffusers made of copper components brazed together, robust enough to withstand strong reflections of line-focused laser energy.
NASA Astrophysics Data System (ADS)
Zudov, Vladimir N.; Tretyakov, Pavel K.
2017-10-01
The effect of a focused pulsed-periodic beam of a CO2 laser on initiation and evolution of combustion in subsonic and supersonic flows of homogeneous fuel-air mixtures (CH4 + air) is experimentally studied. The beam generated by the CO2 laser propagates across the flow and is focused by a lens at the jet axis. The flow structure is determined by a schlieren system with a slot and a plane knife aligned in the streamwise direction. The image is recorded by a high speed camera with an exposure time of 1.5 μs and a frame frequency of 1000 s-1. The structure of the combustion region is studied by an example of inherent luminescence of the flame at the wavelengths of OH and CH radicals. The distribution of the emission intensity of the mixture components in the optical discharge region is investigated in the present experiments by methods of emission spectroscopy.
New laser surface treatments: cleaning, derusting, deoiling, depainting, deoxidizing, and degreasing
NASA Astrophysics Data System (ADS)
Daurelio, Giuseppe; Chita, Giuseppe; Cinquepalmi, Massimo
1997-08-01
Many materials as substrates and surface products have been tested. Typically ferrous (Carbon Steels and Stainless Steels) and non ferrous (Al and Cu metals and its alloys) ones have been employed. Some epoxy, polyurethane, polyester and acrylic paints in different thickness and color have been tested. Many types of the surface rust and oxide on different bulk material have been undertaken to test. Similarly some different types of oils and greases, usually used in industry against the oxidation, have been studied. Anyway many types of dirt, grit, calcareous one and so on, present on industrial components, have been laser cleaned without using solvents, acid baths and other ones. Different types of laser sources have been employed: an axial fast flow, 1.5 KW CO2 c.w. and pulsed laser source, emitting a 10.6 micrometers beam; a portable CO2 laser, c.w. (1 to 25 W) and pulsed (1 to 100 Hz and 400 ms max pulse duration) source, emitting a 10.6 micrometers beam with a multi-articulated seven mirrors guiding device and focussing head; a portable Nd-YAG laser, Q-switched and normal-mode source. 1st harmonic 1.06 micrometers (6 ns pulse duration), 2nd harmonic 532 nm (120 microsecond(s) duration pulse- 1J max per-pulse) wavelengths, multi-articulated seven mirrors beam guiding device, 20 Hz repetition rate. This lets shots with 600 mJ max energy per pulse and 100 MW peak power per-pulse with a very low beam divergence, 0.5 mrad at full angle; a transverse fast flow 2.5 kW CO2 laser.
NASA Astrophysics Data System (ADS)
Osuna, J. L.; Bora, M.; Bond, T.
2015-12-01
One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2 isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788
A photoacoustic spectrometer for trace gas detection
NASA Astrophysics Data System (ADS)
Telles, E. M.; Bezerra, E.; Scalabrin, A.
2005-06-01
A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.
Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures
NASA Astrophysics Data System (ADS)
Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min
2014-03-01
The metal transfer in CO2 Laser+GMAW-P hybrid welding by using argon-helium mixtures was investigated and the effect of the laser on the mental transfer is discussed. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. In order to analyze the heat input to the droplet and the droplet internal current line distribution. An optical emission spectroscopy system was employed to estimate default parameter and optimized plasma temperature, electron number densities distribution. The results indicate that the CO2 plasma plume have a significant impact to the electrode melting, droplet formation, detachment, impingement onto the workpiece and weld morphology. Since the current distribution direction flow changes to the keyhole, to obtain a metal transfer mode of one droplet per pulse, the welding parameters should be adjusted to a higher pulse time (TP) and a lower voltage.
Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications
Ward, Jonathan M.; Yang, Yong; Nic Chormaic, Síle
2016-01-01
We describe a novel method for making microbottle-shaped lasers by using a CO2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO2 laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated. PMID:27121151
Atmospheric laser Doppler velocimetry - An overview
NASA Technical Reports Server (NTRS)
Bilbro, J. W.
1980-01-01
Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.P.J.; Reddy, N.M.
1984-01-01
Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi-one-dimensional nonreacting flow in the supersonic nozzle of CO/sub 2/--N/sub 2/--H/sub 2/O and CO/sub 2/--N/sub 2/--He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function N/sub S/ for pure N/sub 2/ gas, as is done in previous publications, the N/sub S/ correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small-signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computedmore » using these correlations. The present results are compared with the previous results and the main differences are discussed.« less
Chemical Laser Systems: An Engineering Approach. Volume I. Chemical Laser Analysis Program
1979-01-31
C* *CPCALC S040 CO CNO C V ALUES ASTORED IN RNITS Of NLUE-DOR JITKROLEoKJ AND TAPULATED *CPCALC OSSO CO BY TEMPERATURE (ROW) FROM 0 K TO 3000 K IM...KMOLEi P PRESSURE EPA) P DENSITY fKG/M31 REI REYNOLDS NUMBER T : TEMPERATURE CKI W i MASS FLOW RATE (KG/S] X a MOLAR FLOW RATE (KNOLE/S) REPEAYEO...200000E#67 PA REI * 21363AE*04 I ZISE0K10 JSSE0RI a .288884E- 1 KS/N3 Pie :174617f#01@ KG/N3 POINT 2 ’PRIMARY NOZZLE EXIT - CONDITIONS IASED ON THE
Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers
NASA Astrophysics Data System (ADS)
Chao, X.; Jeffries, J. B.; Hanson, R. K.
2009-11-01
Tunable diode laser absorption spectroscopy of CO was studied in the controlled laboratory environments of a heated cell and a combustion exhaust rig. Two absorption lines, R(10) and R(11) in the first overtone band of CO near 2.3 µm, were selected from a HITRAN simulation to minimize interference from water vapor at a representative combustion exhaust temperature (~1200 K). The linestrengths and collision broadening coefficients for these lines were measured in a heated static cell. This database was then used in a comparative study of direct absorption and wavelength-modulation absorption. CO concentration measurements using scanned-wavelength direct absorption (DA) and wavelength modulation with the second-harmonic signal normalized by the first-harmonic signal (WMS-2f/1f) all agreed with those measured by a conventional gas sampling analyzer over the range from <10 ppm to 2.3%. As expected, water vapor was found to be the dominant source of background interference for CO detection in combustion flows at high temperatures. Water absorption was measured to a high spectral resolution within the wavelength region 4295-4301 cm-1 at 1100 K, and shown to produce <10 ppm level interference for CO detection in combustion exhausts at temperatures up to 1200 K. We found that the WMS-2f/1f strategy avoids the need for WMS calibration measurements but requires characterization of the wavelength and injection-current intensity modulation of the specific diode laser. We conclude that WMS-2f/1f using the selected R(10) or R(11) transitions in the CO overtone band holds good promise for sensitive in situ detection of ppm-level CO in combustion flows, with high resistance to interference absorption from H2O.
NASA Astrophysics Data System (ADS)
Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.
1995-02-01
A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.
2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions
NASA Astrophysics Data System (ADS)
Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.
2011-11-01
Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.
NASA Astrophysics Data System (ADS)
Lee, T.; Bessler, W. G.; Yoo, J.; Schulz, C.; Jeffries, J. B.; Hanson, R. K.
2008-11-01
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame ( φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8×10-6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10-6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.
Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions
NASA Astrophysics Data System (ADS)
Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.
2016-10-01
The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.
Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Shirinzadeh, Behrooz
2002-01-01
Using a pulsed Nd:YAG laser (532 nm) and a gated, intensified charge-coupled device, planar Rayleigh and Raman scattering techniques have been used to visualize the unseeded Mach 0.2 flow density in a 0.3-meter transonic cryogenic wind tunnel. Detection limits are determined for density measurements by using both unseeded Rayleigh and Raman (N2 vibrational) methods. Seeding with CO2 improved the Rayleigh flow visualization at temperatures below 150 K. The seeded Rayleigh version was used to demonstrate the observation of transient flow features in a separated boundary layer region, which was excited with an oscillatory jet. Finally, a significant degradation of the laser light sheet, in this cryogenic facility, is discussed.
NASA Technical Reports Server (NTRS)
Kolts, J. H.; Elliott, D. J.; Pennella, F.
1990-01-01
Four different catalysts have been developed specifically for use in sealed carbon dioxide lasers. The catalysts have been designed to be low dusting, stable to shock and vibration, have high activity at low temperatures and have long active lifetimes. Measured global CO oxidation rates range from 1.4 to 2.2 cc CO converted per minute per gram of catalyst at ambient temperature. The catalysts also retain substantial activity at temperatures as low as -35 C. The Phillips laser catalysts are prepared in a variety of different shapes to meet the different pressure drop and gas flow profiles present in the many different styles of lasers. Each catalyst has been tested in sealed TEA lasers and has been shown to substantially increase the sealed life of the laser. Activity measurements made on the precious metal catalysts which were prepared with and without activity promoters showed that the promoter materials increase catalyst CO oxidation activity at least an order of magnitude at ambient temperature. Initial studies using H2 and CO chemisorption, X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS) have shown that the activity promoters do not significantly affect the precious metal crystallite size or the electronic structure around the precious metal. In addition, the formation or lack of formation of solid solutions between the precious metal and promoters has also been shown not to affect the activity of the promoted catalyst.
Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers
NASA Technical Reports Server (NTRS)
Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED
1992-01-01
LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.
Multi Laser Pulse Investigation of the DEAS Concept in Hypersonic Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minucci, M.A.S.; Toro, P.G.P.; Oliveira, A.C.
2004-03-30
The present paper presents recent experimental results on the Laser-Supported Directed Energy 'Air Spike' - DEAS in hypersonic flow achieved by the Laboratory of Aerothermodynamics and Hypersonics - LAH, Brazil. Two CO2 TEA lasers, sharing the same optical cavity, have been used in conjunction with the IEAv 0.3m Hypersonic Shock Tunnel - HST to demonstrate the Laser-Supported DEAS concept. A single and double laser pulse, generated during the tunnel useful test time, were focused through a NaCl lens upstream of a Double Apollo Disc model fitted with seven piezoelectric pressure transducers and six platinum thin film heat transfer gauges. Themore » objective being to corroborate previous results as well as to obtain additional pressure and heat flux distributions information when two laser pulses are used.« less
Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
For developing laser propulsion, it is very important to analyze the mechanism of Laser-Supported Detonation (LSD), because it can generate high pressure and high temperature to be used by laser propulsion can be categorized as one type of hypersonic reacting flows, where exothermicity is supplied not by chemical reaction but by radiation absorption. I have numerically simulated the 1-D and Quasi-1-D LSD waves propagating through an inert gas, which absorbs CO2 gasdynamic laser, using a 2-temperature model. Calculated results show the fundamental properties of the non-equilibrium LSD Waves.
Distribution of E/N and N sub e in a cross-flow electric discharge laser
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
The spatial distribution of the ratio of electric field to neutral gas density on a flowing gas, multiple pin-to-plane discharge was measured in a high-power, closed loop laser. The laser was operated at a pressure of 140 torr (1:7:20, CO2, N2, He) with typically a 100 meter/second velocity in the 5 x 8 x 135 centimeter discharge volume. E/N ratios ranged from 2.7 x 10 to the minus 16th power to 1.4 x 10 to the minus 16th power volts/cu cm along the discharge while the electron density ranged from 2.8 x 10 to the 10th power to 1.2 x 10 to the 10th power cm/3.
Laser absorption phenomena in flowing gas devices
NASA Technical Reports Server (NTRS)
Chapman, P. K.; Otis, J. H.
1976-01-01
A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.
Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO{sub 2} lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 {mu}s); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnosticsmore » tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.« less
Shorter, Joanne H.; Nelson, David D.; Barry McManus, J.; Zahniser, Mark S.; Milton, Donald K.
2010-01-01
Breath analysis is a powerful noninvasive technique for the diagnosis and monitoring of respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Nitric oxide (NO) and carbon monoxide (CO) are markers of airway inflammation and can indicate the extent of respiratory diseases. We have developed a compact fast response laser system for analysis of multiple gases by infrared absorption. The instrument uses room temperature quantum cascade lasers to simultaneously measure NO, CO, carbon dioxide (CO2) and nitrous oxide (N2O) in exhaled breath. Four breath flow rates are employed to explore their exchange dynamics in the lungs and airways. We obtain 1-s detection precisions of 0.5-0.8 parts-per-billion (ppb) for NO, CO, and N2O with an instrument response time of less than 1 s. The breath analysis system has been demonstrated in a preliminary study of volunteers. It is currently deployed in a trial clinical study. PMID:20697459
Screening of CO2 Laser (10.6 μm) Parameters for Prevention of Enamel Erosion
Yu, Hao; de Paula Eduardo, Carlos; Meister, Jörg; Lampert, Friedrich; Attin, Thomas; Wiegand, Annette
2012-01-01
Abstract Objective: The aim of this study was to screen CO2 laser (10.6 μm) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n=20) with varying fluences from 0.1 to 0.9 J/cm2, pulse durations from 80 to 400 μs and repetition rates from 180 to 700 Hz. Non-lased samples (n=30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 μL/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n=3). Data were statistically analysed by one-way ANOVA (p<0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm2 (200μs) at 450 Hz. Short-time reduction of calcium loss (≤1.5 min) could be also achieved by irradiation with 0.7 J/cm2 (300μs) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use. PMID:22462778
Laser Diagnostics for Reacting Flows
2007-01-30
image the exit region of an underexpanded jet. Background IRPLIF involves the excitation of molecular vibrational modes via infrared laser radiation (an...excitation wavelength of 2.0 pm is used for this work), followed by imaging of the subsequent vibrational fluorescence (fluorescence is collected...with an IR-active vibrational mode, such as CO2, are naturally present in sufficient abundance. Even in situations where they need to be added, small
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Lewis, P. F.
1980-01-01
The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.
Review of Laser Ablation Process for Single Wall Carbon Nanotube Production
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram
2003-01-01
Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers seem to help the conversion of the carbon from target into vapor phase to improve formation of nanotubes. The use of CW far infrared lasers reduced the need for the oven, at the expense of controlled ablation. Some of these variations are tried with different combinations and concentrations of metal catalysts (Nickel with Cobalt, Iron, Palladium and Platinum) different buffer gases (e.g. Helium); with different oven temperatures (Room temperature to 1473K); under different flow conditions (1 to 1000 kPa) and even different porosities of the graphite targets. It is to be noted that the original Cobalt and Nickel combination worked best, possibly because of improved carbonization with stable crystalline phases. The mean diameter and yield seemed to increase with increasing oven temperatures. Thermal conductivity of the buffer gas and flow conditions dictate the quality as well as quantity of the SWCNTs. Faster flows, lower pressures and heavier gases seem to increase the yields. This review will attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.
Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments
NASA Astrophysics Data System (ADS)
Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.
2013-05-01
A tunable diode laser absorption sensor near 2.7 µm, based on 1f-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f), was developed to measure CO2 concentration in harsh combustion flows. Wavelength selection at 3733.48 cm-1 exploited the overlap of two CO2 transitions in the ν1 + ν3 vibrational band at 3733.468 cm-1 and 3733.498 cm-1. Primary factors influencing wavelength selection were isolation and strength of the CO2 absorption lines relative to infrared water absorption at elevated pressures and temperatures. The HITEMP 2010 database was used to model the combined CO2 and H2O absorption spectra, and key line-strength and line-broadening spectroscopic parameters were verified by high-temperature static cell measurements. To validate the accuracy and precision of the WMS-based sensor, measurements of CO2 concentration were carried out in non-reactive shock-tube experiments (P ˜ 3-12 atm, T ˜ 1000-2600 K). The laser was then free-space fiber-coupled with a zirconium fluoride single-mode fiber for remote light delivery to harsh combustion environments, and demonstrated on an ethylene/air pulse detonation combustor at pressures up to 10 atm and temperatures up to 2500 K. To our knowledge, this work represents the first time-resolved in-stream measurements of CO2 concentration in a detonation-based engine.
Effect of inhalation of different mixtures of O2 and CO2 on retinal blood flow
Luksch, A; Garhöfer, G; Imhof, A; Polak, K; Polska, E; Dorner, G T; Anzenhofer, S; Wolzt, M; Schmetterer, L
2002-01-01
Aim: To determine the effects of various mixtures of O2 and CO2 on retinal blood flow in healthy subjects. Methods: A randomised, double masked, four way crossover trial was carried out in 12 healthy male non-smoking subjects. Gas mixtures (100% O2, 97.5% O2 + 2.5% CO2, 95% O2 + 5% CO2, and 92% O2 + 8% CO2) were administered for 10 minutes each. Two non-invasive methods were used: laser Doppler velocimetry (LDV) for measurement of retinal blood velocity and fundus imaging with the Zeiss retinal vessel analyser (RVA) for the assessment of retinal vessel diameters. Arterial pH, pCO2, and pO2 were determined with an automatic blood gas analysis system. Retinal blood flow through a major temporal vein was calculated. Results: Retinal blood velocity, retinal vessel diameter, and retinal blood flow decreased during all breathing periods (p <0.001 each). Administration of 92% O2 + 8% CO2 significantly increased SBP, MAP, and PR (p <0.001 each, versus baseline), whereas the other gas mixtures had little effect on systemic haemodynamics. Addition of 2.5%, 5%, and 8% CO2 to oxygen caused a marked decrease in pH and an increase in pCO2 (p <0.001 versus pure oxygen). Conclusions: Breathing of pure oxygen and oxygen in combination with carbon dioxide significantly decreases retinal blood flow. Based on these data the authors speculate that hyperoxia induced vasoconstriction is not due to changes in intravascular pH and cannot be counteracted by an intravascular increase in pCO2. PMID:12234896
Xu, Xiao; Wang, Hong-Yi; Zhang, Yu; Liu, Yang; Li, Yan-Qi; Tao, Kai; Wu, Chu-Tse; Jin, Ji-de; Liu, Xiao-Yan
2014-01-01
It is well established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize UV-induced photoaging of skin. However, the exact molecular basis underlying the anti-photoaging effects exerted by ADSCs is not well understood, and whether ADSCs cooperate with fractional carbon dioxide (CO2) laser to facilitate photoaging skin healing process has not been explored. Here, we investigated the impacts of ADSCs on photoaging in a photoaging animal model, its associated mechanisms, and its functional cooperation with fractional CO2 laser in treatment of photoaging skin. We showed that ADSCs improved dermal thickness and activated the proliferation of dermal fibroblast. We further demonstrated that the combined treatment of ADSCs and fractional CO2 laser, the latter which is often used to resurface skin and treat wrinkles, had more beneficial effects on the photoaging skin compared with each individual treatment. In our prepared HDF photoaging model, flow cytometry showed that, after adipose derived stem cells conditioned medium (ADSC-CM) co-cultured HDF photoaging model, the cell proliferation rate is higher than UVB irradiation induced HDF modeling (p < 0.05). Additionally, the expressions of β-catenin and Wnt3a, which were up-regulated after the transplantation of ADSCs alone or in combination with fractional CO2 laser treatment. And the expression of wnt3a and β-catenin has the positive correlation with photoaging related protein TGF-β2 and COLI. We also verified these protein expressions in tissue level. In addition, after injected SFRP2 into ADSC-CM co-cultured HDF photoaging model, wnt3a inhibitor, compared with un-intervened group, wnt3a, β-catenin protein level significantly decreased. Both ADSCs and fractional CO2 laser improved photoaging skin at least partially via targeting dermal fibroblast activity which was increased in photoaging skin. The combinatorial use of ADSCs and fractional CO2 laser synergistically improved the healing process of photoaging skin. Thus, we provide a strong rationale for a combined use of ADSCs and fractional CO2 laser in treatment of photoaging skin in clinic in the future. Moreover, we provided evidence that the Wnt/β-catenin signaling pathway may contribute to the activation of dermal fibroblast by the transplantation of ADSCs in both vitro and vivo experiment.
2014-01-01
Background It is well established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize UV-induced photoaging of skin. However, the exact molecular basis underlying the anti-photoaging effects exerted by ADSCs is not well understood, and whether ADSCs cooperate with fractional carbon dioxide (CO2) laser to facilitate photoaging skin healing process has not been explored. Here, we investigated the impacts of ADSCs on photoaging in a photoaging animal model, its associated mechanisms, and its functional cooperation with fractional CO2 laser in treatment of photoaging skin. Results We showed that ADSCs improved dermal thickness and activated the proliferation of dermal fibroblast. We further demonstrated that the combined treatment of ADSCs and fractional CO2 laser, the latter which is often used to resurface skin and treat wrinkles, had more beneficial effects on the photoaging skin compared with each individual treatment. In our prepared HDF photoaging model, flow cytometry showed that, after adipose derived stem cells conditioned medium (ADSC-CM) co-cultured HDF photoaging model, the cell proliferation rate is higher than UVB irradiation induced HDF modeling (p < 0.05). Additionally, the expressions of β-catenin and Wnt3a, which were up-regulated after the transplantation of ADSCs alone or in combination with fractional CO2 laser treatment. And the expression of wnt3a and β-catenin has the positive correlation with photoaging related protein TGF-β2 and COLI. We also verified these protein expressions in tissue level. In addition, after injected SFRP2 into ADSC-CM co-cultured HDF photoaging model, wnt3a inhibitor, compared with un-intervened group, wnt3a, β-catenin protein level significantly decreased. Conclusion Both ADSCs and fractional CO2 laser improved photoaging skin at least partially via targeting dermal fibroblast activity which was increased in photoaging skin. The combinatorial use of ADSCs and fractional CO2 laser synergistically improved the healing process of photoaging skin. Thus, we provide a strong rationale for a combined use of ADSCs and fractional CO2 laser in treatment of photoaging skin in clinic in the future. Moreover, we provided evidence that the Wnt/β-catenin signaling pathway may contribute to the activation of dermal fibroblast by the transplantation of ADSCs in both vitro and vivo experiment. PMID:24917925
NASA Technical Reports Server (NTRS)
Keiser, Joseph T.
1989-01-01
The Laser Atmospheric Wind Sounder (LAWS) Program has as one of its goals the development of a satellite based carbon dioxide laser for making wind velocity measurements. The specifications for this laser include the requirement that the laser operate at a repetition rate of 10 Hertz continuously for three years. Earth-based carbon dioxide lasers can operate for only a short time on a single charge of gas because the lasing action causes the CO2 to break down into CO and O2. Therefore, earth-based CO2 lasers are generally operated in a flow through mode in which the spent gas is continually exhausted and fresh gas is continually added. For a satellite based system, however, a recirculation system is desired because it is not practical to send up extra tanks of CO2. A catalyst which could enable a recirculating CO2 laser to function continuously for three years needs to be developed. In the development of a catalyst system there are many variables. Obviously, not all possible formulations can be tested for three years, therefore, an accurate model which is based on the reaction mechanism is needed. The construction of a multistep reaction mechanism is similar to the construction of a jigsaw puzzle. Different techniques each supply a piece of the puzzle and the researcher must put the pieces together. Transmission infrared spectroscopy was shown to be very useful in supplying some of the information needed to elucidate reaction mechanisms. The purpose was to see what kind of information might be obtained about the NASA catalyst using infrared absorption spectroscopy. Approximately 200 infrared spectra of the prototype Pt/tin oxide catalyst and its precursor components are observed under a variety of different conditions. The most significant observations are summarized.
van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg
2014-12-16
A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O
NASA Technical Reports Server (NTRS)
Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.
1996-01-01
Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.
Statistic characteristics of the gas-liquid flow in a vertical minichannel
NASA Astrophysics Data System (ADS)
Kozulin, I. A.; Kuznetsov, V. V.
2010-03-01
The gas-liquid upward flow was studied in a rectangular minichannel of 1.75×3.8 mm and length of 0.7 m. The experiments were carried out within the range of the gas superficial velocity from 0.1 to 10 m/s and the liquid superficial velocity from 0.07 to 0.7 m/s for the co-current H2O/CO2 flow under the conditions of saturation. The method for the two-beam laser scanning of structure and determination of statistic characteristics of the two-phase flow was worked through. The slug-bubble, slug, transitional, churn, and annular flows were distinguished. The statistics characteristics of liquid and gas phases motion in a minichannel were obtained for the first time including the velocities of phase motion.
NASA Astrophysics Data System (ADS)
Webber, Michael E.; Claps, Ricardo; Englich, Florian V.; Tittel, Frank K.; Jeffries, Jay B.; Hanson, Ronald K.
2001-08-01
Measurements of NH3 and CO2 were made in bioreactor vent gases with distributed-feedback diode-laser sensors operating near 2 m. Calculated spectra of NH3 and CO2 were used to determine the optimum transitions for interrogating with an absorption sensor. For ammonia, a strong and isolated absorption transition at 5016.977 cm-1 was selected for trace gas monitoring. For CO2 , an isolated transition at 5007.787 cm-1 was selected to measure widely varying concentrations [500 parts per million (ppm) to 10% ,] with sufficient signal for low mole fractions and without being optically thick for high mole fractions. Using direct absorption and a 36-m total path-length multipass flow-through cell, we achieved a minimum detectivity of 0.25 ppm for NH3 and 40 ppm for CO2 . We report on the quasi-continuous field measurements of NH3 and CO2 concentration in bioreactor vent gases that were recorded at NASA Johnson Space Center with a portable and automated sensor system over a 45-h data collection window.
Rapid estimation of characteristics of gas dynamic lasers
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1974-01-01
Sudden-freeze approximation is applied to the flow of a CO2-N2-He mixture in wedge-type nozzles. This approximation permits rapid estimation of the freezing temperature of the upper laser level as a function of the stagnation pressure and the nozzle geometry. The stagnation temperature and the composition of the mixture appear as parameters. Gain and power output may then be estimated and calculations are presented for two cases.
Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization
NASA Astrophysics Data System (ADS)
Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.
To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.
Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier
NASA Technical Reports Server (NTRS)
Cunningham, D. L.; Jones, P. L.; Miyake, C. I.; Moody, S. E.
1990-01-01
The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes.
Catalyst for Carbon Monoxide Oxidation
NASA Technical Reports Server (NTRS)
Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin
2010-01-01
In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the catalyst composition in an amount of about 5 to 25 (especially 7) percent by weight, SnO2 is present in an amount of about 30 to 40 (especially 40) percent by weight, and silica gel is present in an amount of 45 to 55 (especially 50) percent by weight. The composition of this catalyst was suggested by preliminary experiments in which a Pt/SnO2 catalyst was needed for bound water to enhance its activity. These experimental results suggested that if the water were bound to the surface, this water would enhance and prolong catalyst activity for long time periods. Because the catalyst is to be exposed to a laser gas mixture, and because a CO2 laser can tolerate only a very small amount of moisture, a hygroscopic support for the catalyst would provide the needed H2O into the gas. Silica gel is considered to be superior because of its property to chemisorb water on its surface over a wide range of moisture content.
Observations on Bubble Dynamics at High Pressures and Bubble Dynamics in Stagnation Flow.
1982-11-30
reverse side It nocooeuAn aifdentifly by block mt..bet) S 1 Cavitation, High Speed Photography, Ruby Laser . 20. AFSTAACT Co.nflno on revere side Of...AT NIGH ASIE3r.T PRESSUrES A.T. Ellis and J.E. Starrect University of California, San Diego Recent developsent by the authors of a unique ruby laser ...1,000,300 frames per second with exposure clue of approximately 2vl0- seconds. The coherent nature of the laser illuminacion revealed shock waves
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
Real-time breath gas analysis of CO and CO2 using an EC-QCL
NASA Astrophysics Data System (ADS)
Ghorbani, Ramin; Schmidt, Florian M.
2017-05-01
Real-time breath gas analysis is a promising, non-invasive tool in medical diagnostics, and well-suited to investigate the physiology of carbon monoxide (CO), a potential biomarker for oxidative stress and respiratory diseases. A sensor for precise, breath-cycle resolved, simultaneous detection of exhaled CO (eCO) and carbon dioxide (eCO2) was developed based on a continuous wave, external-cavity quantum cascade laser (EC-QCL), a low-volume multi-pass cell and wavelength modulation spectroscopy. The system achieves a noise-equivalent (1σ) sensitivity of 8.5 × 10-8 cm-1 Hz-1/2 and (2σ) detection limits of 9 ± 2 ppbv and 650 ± 7 ppmv at 0.14 s spectrum acquisition time for CO and CO2, respectively. Integration over 15 s yields a precision of 0.6 ppbv for CO. The fact that the eCO2 expirograms measured by capnography and laser spectroscopy have essentially identical shape confirms true real-time detection. It is found that the individual eCO exhalation profiles from healthy non-smokers have a slightly different shape than the eCO2 profiles and exhibit a clear dependence on exhalation flow rate and breath-holding time. Detection of indoor air CO and broadband breath profiling across the 93 cm-1 mode-hop-free tuning range of the EC-QCL are also demonstrated.
NASA Technical Reports Server (NTRS)
Moser, Thomas P.
1990-01-01
An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.
NASA Astrophysics Data System (ADS)
Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.
2015-12-01
Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.
NASA Astrophysics Data System (ADS)
Farooq, A.; Jeffries, J. B.; Hanson, R. K.
2008-03-01
A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν1+ν3 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.
2010-07-15
Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355more » nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)« less
The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology
Omi, Tokuya; Numano, Kayoko
2014-01-01
Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971
The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology.
Omi, Tokuya; Numano, Kayoko
2014-03-27
Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.
Feed-forward adaptive-optic correction of a weakly-compressible high-subsonic shear layer
NASA Astrophysics Data System (ADS)
Duffin, Daniel A.
Development of airborne laser systems began in the 1970s with the Airborne Laser Laboratory, a KC135 aircraft with a CO2 laser projected from a beam director mounted atop the aircraft as a hemispherical turret encased in a fairing. It was known that the turbulent air flowing around the turret and separating over the aft portions of the turret would aberrate the laser beam's wavefront (the aero-optic problem); however, the CO2 wavelength, 10.6 mum, was long enough that the aberrating turbulent flow decreased the system's performance by only about 5%. With newer airborne laser systems using wavelengths nearer 1 mum, this same turbulent flow now reduces system performance by more than 95%. It has long been known that if a conjugate waveform is used to pre-distort the outgoing laser's wavefront, the turbulence will actually correct the beam, restoring most of the system's performance. The problem with performing this compensation is that the system for performing this function, the so-called adaptive-optic system, is bandwidth limited in its conventional architecture, by orders of magnitude lower than that required to correct for the aero-optic effects. The research described in this dissertation explored changing the adaptive-optic paradigm from feedback to feed-forward by adding flow control to make the aberration environment predictable rather than unpredictable. This research demonstrated that the turbulent high-speed separated shear layer could be robustly forced into a regularized form. It was also shown that these regularized velocity patterns in the shear layer produced periodic optical aberrations. Extensive measurement and analysis of these convecting aberrations yielded the underlying structure required to produce the conjugate wavefront correction patterns required for a range of laser propagation angles through the shear layer. Ultimately, a feed-forward adaptive-optic system was developed and used to demonstrate the highest-bandwidth correction of aero-optic aberrations ever performed; the effective bandwidth of the demonstrated adaptive-optic correction was at least two orders of magnitude greater than the capabilities of existing conventional adaptive-optic systems.
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.; Pummill, Randy J.; Waind, Travis; Wagner, David R.; Whitty, Kevin J.
2014-07-01
Tunable diode laser absorption spectroscopy based in situ sensors for CO (2.33 μm), CO2 (2.02 μm), CH4 (2.29 μm) and H2O (1.35 μm) were deployed in a pilot-scale (1 ton/day), high-pressure (up to 18 atm), entrained flow, oxygen-blown, slagging coal gasifier at the University of Utah. Measurements of species mole fraction with 3-s time resolution were taken at the pre- and post-filtration stages of the gasifier synthesis gas (called here syngas) output flow. Although particulate scattering makes pre-filter measurements more difficult, this location avoids the time delay of flow through the filtration devices. With the measured species and known N2 concentrations, the H2 content was obtained via balance. The lower heating value and the Wobbe index of the gas mixture were estimated using the measured gas composition. The sensors demonstrated here show promise for monitoring and control of the gasification process.
Effectiveness of CO2 laser with subcision in patients with acne scars.
Anupama, Y G; Wahab, Afthab Jameela
2016-11-01
Post-acne facial scarring has always been a challenge to treat. It requires multiple therapeutic modalities as single modality is not hundred percent effective. Therefore, we have combined CO 2 laser resurfacing with subcision in patients with acne scars for better results. The aim is to study the effectiveness and side effects of CO 2 laser with subcision in patients with atrophic acne scars. Fifty patients were selected for the study. Baseline grading was done with Goodman and Baron grading system. Twenty-five patients were randomly selected for subcision followed by CO 2 laser and the remaining patients were selected for CO 2 laser alone. The treatment was done for four sessions at 4-week interval. Clinical photographs were obtained for evaluation. CO 2 laser with subcision showed excellent response in grade-2 and -3 acne scars. Statistically there is a significant difference between CO 2 laser following subcision and CO 2 laser alone at 5% level (p < 0.05). Both procedures were well tolerated with minimal side effects. The highly versatile CO 2 laser is useful for treating acne scars. Subcision prior to the CO 2 laser procedure showed better improvement when compared to CO 2 laser alone. Thus, in acne scars, multiple therapeutic modalities achieve better results.
NASA Astrophysics Data System (ADS)
Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.
2011-03-01
The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.
Wu, Ding-Tao; Deng, Yong; Zhao, Jing; Li, Shao-Ping
2017-11-01
To accurately characterize branched polysaccharides with high molecular weights from medicinal and edible mushrooms and identify the limitations of size exclusion chromatography, molecular characteristics of polysaccharides from Tremella fuciformis were determined and compared by asymmetrical flow field-flow fractionation coupled with multiangle laser light scattering and refractive index detection, and size exclusion chromatography coupled with multiangle laser light scattering and refractive index detection, respectively. Results showed that molecular weights of three batches of T. fuciformis polysaccharides were determined as 2.167 × 10 6 (TF1), 2.334 × 10 6 (TF2), and 2.435 × 10 6 Da (TF3) by size exclusion chromatography, and 3.432 × 10 6 (TF1), 3.739 × 10 6 (TF2), and 3.742 × 10 6 Da (TF3) by asymmetrical flow field-flow fractionation, as well as 3.469 × 10 6 Da (TF1) by off-line multiangle laser light scattering, respectively. Results suggested that size exclusion chromatography was unable to accurately characterize T. fuciformis polysaccharides, which may be due to its limitations such as shear degradation and abnormal coelution. Compared to size exclusion chromatography, asymmetrical flow field-flow fractionation could be a better technique for the molecular characterization of branched polysaccharides with high molecular weights from medicinal and edible mushrooms, as well as from other natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow
NASA Astrophysics Data System (ADS)
Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.
2016-10-01
As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.
Takizawa, T
1984-01-01
The author started in 1969 his studies on developing the practical models of the carbon dioxide laser surgical units and produced Medilaser-S, Model MEL-42 and MEL-444. By the end of 1982 the author had operated on 143 cases of brain tumour with the laser. Most of those cases were brain tumours which were difficult or impossible to remove by conventional means. The major points of this paper are as follows: The principle of the laser, the mechanism of the CO2 laser, the biomedical features of the CO2 laser, the advantages and disadvantages of the CO2 laser, indications and contraindications for the use of the CO2 laser, development of the CO2 laser surgical units, surgical procedures and techniques of brain tumour laser surgery, adjuvant methods of laser surgery and comparison between the CO2 laser and the Nd-YAG laser.
NASA Technical Reports Server (NTRS)
Johnson, Barry
1992-01-01
The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.
NASA Astrophysics Data System (ADS)
Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.
2016-02-01
This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.
Application of CO II laser for removal of oral mucocele
NASA Astrophysics Data System (ADS)
Kato, J.; Moriya, K.; Hirai, Y.
2006-02-01
Mucocele is an oral soft tissue cyst caused by the disturbance of saliva flow. Mucocele is widely observed in child patients and recurrence is high. The objective of this study was to clarify the effect of CO II laser irradiation in the case of mucocele. A CO II laser was used on 45 subjects, aged between 0 to 15 years, having mucocele on lip, lingual, or buccal mucosa. Our procedure in using CO II laser was not to vaporize the mucocele but to remove the whole mucocele mass. The border of mucocele was firstly incised by laser following defocusly ablating the root or body of mucocele separating from sorrounding tissue. As a result, mucocele was easily and completely removed without breaking the wall of mucocele. None of the cases required suturing. The results were as follows. 1. The mucocele of lip or lingual mucosa with a rich blood supply, was efficiently removed, without bleeding, giving a clear operative field during the operation. 2. The surgery itself was simple and less time-consuming. 3. After two or three weeks the wound was completely healed without almost any discomfort in all patients 4. Wound contraction and scarring were decreased or eliminated. 5. The reoccurrence of mucocele was not seen, except only in one case of lingual mucocele. In conclusion the use of CO II laser proved to be a very safe and effective mode for the removal of mucocele, especially in small children.
NASA Astrophysics Data System (ADS)
Li, Ruidi; Yuan, Tiechui; Qiu, Zili
2014-07-01
A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.
A four kHz repetition rate compact TEA CO2 laser
NASA Astrophysics Data System (ADS)
Zheng, Yijun; Tan, Rongqing
2013-09-01
A compact transversely excited atmospheric (TEA) CO2 laser with high repetition-rate was reported. The size of the laser is 380 mm×300 mm×200 mm, and the discharge volume is 12×103 mm3. The laser cavity has a length of 320mm and consists of a totally reflective concave mirror with a radius of curvature of 4 m (Cu metal substrate coated with Au) and a partially reflecting mirror. The ultraviolet preionization makes the discharge even and stable,the output energy can be as high as 28 mJ under the circumstance of free oscillation, and the width of the light pulse is 60ns.To acquire the high wind velocity, a turbocharger is used in the system of the fast-gas flow cycle. When the wind speed is 100m/s, the repetition rate of the transversely excited atmospheric CO2 laser is up to 2 kHz. On this basis, a dual modular structure with two sets of the gas discharge unit is adopted to obtain a higher pulse repetition frequency output. The dual discharge unit composed two sets of electrodes and two sets of turbo fan. Alternate trigger technology is used to make the two sets of discharge module work in turn with repetition frequency of 2 kHz, the discharge interval of two sets of the gas discharge unit can be adjusted continuously from 20 microseconds to 250 microseconds. Under the conditions of maintaining the other parameters constant, the repetition frequency of the laser pulse is up to 4 kHz. The total size of laser with dual modular structure is 380mm×520mm×200mm, and the discharge volume is 24×103 mm3 with the cavity length of 520mm.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Khare, Jai; Nath, A. K.
2007-02-01
Selective laser isotope separation by TEA CO 2 laser often needs short tail-free pulses. Using laser mixtures having very little nitrogen almost tail free laser pulses can be generated. The laser pulse characteristics and its gas lifetime is an important issue for long-term laser operation. Boltzmann transport equation is therefore solved numerically for TEA CO 2 laser gas mixtures having very little nitrogen to predict electron energy distribution function (EEDF). The distribution function is used to calculate various excitation and dissociation rate of CO 2 to predict laser pulse characteristics and laser gas lifetime, respectively. Laser rate equations have been solved with the calculated excitation rates for numerically evaluated discharge current and voltage profiles to calculate laser pulse shape. The calculated laser pulse shape and duration are in good agreement with the measured laser characteristics. The gas lifetime is estimated by integrating the equation governing the dissociation of CO 2. An experimental study of gas lifetime was carried out using quadrapole mass analyzer for such mixtures to estimate the O 2 being produced due to dissociation of CO 2 in the pulse discharge. The theoretically calculated O 2 concentration in the laser gas mixture matches with experimentally observed value. In the present TEA CO 2 laser system, for stable discharge the O 2 concentration should be below 0.2%.
Heat-exchanger concepts for neutral-beam calorimeters
NASA Astrophysics Data System (ADS)
Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.
1981-10-01
Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.
Evaluation of a new laser-resistant fabric and copper foil-wrapped endotracheal tube.
Sosis, M B; Braverman, B; Caldarelli, D D
1996-07-01
The risk of an endotracheal tube's combustion during laser airway surgery necessitates the use of special anesthetic techniques and equipment to prevent this complication. This study was designed to evaluate the Laser-Trach(TM), a new laser-resistant rubber endotracheal tube for use during laser airway surgery. The Laser-Trach endotracheal tubes that were evaluated were size 6.0 mm internal diameter (ID) red rubber endotracheal tubes which had been commercially wrapped by Kendall-Sheridan (Mansfield, Mass.) with copper foil tape and overwrapped with fabric. The fabric layer was saturated with water prior to our tests, as recommended by the manufacturer. The Laser-Trach endotracheal tubes were compared with plain (bare) size 6.0 mm ID Rusch red rubber endotracheal tubes. The tubes under study were positioned horizontally on wet towels in air and had 5 L x min(-1) of oxygen flowing through them. They were subjected to continuous laser radiation at 40 W from either a CO2 or an Nd-YAG laser. The Nd-YAG laser was propagated via a 600-micron fiber bundle. Each laser was directed perpendicularly at the shaft of the endotracheal tube being studied, and its output was continued until a blowtorch fire occurred or 60 seconds had elapsed. Sixty seconds of CO2 laser fire did not ignite any of the eight Laser-Trach endotracheal tubes tested. However, blowtorch ignition of all eight bare rubber tubes tested occurred after 0.87 +/- 0.21 (mean +/- SD) seconds of CO2 laser fire. Nd-YAG laser contact with the Laser-Trach endotracheal tubes caused the perforation and blowtorch ignition of all eight tubes tested after 18.79 +/- 7.83 seconds. This was a significantly (P<.05) longer time than the 5.45 +/- 4.75 seconds required for the blowtorch ignition of all eight plain rubber endotracheal tubes tested with the Nd-YAG laser. Our results show that under the conditions of this study, the shafts of the Kendall-Sheridan Laser-Trach endotracheal tubes were resistant to the C02 laser. However, this endotracheal tube is not recommended for use with the Nd-YAG laser.
He, F C; Wei, L P; Lanzetta, M; Owen, E R
1999-01-01
Using the technique of radioactive 51Cr-labeled biological microspheres, this study evaluated arterial blood flow following small vessel anastomosis by CO2 laser welding and a dissolvable stent in the lumen. A total of 30 Sprague-Dawley rats were divided into two groups. Group A: 11 rats had their femoral arteries ligated on one side. The contralateral side served as a control, with the artery transected and repaired using conventional microsuturing. Group B: 19 rats had their femoral arteries transected and repaired using CO2 laser welding and an intraluminal dissolvable stent technique. The contralateral side was again used as a control using conventional microsuturing. At 1 hr postoperatively, 51Cr-labeled biological microspheres were injected centripetally into the left common carotid artery and the legs and thighs immediately harvested for measurement of radioactivity. All repaired arteries were patent (30/30 in the microsuturing group and 19/19 in the stented welding group), with no detectable stenosis or dilation at the repaired site. Statistical analysis showed that tissue radioactivity (cpm/g) in the ligated group (3,972 +/- 384 in thighs and 3,142 +/- 742 in legs) was significantly lower than in the microsuturing group (7,132 +/- 1,723 in thighs and 6,557 +/- 1,469 in legs) (P < 0.01). In the ligated group, a significant reduction of blood flow was seen in the legs when compared with the thighs (P < 0.05). There was no significant difference in radioactivity when comparing the microsuturing control with the stented welding group, in both thighs (7,064 +/- 2,599 and 7,006 +/- 2,406, respectively; P > 0.05) and legs (6,386 +/- 1,703 and 6,288 +/- 1,757, respectively; P > 0.05). This study provided evidence that the dissolvable stent placed intraluminally does not impair blood circulation and that when coupled with CO2 laser welding offers a high-quality alternative to conventional small vessel anastomosis.
Karbe, E; Königsmann, G; Beck, R
1980-01-01
Various laser devices (CO2, CO, Nd: YAG, and holmium: YAG lasers) have been used on pig livers and on dog kidneys for comparison with conventional surgical instruments (electroscalpel, cryoscalpel, and scalpel). CO2 and CO lasers caused the least tissue damage, followed by the holmium laser; severe damage was caused by the Nd: YAG laser. The order was reverse for coagulative effect. The conventional reference instruments showed a weaker hemostatic effect. Surfaces cut by laser healed in four to eight weeks without complications. Remnants of charred tissue in various quantities could still be detected after eight weeks in all cases where CO2, CO, and Nd: YAG lasers had been used. This obviously did not affect scar formation.
Chen, Kee-Hsin; Tam, Ka-Wai; Chen, I-Fan; Huang, Shihping Kevin; Tzeng, Pei-Chuan; Wang, Hsian-Jenn; Chen, Chiehfeng Cliff
2017-08-01
Laser resurfacing is used to minimize wrinkles, solar scars and sequelae of acne. Purpose of the systematic review was to compare resurfacing outcomes of CO 2 laser and erbium: yttrium aluminium garnet (erb:YAG) laser therapies. Medline, Cochrane Library, EMBASE and Google Scholar databases were searched until 9 April 2015 using the following terms: laser, carbon dioxide/CO 2 , facial wrinkles, rhytides and erbium-doped yttrium aluminium garnet/erbium:YAG/Er:YAG. Two-armed controlled split faced studies that compared CO 2 laser and erbium:YAG laser in patients with mild-to-moderate facial wrinkles or rhytides were included. The pooled data in this study and findings of other studies support the greater efficacy with the CO 2 laser in improving facial wrinkles, but the erb:YAG laser was associated with a better complication profile compared with the CO 2 laser. Except one case of hypopigmentation, other complications (i.e., erythema, hyperpigmentation and crusting) and their rates were reported by studies examining both lasers. In general, the CO 2 laser appeared to be more efficacious then the erb:YAG laser in treating facial wrinkles. Both lasers treatments were well tolerated.
NASA Astrophysics Data System (ADS)
Nontapot, Kanokwan
2018-03-01
The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.
Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser
NASA Astrophysics Data System (ADS)
Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar
2016-07-01
Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.
Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.
van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard
2017-08-01
A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.
Prevention of CO2 laser-induced endotracheal tube fires with the laser-guard protective coating.
Sosis, M B; Dillon, F
1992-01-01
To determine how well Laser-Guard protects polyvinyl chloride (PVC) endotracheal tubes from the carbon dioxide (CO2) laser. Bare and Laser-Guard-protected PVC endotracheal tubes were tested with 5 L/min of oxygen (O2) passing through them. Research laboratory of a university-affiliated metropolitan medical center. After moistening the Laser-Guard-protected endotracheal tubes, we subjected the tubes to CO2 laser radiation at 10 and 70 watts until combustion occurred or 60 seconds had elapsed. The bare PVC tube ignited and a "blowtorch" fire occurred after 3 seconds of CO2 laser use at 70 watts. The moistened Laser-Guard-protected PVC endotracheal tubes were not significantly damaged by 1 minute of laser use at 70 watts. Laser-Guard protects the shafts of combustible PVC endotracheal tubes from direct, high-power, continuous CO2 laser radiation.
NASA Astrophysics Data System (ADS)
Kahlen, Franz-Josef; Sankaranarayanan, Srikanth; Kar, Aravinda
1997-09-01
Subject of this investigation is a one-step rapid machining process to create miniaturized 3D parts, using the original sample material. An experimental setup where metal powder is fed to the laser beam-material interaction region has been built. The powder is melted and forms planar, 2D geometries as the substrate is moved under the laser beam in XY- direction. After completing the geometry in the plane, the substrate is displaced in Z-direction, and a new layer of material is placed on top of the just completed deposit. By continuous repetition of this process, 3D parts wee created. In particular, the impact of the focal spot size of the high power laser beam on the smallest achievable structures was investigated. At a translation speed of 51 mm/s a minimum material thickness of 590 micrometers was achieved. Also, it was shown that a small Z-displacement has a negligible influence on the continuity of the material deposition over this power range. A high power CO2 laser was used as energy source, the material powder under investigation was stainless steel SS304L. Helium was used as shield gas at a flow rate of 15 1/min. The incident CO2 laser beam power was varied between 300 W and 400 W, with the laser beam intensity distribute in a donut mode. The laser beam was focused to a focal diameter of 600 (Mu) m.
Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry
NASA Astrophysics Data System (ADS)
Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.
2014-12-01
Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
The effect of CO2 laser treatment on skin tissue.
Baleg, Sana Mohammed Anayb; Bidin, Noriah; Suan, Lau Pik; Ahmad, Muhammad Fakarruddin Sidi; Krishnan, Ganesan; Johari, Abd Rahman; Hamid, Asma
2015-09-01
The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model. A 10 600-nm CO2 laser was applied to rat skin, with one side of the rat dorsal skin being exposed, leaving the other side as a control. All of the various laser pulses tested led to gradual loss of epidermal thickness as well as a dramatic increase in thermal damage depth. Collagen coagulation was most effective with ten pulses of CO2 laser, while the strength of irradiated skin tissue increased as the influence of the laser increased. Fundamental laser-skin interaction effects were studied using a CO2 laser. The photodamaged areas obtained from laser interaction were recorded via couple charge device video camera and analyzed via ImageJ software. Photodamage induced by CO2 laser is due to photothermal effects, which involve burning and vaporizing mechanisms to ablate the epidermis layer. The burning area literally expands and penetrates deep into the dermis layer, subsequently causing collagen coagulation. This fundamental study shows in detail the effect of CO2 laser interaction with skin. The CO2 attributed severe burning, producing deep coagulation, and induced strength to treated skin. © 2015 Wiley Periodicals, Inc.
Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert
2018-05-07
Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P < 0.01). We found no significant difference in VAS scores between the CO 2 and the Er:YAG laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P < 0.05) and the Er:YAG laser (P < 0.01). Pretreatment with the CO 2 laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can be used to assist topical anesthesia although the CO 2 laser pretreatment is experienced as more painful. In our study settings, using articaine/epinephrine solution and an occlusion time of 15 minutes, a density of 15% was more effective than 5%. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Isotope Exchange in Oxide Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.
Routine use of the CO2 laser technique for resection of cerebral tumours.
Deruty, R; Pelissou-Guyotat, I; Mottolese, C; Amat, D
1993-01-01
The CO2 laser technique has been routinely used from 1988 through 1992 for the resection of 93 cerebral tumours (meningiomas 58%, gliomas 15%, neurinomas 9%, miscellaneous 18%). The CO2 laser technique was found the more effective 1) in tumours of hard consistency, 2) in large or giant tumours, 3) in tumours with scarce vascularization. Meningiomas were the indication of choice (54 cases that is 58% of all tumours treated with CO2 laser, and 64% of all meningiomas operated on during the same period). Among the meningiomas treated with the CO2 laser, 54% were located on the skull base. The CO2 laser beam provides good haemostasis of small vessels during the vaporization process. When attached to the operative microscope, the other advantages of the CO2 laser technique are: the absence of a handle-piece, the absence of manual manipulation of the tumour, the coaxiality of the laser beam with the visual beam. The disadvantages are: the rigidity of the coupled microscope-Laser arm, the smoke produced by the vaporization of hard tumours, the noise of the device.
Applications of Laser Scattering Probes to Turbulent Diffusion Flames
1983-11-01
APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame
Esmat, Samia M; Elramly, Amany Z; Abdel Halim, Dalia M; Gawdat, Heba I; Taha, Hanaa I
2014-12-01
Xanthelasma palpebrarum (XP) is a common cosmetic concern. Although there is a wide range of therapeutic modalities for XP, there is no general consensus on the optimal treatment for such condition. Compare the efficacy and safety of super pulsed (SP) and fractional CO2 lasers in the treatment of XP. This prospective randomized comparative clinical study included 20 adult patients with bilateral and symmetrical XP lesions. Xanthelasma palpebrarum lesions were randomly assigned to treatment by either single session of ablative SP CO2 laser or 3 to 5 sessions of ablative fractional CO2 laser with monthly intervals. All patients were assessed using digital photography and optical coherence tomography images. Xanthelasma palpebrarum lesions on both sides were successfully removed with significant improvement in size, color, and thickness. Although lesions treated by SP CO2 laser showed significantly better improvement regarding color and thickness of the lesions, downtime and patient satisfaction were significantly better for lesions treated with fractional CO2 laser. Scarring and recurrence were significantly higher in lesions treated by SP CO2 laser. Ablative fractional CO2 laser is an effective and safe therapeutic option for XP with significantly shorter downtime and higher patient satisfaction compared with SP CO2 laser.
Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery
NASA Astrophysics Data System (ADS)
Lach, Elliot
1994-09-01
The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.
Catalytic Oxidation of CO for Closed-Cycle CO2 Lasers
NASA Technical Reports Server (NTRS)
Miller, I. M.; Schryer, D. R.; Hess, R. V.; Sidney, B. D.; Wood, G. M., Jr.; Paulin, P. A.; Upchurch, B. T.; Brown, K. G.
1987-01-01
Stoichiometric mixture converted completely. High-energy pulsed CO2 lasers have potential for measuring many different features of atmosphere of Earth and particularly useful on airborne or space platforms. For this application, laser must be operated in closed cycle to conserve gas, especially if rare nonradioactive isotopes of carbon and oxygen used. However, laser discharge decomposes fraction of CO2 to CO and O2, causing rapid loss in power leading to erratic behavior. To maintain operation, CO and O2 must be recombined to form CO2.
González-Mosquera, A; Seoane, J; García-Caballero, L; López-Jornet, P; García-Caballero, T; Varela-Centelles, P
2012-09-01
Our aim was to assess wounds made by lasers (CO(2) and Er,Cr:YSGG) for their epithelial architectural changes and width of damage. We allocated 60 Sprague-Dawley(®) rats into groups: glossectomy by CO(2) laser at 3 different wattages (n=10 in each); glossectomy by Er,Cr:YSGG laser at two different emissions (n=10 in each), and a control group (n=10). Histological examination assessed both prevalence and site of thermal artefacts for each group. Both lasers (CO(2) and Er,Cr:YSGG) caused the same type of cytological artefacts. The 3W Er,Cr:YSGG laser produced the fewest cytological artefacts/specimen, and was significantly different from the other experimental groups: 3W CO(2) laser (95% CI=0.8 to 1.0); the 6W CO(2) laser (95% CI=0.1 to 2.0) and the 10W CO(2) laser (95% CI=1.1 to 3.0). CO(2) lasers (3-10W) generate epithelial damage that can simulate dysplastic changes with cytological atypia that affects mainly the basal and suprabasal layers. Irradiation with Er,CR:YSGG laser (2-4W) produces significantly fewer cellular artefacts and less epithelial damage, which may be potentially useful for biopsy of oral mucosa. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golyshev, A A; Malikov, A G; Orishich, A M
Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)
Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni
2017-01-01
Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948
NASA Astrophysics Data System (ADS)
Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly
2007-05-01
We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.
Suter, Valérie G A; Altermatt, Hans Jörg; Sendi, Pedram; Mettraux, Gérald; Bornstein, Michael M
2010-01-01
The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.
NASA Astrophysics Data System (ADS)
Dewers, T. A.
2015-12-01
Multiphase flow in clay-rich sandstone reservoirs is important to enhanced oil recovery (EOR) and the geologic storage of CO2. Understanding geologic controls on pore structure allows for better identification of lithofacies that can contain, storage, and/or transmit hydrocarbons and CO2, and may result in better designs for EOR-CO2 storage. We examine three-dimensional pore structure and connectivity of sandstone samples from the Farnsworth Unit, Texas, the site of a combined EOR-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). We employ a unique set of methods, including: robotic serial polishing and reflected-light imaging for digital pore-structure reconstruction; electron microscopy; laser scanning confocal microscopy; mercury intrusion-extrusion porosimetry; and relative permeability and capillary pressure measurements using CO2 and synthetic formation fluid. Our results link pore size distributions, topology of porosity and clay-rich phases, and spatial persistence of connected flow paths to multiphase flow behavior. The authors gratefully acknowledge the U.S. Department of Energy's National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Gu, Qingjia; Feng, Yong; Yu, Xiaoxu; Fan, Jian'gang; Li, Debing; He, Gang
2014-08-01
To investigate the efficacy of CO2 laser treatment for patients with precancerous laryngeal lesions under phonomicrosurgery and to explore the points for attention in operation. They were all treated with phonomicrosurgery techniques as mucosal epitheliumablation or mucosal stripping by using CO2 laser. Eight patients with laryngeal papilloma were excised by CO2 laser. All patients were treated with CO2 laser surgery successfully. During follow-up of 6 to 39 months, all patients survived. Local recurrence or canceration were detected in 3 cases, of which 2 cases with laryngeal papilloma underwent CO2 laser treatment in one year post-operatively, while the other case with severe dysplasia underwent laryngeal vertical partial laryngectomy and post-operative radiotherapy one and half year postoperatively due to canceration. No local recurrence occurred until the last follow up. No severe complications such as dyspnea and hemorrhage occured. CO2 laser surgery is an effective and minimally invasive treatment for precancerous laryngeal lesions. Through selecting the appropriate patient and paying attention to the operation during surgery, the adhesion of vocal cord can be reduced or even be avoided after CO2 laser surgery.
Roux, F X; Leriche, B; Cioloca, C; Devaux, B; Turak, B; Nohra, G
1992-01-01
The authors present their experience concerning the use of Combolaser (Lasermatic, Finland), in neurosurgery. This laser-unit combines two wavelengths (CO2 and 1.06 Nd-YAG) which are emitted simultaneously and coaxially. During the last 12 months, 40 patients harbouring an intracranial tumor were operated upon with such a combolaser unit: 8 infra-tentorial, 32 supra-tentorial, 17 were meningiomas. The mean output power used during the procedures was 3-5 w for both CO2 and Nd-YAG beams. The authors discuss the advantages and inconveniences of such a laser; and they compare it with the other laser-units they have been using for the last 10 years: CO2-Laser, 1.06 Nd-YAG and 1.32 Nd-YAG laser. The main inconvenience of this unit is linked to the utilization of the articulated arm which conducts the CO2 laser beam. This drawback should be avoided or limited by the use of a fiber microguide, which will conduct both CO2 and Nd-YAG beams simultaneously. The principal contribution of a combined-laser unit is the quality of the haemostasis associated to a very good vaporization and cutting effect. When both wavelengths are synchronized, the combined laser beams penetrate into the nervous parenchyma more deeply than the only CO2 laser beam would with the same parameters. The vaporization effect is identical to that obtained with the isolated CO2 laser; the quality of haemostasis is limited to the effects of the Nd-YAG laser. Another advantage must be emphasized: the possibility of utilizing separately the CO2 laser and the 1.06 Nd-YAG.
Laser plasmatron for diamond coating deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glova, A. F., E-mail: afglova@triniti.ru; Lysikov, A. Yu.; Malyuta, D. D.
2016-12-15
An experimental installation with a laser plasmatron based on a continuous wave CO{sub 2} laser with a radiation power of up to 3.5 kW has been created. The plasmatron design makes it possible to bring out the plasma jet into atmospheric air both along and across the laser beam direction. The spatial temperature distributions on the metal substrate surface heated by the plasma jet are measured. The threshold power for optical discharge maintenance as a function of the gas flow rate and the focal length of the focusing lens are obtained for an Ar and Ar/CH{sub 4}/H{sub 2} gas mixturemore » under atmospheric pressure; the radiation spectrum of the discharge plasma is measured. A one-dimensional model of the discharge for estimation of its geometrical parameters in a convergent laser beam with consideration of radiation refraction on the discharge is given.« less
Development of new type of nozzle for high-power Nd:YAG laser welding
NASA Astrophysics Data System (ADS)
Yoshikawa, Mitsuaki; Kurosawa, Takashi; Tanno, Yasuo
2000-02-01
We have been engaged in research and development concerning high power Nd:YAG laser equipment and overall application technology for welding, cutting and drilling. Especially, development of the technology and the system are required for to establish stable welding process. Higher the laser power used, the more laser beam interacted with material, leading to increased vapor, plume and spatter ejection from molten metal. They contaminate and damage the optical systems that are constructed by lens and cover glass plate. In general, in order to protect the optical system, shielding gas flow rate is controlled. But if the gas flow rate exceeds the proper value, molten metal does not protect from oxidation. Therefore we developed a new type co-axial nozzle device. We welded various material (mild steel, stainless steel and aluminum alloy) using new type nozzle and 4 kW YAG laser (MW4000). As the results of experiment, it was cleared that we can weld, within the speed range from 25 mm/min to 2 m/min, stably and easily.
Laser Doppler systems in pollution monitoring
NASA Technical Reports Server (NTRS)
Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.
1976-01-01
The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.
Böttcher, Arne; Jowett, Nathan; Kucher, Stanislav; Reimer, Rudolph; Schumacher, Udo; Knecht, Rainald; Wöllmer, Wolfgang; Münscher, Adrian; Dalchow, Carsten V
2014-05-01
Despite causing significant thermocoagulative insult, use of the carbon dioxide (CO2) laser is considered gold standard in surgery for early stage larynx carcinoma. Limited attention has been paid to the use of the erbium:yttrium-aluminium-garnet (Er:YAG) laser in laryngeal surgery as a means to reduce thermal tissue injury. The objective of this study is to compare the extent of thermal injury and precision of vocal fold incisions made using microsecond Er:YAG and superpulsed CO2 lasers. In the optics laboratory ex vivo porcine vocal folds were incised using Er:YAG and CO2 lasers. Lateral epithelial and subepithelial thermal damage zones and cutting gap widths were histologically determined. Environmental scanning electron microscopy (ESEM) images were examined for signs of carbonization. Temperature rise during Er:YAG laser incisions was determined using infrared thermography (IRT). In comparison to the CO2 laser, Er:YAG laser incisions showed significantly decreased epithelial (236.44 μm) and subepithelial (72.91 μm) damage zones (p < 0.001). Cutting gaps were significantly narrower for CO2 (878.72 μm) compared to Er:YAG (1090.78 μm; p = 0.027) laser. ESEM revealed intact collagen fibres along Er:YAG laser cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 laser incisions. IRT demonstrated absolute temperature rise below 70 °C for Er:YAG laser incisions. This study has demonstrated significantly reduced lateral thermal damage zones with wider basal cutting gaps for vocal fold incisions made using Er:YAG laser in comparison to those made using CO2 laser.
Clinical effects of CO2 laser on equine diseases
NASA Astrophysics Data System (ADS)
Lindholm, Arne; Svensson, Ulf; Collinder, Eje
2002-10-01
CO2 lasers has been used for five years at Malaren Equine Hospital, as an alternative treatment of some equine diseases. The application of CO2 laser has been studied for evaluation of its appropriateness for treatment of the equine diseases sarcoids, lameness in fetlock joints or pulmonary haemorrhage. During the last five years, above 100 equine sarcoids have been removed by laser surgery (CO2 laser) and so far resulting in significantly few recurrences compared with results from usual excision surgery. In one study, acute traumatic arthritis in fetlock joints was treated three times every second day with defocalised CO2 laser. The therapeutic effectiveness of CO2 laser in this study was better than that of the customary therapy with betamethasone plus hyaluronan. During one year, chronic pulmonary bleeders, namely exercise induced pulmonary haemorrhage, has been treated with defocalised CO2 laser. Six race horses have been treated once daily during five days. Until now, three of these horses have subsequently been successfully racing and no symptoms of pulmonary haemorrhage have been observed. These studies indicate that CO2 laser might be an appropriate therapy on sarcoids and traumatic arthritis, and probably also on exercise induced pulmonary haemorrhage. Other treatments for this pulmonary disease are few.
The e-beam sustained CO2 laser amplifier
NASA Technical Reports Server (NTRS)
Brown, M. J.; Shaw, S. R.; Evans, M. H.; Smith, I. M.; Holman, W.
1990-01-01
The design features of an e-beam sustained CO2 amplifier are described. The amplifier is designed specifically as a catalyst test-bed to study the performance of room temperature precious metal CO-oxidation catalysts under e-beam sustained operation. The amplifier has been designed to provide pulse durations of 30 microseconds in a discharge volume of 2 litres. With a gas flow velocity of 2 metres per second, operation at repetition rates of 10 Hz is accommodated. The system is designed for sealed-off operation and a catalyst bed is housed in the gas circulation system downstream from the discharge region. CO and oxygen monitors are used for diagnosis of gas composition in the amplifier so that catalyst performance can be monitored in situ during sealed lifetests.
Synthesis of Fe-based core@ZnO shell nanopowders by laser pyrolysis for biomedical applications
NASA Astrophysics Data System (ADS)
Gavrila-Florescu, Lavinia; Dumitrache, Florian; Balas, Mihaela; Fleaca, Claudiu Teodor; Scarisoreanu, Monica; Morjan, Iuliana P.; Dutu, Elena; Ilie, Alina; Banici, Ana-Maria; Locovei, Claudiu; Prodan, Gabriel
2017-12-01
Nano-sized Fe-based (metallic, carbidic and/or oxidic) core@ZnO shell particles have been successfully synthesized in one step by the laser-induced pyrolysis method in an oxygen-deficient environment. The specific precursors were separately introduced through a three concentric nozzles injector: Fe(CO)5 vapors carried by C2H4 sensitizer (central flow), Zn(C2H5)2 vapors carried and diluted with Ar (middle annular coflow) and Ar containing low amount of O2 (external flow). Keeping constant the ethylene-carried Fe(CO)5 and O2 flows, while diminishing the Zn(C2H5)2 flow, we observed an increase of the Fe/Zn ratio in the resulted nanopowders. Also, using the same metal precursor flows, a nonlinear correlation between O2 external flow and nanocomposite atomic oxygen content is evidenced, indicating a possible interference of supplementary oxidation after air exposure. However, the lowest oxygen content along with metallic zinc was found in the sample synthesized in the most oxygen-deficient environment. Transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) and magnetic analyses were performed for a comprehensive characterization. The aqueous Fe-based@ZnO nanoparticles (NPs) suspensions were prepared using L-Dopa ( l-3,4-dihydroxy-phenylalanine) as stabilizing agent in physiologic media. Also, a biocompatibility in vitro study was performed for PBS (phosphate buffered saline)-dispersed L-Dopa-stabilized Fe-based@ZnO nanoparticles with the best core-shell structural features on both human normal lung fibroblasts and tumoral colorectal cells. Our results proved the ability of these newly synthesized nanostructures to target cancer cells in order to induce cytotoxicity and to exhibit biocompatibility on normal cells for maintaining the proper function of healthy tissue.
NASA Astrophysics Data System (ADS)
Levin, Andrey V.
1996-04-01
High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.
A numerical simulation of machining glass by dual CO 2-laser beams
NASA Astrophysics Data System (ADS)
Jiao, Junke; Wang, Xinbing
2008-03-01
In the flat panel display (FPD) industry, lasers may be used to cut glass plates. In order to reduce the possibility of fracture in the process of cutting glass by lasers, the thermal stress has to be less than the critical rupture strength. In this paper, a dual-laser-beam method is proposed, where an off-focus CO 2-laser beam was used to preheat the glass sample to reduce the thermal gradients and a focused CO 2-laser beam was used to machine the glass. The distribution of the thermal stress and the temperature was simulated by using finite element analysis software, Ansys. The thermal stress was studied both when the glass sample was machined by a single CO 2-laser beam and by dual CO 2-laser beams. It was concluded that the thermal stress can be reduced by means of the dual-laser-beam method.
Application of CO laser for laser balloon angioplasty
NASA Astrophysics Data System (ADS)
Miyamoto, Akira; Sakurada, Masami; Mizuno, Kyoichi; Kurita, Akira; Nakamura, Haruo; Suda, Akira; Arai, Tsunenori; Kikuchi, Makoto
1990-07-01
CO laser may be efficient for thermal fusion of intima of arterial wall without adventitial tissue damage because of high tissue absorption. To investigate the efficacy of CO laser as a laser bam for laser balloon angioplasty (LBA). CO laser was irradiated to aortic tissue through 3Oim polyethylene membrane and tissue temperature was measured by a thermistor. At 2Owatt/cm2 200joules/cm2 continuous laser exposure (CE), tissue temperature was above 100°C within a depth of 1mm and rapidly decreased to 60 °C or below between 2 and 3mm in depth. Moreover, adventitial temperature could be decreased by changing duty ratio (exposure duration/interval) of intermittent laser exposure (IE) despite of the same laser energy. Light microscopy showed high degree of medial coagulation necrosis in CE, however thermal coagulation was observed only at the surface of intima of aortic tissue in IE at duty ratio 1 / 2. These findings suggested CO laser could coagulate intimal layer with less deep thermal damage compared to Nd- YAG laser and that IE was better for superficial welding than CE at the same energy. We concluded that CO laser might be more efficient as a laser beam for LBA than Nd-YAG laser.
In situ study of the anticariogenic potential of fluoride varnish combined with CO2 laser on enamel.
Souza-Gabriel, Aline Evangelista; Turssi, Cecília Pedroso; Colucci, Vivian; Tenuta, Lívia Maria Andaló; Serra, Mônica Campos; Corona, Silmara Aparecida Milori
2015-06-01
This in situ study evaluated the effect of fluoride varnish combined with CO2 laser in controlling enamel demineralization caused by cariogenic challenges. In a crossover study conducted in 2 phases of 14 days each, 14 volunteers (n = 14) wore palatal appliances with bovine enamel slabs treated with fluoride varnish + CO2 laser (FV + CO2), fluoride varnish (FV), nonfluoride placebo varnish (PV) and nonfluoride placebo varnish + CO2 laser (PV + CO2). Drops of sucrose solution were dripped onto enamel slabs allowing the accumulation of biofilm. At the first phase, half of the volunteers received 4 enamel slabs treated with FV while the remainders received slabs exposed to the PV with and without CO2 laser. In the second phase, the vonlunteers were reversed treatments. The slabs were evaluated for cross-sectional microhardness (CSMH) and the concentration of loosely bound fluoride (CaF2) and firmly bound fluoride (FAp). The concentration of fluoride in biofilm were also determined. Two-way ANOVA showed that the CSMH values were higher in laser-irradiated enamel, regardless of the fluoride varnish. Friedman test showed that FV group presented significantly larger amount of fluoride in biofilm (P < 0.05). In the enamel, the largest amount of fluoride was found in the groups FV + CO2, which was not different from FV (P > 0.05). The synergistic effect of fluoride varnish and CO2 laser on enamel demineralization was not observed, however, CO2 laser reduces enamel demineralization. CO2 laser might reduce the demineralization of subsurface enamel, although its association with a high concentrated fluoride therapy may not result in a positive synergistic interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Medical Applications Of CO2 Laser Fiber Optics
NASA Astrophysics Data System (ADS)
McCord, R. C.
1981-07-01
In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.
Surface treatment with linearly polarized laser beam at oblique incidence
NASA Astrophysics Data System (ADS)
Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.
2002-07-01
An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.
Lei, Ying; Li, Shi Feng; Yu, Yi Ling; Tan, Jun; Gold, Michael H
2017-06-01
Hypertrophic scarring is seen regularly. Tissue penetration of laser energy into hypertrophic scars using computer defaults from some lasers may be insufficient and penetration not enough. We have developed a treatment with an interrupted laser "drilling" by the Ultrapulse CO 2 (Manual Fractional Technology, MFT) and, a second pass, with fractional CO 2 . The MFT with fractional CO 2 lasers to treat hypertrophic scars is evaluated. A total of 158 patients with hypertrophic scars had three sessions of MFT with fractional CO 2 laser at 3-month intervals. Evaluations made before and 6 months after the 3rd treatment: (1) the Vancouver Scar Scale (VSS), (2) the University of North Carolina (UNC) Scar Scale, and (3) a survey of patient satisfaction. All data were analyzed using a t-test before and after treatment. The VSS score decreased from 9.35 to 3.12 (P<.0001), and the UNC Scar Scale score decreased from 8.03 to 1.62 (P<.0001). The overall satisfaction rate was 92%. No long-term complications occurred in the clinical trial. The interrupted laser drilling by MFT and a fractional CO2 laser had profound effects on the hypertrophic scars treated. It works by increasing the penetration depth of the CO 2 laser in the scar tissue, exerting more precise effects on the hypertrophic scars. MFT combined with fractional CO 2 laser has the potential to be a major advance in the treatment of hypertrophic scars. © 2017 Wiley Periodicals, Inc.
Vibrational kinetics in CO electric discharge lasers - Modeling and experiments
NASA Technical Reports Server (NTRS)
Stanton, A. C.; Hanson, R. K.; Mitchner, M.
1980-01-01
A model of CO laser vibrational kinetics is developed, and predicted vibrational distributions are compared with measurements. The experimental distributions were obtained at various flow locations in a transverse CW discharge in supersonic (M = 3) flow. Good qualitative agreement is obtained in the comparisons, including the prediction of a total inversion at low discharge current densities. The major area of discrepancy is an observed loss in vibrational energy downstream of the discharge which is not predicted by the model. This discrepancy may be due to three-dimensional effects in the experiment which are not included in the model. Possible kinetic effects which may contribute to vibrational energy loss are also examined.
The choice: Welding with CO2 or Nd:YAG lasers
NASA Astrophysics Data System (ADS)
Leong, Keng H.
The recent commercial availability of multi-kilowatt Nd:YAG lasers has opened new avenues for rapid laser processing as well as intensified the competition (cost effectiveness) between CO2 and Nd:YAG laser systems. Vendors offering Nd:YAG laser systems may claim lower operating costs (than CO2) and fiberoptic beam delivery flexibility while CO2 systems vendors may emphasize lower capital cost and well established processing requirements and experience. The capital and operating costs of a laser system are impacted by demand and supply economics and technological advances. Frequently the total cost of a workcell using a laser for processing has to be considered rather than the laser system alone. Consequently it is not very practical to approach the selection of a laser system based on its capital cost and estimated operating cost only. This presentation describes a more pragmatic approach to aid the user in the selection of the optimal multi-kilowatt laser system for a particular processing requirement with emphasis on welding. CO2 laser systems are well established on the factory floor. Consequently, emphasis is given to the comparative application of Nd:YAG lasers, process requirements and performance. Requirements for the laser welding of different metals are examined in the context of hardware (laser system and beam delivery) selection and examples of welding speeds that can be achieved using CO2 and Nd:YAG lasers are examined.
Determination of the plasma impedance of a glow discharge in carbon dioxide
NASA Astrophysics Data System (ADS)
Kiselev, A. S.; Smirnov, E. A.
2017-07-01
In this work an expression for the dynamic resistance of a glow discharge flowing in long tubes is obtained and analyzed. The expression describes the physical processes occurring in the positive column of a glow discharge. The frequency dependences of the active and reactive components as well as the dynamic resistance module for the discharge conditions corresponding to CO2-lasers have been calculated. Based on the simulation results developed a computer program in the C# programming language for modeling the dynamic resistance discharge of glow discharge lasers.
Polarization characteristic of a room-temperature Co:MgF2 laser.
Zhang, Zengming M; Cui, Yiben B; Li, Fuli L; Zhang, Guobin B; Pu, Qirong R; Xu, Gaojie J
2002-02-20
A study of the polarization characteristic of a Co:MgF2 laser with a 1320-nm YAG pumping laser at room temperature is reported. The thresholds, output energies, and efficiencies of the laser are given at the various polarization states. The more intensive emission is in the pi-polarization pump laser and sigma-polarization laser operation. Performances of the Co:MgF2 lasers are similar for the polarized and unpolarized laser pumping along the optical axis of the crystal.
QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source
NASA Astrophysics Data System (ADS)
Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira
2017-01-01
Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.
Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites
NASA Technical Reports Server (NTRS)
Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.
1985-01-01
Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1972-01-01
Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1971-01-01
Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.
Economic technology of laser cutting
NASA Astrophysics Data System (ADS)
Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.
2000-02-01
The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.
Comparative study of upper lip frenectomy with the CO2 laser versus the Er, Cr: YSGG laser
Pié-Sánchez, Jordi; España-Tost, Antonio J.; Arnabat-Domínguez, Josep
2012-01-01
Objectives: To compare upper lip frenulum reinsertion, bleeding, surgical time and surgical wound healing in frenectomies performed with the CO2 laser versus the Er, Cr:YSGG laser. Study design: A prospective study was carried out on 50 randomized pediatric patients who underwent rhomboidal resection of the upper lip frenulum with either the CO2 laser or the Er,Cr:YSGG laser. Twenty-five patients were assigned to each laser system. All patients were examined at 7, 14, 21 days and 4 months after the operation in order to assess the surgical wound healing. Results: Insertion of the frenulum, which was preoperatively located between the upper central incisors, migrated to the mucogingival junction as a result of using both laser systems in all patients. Only two patients required a single dose of 650 mg of paracetamol, one of either study group. CO2 laser registered improved intraoperative bleeding control results and shorter surgical times. On the other hand, the Er,Cr:YSGG laser achieved faster healing. Conclusions: Upper lip laser frenectomy is a simple technique that results in minimum or no postoperative swelling or pain, and which involves upper lip frenulum reinsertion at the mucogingival junction. The CO2 laser offers a bloodless field and shorter surgical times compared with the Er,Cr:YSGG laser. On the other hand, the Er,Cr:YSGG laser achieved faster wound healing. Key words:Frenectomy, upper lip frenulum, CO2 laser, Er,Cr:YSGG laser, laser. PMID:22143683
High power CO2 coherent ladar haven't quit the stage of military affairs
NASA Astrophysics Data System (ADS)
Zhang, Heyong
2015-05-01
The invention of the laser in 1960 created the possibility of using a source of coherent light as a transmitter for a laser radar (ladar). Coherent ladar shares many of the basic features of more common microwave radars. However, it is the extremely short operating wavelength of lasers that introduces new military applications, especially in the area of missile identification, space target tracking, remote rang finding, camouflage discrimination and toxic agent detection. Therefore, the most popular application field such as laser imaging and ranging were focused on CO2 laser in the last few decades. But during the development of solid state and fiber laser, some people said that the CO2 laser will be disappeared and will be replaced by the solid and fiber laser in the field of military and industry. The coherent CO2 laser radar will have the same destiny in the field of military affairs. However, to my opinion, the high power CO2 laser will be the most important laser source for laser radar and countermeasure in the future.
NASA Astrophysics Data System (ADS)
Khumaeni, Ali; Sugito, Heri; Yoyo Wardaya, Asep; Setia Budi, Wahyu
2018-05-01
Identification of macro nutrients in medicine is really necessary for healthy purpose. In this study, identification of macro elements in pharmaceutical products was carried out by laser-induced plasma spectroscopy (LIPS). A comparative study was made by employing different types of laser, namely an Nd:YAG laser and a pulse TEA CO2 laser. Experimentally, the laser beam was directed and focused by a convex lens on a mineral supplement tablet. A luminous plasma was induced on the tablet’s surface. Sharp and high-intensity emission spectra of macro elements including Ca and Mg were detected both in LIBS using Nd:YAG and pulse CO2 lasers. However, the intensities of Ca and Mg spectra are much higher for the LIBS using CO2 laser. Based on the analysis, the plasma temperature plays important role in the spectra. Namely, the plasma induced by a TEA CO2 laser is much higher than that of Nd:YAG laser; the plasma temperature for the case of TEA CO2 laser and Nd:YAG laser were 6400 K and 4500 K, respectively.
Design of catalytic monoliths for closed-cycle carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.
1989-01-01
Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.
Carbon dioxide laser fiber for the excision of oral leukoplakia.
Chee, Michael; Sasaki, Clarence
2013-09-01
We compared the efficacies of cold knife excision and carbon dioxide (CO2) laser fiber excision of oral cavity leukoplakia. Between August 2009 and June 2011,45 patients who underwent excision of oral cavity leukoplakia were assessed for operative time, use of bipolar cautery, blood loss, and number of intraoperative margins needed. Patients were assigned randomly to either a cold knife group (23 procedures) or a CO2 laser fiber group (24 procedures) at the time of the procedure. The times of excision were similar in the CO2 laser fiber group (1.64 min/cm2) and the cold knife group (1.70 min/cm2). There were large differences between the CO2 laser fiber group and the cold knife group in the categories of bipolar cautery uses per square centimeter (0.34 uses versus 3.32 uses) and blood loss (0.19 g/cm2 versus 2.55 g/cm2). The average number of margins needed to clear a specimen by frozen section was 1.21 for the CO2 laser fiber group and 1.83 for the cold knife group. The CO2 laser fiber did not show an advantage in operative time. The CO2 laser fiber did show better outcomes in the areas of blood loss, bipolar cautery use, and intraoperative margins needed.
Temple, P A; Lowdermilk, W H; Milam, D
1982-09-15
Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.
[Effect of CO2 laser on prostheses used in middle ear surgery].
Szymański, Marcin
2005-01-01
The use of CO2 laser is advocated in primary and revision stapes surgery. The aim of the study was to assess the effect of CO2 laser on stapes prostheses. CO2 laser was applied on several types of stapes prostheses and PORPs, with power settings suggested by the manufacturer (continuous wave, 2 W and 6 W; 0,05 s). Application of the laser on stainless steel or titanium prosthesis did not exert any effect on the structure of the prosthesis. The use of the laser on the Teflon piston caused superficial burning with power 2 W, and melting and holes in the piston with power settings at 6W. Similar plastipore prostheses were melting. Hydroxyapatite PORP shattered after application of the laser energy. Teflon and hydroxyapatite prostheses are easily damaged by the laser energy, therefore applying a laser on them should be avoided. CO2 laser can be used on stainless steel and titanium prostheses without risk of damaging them. However the possibility of transmission of heat to the vestibule has to be taken into consideration.
Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A
2016-08-01
There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.
Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.
2016-01-01
There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048
Eruptive keratoacanthomas following carbon dioxide laser resurfacing.
Gewirtzman, A; Meirson, D H; Rabinovitz, H
1999-08-01
Skin resurfacing with the carbon dioxide (CO2) laser is currently a popular means of improving rhytides and scars. Scarring, hyperpigmentation, hypopigmentation, and infection are among the complications that have been known to occur in some patients treated with the CO2 laser. We wish to communicate a previously unreported complication of CO2 laser resurfacing-multiple eruptive keratoacanthomas. We describe a 61-year-old woman who presented with multiple eruptive keratoacanthomas subsequent to CO2 laser resurfacing. Her lesions were cultured for fungus and bacteria. Biopsy specimens of two lesions were taken. Cultures were negative for pathogens. Biopsy specimens revealed atypical squamous epithelial proliferation and changes consistent with eruptive keratoacanthomas. Multiple eruptive keratoacanthomas should be considered as a rare complication of CO2 laser resurfacing.
NASA Astrophysics Data System (ADS)
Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki
2016-08-01
The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.
Kamalski, Digna M A; Vincent, Robert; Wegner, Inge; Bittermann, Arnold J N; Grolman, Wilko
2014-12-01
Comparing hearing results in patients with otosclerosis treated with laser-assisted stapedotomy using the 2-μm thulium laser or the CO2 laser. Prospective nonrandomized clinical study. In a tertiary referral center in France (Jean Causse Ear Clinic, Béziers), 208 primary stapedotomies were performed in 204 patients between March 2008 and November 2009. Sufficient follow-up data were available for 194 procedures. The fenestration in the footplate was made with the thulium laser in 98 procedures and with a flexible CO2 laser in 96 procedures. Preoperative and postoperative audiometric results were compared. Side effects, such as vertigo and tinnitus, were scored. Patients treated with the CO2 laser had better hearing outcome compared with those treated with the thulium laser at both 3 and 12 months of follow-up. At 3 months, the success of the surgery, defined as closure of the air-bone gap to within 10 dB, was 90.0% in the thulium group compared with 96.8% in the CO2 group. Bone conduction shift showed an overall deterioration of 1.6 dB (standard deviation, 6.9 dB) in the thulium group compared with an improvement of 1.3 dB (standard deviation, 4 dB) in the CO2 group. In the thulium group, there were four patients with sensorineural hearing loss (4.4%) and three with tinnitus (3.1%) compared with none in the CO2 group. Stapedotomy surgery performed with a fiber-delivered thulium laser resulted in a higher chance of inner ear damage measured by bone conduction shift compared with the use of a fiber-delivered CO2 laser. We advise not to use the thulium laser for stapedotomy.
Potential of CO2 lasers (10.6 µm) associated with fluorides in inhibiting human enamel erosion.
Ramos-Oliveira, Thayanne Monteiro; Ramos, Thaysa Monteiro; Esteves-Oliveira, Marcela; Apel, Christian; Fischer, Horst; Eduardo, Carlos de Paula; Steagall, Washington; Freitas, Patricia Moreira de
2014-01-01
This in vitro study aimed to investigate the potential of CO2 lasers associated with different fluoride agents in inhibiting enamel erosion. Human enamel samples were randomly divided into 9 groups (n = 12): G1-eroded enamel; G2-APF gel; G3-AmF/NaF gel; G4-AmF/SnF2 solution; G5-CO2 laser (λ = 10.6 µm)+APF gel; G6-CO2 laser+AmF/NaF gel; G7-CO2laser+AmF/SnF2solution; G8-CO2 laser; and G9-sound enamel. The CO2 laser parameters were: 0.45 J/cm2; 6 μs; and 128 Hz. After surface treatment, the samples (except from G9) were immersed in 1% citric acid (pH 4.0, 3 min). Surface microhardness was measured at baseline and after surface softening. The data were statistically analyzed by one-way ANOVA and Tukey's tests (p < 0.05). G2 (407.6 ± 37.3) presented the highest mean SMH after softening, followed by G3 (407.5 ± 29.8) and G5 (399.7 ± 32.9). Within the fluoride-treated groups, G4 (309.0 ± 24.4) had a significantly lower mean SMH than G3 and G2, which were statistically similar to each other. AmF/NaF and APF application showed potential to protect and control erosion progression in dental enamel, and CO2 laser irradiation at 0.45J/cm2 did not influence its efficacy. CO2 laser irradiation alone under the same conditions could also significantly decrease enamel erosive mineral loss, although at lower levels.
Thompson, Brandon L; Ouyang, Yiwen; Duarte, Gabriela R M; Carrilho, Emanuel; Krauss, Shannon T; Landers, James P
2015-06-01
We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.
Tsuyumu, M; Verasques, G; Yamazaki, S; Kuroiwa, T; Suzuki, R; Takei, H; Suzuki, K; Inaba, Y
1985-04-01
The CO2 laser is useful for cutting and vaporization but not for coagulation and hemostasis. On the contrary, YAG laser is effective for coagulation and hemostasis but not for cutting. The purpose of this study is to examine the effect of the exposure of combined, coaxial CO2 and YAG laser on the animal brain to supplement the advantages and draw-backs of each other. To compare these results, each of non-combined pulse wave form CO2 and YAG lasers was employed separately. The lasers in this study were pulse wave form CO2 and YAG lasers, employed separately or simultaneously using 130 YZ of Nihon Infrared Industries Company. Japanese white rabbits were anesthetized with pentobarbital. Fronto-parietal burr holes were made, the dura was removed and then Evans blue solution was injected intravenously. The lasers were employed to the cerebral cortex without great vessels using a micromanipulator attached to the operative microscope with a distance of 30 cm. The spot size was 700 mu for CO2 laser and 1200 mu for YAG laser. The first experiment was to see the effect of nine combinations of simultaneous coaxial CO2 of 2, 4 and 8 watts and YAG lasers of 10, 20 and 40 watts, 1 sec on the brain. In the second experiment, also combining two lasers, the exposure time of YAG laser was elongated from 1 or 2 seconds into 2 or 4 seconds and the arrangement of powers was the same as that of the first experiment. The lesions were thus made in 18 different conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei
2018-04-01
We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.
A blackbody-pumped CO2-N2 transfer laser
NASA Astrophysics Data System (ADS)
Deyoung, R. J.; Higdon, N. S.
1984-08-01
A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.
A blackbody-pumped CO2-N2 transfer laser
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Higdon, N. S.
1984-01-01
A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.
Healing of rat mouth mucosa after irradiation with CO2, Nd:YAG, and CO2-Nd:YAG combination lasers.
Luomanen, M; Rauhamaa-Mäkinen, R; Meurman, J H; Kosloff, T; Tiitta, O
1994-08-01
The healing process of wounds made by a combination laser was studied in 90 rats. The laser system enabled both separate and combined use of CO2 and Nd:YAG laser irradiations. The laser wounds and the control excision wounds made by alligator forceps appeared on both sides of the tongue. Specimens from the wound sites were taken immediately, 6 h, and 1, 2, 4, 7, 11, 21, 28, and 42 days after surgery. The wound-healing process was studied by macroscopic evaluation before preparing the specimens for light microscopy. Some differences were noted in the wound-healing process among the three groups into which the experimental animals were divided. Tissue coagulation damage was most extensive in the Nd:YAG laser sites, where it was observed in its full extent 4 days after surgery. Epithelial cells were seen to begin to proliferate in all the wounds 6 h after surgery. Re-epithelialization was completed by between 7 (CO2) and 21 days (Nd:YAG) at all the wound sites. The inflammatory cell infiltration was more prominent in the Nd:YAG and the CO2-Nd:YAG combination laser wounds than in the CO2 and excision wounds during healing. Tissue regeneration occurred faster with less contraction in the combination CO2-Nd:YAG wounds than in Nd:YAG wounds. The best macroscopic healing result was seen in the CO2 wound sites. The combination laser was effective both at cutting and at coagulating tissue. Combining the CO2 and Nd:YAG laser irradiation into one beam resulted in a greater incision depth than what could have been expected from using the two lasers separately.
Surface Tension Driven Convection Experiment (STDCE)
NASA Technical Reports Server (NTRS)
Ostrach, S.; Kamotani, Y.
1996-01-01
This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.
Surface Tension Driven Convection Experiment (STDCE)
NASA Technical Reports Server (NTRS)
Ostrach, Simon; Kamotani, Y.; Pline, A.
1994-01-01
Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.
Selective material ablation by the TEA CO2 laser
NASA Astrophysics Data System (ADS)
Sumiyoshi, Tetsumi; Shiratori, Akira; Ninomiya, Yutaka; Obara, Minoru
1995-03-01
This paper reports two topics in the material processing using TEA CO2 lasers. We demonstrated selective ablation of hydrogenated amorphous silicon (a-Si:H) thin layer on a quartz substrate by the second harmonic (SH) radiation of TEA CO2 laser generated by AgGaSe2 nonlinear crystal. Si-H bonds contained in a-Si:H strongly absorb the 5 micrometers SH radiation and resulted in the selective ablation of the a-Si:H layer. The successful ablation processing of ethylenetetrafluoroethylene (ETFE) copolymer by the 9.6 micrometers fundamental wavelength TEA CO2 laser is also reported. Only ETFE thin film adhered to an aluminum substrate can be ablated by the TEA CO2 laser.
Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment. PMID:22605970
NASA Astrophysics Data System (ADS)
Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.
2016-12-01
The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies, including the Moon and Mars. Arai et al., Rev. Sci. Instrum. 75, 2262-2265 (2004) Hennet et al., Rev. Sci. Instrum. 73, 124-129 (2001) Kohara et al., P. Natl. Acad. Sci.USA 108, 14780-14785 (2011) Macris et al., GSA Abstracts with Programs 47, 437 (2015) Pack et al., Geochem. T. 11, 1-16 (2010) Tangeman et al., Geophys. Res. Lett. 28, 2517-2520 (2001)
NASA Technical Reports Server (NTRS)
Wang, Liang-Guo; Sachse, Glen
1990-01-01
Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.
The remote measurement of tornado-like flows employing a scanning laser Doppler system
NASA Technical Reports Server (NTRS)
Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.
1977-01-01
The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.
LaRC-developed catalysts for CO2 lasers
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Kielin, Erik J.; Miller, Irvin M.
1990-01-01
Pulsed CO2 lasers have many remote sensing applications from space, airborne, and ground platforms. The NASA Laser Atmospheric Wind Sounder (LAWS) system will be designed to measure wind velocities from polar earth orbit for a period of up to three years. Accordingly, this and other applications require a closed-cycle pulsed CO2 laser which necessitates the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The required catalyst must not only operate at low temperatures but also must operate efficiently for long time periods. The research effort at NASA LaRC has centered around development and testing of CO oxidation catalysts for closed-cycle, pulsed, common and rare-isotope CO2 lasers. Researchers examined available commercial catalysts both in a laser and under simulated closed-cycle laser conditions with efforts aimed toward a thorough understanding of the fundamental catalytic reaction. These data were used to design and synthesize new catalyst compositions to better meet the catalyst requirements for closed-cycle pulsed CO2 lasers. Syntheses and test results for catalysts developed at Langley Research Center which have significantly better long-term decay characteristics than previously available catalysts and at the same time operate quite well under lower temperature conditions are discussed.
Extinction of CO2 Laser Radiation Under Adverse Weather Conditions
1982-06-01
System Design 60 a, Gaussian Optics 60 b, Laser Transmissometer 61 4. Measurement Errors 68 VI DISCUSSION OF RESULTS 69 1, Introduction...water soluble aerosols (a 1 106 AFWAL-TR-81 -.1280 TABLE 17 EXTINCTION OF CO2 LASER LINES FOR A CONSTANI RAIN RATE OF 1.82 mm/HR, 22 APRIL, 1935 HOURS...number) Laser Propagation Rain Laser Extinction CO2 Lasers Adverse Weather Aerosol s - 20 RACT (Continue on reverse side If necessary
High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Price, H. T.; Shaw, S. R.
1987-04-01
The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.
High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts
NASA Technical Reports Server (NTRS)
Price, H. T.; Shaw, S. R.
1987-01-01
The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.
Suter, Valerie G A; Altermatt, Hans Jörg; Bornstein, Michael M
2017-04-01
This study was conducted in order to compare clinical and histopathological outcomes for excisional biopsies when using pulsed CO 2 laser versus Er:YAG laser. Patients (n = 32) with a fibrous hyperplasia in the buccal mucosa were randomly allocated to the CO 2 (140 Hz, 400 μs, 33 mJ) or the Er:YAG laser (35 Hz, 297 μs, 200 mJ) group. The duration of excision, intraoperative bleeding and methods to stop the bleeding, postoperative pain (VAS; ranging 0-100), the use of analgesics, and the width of the thermal damage zone (μm) were recorded and compared between the two groups. The median duration of the intervention was 209 s, and there was no significant difference between the two methods. Intraoperative bleeding occurred in 100% of the excisions with Er:YAG and 56% with CO 2 laser (p = 0.007). The median thermal damage zone was 74.9 μm for CO 2 and 34.0 μm for Er:YAG laser (p < 0.0001). The median VAS score on the evening after surgery was 5 for the CO 2 laser and 3 for the Er:YAG group. To excise oral soft tissue lesions, CO 2 and Er:YAG lasers are both valuable tools with a short time of intervention and postoperative low pain. More bleeding occurs with the Er:YAG than CO 2 laser, but the lower thermal effect of Er:YAG laser seems advantageous for histopathological evaluation.
Development of high-power CO2 lasers and laser material processing
NASA Astrophysics Data System (ADS)
Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.
2000-02-01
Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.
Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2
NASA Technical Reports Server (NTRS)
Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason
2011-01-01
The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.
2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong
2009-01-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.
2016-04-28
Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow...2001). 6. K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant
Natekar, Madhukar; Raghuveer, Hosahallli-Puttaiah; Rayapati, Dilip-Kumar; Shobha, Eshwara-Singh; Prashanth, Nagesh-Tavane; Rangan, Vinod; Panicker, Archana G
2017-06-01
The comparatively evaluate the three surgical treatment modalities namely cryosurgery, diode and CO2 laser surgery in terms of healing outcomes on the day of surgery, first and second week post operatively and recurrence at the end of 18 months was assessed. Thirty selected patients were divided randomly into three groups. Each group comprising of ten patients were subjected to one of the three modalities of treatment namely cryosurgery, diode laser or CO2 laser surgery for ablation of OL. Obtained data was analyzed using mainly using Chi-square and Anova tests. Study showed statistical significant differences (p > 0.05) for evaluation parameters like pain, edema and scar. The parameters like infection, recurrence, bleeding showed no statistical significance. Pain was significantly higher in CO2 laser surgery group as compared with diode laser group. There was no recurrence observed at the end of the 6 months follow up period in all the three study groups. Observations from the study highlights that all three surgical modalities used in this study were effective for treatment of OL, and the overall summation of the results of the study showed that laser therapy (CO2 and Diode) seems to offer better clinically significant results than cryotherapy. Key words: Oral premalignant lesion, leukoplakia, cryosurgery, CO2 laser surgery, diode laser surgery.
CO2 laser treatment for regional cutaneous malignant melanoma metastases.
van Jarwaarde, Jorien A; Wessels, Ronnie; Nieweg, Omgo E; Wouters, Michel W J M; van der Hage, Jos A
2015-01-01
Cutaneous in-transit and satellite metastases are distressing presentations of melanoma progression. The purpose of this study was to analyze the efficacy of carbon dioxide (CO2) lasers in patients with melanoma with cutaneous in-transit and satellite metastases. Results of CO2 laser therapy were retrospectively evaluated in 22 patients between January 2004 and January 2008. The number of laser treatments, postoperative morbidity, regional control, and overall survival were analyzed. Twenty-two patients received a total of 42 CO2 laser treatments. The number of lesions treated per session varied from 3 to 329. The median duration of regional control in all patients was 14 weeks (range, 3-117). In 9 of 22 patients, only 1 treatment with CO2 laser was performed resulting in a mean regional control of 11 weeks. In 10 patients, an average of 4 laser treatments (range, 1-17) was necessary to achieve regional control. Three of the 22 patients underwent isolated limb perfusion after laser treatment for disease control. This study shows that (repeated) laser treatment can achieve adequate regional control with little morbidity. CO2 laser is recommended as a first-line treatment to patients with small but numerous cutaneous satellite or in-transit lesions in whom other surgery would induce substantial morbidity.
1976-07-01
A AD PROPAGATION OF HIGH POWER PULSES OF 10.6 pm RADIATION FROM A C02 TEA LASER OF NOVEL DESIGN THROUGH CLOUDS PRODUCED BY ADIABATIC E•XPANS:’)N IN...PART A: CO2 LASER uEVELOPMENT Al High Power CO2 TEA Laser 2 A2 CW CO2 Laser 6 References 8 Diagrams 9 PART 8: CLOUD PROLDUCTION 61 Cloud Chamber...offer versatility, efficienr-y and high power . This report is concerned with the attenuation of 10.eum radiatiins, both high power pulsL.o and 04, by
Ansari, Fereshteh; Sadeghi-Ghyassi, Fatemeh; Yaaghoobian, Barmak
2018-01-31
Fractional CO 2 has many indications in medicine including in treatment of acne scars and rejuvenation. The aim of this study was to evaluate the safety, efficacy, and cost-effectiveness of Fractional CO 2 Laser in comparison with other methods of rejuvenation and acne scar treatment. Several databases including Medline, OVID, EMBASE, CINHAL, SCOPUS, Web of science, CRD, and Cochrane were searched. After conducting the search and evaluation of selected publications, critical appraisal was done and eligible studies were accepted for inclusion in the systematic review. From 2667 identified publications two of the trials were eligible. The effectiveness and complications of Fractional CO 2 laser were comparable with Er:YAG but Fractional CO 2 laser was 14.7% (p = 0.01) more effective than Q-Switched ND:YAG laser. Cost affectivity of this method was the same as other alternative lasers. In conclusion Fractional CO 2 laser is an effective and safe method for curing of several kinds of skin diseases. Nevertheless there was not sufficient evidence to support its advantage. This device has equal or lower price in comparison to competent technologies except for the non- fractional ablative CO 2 laser that has the same or lower price and comparable effects.
Osman, Mai Abdel Raouf; Kassab, Ahmed Nazmi
2017-08-01
A verrucous epidermal nevus (VEN) is a skin disorder that has been treated using different treatment modalities with varying results. Ablative lasers such as carbon dioxide laser (CO 2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) laser have been considered as the gold standard for the treatment of epidermal nevi. To evaluate and compare the efficacy, postoperative wound healing and side effects of pulsed CO 2 laser and Er:YAG laser for the treatment of verrucous epidermal nevi. Twenty patients with localized VEN were randomly divided into two groups. Group 1 was administered CO 2 laser and group 2 underwent Er:YAG laser treatment. A blinded physician evaluated the photographs and dermoscopic photomicrographs for the efficacy and possible side effects. All patients received one treatment session and were followed up over a 6-month period. Both lasers induced noticeable clinical improvement, but there were no significant differences between two lasers in treatment response, patient satisfaction, duration of erythema and side effects. The average time to re-epithelialization was 13.5 days with CO 2 and 7.9 days with Er:YAG laser (p< .0005). No scarring was observed in Er:YAG laser group and no lesional recurrence was detected in CO 2 laser group since treatment. Apart from re-epithelialization, both lasers showed equivalent outcomes with respect to treatment response, patient satisfaction, side effects and complications.
Pulsed infrared difference frequency generation in CdGeAs.sub.2
Piltch, Martin S.; Rink, John P.; Tallman, Charles R.
1977-03-08
The disclosure relates to a laser apparatus for generating a line-tunable pulsed infrared difference frequency output. The apparatus comprises a CO.sub.2 laser which produces a first frequency, a CO laser which produces a second frequency and a mixer for combining the output of the CO.sub.2 and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.
Pulsed infrared difference frequency generation in CdGeAs/sub 2/
Piltch, M.S.; Rink, J.P.; Tallman, C.R.
1975-11-26
A laser apparatus for generating a line-tunable pulsed infrared difference frequency output is described. The apparatus comprises a CO/sub 2/ laser which produces a first frequency, a CO laser which produces a second frequency, and a mixer for combining the output of the CO/sub 2/ and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.
Bailey, J Kevin; Blackstone, Britani N; DeBruler, Danielle M; Kim, Jayne Y; Baumann, Molly E; McFarland, Kevin L; Imeokparia, Folasade O; Supp, Dorothy M; Powell, Heather M
2018-01-01
The use of pulsed dye laser (PDL) and fractional CO 2 (FX CO 2 ) laser therapy to treat and/or prevent scarring following burn injury is becoming more widespread with a number of studies reporting reduction in scar erythema and pruritus following treatment with lasers. While the majority of studies report positive outcomes following PDL or FX CO 2 therapy, a number of studies have reported no benefit or worsening of the scar following treatment. The objective of this study was to directly compare the efficacy of PDL, FX CO 2 , and PDL + FX CO 2 laser therapy in reducing scarring post burn injury and autografting in a standardized animal model. Eight female red Duroc pigs (FRDP) received 4 standardized, 1 in. x 1 in. third degree burns that were excised and autografted. Wound sites were treated with PDL, FX CO 2 , or both at 4, 8, and 12 weeks post grafting. Grafts receiving no laser therapy served as controls. Scar appearance, morphology, size, and erythema were assessed and punch biopsies collected at weeks 4, 8, 12, and 16. At week 16, additional tissue was collected for biomechanical analyses and markers for inflammatory cytokines, extracellular matrix (ECM) proteins, re-epithelialization, pigmentation, and angiogenesis were quantified at all time points using qRT-PCR. Treatment with PDL, FX CO 2 , or PDL + FX CO 2 resulted in significantly less contraction versus skin graft only controls with no statistically significant difference among laser therapy groups. Scars treated with both PDL and FX CO 2 were visually more erythematous than other groups with a significant increase in redness between two and three standard deviations above normal skin redness. Scars treated with FX CO 2 were visually smoother and contained significantly fewer wrinkles. In addition, hyperpigmentation was significantly reduced in scars treated with FX CO 2 . The use of fractional carbon dioxide or pulsed dye laser therapy within 1 month of autografting significantly reduced scar contraction versus control, though no statistically significant difference was detected between laser modalities or use of both modalities. Overall, FX CO 2 therapy appears to be modestly more effective at reducing erythema, and improving scar texture and biomechanics. The current data adds to prior studies supporting the role of laser therapy in the treatment of burn scars and indicates more study is needed to optimize delivery protocols for maximum efficacy. Lasers Surg. Med. 50:78-87, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Villavicencio, Alan T; Burneikiene, Sigita; Babuska, Jason M; Nelson, Ewell L; Mason, Alexander; Rajpal, Sharad
2015-04-01
The purpose of this study was to evaluate potential technical advantages of the CO2 laser technology in mini-open transforaminal lumbar interbody fusion (TLIF) surgeries and report our preliminary clinical data on the safety and clinical outcomes. There is currently no literature discussing the recently redeveloped CO2 laser technology application for lumbar fusion. Safety and clinical outcomes were compared between two groups: 24 patients that underwent CO2 laser-assisted one-level TLIF surgeries and 30 patients that underwent standard one-level TLIF surgeries without the laser. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. At a mean follow-up of 17.4 months, significantly reduced lower back pain scores (P=0.013) were reported in the laser-assisted patient group compared to a standard fusion patient group. Lower extremity radicular pain intensity scores were similar in both groups. Laser-assisted TLIF surgeries showed a tendency (P = 0.07) of shorter operative times that was not statistically significant. Based on this preliminary clinical report, the safety of the CO2 laser device for lumbar fusion surgeries was assessed. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. Further investigation of CO2 laser-assisted lumbar fusion procedures is warranted in order to evaluate its effect on clinical outcomes.
Schoenewolf, Nicola L; Hafner, Jürg; Dummer, Reinhard; Bogdan Allemann, Inja
2015-04-01
Lentigines solares (LS) on the dorsum of hands are often esthetically disturbing. Q-switched ruby laser treatment is highly effective in the treatment of these lesions. Ablative fractional photothermolysis may be a suitable alternative. We compared the Q-switched ruby laser with ablative CO2 fractional photothermolysis for the treatment of solar lentigines. To evaluate the efficacy and side-effects of 694nm Q-switched ruby laser (Sinon) with the ablative 10,600nm CO2 fractional laser (Quantel Excel O2) in an intra-individual side-to-side comparison in the treatment of LS on the dorsum of hands. Eleven patients were included in the study. The hands of each patient were randomized for treatment with the two laser systems. Three treatment sessions were scheduled at weeks 0, 4 and 8. Evaluations by patients, treating physician and blinded experts were scheduled at weeks 0, 4, 8, 16 and 24. The Q-switched ruby laser was significantly more efficacious than the ablative CO2 fractional laser for removing LS on the dorsum of hands (p = 0.01). In this first study on this topic, the Q-switched ruby laser was superior to the ablative CO2 fractional laser in the treatment of lentigines solares on the dorsum of hands.
Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.
Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y
2001-11-01
Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.
Bahrololoomi, Zahra; Sorouri, Milad
2015-01-01
Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake. PMID:27123018
Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad
2015-08-01
Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.
Comparison of four different lasers for acne scars: Resurfacing and fractional lasers.
You, Hi-Jin; Kim, Deok-Woo; Yoon, Eul-Sik; Park, Seung-Ha
2016-04-01
Acne scars are common and cause cosmetic problems. There is a multitude of treatment options for acne scars, including dermabrasion, chemical peeling, and fillers, but the advent of laser technology has greatly improved the treatment of acne scars. Although several laser systems are available, studies comparing their efficacy are limited. This study compares the results of treatments using resurfacing (carbon dioxide, CO2; erbium-doped yttrium aluminum garnet, Er:YAG) versus fractional (nonablative fractional laser, NAFL; ablative fractional laser, AFL) lasers. A retrospective photographic analysis of 58 patients who underwent laser treatment for facial atrophic acne scars was performed. Clinical improvement was assessed by six blinded investigators with a scale graded from 0 to 10. Adverse events were also noted. Mean improvement scores of the CO2, Er:YAG, NAFL, and AFL groups were 6.0, 5.8, 2.2, and 5.2, respectively. The NAFL group showed a significantly lower score than the other groups. The mean number of treatments was significantly greater in the fractional laser groups than in the resurfacing laser groups. The resurfacing laser groups had a prolonged recovery period and high risk of complications. The Er:YAG laser caused less erythema or pigmentation compared to the CO2 laser. Although the CO2 laser, Er:YAG laser, and AFL improved the acne scars, the CO2 laser had a greater downtime. Three consecutive AFL treatments are as effective as a single treatment with resurfacing lasers, with shorter social downtime periods and less adverse effects. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Shikai; Xiao, Rongshi
2015-04-01
The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.
Noninvasive imaging analysis of biological tissue associated with laser thermal injury.
Chang, Cheng-Jen; Yu, De-Yi; Hsiao, Yen-Chang; Ho, Kuang-Hua
2017-04-01
The purpose of our study is to use a noninvasive tomographic imaging technique with high spatial resolution to characterize and monitor biological tissue responses associated with laser thermal injury. Optical doppler tomography (ODT) combines laser doppler flowmetry (LDF) with optical coherence tomography (OCT) to obtain high resolution tomographic velocity and structural images of static and moving constituents in highly scattering biological tissues. A SurgiLase XJ150 carbon dioxide (CO 2 ) laser using a continuous mode of 3 watts (W) was used to create first, second or third degree burns on anesthetized Sprague-Dawley rats. Additional parameters for laser thermal injury were assessed as well. The rationale for using ODT in the evaluation of laser thermal injury offers a means of constructing a high resolution tomographic image of the structure and perfusion of laser damaged skin. In the velocity images, the blood flow is coded at 1300 μm/s and 0 velocity, 1000 μm/s and 0 velocity, 700 μm/s and 0 velocity adjacent to the first, second, and third degree injuries, respectively. ODT produces exceptional spatial resolution while having a non-invasive way of measurement, therefore, ODT is an accurate measuring method for high-resolution fluid flow velocity and structural images for biological tissue with laser thermal injury. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel
2017-02-01
Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (P<0.05). These results indicate that the surface modification due to CO2 laser treatment increases permeability of radicular dentin.
Fractional CO2 resurfacing: has it replaced ablative resurfacing techniques?
Duplechain, Jesse Kevin
2013-05-01
The author uses the pulsed ablative CO2 laser regularly for skin rejuvenation. This decision is based on the gold standard status of the CO2 modality and an innovative aftercare treatment shown in the author's practice to greatly reduce the complications of ablative pulsed CO2 laser treatment. Depending on the patient and the severity of the skin condition, the author customizes each treatment, which may also include fractional CO2 lasers, fat grafting, facelifting, or any combination of these techniques. This article presents a detailed description of the evolution of skin rejuvenation with lasers and the current role of lasers as an adjunct to face and necklift surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
The stability of the active medium of RF-exited CO2 lasers with gold as catalyst
NASA Astrophysics Data System (ADS)
Cherezov, V. M.; Novgorodov, M. Z.; Ochkin, V. N.; Samorodov, V. G.; Shishkanov, E. F.; Stepanov, V. A.; Witteman, W. J.
Using mass-spectrometric investigations the gas composition of the active medium of sealed-off cw RF-excited CO2 waveguide lasers have been studied. It has been found that a low degree of CO2 dissociation and a laser power improvement can be achieved by means of a gold catalyst in the laser discharge volume. The conditions for long operational lifetimes of these lasers are described.
Clinical application of CO2 laser in periodontal treatment
NASA Astrophysics Data System (ADS)
Hayase, Yasuhiro
1994-09-01
CO2 lasers in particular are expected to have many dental applications because the CO2 laser beam exhibits strong tissue transpirative actions, such as instant coagulation, carbonization, and vaporization, and because its wavelength at 10.6 micrometers is fully absorbed by water so that the ability to make precise incisions with a high degree of safety is excellent, without damaging the deep tissues. However, clinical application of the CO2 laser has been slowed since a fiber which can conduct the laser beam to the oral cavity has only recently developed. This new fiber is an extremely flexible fiber with a minimum bending radius of 20 mm and utilizes pulse wave modes that have improved the handling characteristics in the mouth, and this has enabled us to apply the CO2 laser to a variety of periodontal conditions. The aim of this study was to evaluate the effectiveness of CO2 lasers for the early treatment of inflammation and pain relief of acute periodontitis, curettage of periodontal pockets, healing after excision of gingiva, and early improvement of gingivitis.
NASA Astrophysics Data System (ADS)
Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.
2016-08-01
A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.
10-year experience of CO2-laser application in ambulance gynecology
NASA Astrophysics Data System (ADS)
Stachanov, Michael L.; Masychev, Victor I.; Velsher, Leonid Z.; Kirkin, Vladimir V.; Zhashkov, Roman V.; Kocharian, Emilia A.
2000-10-01
CO2-laser surgical systems have come to stay in everyday practice of modern physicians and are successfully used in colposcopic and laparoscopic surgery. Results, obtained in ambulance gynecology are especially impressing. CO2- laser provides high medical- and cost-effective treatment. Presented work describes many-years experience of CO2- laser application. 439 patients with various vulvaric and cervix diseases were operated within this period. Laser beam parameters were selected according to requirements ((tau)
González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan
2011-05-01
Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully controlled in order to limit increases in pulpal temperature and alterations to the enamel surface.
Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy.
Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Versnel, Huib; Grolman, Wilko
2014-08-01
The mechanical and acoustic effects that occur during laser-assisted stapedotomy differ among KTP, CO2, and thulium lasers. Making a fenestration in stapedotomy with a laser minimizes the risk of a floating footplate caused by mechanical forces. Theoretically, the lasers used in stapedotomy could inflict mechanical trauma because of absorption in the perilymph, causing vaporization bubbles. These bubbles can generate a shock wave, when imploding. In an inner ear model, we made a fenestration in a fresh human stapes with KTP, CO2, and thulium laser. During the fenestration, we performed high-speed imaging from different angles to capture mechanical effects. The sounds produced by the fenestration were recorded simultaneously with a hydrophone; these recordings were compared with acoustics produced by a conventional microburr fenestration. KTP laser fenestration showed little mechanical effects, with minimal sound production. With CO2 laser, miniscule bubbles arose in the vestibule; imploding of these bubbles corresponded to the acoustics. Thulium laser fenestration showed large bubbles in the vestibule, with a larger sound production than the other two lasers. Each type of laser generated significantly less noise than the microburr. The microburr maximally reached 95 ± 7 dB(A), compared with 49 ± 8 dB(A) for KTP, 68 ± 4 dB(A) for CO2, and 83 ± 6 dB(A) for thulium. Mechanical and acoustic effects differ among lasers used for stapedotomy. Based on their relatively small effects, KTP and CO2 lasers are preferable to thulium laser.
Laser detection of CO2 concentration in human breath at various diseases
NASA Astrophysics Data System (ADS)
Ageev, Boris G.; Nikiforova, Olga Y.
2015-12-01
Absorption spectra of human breath in 10 μm region were recorded by the use of intracavity laser photo-acoustic gas analyzer based on tunable waveguide CO2 laser. Healthy persons and patients with various diseases were studied. For determination of CO2 concentration in exhalation samples gas analyzer was calibrated by reference gaseous mixture CO2-N2. It was obtained that CO2 concentration values in human breath of healthy persons are greater than that of patients with various diseases.
Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers
NASA Technical Reports Server (NTRS)
Flamant, P. H.; Menzies, R. T.
1983-01-01
An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.
Diaz, E C; Lindgren, B W; Gong, E M
2014-12-01
Demonstrate and report initial results using a carbon dioxide (CO2) laser for detrusor tunnel creation in robot-assisted laparoscopic extravesical ureteral reimplant (RALUR). Retrospective chart review was performed for cases of RALUR from 2011 to 2014. Patients undergoing complex reconstruction (ureteral tailoring, dismembered reimplant, concomitant ureteroureterostomy), and those who had incomplete follow-up were excluded. Variables, including use of the CO2 laser, were collected and correlated with outcomes. 23 patients representing 40 ureteral units were included for analysis. A CO2 laser was used in 9/23 (39%) patients and 16/40 (40%) ureteral units. Intraoperative mucosotomy was reported in 3/14 (21%) patients for the electrocautery group and 1/9 (11%) patients for the CO2 laser group. Resolution of VUR was observed in 11/14 (79%), and 9/9 (100%) of patients for the electrocautery group and the CO2 laser group, respectively. Two complications were identified in the electrocautery group of patients: ileus (Clavien 2), and transient bilateral ureteral obstruction requiring placement of ureteral stents (Clavien 3B). There were no complications in the CO2 laser group. Creation of the detrusor tunnel with a CO2 laser is safe and effective, and is associated with a lower rate of failure and complication in this cohort. Copyright © 2014 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Hsu, Tuan-Ti; Yeh, Chia-Hung; Kao, Chia-Tze; Chen, Yi-Wen; Huang, Tsui-Hsien; Yang, Jaw-Ji; Shie, Ming-You
2015-07-01
Mineral trioxide aggregate (MTA) has been successfully used in clinical applications in endodontics. Studies show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm because of a photothermal mechanism. The aim of this study was to confirm the effects of CO2 laser irradiation on MTA with regard to both material characterization and cell viability. MTA was irradiated with a dental CO2 laser using directly mounted fiber optics in the wound healing mode with a spot area of 0.25 cm(2) and then stored in an incubator at 100% relative humidity and 37°C for 1 day to set. The human dental pulp cells cultured on MTA were analyzed along with their proliferation and odontogenic differentiation behaviors. The results indicate that the setting time of MTA after irradiation by the CO2 laser was significantly reduced to 118 minutes rather than the usual 143 minutes. The maximum diametral tensile strength and x-ray diffraction patterns were similar to those obtained without CO2 laser irradiation. However, the CO2 laser irradiation increased the amount of Ca and Si ions released from the MTA and regulated cell behavior. CO2 laser-irradiated MTA promoted odontogenic differentiation of hDPCs, with the increased formation of mineralized nodules on the substrate's surface. It also up-regulated the protein expression of multiple markers of odontogenic and the expression of dentin sialophosphoprotein protein. The current study provides new and important data about the effects of CO2 laser irradiation on MTA with regard to the decreased setting time and increased ion release. Taking cell functions into account, the Si concentration released from MTA with laser irradiation may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
1964-08-14
Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tunnel Part of the Thermal Protection Laboratory used to research materials for heat shield applications and for aerodynamic heating and materials studies of vehicles in planetary atmospheres. This laboratory is comprised of five separate facilities: an Aerodynamic Heating Tunnel, a Heat Transfer Tunnel, two Supersonic Turbulent Ducts, and a High-Power CO2 Gasdynamic Laser. All these facilities are driven by arc-heaters, with the exception of the large, combustion-type laser. The arc-heated facilities are powered by a 20 Megawatt DC power supply. Their effluent gas stream (test gases; Air, N2, He, CO2 and mixtures; flow rates from 0.05 to 5.0 lbs/sec) discharges into a five-stage stream-ejector-driven vacuum system. The vacuum system and power supply are common to the test faciities in building N-238. All of the facilities have high pressure water available at flow rates up to 4, 000 gals/min. The data obtained from these facilities are recorded on magnetic tape or oscillographs. All forms of data can be handled whether from thermo-couples, pressure cells, pyrometers, or radiometers, etc. in addition, closed circuit T. V. monitors and various film cameras are available. (operational since 1962)
Vachiramon, Vasanop; Panmanee, Wikanda; Techapichetvanich, Thanya; Chanprapaph, Kumutnart
2016-04-01
Solar lentigines are benign pigmented lesions that occur mostly on sun-exposed areas. Q-switched and ablative lasers are effective for removing these lesions but the high incidence of postinflammatory hyperpigmentation raises concern in darker skin types. The objective of this study is to compare the efficacy and degree of postinflammatory hyperpigmentation with the Q-switched Nd:YAG and fractional carbon dioxide (CO2 ) laser for treatment of solar lentigines in Asians. Twenty-five Thai patients (skin phototype III-IV) with at least two lesions of solar lentigines on upper extremities were enrolled in this study. Two lesions were randomly selected for the treatment with a single session of Q-switched Nd:YAG or fractional CO2 laser. Outcomes were evaluated using physician grading scale, colorimeter, and patient self-assessment at 6 and 12 weeks after treatment. Side effects were recorded. A total of 532 nm Q-switched Nd:YAG laser showed significant improvement of pigmentation over fractional CO2 laser at 6th and 12th week by both colorimeter assessment and physician grading scale (P < 0.05). No significant difference in postinflammatory hyperpigmentation from both lasers was observed. In terms of patient self-assessment, 80% of the patients treated with 532 nm Q-switched Nd:YAG laser had excellent results compared to 8% in fractional CO2 laser group. However, fractional CO2 laser treatment had faster healing time and less pain score compared to Q-switched Nd:YAG laser. Q-switched Nd:YAG is superior to fractional CO2 laser for treatment of solar lentigines but requires longer healing time and produces more pain. The incidence of postinflammatory hyperpigmentation was not significantly different with both lasers. Further studies are needed to obtain the proper parameter and the treatment frequency of fractional CO2 laser in solar lentigines. © 2016 Wiley Periodicals, Inc.
Fractional CO2 laser treatment for vaginal laxity: A preclinical study.
Kwon, Tae-Rin; Kim, Jong Hwan; Seok, Joon; Kim, Jae Min; Bak, Dong-Ho; Choi, Mi-Ji; Mun, Seok Kyun; Kim, Chan Woong; Ahn, Seungwon; Kim, Beom Joon
2018-05-07
Various studies have investigated treatment for vaginal laxity with microablative fractional carbon dioxide CO 2 laser in humans; however, this treatment has not yet been studied in an animal model. Herein, we evaluate the therapeutic effects of fractional CO 2 laser for tissue remodeling of vaginal mucosa using a porcine model, with the aim of improving vaginal laxity. The fractional CO 2 laser enables minimally invasive and non-incisional procedures. By precisely controlling the laser energy pulses, energy is sent to the vaginal canal and the introitus area to induce thermal denaturation and contraction of collagen. We examined the effects of fractional CO 2 laser on a porcine model via clinical observation and ultrasound measurement. Also, thermal lesions were histologically examined via hematoxylin-eosin staining, Masson's trichrome staining, and Elastica van Gieson staining and immunohistochemistry. The three treatment groups, which were determined according to the amount of laser-energy applied (60, 90, and 120 mJ), showed slight thermal denaturation in the vaginal mucosa, but no abnormal reactions, such as excessive hemorrhaging, vesicles, or erythema, were observed. Histologically, we also confirmed that the denatured lamina propria induced by fractional CO 2 laser was dose-dependently increased after laser treatment. The treatment groups also showed an increase in collagen and elastic fibers due to neocollagenesis and angiogenesis, and the vaginal walls became firmer and tighter because of increased capillary and vessel formation. Also, use of the fractional CO 2 laser increased HSP (heat shock protein) 70 and collagen type I synthesis. Our results show that microablative fractional CO 2 laser can produce remodeling of the vaginal connective tissue without causing damage to surrounding tissue, and the process of mucosa remodeling while under wound dressings enables collagen to increase and the vaginal wall to become thick and tightened. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Computer modeling of pulsed CO2 lasers for lidar applications
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1993-01-01
The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.
Frega, Antonio; Schimberni, Mauro; Ralli, Eleonora; Verrone, Antonella; Manzara, Federica; Schimberni, Matteo; Nobili, Flavia; Caserta, Donatella
2016-08-01
The treatment of Bartholin's gland cysts by traditional surgery is characterized by some disadvantages and complications such as hemorrhage, postoperative dyspareunia, infections, necessity for a general anesthesia. Contrarily, CO2 laser surgery might be less invasive and more effective as it solves many problems of traditional surgery. The aim of our study is to describe CO2 laser technique evaluating its feasibility, complication rate and results vs traditional surgery. Among patients treated for Bartholin's gland cyst, we enrolled 62 patients comparing traditional surgical excision vs CO2 laser surgery of whom 27 patients underwent traditional surgery, whereas 35 patients underwent CO2 laser surgery. Mean operative time, complication rate, recurrence rate and short- and long-term outcomes were assessed. The procedures required a mean operative time of 9 ± 5.3 min for CO2 laser surgery and 42.2 ± 13.8 for traditional surgery. Two patients (5.7 %) needed an hemostatic suture for intraoperative bleeding in the laser CO2 laser technique against 14.8 % for traditional surgery. Carbon dioxide allows a complete healing in a mean time of 22 days without scarring, hematomas or wound infections and a return to daily living in a mean time of 2 days. Instead, patients undergone traditional surgery required a mean time of 14 days to return to daily life with a healing mean time completed in 28 days. The minimum rate of intra- and post-operative complications, the ability to perform it under local anesthesia in an outpatient setting make CO2 laser surgery more cost-effective than traditional surgery.
Far infrared maser communications technology
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Pao, Y. H.
1975-01-01
An optically pumped FIR laser was constructed and tested. Optimum operating conditions were determined with CH3OH as the lasing medium. The laser was found to operate equally well with flowing gas or in a sealed off configuration. The FIR cavity stability and pump laser stability were found to have significant problems. The absorption coefficient per unit pressure of 1-1 difluoroethylene at the P(22) and P(24) lines of the 10.4 micron CO2 band was measured. The FIR line pumped by P(22) occurs at approximately 890 microns, which may be in an atmospheric transmission window. It was found that significant Stark tuning of absorption lines of methanol and 1-1 difluoroethylene can be accomplished, even at the usual 100 to 300 mTorr operating pressures of FIR lasers. This means that the use of Stark tuning may enable more effective use of pump laser output.
Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Harrison, James; Welford, David; Moulton, Peter F.
1989-01-01
Rate-equation calculations are used to model accurately the near-threshold behavior of a Co:MgF2 laser operating at room temperature. The results demonstrate the limitations of the conventional threshold analysis in cases of practical interest. This conclusion is applicable to pulsed solid-state lasers in general. The calculations, together with experimental data, are used to determine emission cross sections for the Co:MgF2 laser.
Controlling chaotic behavior in CO2 and other lasers
NASA Astrophysics Data System (ADS)
1993-06-01
Additional substantial experimental progress has been made, in the third month of the project, in setting up equipment and testing for producing chaotic behavior with a CO2 laser. The project goal is to synchronize and control chaos in CO2 and other lasers, and thereby increase the power in ensembles of coupled laser sources. Numerous investigations into the chaos regime have been made, a second CO2 laser has been brought on stream, and work is progressing in the fourth month toward coupling the two lasers and control of the first laser. It is also intended to submit at least two papers to the Second Experimental Chaos Conference which is supported by the Office of Naval Research. Abstracts to those two papers are attached. Last month's report discussed the experimental investigation of nonlinear dynamics of CO2 lasers which involved a new technique of inducing chaos. In this new technique, an acoustically modulated feedback of the laser light was used and led to chaotic dynamics at a very low modulation frequency of 375 Hz. Since then, new results have been obtained by an Electro-Optical Modulation (EOM) technique. In the new setup, the electro-optical modulator is placed in an external cavity outside the laser.
Upschulte, B L; Sonnenfroh, D M; Allen, M G
1999-03-20
A new laser technology that achieves nearly 100-nm quasi-continuous tuning with only injection-current control in a four-section grating-coupler sampled-reflector laser was used to detect CO and CO(2) simultaneously in room-temperature gas mixtures. The same grating-coupler sampled-reflector laser was used to perform in situ measurements of CO, H(2)O, and OH in the exhaust gases of a CH(4)-air flame. This laser is being evaluated for inclusion in a multispecies combustion-emissions exhaust-analysis sensor, and its operational characteristics as they have an impact on gas sensing are described. Preliminary results suggest that this single laser can be used to replace multilaser sensor configurations for some combustion-emissions monitoring applications.
Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.
Treatment of Bartholin gland cyst with CO2 laser
Speck, Neila Maria de Góis; Boechat, Karol Pereira Ruela; dos Santos, Georgia Mouzinho Lima; Ribalta, Julisa Chamorro Lascasas
2016-01-01
ABSTRACT Objective To describe the results of treatment with CO2 laser for Bartholin gland cysts. Methods Thirty-one women with Bartholin gland cysts were treated with CO2 laser at an outpatient´s setting. Skin incision was performed with focused laser beam, the capsule was opened to drain mucoid content, followed by internal vaporization of impaired capsule. Results There were no complications. Five patients had recurrence of the cyst and were submitted to a second and successful session. Conclusion CO2 laser surgery was effective to treat Bartholin gland cysts with minimal or no complications, and can be performed at an outpatient´s setting. PMID:27074230
CO2 laser oscillators for laser radar applications
NASA Technical Reports Server (NTRS)
Freed, C.
1990-01-01
This paper reviews the spectral purity, frequency stability, and long-term stabilization of newly developed CO2 isotope lasers. Extremely high spectral purity, and short-term stability of less than 1.5 x 10 to the -13th have been achieved. A brief description on using CO2 isotope lasers as secondary frequency standards and in optical radar is given. The design and output characteristics of a single frequency, TEM00q mode, variable pulse width, hybrid TE CO2 laser system is also described. The frequency chirp in the output has been measured and almost completely eliminated by means of a novel technique.
VUV photoionization cross sections of HO2, H2O2, and H2CO.
Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio
2015-02-26
The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.
Ambient-temperature co-oxidation catalysts
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Schryer, David R.; Brown, Kenneth G.; Kielin, Erik J.
1991-01-01
Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions.
Yaaghoobian, Barmak; Sadeghi-Ghyassi, Fatemeh; Hajebrahimi, Sakineh
2017-01-01
Background and aims Skin rejuvenation is one of high demand cosmetic interventions in Iran. Fractional CO2 Laser is a high power ablative laser which has variety of utilization in medicine including treatment of acne scars and rejuvenation. The aim of this study was to evaluate the safety, efficacy, and cost-effectiveness of Fractional CO2 Laser in comparison with other methods of rejuvenation and acne scar treatment. Methods A systematic database search including Medline (via OVID and PubMed), EMBASE, CINHAL, Cochrane Library, CRD, SCOPUS and Web of Science conducted. After screening search results, selected publications appraised by CASP and Cochrane Collaboration's tool for assessing risk of bias and eligible studies included in the systematic review. In economic evaluation, all costs and benefits analyzed from Iran ministry of health's perspective. Results From 2667 publications, two randomized control trials were eligible and included in the study. The affectivity and complications of Fractional CO2 laser were comparable with Er: YAG but Fractional CO2 laser was 14.7% (P=0.01) more effective than Q-Switched ND: YAG laser. Cost affectivity of this method was the same as other alternative lasers. Conclusions Fractional CO2 laser is an effective and safe method for curing several kinds of skin. Never the less there was not sufficient evidence to support its advantage. This device has equal or lower price in comparison to competent technologies except for the non- fractional ablative Co2 laser that has the same or lower price and comparable effects.
Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers
NASA Technical Reports Server (NTRS)
Schryer, David R. (Editor); Hoflund, Gar B. (Editor)
1990-01-01
Low-temperature CO-oxidation catalysts are necessary for closed-cycle pulsed CO2 lasers as well as for other applications, including air purification. The papers presented in this volume discuss several such catalysts, including information on catalyst preparation, techniques for enhancing catalyst performance, laboratory and laser test results, and mechanistic considerations.
CO2 laser induced refractive index changes in optical polymers.
Liu, Qing; Chiang, Kin Seng; Reekie, Laurence; Chow, Yuk Tak
2012-01-02
We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10(-3), while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.
NASA Astrophysics Data System (ADS)
Shukla, P. P.; Lawrence, J.
2011-02-01
The fracture toughness property ( K1C) of Si 3N 4 and ZrO 2 engineering ceramics was investigated by means of CO 2 and a fibre laser surface treatment. Near surface modifications in the hardness were investigated by employing the Vickers indentation method. Crack lengths and the crack geometry were then measured by using the optical microscopy. A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks. Thereafter, computational and analytical methods were employed to determine the K1C. An increase in the K1C of both ceramics was found by the CO 2 and the fibre laser surface treatment in comparison to the as-received surfaces. The K1C of the CO 2 laser radiated surface of the Si 3N 4 was over 3% higher in comparison to that of the fibre laser treated surface. This was by softening of the near surface layer of the Si 3N 4 which comprised of lowering of hardness, which in turn increased the crack resistance. The effects were not similar in ZrO 2 ceramic to that of the Si 3N 4 as the fibre laser radiation in this case had produced an increase of 34% compared to that of the CO 2 laser radiation. This occurred due to propagation of lower crack resulting from the Vickers indentation test during the fibre laser surface treatment which inherently affected the end K1C through an induced compressive stress layer. The K1C modification of the two ceramics treated by the CO 2 and the fibre laser was also believed to be influenced by the different laser wavelength and its absorption co-efficient, the beam delivery system as well as the differences in the brightness of the two lasers used.
NASA Astrophysics Data System (ADS)
Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Mao, J.; Hasselbrack, W.
2009-04-01
Accurate measurements of tropospheric CO2 abundances with global-coverage are needed to quantify processes that regulate CO2 exchange with the land and oceans. The 2007 Decadal Survey for Earth Science by the US National Research Council recommended a space-based CO2 measuring mission called ASCENDS. We have been developing a technique for the remote measurement of tropospheric CO2 concentrations from aircraft and as a candidate for the ASCENDS mission. It uses the 1570-nm CO2 band and a dual channel laser absorption spectrometer (ie DIAL used in altimeter mode). It uses several tunable laser transmitters allowing simultaneous measurement of the absorption from a CO2 absorption line in the 1570 nm band, O2 extinction in the oxygen A-band, and surface height and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. During the measurement, the lasers are stepped in wavelength across the CO2 line and an O2 line (near 765 nm) at a ~ 1 kHz rate. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. We use pulsed laser signals and time gating to isolate the laser echo signals from the surface, and to reject photons scattered from thin clouds and aerosols in the path. Previously we had constructed breadboard versions of our CO2 and O2 sensors, using tunable diode lasers, fiber laser amplifiers and 20 cm diameter telescopes. We have used them to make measurements of gas absorptions over 0.2, 0.4 and 1.3 km long outdoor paths. We also have also calculated several characteristics of the technique for space and have performed an initial space mission accommodation study. During 2008 we reconfigured our lidar for airborne use and made measurements of atmospheric CO2 absorption in the nadir column from the aircraft to the surface during 5 flights. The airborne lidar sweeps the laser wavelength across the CO2 line in either 10 or 20 steps per measurement. The line scan rate is ~ 1 KHz and the laser pulse widths are 1 usec. The time resolved laser backscatter is collected by the telescope and detected by a photomultiplier and recorded by a photon counting timing system. We installed our lidar on the NASA Glenn Lear-25 aircraft in October and first made measurements using the 1571.4 nm CO2 absorption line while flying in northern Ohio. We made laser backscatter and absorption measurements over a variety of land surface types, water surfaces and through thin clouds, broken clouds and to cloud tops. Strong laser signals were observed at altitudes from 2.5 to 11 km on two flights. We completed three additional flights during December 2008 and gathered over 6 hours of atmospheric CO2 column measurements using the 1572.02 and 1572.33 nm CO2 lines. Airborne CO2 line shape and absorption measurements were made while flying at 3-11 km altitudes over southwestern Ohio. Subsequently two flights were made from Ponca City OK, just east of the US Department of Energy's (DOE) ARM site. We made 4 hours of airborne measurements in square patterns around the ARM site at altitudes from 3-8 km. The increased CO2 line absorptions at higher altitudes were evident in all flights. The December flights were also coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft inside the CO2 sounder's flight pattern. These yielded two height resolved profiles of CO2 concentrations from 5 km to the surface, which are being analyzed with radiosonde measurements for comparisons. More details of the flights, measurements and their analysis will be described in the presentation.
BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research
Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...
2015-12-02
Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less
Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.
2010-01-01
We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.
Circumcision using CO2 laser: report of 860 cases
NASA Astrophysics Data System (ADS)
Chen, Wen B.; Chen, Zi-Fu; Zhan, Tian-qi; Gao, Xiang-Xun; Huang, Chao
1993-03-01
Eight-hundred-sixty cases of circumcision using CO2 laser are reported. The age of patients ranged from 9 - 65 years, with a mean age of 23.8 years. The technique was simple and can be quickly accomplished by a single operator. After local anesthesia the glans penis was protected by a protector. Then, circumcision was performed with a CO2 laser -- HeNe laser combined machine. There was an HeNe laser aiming system in this machine thus the surgeon had a three-dimensional visible indicator of the incision. The focusing CO2 laser beam was used for cutting the prepuce during the operation. There was almost no operative bleeding. All the patients needed no antibiotic postoperatively. Complications were minimal and satisfactory results were achieved.
Heterodyne frequency measurements on N2O at 5.3 and 9.0 microns
NASA Technical Reports Server (NTRS)
Wells, J. S.; Jennings, D. A.; Hinz, A.; Murray, J. S.; Maki, A. G.
1985-01-01
Heterodyne frequency measurements on the 01(1)1-00(0)0 band of N2O have been made with the use of a tunable-diode laser, CO laser transfer oscillator, and a CO2 laser frequency synthesizer. A beat frequency was measured between a CO laser and tunable-diode laser whose frequency was locked to the peak of N2O absorption features. The frequency of the CO laser was simultaneously determined by neasuring the beat frequency with respect to a reference synthesized from two CO2 lasers. New rovibrational constants are given for the 01(1)1 state of N2O, which are in excellent agreement with previous results, although the band center is 4 MHz higher than in the previous measurements. A table for the line frequencies and their absolute uncertainties is given for the N2O absorption lines in the wave-number region from 1830 to 1920 kaysers. Some additional frequency measurements near the lower-frequency end of the 02(0)0-00(0)0 band have also been made with respect to a C-12)(0-18)2 laser.
NASA Astrophysics Data System (ADS)
Ren, Wei; Jeffries, Jay B.; Hanson, Ronald K.
2010-10-01
A tunable diode laser sensor with a detection bandwidth of 40 kHz is developed for measuring the time-varying gas temperature of CO2 during the evaporation of shock-heated hydrocarbon fuel aerosol. Normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f) is used to probe R(28) and P(70) transitions in the ν1 + ν3 combination band of CO2 near 2.7 µm. The fixed-center-wavelength WMS sensor was first validated in a shock tube with non-reactive CO2/Ar gas mixtures, yielding an accuracy of better than 1.5% over the entire range of 650-1500 K. The sensor was then evaluated in a well-controlled aerosol flow cell, demonstrating the potential for precise gas temperature measurement even when aerosol scattering attenuates more than 99% of the incident light. Applications of this sensor for accurate temperature measurement of evaporating n-dodecane aerosol were then performed in an aerosol shock tube. The time-resolved temperature variation due to the evaporation of fuel droplets was accurately captured without using an off-resonant laser to account for the extinction from droplet scattering. Measured temperatures confirmed the accuracy of the gasdynamic model used to calculate the pre- and post-evaporation shock conditions, as needed in shock tube studies on combustion chemistry.
Fifteen terawatt picosecond CO2 laser system.
Haberberger, D; Tochitsky, S; Joshi, C
2010-08-16
The generation of a record peak-power of 15 TW (45 J, 3 ps) in a single CO(2) laser beam is reported. Using a master oscillator-power amplifier laser system, it is shown that up to 100 J of energy can be extracted in a train of 3 ps laser pulses separated by 18 ps, a characteristic time of the CO(2) molecule. The bandwidth required for amplifying the short injected laser pulse train in a 2.5 atm final CO(2) amplifier is provided by field broadening of the medium at intensities of up to 140 GW/cm(2). The measured saturation energy for 3 ps pulses is 120 mJ/cm(2) which confirms that energy is simultaneously extracted from six rovibrational lines.
Chemical engineering design of CO oxidation catalysts
NASA Technical Reports Server (NTRS)
Herz, Richard K.
1987-01-01
How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.
In vitro analysis of laser meniscectomy.
Vangsness, C T; Akl, Y; Nelson, S J; Liaw, L H; Smith, C F; Marshall, G J
1995-01-01
Partial meniscectomies were performed on 32 fresh human meniscal autopsy specimens. The following laser systems were tested: carbon dioxide (CO2), neodymium:yttrium aluminum garnet (Nd:YAG), potassium titanyl phosphate (KTP), holmium:YAG (Ho:YAG), and excimer. Meniscectomies with these lasers were compared with scalpel, mechanical, and electrocautery meniscectomies. Lasers were applied to specimens in and out of normal saline. Routine hematoxylin and eosin and sirius red sections were prepared for each specimen, and the depths of thermal changes were analyzed. Scanning electron microscopy was used to visualize the meniscectomy interface. Among these specimens, the scalpel and mechanical meniscectomies showed the least extension of cellular changes (range, 10-15 nm). The excimer laser caused the least tissue changes of the lasers tested. Tissue changes were less extensive with the pulsed CO2 laser than with the holmium:YAG, neodymium:YAG, and KTP lasers. Scanning electron microscopy showed that use of the scalpel meniscectomy resulted in the smoothest meniscectomy edge, followed by use of the excimer, CO2, holmium:YAG, neodymium:YAG, and KTP lasers. The most surface disruption occurred with electrocautery. Meniscectomies under saline required more energy and took longer in each case, with the holmium:YAG, neodymium:YAG, and CO2 laser cutting the best. Saline meniscectomies showed less thermal change. The CO2 and KTP lasers cut best in air.
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus
2017-04-01
Ice cores are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in Ice Core Sciences (EuroPICS) plans to drill an ice core extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and covering the time period of the Mid Pleistocene Transition. The ice covering the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of ice. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned ice by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from ice without changing the isotopic composition of CO2. In order to reduce ice waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an ice-core section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.
Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space
NASA Astrophysics Data System (ADS)
Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.
2011-12-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of delivering 65 mJ at 50 Hz at on-line wavelength and 50 mJ at 50 Hz at off-line wavelength. The planned laser technology development and performance capabilities are a major step forward in the laser transmitter requirements called out in recent comprehensive system studies, e.g., the European Space Agency (ESA) exploration mission studies, A-SCOPE, for future CO2 column density measurements from space. The planned laser technology development is relevant to NASA's earth science priorities, such as NASA ASCENDS mission for space-based CO2 column density measurements. This presentation will provide an overview of the current status of laser transmitter development and describe future technology development to meet the transmitter requirement for a space-based column averaged measurement of CO2 concentration.
Nie, Jinfang; Liang, Yuanzhi; Zhang, Yun; Le, Shangwang; Li, Dunnan; Zhang, Songbai
2013-01-21
In this paper, we report a simple, low-cost method for rapid, highly reproductive fabrication of paper-based microfluidics by using a commercially available, minitype CO(2) laser cutting/engraving machine. This method involves only one operation of cutting a piece of paper by laser according to a predesigned pattern. The hollow microstructures formed in the paper are used as the 'hydrophobic barriers' to define the hydrophilic flowing paths. A typical paper device on a 4 cm × 4 cm piece of paper can be fabricated within ∼7-20 s; it is ready for use once the cutting process is finished. The main fabrication parameters such as the applied current and cutting rate of the laser were optimized. The fabrication resolution and multiplexed analytical capability of the hollow microstructure-patterned paper were also characterized.
Frequency tuning characteristics of a Q-switched Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Lovold, S.; Moulton, P. F.; Killinger, D. K.; Menyuk, N.
1985-01-01
A tunable Q-switched Co:MgF2 laser has been developed for atmospheric remote sensing applications. Frequency tuning is provided by a quartz etalon and a specially designed three-element birefringent filter covering the whole gain bandwidth of the Co:MgF2 laser. The laser has good temporal and spectral characteristics, with an emission linewidth of approximately 3 GHz (0.1 per cm).
Carbon analysis for inspecting carbonation of concrete using a TEA CO2 laser-induced plasma.
Kagawa, Kiichiro; Idris, Nasrullah; Wada, Munehide; Kurniawan, Hendrik; Tsuyuki, Kenichiro; Miura, Satoru
2004-08-01
It has been demonstrated that a spectrochemical analysis of carbon using the laser plasma method can be successfully applied to inspect the carbonation of concrete by detecting carbon produced in aged concrete by a chemical reaction of Ca(OH)2 with CO2 gas in environmental air, turning into CaCO3, which induces degradation of the quality of building concrete. A comparative study has been made using a TEA CO2 laser (500-1000 mJ) and a Q-switched Nd-YAG laser (50-200 mJ) to search for the optimum conditions for carbon analysis, proving the advantage of the TEA CO2 laser for this purpose. Also, it was clarified that laser irradiation with suitable defocusing conditions is a crucial point for obtaining high sensitivity in the detection of carbon. Practical experiments on the inspection of carbonation were carried out using both a concrete sample that had been intentionally carbonated by exposure to high concentrations of CO2 gas and a naturally carbonated concrete sample. As a result, good coincidence was observed between the laser method and the ordinary method, which uses the chemical indicator phenolphthalein, implying that this laser technique is applicable as an in situ quantitative method of inspection for carbonation of concrete.
LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air
NASA Astrophysics Data System (ADS)
Stepanov, E. V.
2002-11-01
Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.
Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen
2015-01-01
Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695
Experimental Investigation for 100-Joule-class TEA CO2 Laser and Gas Interaction
NASA Astrophysics Data System (ADS)
Dou, Zhiguo; Yao, Honglin; Wang, Jun; Wen, Ming; Wang, Peng; Yang, Jan; Li, Chong
2006-05-01
Impulse coupling coefficient Cm is one of the most important performance parameters in laser propulsion. Cm is the impulse increment of lightcraft that per joule laser beam energy acts on. The TEA CO2 laser, whose single pulse energy is 100-Joule-class and wavelength is 10.6μm, is adopted by experimental research. In experimental environment cabin, the parabolic lightcraft is fixed on impact pendulum. Using Air, N2, He, CO2, N2-He and N2-CO2, different Cm is obtained. Experimental results indicate that Cm of the mixed gas is improved through changing gas component ratio.
Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin
2009-07-01
Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.
NASA Astrophysics Data System (ADS)
Shen, J. D.; Yang, W. B.; Kumar, A.; Zhao, H. H.; Lai, Y. J.; Feng, L. S.; Xu, Q. Y.; Zhang, Y. Q.; Du, J.; Li, Q.
2018-04-01
Polycrystalline-BiFeO3(BFO)/Co bilayers were grown by pulsed laser deposition (PLD) and magnetron sputtering, with fast laser annealing under magnetic field. The enhanced exchange bias (EB) had been found in the BFO/Co bilayers (Appl. Surf. Sci. 367 (2016) 418). In order to reveal the origin of the enhanced EB in the samples, X-ray absorption Spectroscopy (XAS) of Fe 2p, Co 2p and O 1s were performed. The Co 2p XAS indicated the increase of Co oxidation state and the Fe 2p XAS of sample A and B under laser annealing processes showed that crystal field splitting energy decreased and led to the weakening of spin-orbit coupling with the increasing of the laser fluence. It was considered that the appearance of the oxidation state of Co and Fe2+ ions and the existence of the unidirectional anisotropy due to the laser fluence was responsible for the results and also for the enhanced EB.
NASA Astrophysics Data System (ADS)
Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.
1999-07-01
An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.
CO.sub.2 optically pumped distributed feedback diode laser
Rockwood, Stephen D.
1980-01-01
A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.
Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Inoue, T.
1990-03-01
An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.
Life problems of dc and RF-excited low-power CW CO2 waveguide lasers
NASA Technical Reports Server (NTRS)
Hochuli, U. E.; Haldemann, P. R.
1986-01-01
A number of different, RF-excited 3-W CW CO2 waveguide lasers have been built. Four of these lasers, after continuously working for 15,000-30,000 h, still yield about 70 percent of their original power output. The design variations cover N2and CO-bearing gas mixtures, as well as internal- and external-capacitively coupled excitation electrodes. A similar laser survived 50,000 5-min-ON/5-min-OFF cycles without significant mirror damage. It was not possible to find suitable cold cathodes that allow the building of longitudinally dc-excited CW CO2 waveguide lasers that work for such extended periods of time.
Reif, Roberto; Zhi, Zhongwei; Dziennis, Suzan; Nuttall, Alfred L; Wang, Ruikang K
2013-10-01
In this work we determined the contributions of loud sound exposure (LSE) on cochlear blood flow (CoBF) in an in vivo anesthetized mouse model. A broadband noise system (20 kHz bandwidth) with an intensity of 119 dB SPL, was used for a period of one hour to produce a loud sound stimulus. Two techniques were used to study the changes in blood flow, a Doppler optical microangiography (DOMAG) system; which can measure the blood flow within individual cochlear vessels, and a laser Doppler flowmetry (LDF) system; which averages the blood flow within a volume (a hemisphere of ~1.5 mm radius) of tissue. Both systems determined that the blood flow within the cochlea is reduced due to the LSE stimulation.
Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos
2006-03-01
Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and p<.001, respectively), and for staphylococci, diphtheroids, and yeasts compared with the scalpel-inflicted wound on the same day (p=0.029, p<.001, and p=.030, respectively). Skin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.
Vibrational energy transfer in OH X 2Pi(i), v = 2 and 1
NASA Technical Reports Server (NTRS)
Raiche, George A.; Jeffries, Jay B.; Rensberger, Karen J.; Crosley, David R.
1990-01-01
Using an IR-pump/UV-probe method in a flow discharge cell, vibrational energy transfer in OH X 2Pi(i) has been studied. OH is prepared in v = 2 by overtone excitation, and the time evolution of population in v = 2 and 1 monitored by laser-induced fluorescence. Rate constants for vibrational relaxation by the colliders H2O, NH3, CO2, and CH4 were measured. Ratios of rate constants for removal from the two states, k2/k1, range from two to five.
In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications.
Vieira, K A; Steiner-Oliveira, C; Soares, L E S; Rodrigues, L K A; Nobre-dos-Santos, M
2015-02-01
This study aimed to evaluate the effects of repeated CO2 laser applications on the inhibition of enamel demineralization. Sixty-five human dental enamel slabs were randomly assigned to the following groups (n = 13): control (C), one application of the CO2 laser (L1), two applications of the CO2 laser (L2), three applications of the CO2 laser (L3), and four applications of the CO2 laser (L4). Enamel slabs were irradiated by a 10.6-μm CO2 laser operating at 5 J/cm(2). The slabs were subjected to a pH-cycling regimen and then analyzed by FT-Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry (EDXRF), cross-sectional micro-hardness, and scanning electron microscopy (SEM). Statistical analysis was performed using ANOVA and Tukey tests (p < 0.05). FT-Raman spectroscopy showed a reduced carbonate content for L1, L3, and L4 groups when compared to C (p < 0.05). The EDXRF data showed no statistical differences between the control and irradiated groups for calcium and phosphorus components (p > 0.05). Cross-sectional micro-hardness data showed a statistically significant difference between the control and all irradiated groups (p < 0.05), but no difference was found among the irradiated groups (p > 0.05) up to 30-μm depth. A tendency of lower demineralization occurred in deeper depths for L3 and L4 groups. The SEM results showed that with repeated applications of the CO2 laser, a progressive melting and recrystallization of the enamel surface occurred. Repeated irradiations of dental enamel may enhance the inhibition of enamel demineralization.
Szymański, Marcin; Morshed, Kamal; Mills, Robert P
2007-01-01
The aim of the study was to assess the effect of CO(2) laser on stapes prostheses and measure the heat transmission to the vestibule in experiment model. CO(2) laser was applied on two types of prostheses with power settings (2 and 6W; 0.05 s). Transmission of heat to the 'vestibule' was measured using type K thermocouple and DC-80 data logger during application of the laser on prostheses using a training model of temporal bone. Application of the laser on stainless steel prosthesis did not have any effect on the structure of the prosthesis. The use of the laser on the fluoroplastic-wire piston caused melting and produced holes in the piston. Greater temperature rises occurred with stainless steel than with the fluoroplastic-wire piston. Application of CO(2) laser on stainless steel pistons with 6W can produce inner ear trauma. The use of the laser on fluoroplastic-wire piston is not likely to irritate the inner ear.
Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute
NASA Astrophysics Data System (ADS)
Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir
2003-05-01
Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.
NASA Astrophysics Data System (ADS)
Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli
2018-04-01
The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 < C12CO2/CN2 < 2) and 1.11998 (0 < C13CO2/CN2 < 1.5) respectively. It has shown that the representative Raman peak area can be used for the determination of δ13C values within the relative errors range of 0.076% to 1.154% in 13CO2/12CO2 binary mixtures when F12CO2/F13CO2 is 0.466972625. In addition, measurement of δ13C values by Micro-Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.
NASA Astrophysics Data System (ADS)
Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You
2015-03-01
Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.
NASA Astrophysics Data System (ADS)
DeRowe, Ari; Ophir, Dov; Finkelstein, Y.; Katzir, Abraham
1993-07-01
CO2 laser myringotomy has previously been proven effective in patients with serous otitis media for short term aeration of the middle ear. However, the system based on a microscope and a coaxially aligned laser is cumbersome and expensive. Also, conventional optical fibers do not transmit CO2 laser energy ((lambda) equals 10.6 micrometers ). We have developed a silver halide optical fiber of diameter 0.9 mm and lengths of several meters, with high transmission at 10.6 micrometers . Using a hand held otoscope coupled to a fiberoptic delivery system CO2 laser myringotomies were performed first in guinea pigs and then in humans. In the animal model the feasibility of the procedure was proven. Different irradiation parameters were studied and a `dose dependent' relationship was found between the total energy used and the duration of a patent myringotomy. This system was used to perform CO2 laser myringotomies under local anesthesia in five patients with serous otitis media and conductive hearing loss. None of the patients complained of discomfort and no scarring was noted. All patients had subjective and audiometric documentation of hearing improvement. The average duration of a patent myringotomy was 21 days. In two patients the effusion recurred. CO2 laser myringotomy utilizing a hand held otoscope coupled to an optical fiber capable of transmitting CO2 laser energy may prove simple and effective in the treatment of serous otitis media.
Basir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Chiniforush, Nasim; Moradi, Zohreh
2016-01-01
Tooth restoration immediately after bleaching is challenging due to the potential problems in achieving adequate bond strength. The aim of this study was to evaluate the effect of surface treatment with ER:YAG, ND:YAG, CO2 lasers and 10% sodium ascorbate solution on immediate microtensile bond strength of composite resin to recently bleached enamel. Ninety sound molar teeth were randomly divided into three main groups (n:30) : NB (without bleaching), HB (bleached with 38% carbamide peroxide) and OB (bleached with Heydent bleaching gel assisted by diode laser). Each group was divided into five subgroups (n:6) : Si (without surface treatment), Er (Er:YAG laser), CO2 (CO2 laser), Nd (Nd:YAG laser) and As (Immersion in 10% sodium ascorbate solution). The bonding system was then applied and composite build-ups were constructed. The teeth were sectioned by low speed saw to obtain enamel- resin sticks and submitted to microtensile bond testing. Statistical analyses were done using two- way ANOVA, Tukey and Tamhane tests. µTBS of bleached teeth irradiated with ND:YAG laser was not significantly different from NB-Nd group. Microtensile bond strength of OB-Er group was higher than NB-Er and HB-Er groups. The mean µTBS of HB-CO2 group was higher than NB-CO2 group; the average µTBS of HB-As and OB-As groups was also higher than NB-As group. Use of Nd:YAG, CO2 lasers and 10% sodium ascorbate solution could improve the bond strength in home-bleached specimens. Application of ND:YAG laser on nonbleached specimens and Er:YAG laser on office-bleached specimens led to the highest µTBS in comparison to other surface treatments in each main group.
Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser
NASA Astrophysics Data System (ADS)
Sheng, Wang; Jin-Hai, Si; Jun, Shao; Zhi-yun, Hu; Jing-feng, Ye; Jing-Ru, Liu
2017-11-01
In order to achieve the two-dimensional (2-D) velocity measurement of a flow field at extreme condition, a 2-D interferometric Rayleigh scattering (IRS) velocimetry using a multibeam probe laser was developed. The method using a multibeam probe laser can record the reference interference signal and the flow interference signal simultaneously. What is more, this method can solve the problem of signal overlap using the laser sheet detection method. The 2-D IRS measurement system was set up with a multibeam probe laser, aspherical lens collection optics, and a solid Fabry-Perot etalon. A multibeam probe laser with 0.5-mm intervals was formed by collimating a laser sheet passing through a cylindrical microlens arrays. The aspherical lens was used to enhance the intensity of the Rayleigh scattering signal. The 2-D velocity field results of a Mach 1.5 air flow were obtained. The velocity in the flow center is about 450 m/s. The reconstructed results fit well with the characteristic of flow, which indicate the validity of this technique.
NASA Astrophysics Data System (ADS)
Baranov, V. Yu; Drokov, G. F.; Kuz'menko, V. A.; Mezhevov, V. S.; Pigul'skaya, V. V.
1986-05-01
The results of experiments on using hopcalite to stabilize the gas mixture composition in pulse-periodic and single-pulse CO2 lasers are reported. A study was made of the reasons for a fall in the activity of the catalyst with time under typical CO2 laser conditions and a catalyst regeneration regime was selected. The use of hopcalite ensured prolonged operation of a high-power pulse-periodic CO2 laser without replenishment of the gas mixture in a closed loop. Certain characteristic features concerning the use of hopcalite are described.
Hawkins, J F; Couetil, L; Miller, M A
2014-02-01
The objective was to evaluate CO2 laser debridement of the cricoarytenoid joint (CAJ) combined with prosthetic laryngoplasty to prevent post-operative loss of arytenoid abduction in seven horses. Horses were assigned to either laser debridement of the left CAJ and laryngoplasty (laser treated, n=5) or control laryngoplasty (sham, n=2), and were evaluated with endoscopic examinations and measurement of right to left angle quotients (RLQ) to assess maintenance of arytenoid abduction. The animals were euthanased at intervals after surgery and larynges were harvested for post-mortem testing, including determination of translaryngeal flow, pressure, impedance and RLQ. Measurements were obtained under increasing vacuum-generated negative pressure with laryngoplasty sutures intact and with the knot/crimp of the laryngoplasty sutures removed. Following post-mortem testing the cricoarytenoid joints were examined histologically. Post-operative endoscopic examinations revealed no significant differences between RLQ measurements calculated for day 1 following surgery to the termination date of the study for the seven horses. Post-mortem RLQ at airflows of 10 and 60 L/s was significantly higher in sham than in laser treated horses both before and after knot/crimp removal. Translaryngeal impedance at 10 and 60 L/s was not statistically different between groups. Histopathology revealed necrosis and loss of articular cartilage in the laser treated horses. The lymphoid cell infiltration subsided but joint capsule and periarticular fibrosis increased over the course of the study. Post-operative loss of arytenoid abduction after laryngoplasty can be minimized with CO2 laser debridement of the CAJ joint. Copyright © 2013 Elsevier Ltd. All rights reserved.
Paulos, Renato Siva; Seino, Priscila Yumi; Fukushima, Karen Akemi; Marques, Marcia Martins; de Almeida, Fernanda Campos Sousa; Ramalho, Karen Muller; de Freitas, Patricia Moreira; Brugnera, Aldo; Moreira, Maria Stella
2017-05-01
The aim of this study was to investigate Nd:YAG and CO 2 laser effects in the prevention of demineralization in deeper layers of enamel via successive acid challenge cycles. Lasers are promising in the prevention of enamel demineralization around the orthodontic brackets; however, there are very few studies that evaluate if the effects of treatment could be extended after successive acid challenge cycles due to permanent enamel structural alterations. Human enamel samples were divided into five groups (n = 12): G1-application of 1.23% acidulated fluoride phosphate gel (AFP, control); G2-Nd:YAG laser irradiation (0.6 W, 84.9 J/cm 2 , 10 Hz, 110 μs, contact mode); G3-Nd:YAG laser irradiation associated with AFP; G4-CO 2 laser irradiation (0.5 W, 28.6 J/cm 2 , 50 Hz, 5 μs, and 10 mm focal distance); and G5-CO 2 laser irradiation associated with AFP. The samples were submitted to successive acid challenge cycles. Quantitative light-induced fluorescence and scanning electron microscopy were used to assess enamel demineralization. The data were statistically compared (α = 5%). G1: 50.87 ± 4.57; G2: 47.72 ± 2.87; G3: 50.96 ± 4.01; G4: 28.21 ± 2.19; and G5: 30.13 ± 6.38. The CO 2 laser groups had significantly lower mineral losses than those observed in all other groups after successive acid challenge cycles. Only the CO 2 laser (10.6 μm) irradiation prevents enamel demineralization around the orthodontic brackets even after exposure to successive acid challenges. The CO 2 laser at 10.6 μm showed a deeper effect in enamel regarding caries prevention.
Au, Sonoa; Liolios, Ana M; Goldman, Mitchel P
2015-02-01
The picosecond Alexandrite laser has shown increased efficacy in tattoo removal in comparison to Q-switched lasers. However, bulla formation is a well-known and expected side effect of this novel treatment and causes patient discomfort. To analyze the incidence of bulla formation after tattoo treatment using the combination of the picosecond Alexandrite laser and fractionated CO2 ablation. This is a retrospective chart review to determine the incidence of bulla formation after laser tattoo removal in 95 patients who were treated with either with the picosecond Alexandrite laser alone or in combination with fractional CO2 ablation. Twenty-six patients (32%) treated with the picosecond laser alone experienced blistering, whereas none of the patients treated with the combination of the picosecond laser and fractionated CO2 ablation experienced blistering. The difference in incidence of bulla formation between the 2 groups was found to be statistically significant (p < .05). This study shows a significant decrease in bulla formation associated with tattoo treatment when fractionated CO2 ablation is added to the picosecond Alexandrite laser, which is consistent with observations from a previous case series. This is important because decreasing extensive blistering likely results in increased patient satisfaction and willingness to return for future treatments.
Kraeva, Ekaterina; Ho, Derek; Jagdeo, Jared
2016-11-01
Rhinophyma, a late complication of rosacea (phymatous subtype), is a chronic, progressive dermatological condition. The classic pre- sentation of rhinophyma is nodular, thickened skin over the distal nose, and is often accompanied by underlying erythema secondary to in ammation. Due to the unpleasant aesthetic and dis guring appearance, rhinophyma may be associated with a signi cant nega- tive psychosocial impact, resulting in decreased patient quality-of-life. Treatment of rhinophyma is challenging as topical and systemic pharmacotherapies have shown limited ef cacy. We present a case of a 39-year-old African-American male with long-standing, mild rhinophyma who was successfully treated with two sessions of fractionated carbon dioxide (CO2) laser. We also review the medical literature on fractionated CO2 laser treatment of rhinophyma. To the best of our knowledge, this is the rst report of successful treat- ment of rhinophyma using fractionated CO2 laser in an African-American man (Fitzpatrick VI). We believe that fractionated CO2 laser may be a safe and ef cacious treatment modality for rhinophyma in skin of color patients (Fitzpatrick IV-VI) and early intervention with fractionated CO2 laser to prevent rhinophyma worsening may yield better results than late intervention. J Drugs Dermatol. 2016;15(11):1465-1468..
Fiber optically guided CO2 laser myringotomy through an otoscope: animal experimentation
NASA Astrophysics Data System (ADS)
DeRowe, Ari; Ophir, Dov; Katzir, Abraham
1992-08-01
We have developed an otoscope which contains an optical fiber capable of transmitting CO2 laser energy. Such a hand-held unit may prove useful in the treatment of acute otitis media and otitis media with effusion. We used crystalline fibers (0.9 mm diameter) capable of transmitting CO2 laser energy. Four guinea pigs were anaesthetized. In one ear a laser myringotomy was performed using 7.5 watts for 0.1 seconds. The diameter of the myringotomy was 1.5 mm. In the other ear a similar conventional myringotomy was performed. After three weeks three laser and three conventional myringotomies were closed. On the average conventional myringotomies closed 50% sooner than laser myringotomies. Temporal bones from three guinea pigs were removed and sectioned according to accepted methods. No histological differences were found between ears. This experiment has proven the feasibility of using an otoscope for fiberoptically guided CO2 laser myringotomy.
NASA Technical Reports Server (NTRS)
Javan, A.
1979-01-01
A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.
Industrial 2-kW TEA CO2 laser for paint stripping of aircraft
NASA Astrophysics Data System (ADS)
Schweizer, Gerhard; Werner, L.
1995-03-01
Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.
Test stand for gas-discharge chamber of TEA CO2 lasers with pulse-periodical energy supply
NASA Astrophysics Data System (ADS)
Shorin, Vladimyr P.; Bystrov, N. D.; Zhuravlyov, O. A.; Nekrasov, V. V.
1997-05-01
Test stand for function optimization (incomposition of gas- dynamic circuit (GDC) of operating characteristics of full- size discharge chamber of flowing TEA carbon-dioxide lasers (power up to 100 kW) was created in Samara State Aerospace University (former Kuibyshev Aviation Institute). Test stand includes an inside-type GDC, low inductive generators of voltage pulses of preionization and main discharges, two-flow rate system of gas supply and noise immunity diagnostic system. Module construction of units of GDC, power supplies of preionization and main discharges allows to change configuration of stand's systems for providing given properties of gas flow and its energy supply. This test stand can also be used in servicing of laser system. The diagnostic system of this stand allows us to analyze energy properties of discharge by means of oscillographic measurements of voltage and current with following processing of discharges' volt- ampere characteristics by means of a computer; rate of non- stationary gas-dynamic disturbances in discharge gap of discharge chamber was measured by means of pulse holographic system (UlG-1M) with data processing of schliren- and interferogram (density fluctuation sensitivity approximately 10-2) and sensor measurement system of gas-dynamic shock and acoustics process with resonance frequency exceeding 100 kHz. Research results of process of plasma plate wave and channel structures interaction with mediums, including actuation non-stationary gas-dynamic flows, cavitation erosion of preionization electrodes' dielectric substructure, ancillary heating of channels by main volumetric discharge are presented as well.
CO(2) Laser Fascia to Dura Soldering for Pig Dural Defect Reconstruction.
Forer, Boaz; Vasileyev, Tamar; Gil, Ziv; Brosh, Tamar; Kariv, Naam; Katzir, Abraham; Fliss, Dan M
2007-02-01
The purposes of this study were to demonstrate that laser soldering is safe and effective for tissue bonding in dural reconstruction and to compare this new reconstruction technique to an established one. A temperature-controlled fiberoptic CO(2) laser system or fibrin glue were used for in vitro dural defect reconstruction in two groups of pigs. The CO(2) laser technique was also used for dural reconstruction in live pigs. The burst pressure of the reconstructed dura by the laser system was significantly higher than that of fibrin glue (mean pressure 258.5 +/- 117.3 cm H(2)O and 76.8 +/- 47.2 cm H(2)O, respectively). There were no postoperative complications and no signs of thermal damage to the dura, fascia, or underlying tissue on histological analysis following the in vivo CO(2) laser experiments. Temperature-controlled laser soldering is an effective technique for dural repair. It creates a strong tissue bonding with no thermal damage to the tissue. The burst pressure of the reconstructed dura done with laser soldering is significantly higher than that of fibrin glue.
Effect of the CO2 laser (9.6μm) on the dental pulp in humans
NASA Astrophysics Data System (ADS)
Wigdor, Harvey A.; Walsh, Joseph T., Jr.; Mostafi, Reza
2000-03-01
There has been great interest in the potential use of a laser to replace the dental handpiece (drill). Ideally a laser emitting radiation that is absorbed strongly by both the water and hydroxyapatite in teeth, would be a more efficient laser. Previous investigators showed that the 9.3 and 9.6 micron wavelength bands of the CO2 laser contain hydroxyapatite absorption peaks. For this study, human patients who were to have teeth removed for either orthodontic or periodontal reasons were used. A total of 16 teeth were irradiated. The number of teeth treated per patient varied from 1 - 4. The laser used was a prototype CO2 laser (ESC Medical Systems, Yokneam, Israel). The CO2 laser emits 50 mJ 60 microsecond-long pulses of 9.6 micrometer radiation in a beam focused to a 300 micrometer diameter (i/e2) spot. The pulps in both the laser and handpiece prepared holes appeared similar and had no apparent inflammation or vascular changes. It appears from this small sample of laser treated human teeth that this laser has an equal effect to the dental pulpal tissue when compared to the dental handpiece.
Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space
NASA Technical Reports Server (NTRS)
Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham
2007-01-01
Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band. This band is free from interference from other gases and has temperature insensitive absorption lines. During the measurement the lasers are tuned on- and off- a selected CO2 line near 1572 nm and a selected O2 line near 768 nm in the Oxygen A band at kHz rates. The lasers use tunable diode seed lasers followed by fiber amplifiers, and have spectral widths much narrower than the gas absorption lines. The receiver uses a 1-m diameter telescope and photon counting detectors and measures the background light and energies of the laser echoes from the surface. The extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and offline surface echo via the differential optical absorption technique. Our technique rapidly alternates between several on-line wavelengths set to the sides of the selected gas absorption lines. It exploits the atmospheric pressure broadening of the lines to weight the measurement sensitivity to the atmospheric column below 5 km. This maximizes sensitivity to CO2 in the boundary layer, where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column will use an identical approach with an O2 line. Thee laser frequencies are tunable and have narrow (MHz) line widths. In combination with sensitive photon counting detectors these enables much higher spectral resolution and precision than is possible with passive spectrometer. 1aser backscatter profiles are also measured, which permits identifying measurements made to cloud tops and through aerosol layers. The measurement approach using lasers in common-nadir-zenith path allows retrieving CO2 column mixing ratios in the lower troposphere irrespective of sun angle. Pulsed laser signals, time gated receiver and a narrow receiver field-of-view are used to isolate the surface laser echo signals and to exclude photons scattered from clouds and aerosols. Nonetheless, the optical absorption change due to a change of a few ppO2 is small, <1 % which makes achieving the needed measurement sensitivities and stabilities quite challenging. Measurement SNRs and stabilities of >600:1 are needed to estimate CO2 mixing ratio at the 1-2 ppm level. We have calculated characteristics of the technique and have demonstrated aspects of the laser, detector and receiver approaches in th e laboratory We have also measured O2 in an absorption cell, and made C02 measurements over a 400 m long (one way) horizontal path using a sensor breadboard. We will describe these and more details of our approach in the paper.
Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko
2014-06-01
High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio
2014-01-01
A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686
Computational design of an experimental laser-powered thruster
NASA Technical Reports Server (NTRS)
Jeng, San-Mou; Litchford, Ronald; Keefer, Dennis
1988-01-01
An extensive numerical experiment, using the developed computer code, was conducted to design an optimized laser-sustained hydrogen plasma thruster. The plasma was sustained using a 30 kW CO2 laser beam operated at 10.6 micrometers focused inside the thruster. The adopted physical model considers two-dimensional compressible Navier-Stokes equations coupled with the laser power absorption process, geometric ray tracing for the laser beam, and the thermodynamically equilibrium (LTE) assumption for the plasma thermophysical and optical properties. A pressure based Navier-Stokes solver using body-fitted coordinate was used to calculate the laser-supported rocket flow which consists of both recirculating and transonic flow regions. The computer code was used to study the behavior of laser-sustained plasmas within a pipe over a wide range of forced convection and optical arrangements before it was applied to the thruster design, and these theoretical calculations agree well with existing experimental results. Several different throat size thrusters operated at 150 and 300 kPa chamber pressure were evaluated in the numerical experiment. It is found that the thruster performance (vacuum specific impulse) is highly dependent on the operating conditions, and that an adequately designed laser-supported thruster can have a specific impulse around 1500 sec. The heat loading on the wall of the calculated thrusters were also estimated, and it is comparable to heat loading on the conventional chemical rocket. It was also found that the specific impulse of the calculated thrusters can be reduced by 200 secs due to the finite chemical reaction rate.
Research on catalysts for long-life closed-cycle CO2 laser oaperation
NASA Technical Reports Server (NTRS)
Sidney, Barry D.; Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.
1987-01-01
Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin-oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-Langley on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) the effects of various catalyst pretreatment techniques on catalyst efficiency; (2) development of a technique, verified in a 30-hour test, to prevent isotopic scrambling when C(O-18) and (O-18)2 are reacted in the presence of a common-isotope Pt/Sn(O-16)2 catalyst; and (3) development of a mathematical model of a laser discharge prior to catalyst introduction.
Characterization of diamond thin films and related materials
NASA Astrophysics Data System (ADS)
McKindra, Travis Kyle
Thin carbon films including sputtered deposited graphite and CO 2 laser-assisted combustion-flame deposited graphite and diamond thin films were characterized using optical and electron microscopy, X-ray diffraction and micro-Raman spectroscopy. Amorphous carbon thin films were deposited by DC magnetron sputtering using Ar/O2 gases. The film morphology changed with the oxygen content. The deposition rate decreased as the amount of oxygen increased due to oxygen reacting with the growing film. The use of oxygen in the working gas enhanced the crystalline nature of the films. Graphite was deposited on WC substrates by a CO2 laser-assisted O2/C2H2 combustion-flame method. Two distinct microstructural areas were observed; an inner core of dense material surrounded by an outer shell of lamellar-like material. The deposits were crystalline regardless of the laser power and deposition times of a few minutes. Diamond films were deposited by a CO2 laser-assisted O 2/C2H2/C2H4 combustion-flame method with the laser focused parallel to the substrate surface. The laser enhanced diamond growth was most pronounced when deposited with a 10.532 microm CO2 laser wavelength tuned to the CH2-wagging vibrational mode of the C2H4 molecule. Nucleation of diamond thin films deposited with and without using a CO 2 laser-assisted combustion-flame process was investigated. With no laser there was nucleation of a sub-layer of grains followed by irregular grain growth. An untuned laser wavelength yielded nucleation of a sub-layer then columnar grain growth. The 10.532 microm tuned laser wavelength caused growth of columnar grains.
Optical radiation hazards of laser welding processes. Part II: CO2 laser.
Rockwell, R J; Moss, C E
1989-08-01
There has been an extensive growth within the last five years in the use of high-powered lasers in various metalworking processes. The two types of lasers used most frequently for laser welding/cutting processes are the Neodymium-yttrium-aluminum-garnet (Nd:YAG) and the carbon dioxide (CO2) systems. When such lasers are operated in an open beam configuration, they are designated as a Class IV laser system. Class IV lasers are high-powered lasers that may present an eye and skin hazard under most common exposure conditions, either directly or when the beam has been diffusely scattered. Significant control measures are required for unenclosed (open beam), Class IV laser systems since workers may be exposed to scattered or reflected beams during the operation, maintenance, and service of these lasers. In addition to ocular and/or skin exposure hazards, such lasers also may present a multitude of nonlaser beam occupational concerns. Radiant energy measurements are reported for both the scattered laser radiation and the plasma-related plume radiations released during typical high-powered CO2 laser-target interactions. In addition, the application of the nominal hazard zone (NHZ) and other control measures also are discussed with special emphasis on Class IV industrial CO2 laser systems.
Salvatore, Stefano; Leone Roberti Maggiore, Umberto; Athanasiou, Stavros; Origoni, Massimo; Candiani, Massimo; Calligaro, Alberto; Zerbinati, Nicola
2015-08-01
Microablative fractional CO2 laser has been proven to determine tissue remodeling with neoformation of collagen and elastic fibers on atrophic skin. The aim of our study is to evaluate the effects of microablative fractional CO2 laser on postmenopausal women with vulvovaginal atrophy using an ex vivo model. This is a prospective ex vivo cohort trial. Consecutive postmenopausal women with vulvovaginal atrophy managed with pelvic organ prolapse surgical operation were enrolled. After fascial plication, the redundant vaginal edge on one side was treated with CO2 laser (SmartXide2; DEKA Laser, Florence, Italy). Five different CO2 laser setup protocols were tested. The contralateral part of the vaginal wall was always used as control. Excessive vagina was trimmed and sent for histological evaluation to compare treated and nontreated tissues. Microscopic and ultrastructural aspects of the collagenic and elastic components of the matrix were studied, and a specific image analysis with computerized morphometry was performed. We also considered the fine cytological aspects of connective tissue proper cells, particularly fibroblasts. During the study period, five women were enrolled, and 10 vaginal specimens were finally retrieved. Four different settings of CO2 laser were compared. Protocols were tested twice each to confirm histological findings. Treatment protocols were compared according to histological findings, particularly in maximal depth and connective changes achieved. All procedures were uneventful for participants. This study shows that microablative fractional CO2 laser can produce a remodeling of vaginal connective tissue without causing damage to surrounding tissue.
NASA Astrophysics Data System (ADS)
Hsu, T.-T.; Kao, C.-T.; Chen, Y.-W.; Huang, T.-H.; Yang, J.-J.; Shie, M.-Y.
2015-05-01
Calcium silicate-based material (CS) has been successfully used in dental clinical applications. Some researches show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm, due to a photo-thermal mechanism. The purpose of this study was to confirm the effects of CO2 laser irradiation on CS, with regard to both material characterization and human periodontal ligament cell (hPDLs) viability. CS was irradiated with a dental CO2 laser using directly mounted fiber optics in wound healing mode with a spot area of 0.25 cm2, and then stored in an incubator at 100% relative humidity and 37 °C for 1 d to set. The hPDLs cultured on CS were analyzed, along with their proliferation and odontogenic differentiation behaviors. The results indicate that the CO2 laser irradiation increased the amount of Ca and Si ions released from the CS, and regulated cell behavior. CO2 laser-irradiated CS promoted cementogenic differentiation of hPDLs, with the increased formation of mineralized nodules on the substrate’s surface. It also up-regulated the protein expression of multiple markers of cementogenic and the expression of cementum attachment protein. The current study provides new and important data about the effects of CO2 laser irradiation on CS. Taking cell functions into account, the Si concentration released from CS with laser irradiated may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue.
NASA Astrophysics Data System (ADS)
Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu
2018-02-01
In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.
A Broadband Infrared Laser Source (2.5-17 μm) for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kinyaevskii, I. O.; Klimachev, Yu. M.; Kozlov, A. Yu.; Kotkov, A. A.
2017-12-01
This paper presents the results of studies aimed at the creation of a hybrid laser system which is composed of a gas lasers and a nonlinear crystal and appreciably broadens and enriches the radiation spectrum of these lasers. A highly efficient conversion (37%) is attained when generating the second harmonic in a ZnGeP2 crystal owing to an increase in the peak power of CO laser radiation in the mode locking regime. The two-cascade conversion (generation of both sum and difference frequencies) of radiation of a broadband CO laser in the single sample of such nonlinear crystals as ZnGeP2 and AgGaSe2 is demonstrated. In this case, the radiation spectrum is broadened by nearly a factor of two, and the number of detected spectral lines grows by a factor of four. The use of a comparatively simple laser system of gas-discharge CO and CO2 lasers to conversion in AgGaSe2 results in laser radiation tunable over a set of narrow spectral lines within a range from 2.5 to 16.6 μm (more than two and a half octaves).
Proton Probing using the T-Cubed Laser
NASA Astrophysics Data System (ADS)
Kordell, Peter; Campbell, Paul; Willingale, Louise; Maksimchuk, Anatoly; Krushelnick, Karl; Tubman, Eleanor; Woolsey, Nigel
2015-11-01
The University of Michigan's 20 TW, 400 fs pulse T-cubed laser can produce proton beams of up to 7.2 MeV through target normal sheeth acceleration. The proton flux at 4 MeV produces sufficient signal on Radiochromic Film for use as an ultrafast, electromagnetic field diagnostic. A two beam experiment has been set-up to enable co-timed, pump-probe relativistic intensity interactions. We present an evaluation of the flux, uniformity, energy and laminar flow of the proton probe for future use in imaging of a simple wire target interaction. This work was supported by the DOE (Grant No. DE-SC0012327).
Effects of Nd:YAG and CO2 lasers on cerebral microvasculature. Study in normal rabbit brain.
Kuroiwa, T; Tsuyumu, M; Takei, H; Inaba, Y
1986-01-01
The effect of Nd:YAG and CO2 laser beams on cerebral microvasculature was examined in experimental animals. Soft x-ray microangiography and histological examination of the brain after Nd:YAG laser exposure revealed broad avascular or oligovascular zones in the irradiated and the surrounding edematous tissue, in which the surviving vessels were narrowed and tapered without significant leakage of blood. After CO2 laser exposure, a wedge-shaped tissue defect surrounded by layers of charring, coagulation, and edema was observed. The main finding in the surrounding coagulation and edematous layers was dilatation of the vessels. Hemorrhage was sometimes observed, mainly in the edematous layer. These findings seem to explain the effective hemostatic capability of the Nd:YAG laser and the occasional hemorrhage following CO2 laser exposure, especially at high energy output.
[Experimental investigations of CO2 laser application in middle ear ossicles].
Dazert, S; Russ, D; Mlynski, R; Brors, D; Greiner, A; Aletsee, C; Helms, J
2003-07-01
During the last few years, several laser systems have been applied for procedures in middle ear surgery. In this study, we determined the technical parameters for the dissection of the middle ear ossicles with the CO(2) laser and analyzed the histological findings. The malleus necks of 16 human temporal bones were dissected under standardized conditions using a CO(2) laser with a power output between 35 and 55 kW/cm(2). The specimens were fixed and histological probes of 50- micro m thickness were prepared. The laser outputs led to crater diameters from 0.14 to 0.55 mm. As an analogy between laser energy and thermal tissue destruction, three zones of thermal damage were differentiated: a cinder zone, a carbonization zone, and a zone of dehydration. The metrical dimensions of these zones did not show any correlation to the applied laser energy. The data of this study show that commercially available CO(2) lasers are sufficient for a safe and effective partial resection of middle ear ossicles using a power output of 35 kW/cm(2).
NASA Technical Reports Server (NTRS)
Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William
2010-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avtonomov, V.P.; Alexandrescu, R.; Dumitras, D.
1979-02-01
Results are presented of measurements of the Stark modulation index and absorption coefficient of CO/sub 2/ laser radiation due to the P (24) line by 1-1 difluorethane (C/sub 2/H/sub 4/F/sub 2/). The possibility of stabilizing the CO/sub 2/ laser frequency using a Stark cell is demonstrated and the laser frequency tuning efficiency within the P (24) line of the 00/sup 0/1--10/sup 0/0 transition is determined.
NASA Astrophysics Data System (ADS)
Abdul Ghani, B.
2005-09-01
"TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration step might leads to stop the program run due to the huge number of calculating points and to a small paging file size of the MS-Windows virtual memory. In such case, it is recommended to enlarge the paging file size to the appropriate size, or to use a bigger value of integration step.
Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R
1998-10-01
Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.
Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli
2018-04-15
The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0
Novel method to sample very high power CO2 lasers: II Continuing Studies
NASA Astrophysics Data System (ADS)
Eric, John; Seibert, Daniel B., II; Green, Lawrence I.
2005-04-01
For the past 28 years, the Laser Hardened Materials Evaluation Laboratory (LHMEL) at the Wright-Patterson Air Force Base, OH, has worked with CO2 lasers capable of producing continuous energy up to 150 kW. These lasers are used in a number of advanced materials processing applications that require accurate spatial energy measurements of the laser. Conventional non-electronic methods are not satisfactory for determining the spatial energy profile. This paper describes continuing efforts in qualifying the new method in which a continuous, real-time electronic spatial energy profile can be obtained for very high power, (VHP) CO2 lasers.
Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori
2014-08-01
The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.
Fractional CO2 Laser Resurfacing Complications
Ramsdell, William M.
2012-01-01
Fractionated CO2 laser technology has allowed physicians to resurface patients with a lower rate of complications than nonfractionated ablative laser treatment. Unfortunately, adverse effects can still occur even with the best technology and physician care. Complication prevention, detection, and treatment are an important part of a physician's ability to provide the best result when treating a patient with fractionated CO2 resurfacing. PMID:23904822
Evaluation of accuracy, reliability, and repeatability of five dental pulp tests.
Chen, Eugene; Abbott, Paul V
2011-12-01
The aim of this study was to compare the clinical accuracy, reliability, and repeatability of laser Doppler flowmetry (LDF), an electric pulp test (EPT), and various thermal pulp sensibility tests. Pulp tests were done on 121 teeth in 20 subjects by using LDF, EPT, and thermal pulp testing (CO(2), Endo Frost [EF], Ice) during 2 or 3 test sessions with at least 1-week intervals. The order of testing was reversed on the second visit. A laser Doppler flowmeter was used to measure mean pulp blood flow (Flux) calibrated against a brownian motion medium and zeroed against a static reflector. The laser source was 780 nm, with 0.5-mm fiber separation in the probe, 3.1 kHz as the primary bandwidth for filter set to 0.1-second time output constant. Customized polyvinylsiloxane splints were fabricated for each participant, and a minimum of 90-second recording time was used for each tooth. Raw data were analyzed by using repeated measure analysis of variance, pairwise comparisons, and interclass correlations (ICC). The accuracy of EPT, CO(2), and LDF tests was 97.7%, 97.0%, and 96.3%, respectively, without significant differences (P > .3). Accuracy of EF and Ice was 90.7% and 84.8%, respectively. EPT (P = .015) and CO(2) (P = .022) were significantly more accurate than EF. LDF was more accurate than EF, but this was not statistically significant (P = .063). Ice was significantly less accurate than EPT (P = .004), CO(2) (P = .005), LDF (P = .006), and EF (P = .019). With the exception of Ice (effect of visit: F(2,38) = 5.67, mean squared error = 0.01, P = .007, η(2)(p) = 0.23), all tests were reliable. Ice (ICC = 0.677) and LDF (ICC = 0.654) were the most repeatable of the tests, whereas EPT (ICC = 0.434) and CO(2) (ICC = 0.432) were less repeatable. CO(2), EPT, and LDF were reliable and the most accurate tests, but CO(2) and EPT were less repeatable yet less time-consuming than LDF. EF was reliable but not as accurate as EPT and CO(2) and less repeatable than Ice and LDF. Ice was the most repeatable but the least accurate and least reliable test. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Makboul, Mohamed; Makboul, Rania; Abdelhafez, Assem Hk; Hassan, Safaa Said; Youssif, Sherif M
2014-09-01
Hypertrophic scar is a form of abnormal wound healing process in which tissue repair regulating mechanism is disrupted. Transforming growth factor β1 has a particular importance in the fibrotic scarring response. Treatment of hypertrophic scar included many chemical, physical, and surgical options. Fractional CO2 laser devices have gained acceptance as a way for managing hypertrophic scar. Aims of this study are: (a) to determine the clinical and histopathological effects of fractional CO2 laser on hypertrophic scar, (b) to evaluate the expression pattern of transforming growth factor-β1 (TGF-β1) as an important fibrogenic factor before and 6 months after fractional CO2 laser treatment. Forty patients of hypertrophic scar were selected, each patient was treated by four sessions with 1 month apart with fractional CO2 laser. Vancouver Scar Scale (VSS) was used to assess the patients before and after laser treatment. Skin biopsy was taken from eight cases before and 3 months after four fractional CO2 laser sessions and four normal skin control biopsies. All were assessed by hematoxylin-eosin (H&E), Masson's trichrome, Van Gieson and immunohistochemical (IHC) staining with TGF-β1. The epidermal thickness was assessed before and after treatment by image analyzing system software. There was statistically significant difference in VSS before and after fractional CO2 laser (P > 0.001). The epidermal thickness showed significant increase after laser treatment (P > 0.001), and there was also thinning in stratum corneum and replacement of the irregular collagen bands with organized new collagen fibrils as demonstrated by H&E and the other special stains. The study also showed significant decrease in TGF-β1 expression after laser therapy (P = 0.008). Fractional CO2 laser could be considered as a good way for hypertrophic scar management. It normalizes dermal collagen as imaged by histopathological picture and the change in TGF-β1 expression. © 2014 Wiley Periodicals, Inc.
Lee, Sang Jun; Suh, Dong Hye; Chang, Ka Yeon; Kim, Hyun Joo; Kim, Tae In; Jeong, Ki-Heon; Shin, Min Kyung; Song, Kye Yong
2016-11-01
Various modalities have been used to treat acne scars. CO 2 fractional laser is an effective and commonly used treatment. CO 2 gas injection into the dermis by needle with high pressure can cause fibrotic collagen breakage, producing the effects of subcision. CO 2 also stimulates collagen synthesis by increasing neovascularization and releasing oxygen. This study evaluated the efficacy and the safety of the combined treatment with CO 2 gas subcision and CO 2 fractional laser for acne scars. Fourteen patients with acne scars were treated with three sessions of CO 2 gas subcision at 2-week intervals and two sessions of fractional laser at 4-week interval. The clinical improvement was assessed using a 4-point scale. For histologic analysis, punch biopsy was performed before and after treatment in 10 patients. All patients experienced clinical improvements. Excellent, marked, moderate, and mild response was achieved in 1 (7%), 8 (57%), 4 (29%), and 1 patient (7%), respectively. Histologic evaluation of the biopsy specimens showed increased dermal collagen with dermal thickening and elastic fiber straightening in the reticular dermis after the treatment. The combination therapy with CO 2 gas subcision and fractional laser was satisfactory and safe for treating acne scars. Abbreviation and acronym: CO 2 : Carbon dioxide GAS: Global assessment scale H&E: hematoxylin and eosin; SD: standard deviation.
Fractional CO2 lasers contribute to the treatment of stable non-segmental vitiligo.
Yuan, Jinping; Chen, Hongqiang; Yan, Ru; Cui, Shaoshan; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo
2016-12-01
Stable non-segmental vitiligo is often resistant to conventional therapies. The purpose of this study was to investigate the effect of three types of fractional lasers in the treatment of stable non-segmental vitiligo. Twenty patients were enrolled in the study. The vitiligo lesions of each patient were divided into four treatment parts, and all parts were treated with narrowband ultraviolet-B (NB-UVB). Three of the four parts were respectively treated with three types of fractional lasers (two ablative 10,600-nm CO 2 lasers and one non-ablative 1,565-nm laser), followed by topical betamethasone solution application. The treatment period lasted six months. Efficacy and satisfaction were respectively assessed by dermatologists and patients. The ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, achieved marked to excellent improvement on white patches assessed by dermatologists. Patients showed high satisfaction scores for the treatments. The non-ablative 1,565-nm fractional laser did not provide any further benefit in the treatment of vitiligo. No severe adverse events developed for any of the treatments. The treatment protocol with ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, was suitable for stable non-segmental vitiligo. For vitiligo, the ablative fractional CO 2 laser is more effective than the non-ablative fractional laser.
Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions.
Ryan, Robert W; Wolf, Tamir; Spetzler, Robert F; Coons, Stephen W; Fink, Yoel; Preul, Mark C
2010-02-01
The CO(2) laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO(2) laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO(2) laser fiber to conventional methods for incising neural tissue. Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO(2) energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made. Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage. The photonic bandgap fiber CO(2) laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery.
Monolayer phase coarsening using oscillatory flow
NASA Astrophysics Data System (ADS)
Leung, J.; Lopez, J. M.; Vogel, M. J.
2005-11-01
The co-existing phase domains of monolayers commonly observed via microscope are examined on flowing systems. Recent evidence shows that co-existing phase domains have profound effects on monolayer response to bulk flow. The present flow geometry consists of an open-top rectangular cavity in which the flow is driven by the periodic oscillation of the floor in its own plane. The oscillation of the floor dilates and compresses any film at the gas/liquid interface while still maintaining an essentially flat interface. A range of flow conditions (oscillation frequency and amplitude) is chosen so that the flow remains essentially two-dimensional. Measurements at the interface, initially covered by an insoluble monolayer (vitamin K1 or stearic acid), are made using a Brewster angle microscope system with a pulsed laser. Various phenomena such as fragmentation (breaking up of co-existing domains into finer ones) had previously been observed in sheared monolayer flows. In this new flow regime, we have seen dramatic coarsening of the domains. Interesting relaxation behavior at short and long time scales will also be discussed.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2012-10-01
A multiplexed diode-laser sensor system based on second harmonic detection of wavelength modulation spectroscopy (WMS) is developed for application at elevated temperatures with two near-infrared diode lasers multiplexed using a frequency-division multiplexing scheme. One laser is tuned over a H(2)O line pair near 7079.176 and 7079.855 cm(-1), and another laser is tuned over a pair of CO(2) and CO lines near 6361.250 and 6361.344 cm(-1). Temperature and concentrations of H(2)O, CO(2), and CO could be measured simultaneously by this system. In order to remove the need for calibration and correct for transmission variation due to beam steering, mechanical misalignments, soot, and windows fouling, the WMS-1f normalized 2f method is used. Demonstration experiments are conducted in a heated static cell. The precision of temperature and the concentrations for H(2)O, CO(2), and CO are found to be 1.57%, 3.87%, 3.01%, and 3.58%, respectively. These results illustrate the potential of this sensor for applications at high temperatures.
Multiparameter bifurcations and mixed-mode oscillations in Q-switched CO2 lasers.
Doedel, Eusebius J; Pando L, Carlos L
2014-05-01
We study the origin of mixed-mode oscillations and related bifurcations in a fully molecular laser model that describes CO2 monomode lasers with a slow saturable absorber. Our study indicates that the presence of isolas of periodic mixed-mode oscillations, as the pump parameter and the cavity-frequency detuning change, is inherent to Q-switched CO2 monomode lasers. We compare this model, known as the dual four-level model, to the more conventional 3:2 model and to a CO2 laser model for fast saturable absorbers. In these models, we find similarities as well as qualitative differences, such as the different nature of the homoclinic tangency to a relevant unstable periodic orbit, where the Gavrilov-Shilnikov theory and its extensions may hold. We also show that there are isolas of periodic mixed-mode oscillations in a model for CO2 lasers with modulated losses, as the pump parameter varies. The coarse-grained bifurcation diagrams of the periodic mixed-mode oscillations in these models suggest that these oscillations belong to similar classes.
CO2 lasers in the management of potentially malignant and malignant oral disorders
2012-01-01
The CO2 laser was invented in 1963 by Kumar Patel. Since the early 1970s, CO2 laser has proved to be an effective method of treatment for patients with several types of oral lesions, including early squamous cell carcinoma. Laser surgery of oral premalignant disorders is an effective tool in a complete management strategy which includes careful clinical follow-up, patient education to eliminate risk factors, reporting and biopsying of suspicious lesions and any other significant lesions. However, in a number of patients, recurrence and progression to malignancy remains a risk. CO2 laser resection has become the preferred treatment for small oral and oropharyngeal carcinomas. Laser resection does not require reconstructive surgery. There is minimal scarring and thus, optimum functional results can be expected. New and improved applications of laser surgery in the treatment of oral and maxillofacial/head and neck disorders are being explored. As more surgeons become experienced in the use of lasers and as our knowledge of the capabilities and advantages of this tool expands, lasers may play a significant role in the management of different pathologies. PMID:22546534
Thermoplastic microchannel fabrication using carbon dioxide laser ablation.
Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping
2006-04-14
We report the procedures of machining microchannels on Vivak co-polyester thermoplastic substrates using a simple industrial CO(2) laser marker. To avoid overheating the substrates, we develop low-power marking techniques in nearly anaerobic environment. These procedures are able to machine microchannels at various aspect ratios. Either straight or serpent channel can be easily marked. Like the wire-embossed channel walls, the ablated channel surfaces become charged after alkaline hydrolysis treatment. Stable electroosmotic flow in the charged conduit is observed to be of the same order of magnitude as that in fused silica capillary. Typical dynamic coating protocols to alter the conduit surface properties are transferable to the ablated channels. The effects of buffer acidity on electroosmotic mobility in both bare and coated channels are similar to those in fused silica capillaries. Using video microscopy we also demonstrate that this device is useful in distinguishing the electrophoretic mobility of bare and latex particles from that of functionalized ones.
Thermographic study of laser on arteries.
Mnitentag, J; Marques, E F; Ribeiro, M P; Braga, G A; Navarro, M R; Veratti, A B; Armelin, E; Macruz, R; Jatene, A D
1987-01-01
We analyzed the different effects of CO2, Nd-YAG, and argon lasers on aorta by using a Thermovision infrared system that registered the laser interaction with mongrel dog aorta. The images (thermograms) obtained were processed by a computer, which associated each area of the same temperature with a determined color. These thermograms were compared to histological analysis of the respective samples and the following results were obtained: (1) After the application of each laser there is very little propagation of heat in tissue. (2) The CO2 laser makes tissue reach 100 degrees C in less than 0.05 seconds. (3) The heat dissipation time was higher with the Nd-YAG laser due to higher scattering on tissue. Based on this research we conclude that the CO2 laser was best absorbed, the Nd-YAG laser penetrated human tissue with the best results, and the argon laser had the most significant backscattering.
Strong-field physics with mid-infrared lasers
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.
2002-04-01
Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 μm wavelength CO2 laser reaches a 100 times higher ponderomotive potential than the 1 μm wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO2 lasers are in operation. Further more, proposals for the 100 TW, 100 fs CO2 lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO2 lasers, sub-petawatt projects, and prospective applications in strong-field science. .
Current status of lasers in soft tissue dental surgery.
Pick, R M; Colvard, M D
1993-07-01
The aims of this paper are to briefly describe laser physics, the types of lasers currently available for use on soft tissues focusing primarily on CO2 and Nd:YAG laser energies, the histological effects of lasers on oral tissues, laser safety, the clinical applications of lasers on oral soft tissues, and future directions. Of the two types of lasers currently available for dental applications, both the CO2 and Nd:YAG lasers can be used for frenectomies, ablation of lesions, incisional and excisional biopsies, gingivectomies, gingivoplasties, soft tissue tuberosity reductions, operculum removal, coagulation of graft donor sites, and certain crown lengthening procedures. The advantages of lasers include a relatively bloodless surgical and post-surgical course, minimal swelling and scarring, coagulation, vaporization, and cutting, minimal or no suturing, reduction in surgical time, and, in a majority of cases, much less or no post-surgical pain. CO2 lasers, compared to Nd:YAG are faster for most procedures, with less depth of tissue penetration and a well-documented history. There have been recent reports on the use of the Nd:YAG laser for periodontal scaling, gingival curettage, and root desensitization, but further research needs to be conducted. Both the CO2 and the Nd:YAG laser have limited use in conventional flap therapy.
Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Chun-Hsun
2016-07-01
Laser pretreatment of skin can be used to enable drugs used in dermatology to penetrate the skin to the depth necessary for their effect to take place. To compare the permeation of tranexamic acid after conventional non-fractionated ablative Er:YAG and CO2 laser pretreatment in a laser-aided transdermal delivery system. An erbium-doped yttrium aluminium garnet (Er:YAG) and a CO2 laser were used to pretreat dorsal porcine skin. Scanning electron microscopy was used to examine disruption of the skin surface. Confocal laser scanning microscopy was used to determine the depth of penetration of a reporter molecule (fluorescein isothiocyanate) into the skin. A Franz diffusion assembly was used to examine fluency-related increases in transdermal delivery of transexamic acid. Transdermal delivery of tranexamic acid increased as Er:YAG laser fluency increased. Transdermal delivery was higher when CO2 laser pretreatment was used than when Er:YAG laser pretreatment was used, but a "ceiling effect" was present and increasing the wattage did not cause a further increase in delivery. CO2 laser pretreatment also caused more extensive and deeper skin disruption than Er:YAG laser pretreatment. For conventional, non-fractionated ablative laser pretreatment, the Er:YAG laser would be an optimal choice to enhance transdermal penetration of transexamic acid.
STRONG FIELD PHYSICS WITH MID INFRARED LASERS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
POGORELSKY,I.V.
2001-08-27
Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 {micro}m wavelength CO{sub 2} laser reaches a 100 times higher ponderomotive potential than the 1 {micro}m wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO{sub 2} lasers aremore » in operation. Further more, proposals for the 100 TW, 100 fs CO{sub 2} lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO{sub 2} lasers, sub-petawatt projects, and prospective applications in strong-field science.« less
Roy, Soham; Smith, Lee P
2015-01-01
This study was designed to assess the ability of carbon dioxide (CO2) lasers and radiofrequency ablation devices (Coblator) (ArthoCare Corporation, Sunnyvale, CA) to ignite either a non-reinforced (polyvinylchloride) endotracheal tube (ETT) or an aluminum and fluoroplastic wrapped silicon ("laser safe") ETT at varying titrations of oxygen in a mechanical model of airway surgery. Non-reinforced and laser safe ETTs were suspended in a mechanical model imitating endoscopic airway surgery. A CO2 laser set at 5-30 watts was fired at the ETT at oxygen concentrations ranging from 21% to 88%. The process was repeated using a radiofrequency ablation (RFA) device. All trials were repeated to ensure accuracy. The CO2 laser ignited a fire when contacting a non-reinforced ETT in under 2 seconds at oxygen concentrations as low as 44%. The CO2 laser could not ignite a laser safe ETT under any conditions, unless it struck the non-reinforced distal tip of the ETT. With the RFA, a fire could not be ignited with either reinforced or non-reinforced ETTs. RFA presents no risk of ignition in simulated airway surgery. CO2 lasers should be utilized with a reinforced ETT or no ETT, as fires can easily ignite when lasers strike a non-reinforced ETT. Decreasing the fraction of inspired oxygen reduces the risk of fire. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moskalenko, Konstantin L.; Sobolev, Nikolai V.; Adamovskay, Inna A.; Stepanov, Eugene V.; Nadezhdinskii, Alexander I.; McKenna-Lawlor, Susan
1994-01-01
Measurements of carbon monoxide and carbon dioxide concentrations by registration of high resolution absorption spectra are described. A fully automated diode laser system developed to simultaneously measure CO and CO2, with sensitivity for CO up to 50 ppb and CO2 up to 0.1 vol%, is described. Calculation of CO and CO2 concentrations was carried out on the base of a priori date on strength and broadening coefficients of detected absorption lines. Test procedures of such diode laser systems are described. Possible reasons affected on accuracy and reliability of obtained data (e.g., the value of diode lasers spontaneous radiation, the stability of CO content in a cell, etc.) for absolute and relative calibration procedure are discussed. The physiological level of CO concentration in the breath of non smokers and smokers under different ambient conditions of CO concentrations in the atmosphere (in Moscow and in Maynooth) are compared. Recent results on statistical studies of the behavior of CO concentrations as a function of breath holding time are represented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhar, G.C.; Das, S.; Chatterjee, U.
1989-04-17
Synchronous noncollinear upconversion detection is reported for the first time with a Nd:YAG laser in AgGaS/sub 2/. Q-switched pump laser pulses with a repetition rate up to 50 Hz were synchronized with intracavity chopped continuous wave CO/sub 2/ laser pulses. Results were obtained both by tuning the CO/sub 2/ laser and by varying the angle between the laser beams.
Meng, Dan; Falconer, James; Krauel-Goellner, Karen; Chen, John J J J; Farid, Mohammed; Alany, Raid G
2008-01-01
The purpose of this study was to design and build a supercritical CO(2) anti-solvent (SAS) unit and use it to produce microparticles of the class II drug carbamazepine. The operation conditions of the constructed unit affected the carbamazepine yield. Optimal conditions were: organic solution flow rate of 0.15 mL/min, CO(2) flow rate of 7.5 mL/min, pressure of 4,200 psi, over 3,000 s and at 33 degrees C. The drug solid-state characteristics, morphology and size distribution were examined before and after processing using X-ray powder diffraction and differential scanning calorimetry, scanning electron microscopy and laser diffraction particle size analysis, respectively. The in vitro dissolution of the treated particles was investigated and compared to that of untreated particles. Results revealed a change in the crystalline structure of carbamazepine with different polymorphs co-existing under various operation conditions. Scanning electron micrographs showed a change in the crystalline habit from the prismatic into bundled whiskers, fibers and filaments. The volume weighted diameter was reduced from 209 to 29 mum. Furthermore, the SAS CO(2) process yielded particles with significantly improved in vitro dissolution. Further research is needed to optimize the operation conditions of the self-built unit to maximize the production yield and produce a uniform polymorphic form of carbamazepine.
NASA Astrophysics Data System (ADS)
Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges
2016-04-01
Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (< 1 ppm in 1 second integration time for the CO2 sensor, and smaller than several tenths of ppb in 1 second integration time for the CH4 sensor). The instrument should be lighter than 2.5 kg in order to facilitate authorizations, costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.
Wandhöfer, A; Bally, G; Kauffmann, G; Karduck, A
1977-10-31
By comparing the effects of CO2- and Nd:YAG-laser radiation (mainly differing in wave-length by a factor of 10), a surgical instrument suitable for Otorhinolaryngology had to be found. The studies were performed on the rabbit's auricle in order to examine the effect of the laser irradiation mainly on the cartilage. The CO2-laser was found to be more efficient in cutting and caused less extended tissue damage than the Nd:YAG-laser. The latter seems to be more suitable for soft tissue surgery.
Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A
2011-08-01
To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong
2016-01-01
An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
NASA Astrophysics Data System (ADS)
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
Laser abrasion for cosmetic and medical treatment of facial actinic damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, L.M.; Lask, G.P.; Glassberg, E.
1989-06-01
Previous studies have shown the carbon dioxide (CO/sub 2/) laser to be effective in the treatment of actinic cheilitis. After CO/sub 2/ laser abrasion, normal skin and marked cosmetic improvement of the lip were noted. In our study, twenty-three patients were treated with CO/sub 2/ laser abrasions for cosmetic improvement of facial lines and actinic changes. Pre- and postoperative histopathologic examinations were made on two patients. Preoperative examination of specimens from actinically damaged skin showed atypical keratinocytes in the basal layer of the epidermis, with overlying dense compact orthokeratosis and parakeratosis. Abundant solar elastosis was seen in the papillary dermis.more » Postoperative histologic specimens showed a normal-appearing epidermis with fibrosis in the papillary dermis and minimal solar elastosis (about four weeks after laser treatment). At present, various modalities are available for the regeneration of the aged skin, including chemical peels and dermabrasion. Significantly fewer complications were noted with CO/sub 2/ laser abrasion than with these methods. Thus, CO/sub 2/ laser abrasion can be useful in the cosmetic and medical treatment of the aged skin. Marked clinical and histologic improvement has been demonstrated.« less
Measurement of Concentration of CO2 in Atmosphere In Situ Based on TDLAS
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Chen, Zhen; Liu, Zhishen
2014-11-01
As one of the main greenhouse gases in the atmosphere, CO2 has a significant impact on global climate change and the ecological environment. Because of close relationship between human activities and the CO2 emissions, it is very meaningful of detecting atmospheric CO2 accurately. Based on the technology of tunable diode laser absorption spectroscopy, the wavelength of distributed feedback laser is modulated, Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by corner reflector, and focuses the receiving laser-beam to the photoelectric detector. The second harmonic signal is received through lock-in amplifier and collected by AD data acquisition card, after that the system is built up. By choosing the infrared absorption line of CO2 at 1.57μm, the system is calibrated by 100% CO2 gas cell. The atmospheric CO2 in situ is measured with long open-path way. Furthermore, the results show that CO2 concentration decreases along time in the morning of day. It is proved that TDLAS technology has many advantages, including fast response, high sensitivity and resolution. This research provides a technique for monitoring secular change of CO2 in atmosphere.
Measurement of Concentration of CO2 in Atmosphere In Situ Based on TDLAS
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Chen, Zhen; Liu, Zhishen
2014-11-01
As one of the main greenhouse gases in the atmosphere, CO2has a significant impact on global climate change and the ecological environment. Because of close relationship between human activities and the CO2 emissions, it is very meaningful of detecting atmospheric CO2accurately. Based on the technology of tunable diode laser absorption spectroscopy, the wavelength of distributed feedback laser is modulated, Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by corner reflector, and focuses the receiving laser-beam to the photoelectric detector. The second harmonic signal is received through lock-in amplifier and collected by AD data acquisition card, after that the system is built up.By choosing the infrared absorption line of CO2at 1.57μm, the system is calibrated by 100% CO2 gas cell. The atmospheric CO2 in situ is measured with long open-path way. Furthermore, the results show that CO2 concentration decreases along time in the morning of day. It is proved that TDLAS technology has many advantages, including fast response, high sensitivity and resolution. This research provides a technique for monitoring secular change of CO2 in atmosphere.
Fractional CO2 lasers for the treatment of atrophic acne scars: a review of the literature.
Magnani, Lauren Rose; Schweiger, Eric S
2014-04-01
This review examines the efficacy and safety of fractional CO2 lasers for the treatment of atrophic scarring secondary to acne vulgaris. We reviewed 20 papers published between 2008 and 2013 that conducted clinical studies using fractional CO2 lasers to treat atrophic scarring. We discuss the prevalence and pathogenesis of acne scarring, as well as the laser mechanism. The histologic findings are included to highlight the ability of these lasers to induce the collagen reorganization and formation that improves scar appearance. We considered the number of treatments and different laser settings to determine which methods achieve optimal outcomes. We noted unique treatment regimens that yielded superior results. An overview of adverse effects is included to identify the most common ones. We concluded that more studies need to be done using uniform treatment parameters and reporting in order to establish which fractional CO2 laser treatment approaches allow for the greatest scar improvement.
NASA Astrophysics Data System (ADS)
Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János
1995-06-01
The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the
Measurement of gas viscosity using photonic crystal fiber
NASA Astrophysics Data System (ADS)
Gao, R.-K.; Sheehe, S. L.; Kurtz, J.; O'Byrne, S.
2016-11-01
A new measurement technique for gas viscosity coefficient is designed and demonstrated using the technique of tunable diode laser absorption spectroscopy (TDLAS). Gas flow is driven by a pressure gradient between two gas cells, through a photonic crystal fiber (PCF) surrounded by a furnace for temperature adjustment. PCF with 20-micron diameter affords physical space for gas-light interaction and provides a basis for gas viscosity measurement by determining the time for flow to exit a capillary tube under the influence of a pressure gradient. Infrared radiation from a diode laser is coupled into the fiber to be guided through the gas, and the light attenuation due to absorption from the molecular absorbing species is measured by a photo detector placed at the exit of the fiber. A numerical model from Sharipov and Graur describing local number density distribution in a unsteady state is applied for the determination of gas viscosity, based on the number density of gas measured by the absorption of the laser light, using the Beer-Lambert law. The measurement system is confirmed by measuring the viscosity of CO2 as a reference gas.
Zane, Cristina; Facchinetti, Elena; Arisi, Mariachiara; Ortel, Bernhard; Calzavara-Pinton, Piergiacomo
2017-07-01
Pulsed CO2 laser is a treatment of superficial basal cell carcinoma (sBCC) although robust clinical evidence has not been reported so far. The authors investigated efficacy, safety, time to wound healing, cosmetic outcome, patient satisfaction, and cost-effectiveness ratio of pulsed CO2 laser in comparison to cryotherapy and surgery. BCCs of the trunk and extremities were randomized to one of the treatments. After 90 days, efficacy and cosmetic outcome were assessed. Patients recorded the time to complete healing of the wound and scored their overall satisfaction. Two hundred forty patients were randomized. After 3 months, complete remission (CR) rate with pulsed CO2 laser was 78.8%. This was significantly lower than surgery, whereas the CR rate with cryotherapy was not significantly different. Cosmetic result was better with surgery. High satisfaction was reported by 65.0% of patients treated with CO2 ablation. Time of wound healing was significantly shorter with CO2 laser. In comparison to cryotherapy, pulsed CO2 laser showed no statistically significant difference in efficacy, cosmetic outcome, and patient satisfaction. Time to healing was shorter; the cost and cost-effectiveness ratio were similar. Surgery had the greatest efficacy rate. The main limitation of this study was the short duration of follow-up (3 months).
Outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer.
Shuang, Yu; Li, Chao; Zhou, Xuan; Huang, Yongwang; Zhang, Lun
2016-01-01
In the present study, the voice and functional outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer were evaluated. One hundred sixty eight patients with early glottic cancer from October 2007 to June 2015 were included. Ninety-seven patients underwent RFA and seventy-one patients underwent CO2 laser. The operation time and score of visual analog scale (VAS) for pain on the second day after surgery were recorded. The electronic laryngoscopy was performed at one week, one month and three months of postoperation. The operation time in RFA was shorter than that in CO2 laser (8.52±1.43min vs. 11.76±1.67min, P<0.05). There was no statistical difference in VAS scores between two operation methods (2.86±0.52 vs. 2.89±0.68, P>0.05). One month after operation, the mucosal recovery in RFA group was better than that in CO2 laser group (P<0.05). The alterations of acoustic parameters Jitter, Shimmer and HNR at three time points after operation showed statistical significances in both RFA and CO2 laser groups (P<0.05). The significant differences in acoustic parameters between two groups were also observed (P<0.05). There were no differences in three-year survival rate, local recurrence rate, recurrence rate with anterior commissure involvement and postoperative adhesion rate with anterior commissure between the patients with RFA and CO2 laser (P>0.05). No patient underwent tracheotomy and had symptoms of bucking, dyspnea, severe pain, hemoptysis and other serious complications. Both RFA and CO2 laser are safe and effective for the treatment of early glottic cancer. RFA has the advantage of quick voice recovery, low mucosa injury and short operation time, which is worthy for wide clinical application. Copyright © 2016 Elsevier Inc. All rights reserved.
CO2 laser and/or fluoride enamel treatment against in situ/ex vivo erosive challenge.
Jordão, Maísa Camillo; Forti, Gustavo Manzano; Navarro, Ricardo Scarparo; Freitas, Patrícia Moreira; Honório, Heitor Marques; Rios, Daniela
2016-01-01
This in situ/ex vivo study investigated the effect of CO2 laser irradiation and acidulated phosphate fluoride gel (APF) application, separately and in combination, on enamel resistance to erosion. During 2 experimental 5-day crossover phases, 8 volunteers wore intraoral appliances containing bovine enamel blocks which were submitted to four groups: 1st phase - control, untreated and CO2 laser irradiation, 2nd phase - fluoride application and fluoride application before CO2 laser irradiation. Laser irradiation was performed at 10.6 µm wavelength, 5 µs pulse duration and 50 Hz frequency, with average power input and output of 2.3 W and 2.0 W, respectively (28.6 J/cm2). APF gel (1.23%F, pH 3.5) was applied on enamel surface with a microbrush and left on for 4 minutes. Then, the enamel blocks were fixed at the intraoral appliance level. The erosion was performed extraorally 4 times daily for 5 min in 150 mL of cola drink. Enamel loss was measured profilometrically after treatment and after the in situ phase. The data were tested using one-way Repeated Measures Anova and Tukey's test (p<0.05). CO2 laser alone (2.00±0.39 µm) did not show any significantly preventive effect against enamel erosion when compared with the control group (2.41±1.20 µm). Fluoride treated enamel, associated (1.50±0.30 µm) or not (1.47±0.63 µm) with laser irradiation, significantly differed from the control. The APF application decreased enamel wear; however, CO2 laser irradiation did not enhance fluoride ability to reduce enamel wear.
CO2 laser and/or fluoride enamel treatment against in situ/ex vivo erosive challenge
JORDÃO, Maísa Camillo; FORTI, Gustavo Manzano; NAVARRO, Ricardo Scarparo; FREITAS, Patrícia Moreira; HONÓRIO, Heitor Marques; RIOS, Daniela
2016-01-01
ABSTRACT Objective This in situ/ex vivo study investigated the effect of CO2 laser irradiation and acidulated phosphate fluoride gel (APF) application, separately and in combination, on enamel resistance to erosion. Material and Methods During 2 experimental 5-day crossover phases, 8 volunteers wore intraoral appliances containing bovine enamel blocks which were submitted to four groups: 1st phase - control, untreated and CO2 laser irradiation, 2nd phase - fluoride application and fluoride application before CO2 laser irradiation. Laser irradiation was performed at 10.6 µm wavelength, 5 µs pulse duration and 50 Hz frequency, with average power input and output of 2.3 W and 2.0 W, respectively (28.6 J/cm2). APF gel (1.23%F, pH 3.5) was applied on enamel surface with a microbrush and left on for 4 minutes. Then, the enamel blocks were fixed at the intraoral appliance level. The erosion was performed extraorally 4 times daily for 5 min in 150 mL of cola drink. Enamel loss was measured profilometrically after treatment and after the in situ phase. The data were tested using one-way Repeated Measures Anova and Tukey's test (p<0.05). Results CO2 laser alone (2.00±0.39 µm) did not show any significantly preventive effect against enamel erosion when compared with the control group (2.41±1.20 µm). Fluoride treated enamel, associated (1.50±0.30 µm) or not (1.47±0.63 µm) with laser irradiation, significantly differed from the control. Conclusion The APF application decreased enamel wear; however, CO2 laser irradiation did not enhance fluoride ability to reduce enamel wear. PMID:27383703
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Subrata
2017-09-01
CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.
NASA Astrophysics Data System (ADS)
Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.
1987-12-01
The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.
NASA Astrophysics Data System (ADS)
Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.
2013-03-01
Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.
Raman Spectroscopic Measurements of Co2 Dissolved in Seawater for Laser Remote Sensing in Water
NASA Astrophysics Data System (ADS)
Somekawa, Toshihiro; Fujita, Masayuki
2016-06-01
We examined the applicability of Raman lidar technique as a laser remote sensing tool in water. The Raman technique has already been used successfully for measurements of CO2 gas dissolved in water and bubbles. Here, the effect of seawater on CO2 Raman spectra has been evaluated. A frequency doubled Q-switched Nd:YAG laser (532 nm) was irradiated to CO2 gas dissolved in a standard seawater. In seawater, the Raman signals at 984 and 1060-1180 cm-1 from SO42- were detected, which shows no spectral interference caused by Raman signals derived from CO2.
Rink, John P.
1977-01-01
The disclosure relates to a pulsed gas laser comprising an optical resonant cavity, a CO.sub.2 lasing medium, structure for containing the CO.sub.2 lasing medium within the optical cavity and a device for causing a population inversion in the lasing medium, with a novel improvement comprising structure for causing a laser pulse comprising a wavelength in the near 14 .mu.m and near 16 .mu.m range. The structure for cooling the CO.sub.2 lasing medium to less than about -40.degree. C as well is a structure for pumping the maximum inversion of CO.sub.2 molecules within the lasing medium by minimizing the population in the 010 level.
Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers
NASA Astrophysics Data System (ADS)
Mlynczak, Jaroslaw; Belghachem, Nabil
2015-12-01
The highest ever reported 10 kW peak power in monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip laser was achieved. To show the superiority of monolithic microchip lasers over those with external mirrors the laser generation characteristics of the same samples in both cases were compared.
Intense laser beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1992
NASA Technical Reports Server (NTRS)
Wade, Richard C. (Editor); Ulrich, Peter B. (Editor)
1992-01-01
Various papers on intense laser beams are presented. Individual topics addressed include: novel methods of copper vapor laser excitation, UCLA IR FEL, lasing characteristics of a large-bore copper vapor laser (CVL), copper density measurement of a large-bore CVL, high-power XeCl excimer laser, solid state direct-drive circuit for pumping gas lasers, united energy model for FELs, intensity and frequency instabilities in double-mode CO2 lasers, comparison of output power stabilities of CO and CO2 lasers, increasing efficiency of sealed-off CO lasers, thermal effects in singlet delta oxygen generation, optical extraction from the chemical oxygen-iodine laser medium, generation and laser diagnostic analysis of bismuth fluoride. Also discussed are: high-Q resonator design for an HF overtone chemical lasers, improved coatings for HF overtone lasers, scaled atmospheric blooming experiment, simulation on producing conjugate field using deformable mirrors, paraxial theory of amplitude correction, potential capabilities of adaptive optical systems in the atmosphere, power beaming research at NASA, system evaluations of laser power beaming options, performance projections for laser beam power to space, independent assessment of laser power beaming options, removal of atmospheric CFCs by lasers, efficiency of vaporization cutting by CVL.
Radmanesh, Mohammad; Rafiei, Zohreh
2015-04-01
The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.
A new second-puncture probe for CO2 laser laparoscopy.
Daniell, J F; Herbert, C M
1985-02-01
A new second-puncture probe system was designed for aiming and firing the CO2 laser under laparoscopic control. The probe allows simultaneous suction of the smoke from vaporization and insufflation of fresh CO2 for maintenance of an adequate pneumoperitoneum during use. A 200-mm focusing lens attaches the probe to any surgical CO2 laser with an articulated arm. The new probe is 10 cm shorter than standard probes, allowing the application of a wider range of power densities during laser laparoscopy and making surgery easier to perform. Our initial experiences with this new instrument have involved both laboratory animals and patients with endometriosis, adnexal adhesions and distal tubal obstruction.
Multiline CO2 laser with Q-switching for generation of terahertz radiation
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu M.; Stepanishchev, V. V.; Khafizov, I. Zh
2017-12-01
In this paper we consider the method of obtaining THz radiation by difference frequency generation (DFG) of multiline CO2 laser. For this purpose a multiline CO2 laser with Q-switching was created. The three strongest lines, 9 R(18), 9 P(20) and 9 P(22) with wavelengths ∼9.28, ∼9.55 and ∼9.57 μm respectively, held 85% of CO2 laser power, and can be used to obtain difference frequency at a wavelength of ∼310 μm. DFG of other spectral lines fall within the range of 263 ÷ 8100 μm. Different nonlinear crystals for DFG and filters to separate THz radiation were considered.
Combined Tin-Containing Fluoride Solution and CO2 Laser Treatment Reduces Enamel Erosion in vitro.
Esteves-Oliveira, Marcella; Witulski, Nadine; Hilgers, Ralf-Dieter; Apel, Christian; Meyer-Lueckel, Hendrik; Eduardo, Carlos de Paula
2015-01-01
The aim of this in vitro study was to evaluate the effect of combined CO2 laser and tin-containing fluoride treatment on the formation and progression of enamel erosive lesions. Ninety-six human enamel samples were obtained, stored in thymol solution and, after surface polishing, randomly divided into 6 different surface treatment groups (n = 16 in each group) as follows: no treatment, control (C); one CO2 laser irradiation (L1); two CO2 laser irradiations (L2); daily application of fluoride solution (F); combined daily fluoride solution + one CO2 laser irradiation (L1F), and combined daily fluoride solution + two CO2 laser irradiations (L2F). Laser irradiation was performed at 0.3 J/cm2 (5 µs/226 Hz/10.6 µm) on day 1 (L1) and day 6 (L2). The fluoride solution contained AmF/NaF (500 ppm F), and SnCl2 (800 ppm Sn) at pH 4.5. After surface treatment the samples were submitted to an erosive cycling over 10 days, including immersion in citric acid (2 min/0.05 M/pH = 2.3) 6 times daily and storage in remineralization solution (≥1 h) between erosive attacks. At the end of each cycling day, the enamel surface loss (micrometers) was measured using a 3D laser profilometer. Data were statistically analyzed by means of a 2-level mixed effects model and linear contrasts (α = 0.05). Group F (-3.3 ± 2.0 µm) showed significantly lower enamel surface loss than groups C (-27.22 ± 4.1 µm), L1 (-18.3 ± 4.4 µm) and L2 (-16.3 ± 5.3 µm) but higher than L1F (-1.0 ± 4.4 µm) and L2F (1.4 ± 3.2 µm, p < 0.05). Under the conditions of this in vitro study, the tin-containing fluoride solution caused 88% reduction of enamel surface loss, while its combination with CO2 laser irradiation at 0.3 J/cm2 hampered erosive loss almost completely. © 2015 S. Karger AG, Basel.
Reactivation of a Tin-Oxide-Containing Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth
2010-01-01
The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment described above, the initial steady-state conversion percentage was 70 percent. After four days, this conversion percentage decreased to 67 percent. No decrease in activity is acceptable because the catalyst must maintain its activity for long periods of time. After being subjected to the reactivation process of the present invention, the conversion percentage rose to 77 percent. Such a reactivation not only returned the catalyst to its initial steady state but resulted in a 10-percent improvement over the initial steady state value.
High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung
2009-01-01
A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.
NASA Astrophysics Data System (ADS)
Uno, Kazuyuki; Jitsuno, Takahisa
2018-05-01
In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.
Development of a Pulsed 2-micron Laser Transmitter for CO2 Sensing from Space
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Bai, Yingxin; Petros, Mulugeta; Menzies, Robert T.
2011-01-01
NASA Langley Research Center (LaRC), in collaboration with NASA Jet Propulsion Laboratory (JPL), is engaged in the development and demonstration of a highly efficient, versatile, 2-micron pulsed laser that can be used in a pulsed Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution CO2 measurements to investigate sources, sinks, and fluxes of CO2. This laser transmitter will feature performance characteristics needed for an ASCENDS system that will be capable of delivering the CO2 measurement precision required by the Earth Science Decadal Survey (DS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLoach, L.D.; Page, R.H.; Wilke, G.D.
The absorption and emission properties of transition metal (TM)-doped Zinc chalcogenides have been investigated to understand their potential application as room-temperature, mid-infrared tunable laser media. Crystals of ZnS, ZnSe, and ZnTe, individually doped with Cr{sup 2+}, Co{sup 2+}, Ni{sup 2+}, or Fe{sup 2+}, have been evaluated. The absorption and emission properties are presented and discussed in terms of the energy levels from which they arise. The absorption spectra of the crystals studied exhibit strong bands between 1.4 and 2.0 {micro}m which overlap with the output of strained-layer InGaAs diodes. The room-temperature emission spectra reveal wide-band emissions from 2--3 {micro}m formore » Cr and from 2.8--1.0 {micro}m for Co. Laser demonstrations of Cr:ZnS and Cr:ZnSe have been performed in a laser-pumped laser cavity with a Co:MgF{sub 2} pump laser. The output of both lasers were determined to peak at wavelengths near 2.35 {micro}m, and both lasers demonstrated a maximum slope efficiency of approximately 20%. Based on these initial results, the Cr{sup 2+} ion is predicted to be a highly favorable laser ion for the mid-IR when doped into the zinc chalcogenides; Co{sup 2+} may also serve usefully, but laser demonstrations yet remain to be performed.« less
Mikkelsen, Peter Riis; Dufour, Deirde Nathalie; Zarchi, Kian; Jemec, Gregor B E
2015-02-01
Hidradenitis suppurativa (HS) is a debilitating disease and is difficult to treat. Validation of surgical techniques is therefore of great importance in the management of HS. Carbon dioxide (CO2) laser evaporation has been shown effective, but larger-scale studies are scarce. To determine the recurrence rate, time to recurrence, and factors influencing disease recurrence in skin treated with CO2 laser evaporation, and healing by secondary intention; and patients' satisfaction with treatment. Fifty-eight patients treated with CO2 laser evaporation were interviewed regarding recurrence and satisfaction after a mean of 25.7 months. Seventeen of 58 (29%) reported recurrence of HS lesions within the borders of the treated areas after a mean of 12.7 months. Obesity was a risk factor for recurrence with a hazard ratio of 4.53. Fifty-five patients (95%) reported some or great improvement, and 91% would recommend the CO2 laser surgery to other HS patients. This study supports the claim that CO2 laser treatment is an effective modality for recurrent HS lesions in a majority of patients. The authors identified obesity as a risk factor for recurrence. Self-reported satisfaction is high, and only 3 of 58 report no change in the condition. None reported a worsening.
Hao, L; Lawrence, J; Phua, Y F; Chian, K S; Lim, G C; Zheng, H Y
2005-04-01
An effective and novel technique for improving the biocompatibility of a biograde 316 LS stainless steel through the application of CO(2) laser treatment to modify the surface properties of the material is described herein. Different surface properties, such as surface roughness, surface oxygen content, and surface energy for CO(2) laser-treated 316 LS stainless steel, untreated, and mechanically roughened samples were analyzed, and their effects on the wettability characteristics of the material were studied. It was found that modification of the wettability characteristics of the 316 LS stainless steel following CO(2) laser treatment was achieved. This improvement was identified as being mainly due to the change in the polar component of the surface energy. One-day cell adhesion tests showed that cells not only adhered and spread better, but also grew faster on the CO(2) laser-treated sample than on either the untreated or mechanically roughened sample. Further, compared with the untreated sample, MTT cell proliferation analysis revealed that the mechanically roughed surface resulted in a slight enhancement, and CO(2) laser treatment brought about a significant increase in cell proliferation. An increase in the wettability of the 316 LS stainless steel was observed to positively correlate with the cell proliferation. (c) 2004 Wiley Periodicals, Inc.
Fractional CO2 laser for vulvovaginal atrophy (VVA) dyspareunia relief in breast cancer survivors.
Pieralli, Annalisa; Fallani, Maria Grazia; Becorpi, Angelamaria; Bianchi, Claudia; Corioni, Serena; Longinotti, Manuela; Tredici, Zelinda; Guaschino, Secondo
2016-10-01
The aim of this study was to evaluate the efficacy of fractional CO2 laser therapy in breast cancer survivors as a therapeutic method for vulvovaginal atrophy (VVA) dyspareunia. 50 patients (mean age 53.3 years) underwent fractional microablative CO2 laser treatment for dyspareunia in oncological menopause (mean time of menopause 6.6 years). The Gloria Bachmann's Vaginal Health Index (VHI) score was chosen as system to evaluate the presence of VVA and its improvement after the treatment. Intensity of dyspareunia was evaluated using a visual analog scale (VAS). Data indicated a significant improvement in VVA dyspareunia (p < 1.86e-22) in breast cancer survivors who had undergone 3 sessions of vaginal fractional CO2 laser treatment. Moreover, VHI scores were significantly higher 30 days post-treatment (T4) (p < 0.0001). 76 % of patients were satisfied or very satisfied with the treatment results. The majority (52 %) of patients were satisfied after a long-term follow-up (mean time 11 months). No adverse events due to fractional CO2 laser treatment occurred. The treatment with fractionated CO2 laser appeared to be a feasible and effective treatment for VVA dyspareunia in breast cancer survivors with contraindications to hormonal treatments.
The dynamics of a surface plasma generated by an independent source in the field of laser emission
NASA Astrophysics Data System (ADS)
Kovalev, A. S.; Popov, A. M.; Seleznev, B. V.; Feoktistov, V. A.
1986-09-01
A study is made of the evolution of a plasma formation generated by a high-power short pulse of an Nd laser on a metal surface, with the relatively weak emission of a CO2 laser focused on the surface. The thresholds of a sustained breakdown plasma are measured as a function of the plasma-generating pulse energy. The dynamics of plasma front propagation along the target surface and in the direction opposite to the laser beam direction is investigated. It is shown that the use of an additional laser with an energy less than that of the CO2 laser by 2-3 orders of magnitude makes it possible to generate a surface plasma capable of absorbing and transferring to the target a significantly greater fraction of the CO2 laser energy.
Seino, Priscila Yumi; Freitas, Patrícia Moreira; Marques, Márcia Martins; de Souza Almeida, Fernanda Campos; Botta, Sérgio Brossi; Moreira, Maria Stella Nunes Araújo
2015-02-01
One possible undesirable consequence of orthodontic therapy is the development of incipient caries lesions of enamel around brackets. The aim of this study was to compare the effects of CO2 (λ = 10.6 μm) and Nd:YAG (λ = 1,064 nm) lasers associated or not with topical fluoride application on the prevention of caries lesions around brackets. Brackets were bonded to the enamel of 65 premolars. The experimental groups (n = 13) were: G1--application of 1.23% acidulated fluoride phosphate gel (AFP, control); G2--Nd:YAG laser irradiation (0.6 W, 84.9 J/cm(2), 10 Hz, 110 μs, contact mode); G3--Nd:YAG laser irradiation associated with AFP; G4--CO2 laser irradiation (0.5 W, 28.6 J/cm(2), 50 Hz, 5 μs, and 10 mm focal distance); and G5--CO2 laser irradiation associated with AFP. Quantitative light-induced fluorescence was used to assess enamel demineralization. The data were statistically compared (α = 5%). The highest demineralization occurred in the Nd:YAG laser group (G2, 26.15% ± 1.94). The demineralization of all other groups was similar to that of the control group. In conclusion, CO2 laser alone was able to control enamel demineralization around brackets at the same level as that obtained with topical fluoride application.
Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)
2005-01-01
tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form
Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G
2016-01-01
Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.
NASA Astrophysics Data System (ADS)
Liang, Chao; Liu, Chong; Liu, Ziyang; Meng, Fanjian; Li, Jingmin
2017-11-01
Ultrasonic bonding is a commonly-used method for fabrication of thermoplastic microfluidic devices. However, due to the existence of the energy director (a convex structure to concentrate the ultrasonic energy), it is difficult to control its molten polymer flow, which may result in a small gap between the bonding interface or microchannel clogging. In this paper, we present an approach to address these issues. Firstly, the microchannels were patterned onto the PMMA sheets using hot embossing with the wire electrical discharge machined molds. Then, a small bulge, which was formed at the edge of the laser-ablated groove (LG), was generated around the microchannel using a CO2 laser ablation system. By using the bulge to concentrate the ultrasonic energy, there was no need for fabricating the complicated and customized energy director. When the bulge was melted, it was able to flow into the LG which overcame the ‘gap’ and ‘clogging’ problems. Here, two types of two-layer microfluidic devices and a five-layer micromixer were fabricated to validate its performance. Our results showed that these thermoplastic microdevices can be successfully bonded by using this method. The liquid leakage was not observed in both the capillary-driven flowing test and the pressure-driven mixing experiments. It is a potential method for bonding the thermoplastic microfluidic devices.
Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter
NASA Astrophysics Data System (ADS)
Welch, Eric; Tochitsky, Sergei; Joshi, Chan
2017-03-01
We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.
Lee, Gi Soo; Irace, Alexandra; Rahbar, Reza
2017-06-01
To report the use of flexible fiber CO2 laser in the endoscopic management of pediatric airway cases. A retrospective review was conducted of patients who underwent CO2 laser-assisted airway procedures between September 2007 and January 2014 at a tertiary pediatric hospital. Sixty-eight patients underwent 80 procedures utilizing flexible fiber CO2 laser. Procedures included supraglottoplasty (n = 32), laryngeal cleft repair (type I [n = 10], type II [n = 7], type III [n = 6]), suprastomal granuloma excision (n = 6), cordotomy (n = 4), laryngeal neurofibroma excision (n = 4), laryngeal granulomatous mass excision (n = 1), subglottic stenosis excision (n = 6), division of glottic web (n = 2), subglottic cyst excision (n = 1), and supraglottic biopsy (n = 1). Ages ranged from 8 days to 21 years (median 11 months). No intraoperative or postoperative complications related to the use of laser were noted. The flexible fiber CO2 laser can be safely and effectively used to address a variety of pediatric airway lesions. Previously, the use of CO2 laser in minimally invasive airway surgery has been limited due to the articulating arm carrier, absence of a hand piece, and the direct line-of sight view required. The fiber allows the cutting beam to be directed at the site of the lesion and bypasses limitations posed by other laser systems. Copyright © 2017 Elsevier B.V. All rights reserved.
High-powered CO2 -lasers and noise control
NASA Astrophysics Data System (ADS)
Honkasalo, Antero; Kuronen, Juhani
High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.
Laser myringotomy with the CO2 Otoscan laser
NASA Astrophysics Data System (ADS)
Sedlmaier, Benedikt W.; Jivanjee, Antonio; Schoenfeld, Uwe; Jovanovic, Sergije
2000-06-01
Tympanic ventilation is the treatment of choice for otitis media with effusion (OME). CO2 laser myringotomy has already proven its value and is finding increasing clinical application. The ventilation time in the middle ear is essentially determined by the size of the laser perforation. Perforations exceeding 2 mm in diameter enable tympanic ventilation for about three weeks and thus compete with the ventilation tube in the treatment of OME. IN a prospective study, laser myringotomy is performed in 84 children with OME with the new CO2 laser otoscope Otoscan. The closure time was 17 days in average for a preformation diameter of 2 mm. In the further clinical course, the ear-drums healed without atrophic scar formation. In an observation period of six month the recurrency rate of effusion was approximately 10 percent. Laser myringotomy seems to be an useful method in the operative therapy of secretory otitis media.
NASA Astrophysics Data System (ADS)
Thariyan, Mathew Paul
Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor conditions. The insight into the reacting flow structure provided by these measurements is discussed. Such measurements at conditions similar to those of aircraft gas turbine combustors are extremely useful for testing combustion models being used to predict performance of these systems.
Dimensional and material characteristics of direct deposited tool steel by CO II laser
NASA Astrophysics Data System (ADS)
Choi, J.
2006-01-01
Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.
Atmospheric transmission of CO2 laser radiation with application to laser Doppler systems
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1975-01-01
The molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated at the P16, P18, P20, P22, and P24 lines of the CO2 laser for temperatures from 200 to 300 K and for pressures from 100 to 1100 mb. The temperature variation of the continuum absorption coefficient of water vapor is taken into account semi-empirically from Burch's data. The total absorption coefficient from the present calculations falls within + or - 20 percent of the results of McClatchey and Selby. The transmission loss which the CO2 pulsed laser Doppler system experiences was calculated for flight test conditions for the five P-lines. The total transmission loss is approximately 7 percent higher at the P16 line and 10 percent lower at the P24 line compared to the P20 line. Comparison of the CO2 laser with HF and DF laser transmission reveals the P2(8) line at 3.8 micrometers of the DF laser is much better from the transmission point of view for altitudes below 10 km.
Clinical applications of CO2 laser resurfacing in the treatment of various pathologic skin disorders
NASA Astrophysics Data System (ADS)
Giler, Shamai
1997-12-01
CO2 laser skin resurfacing devices are widely used in cosmetic surgery for the treatment of facial rhytides, acne scars and aging skin. This technique is also useful in the treatment of various benign and premalignant or multiple pathological skin conditions and disorders originating in the epidermal, dermal and skin appendages, vascular lesions, epidermal nevi, infected wounds and ulcers, and keloids. Various surgical techniques have been developed in our clinic using laser resurfacing in the treatment of more than 2,000 patients with various skin pathologic disorders. We describe our experience with the various techniques used. The precise depth control and ablation properties combined with the hemostatic and sterilizing effects of the CO2 laser beam, reduction of the possibility of bleeding, infection and damage to healthy tissues, make the CO2 laser resurfacing techniques the treatment of choice for cosmetic surgery and treatment of benign, premalignant and multiple pathologic skin conditions.
Lin, C P; Tseng, Y C; Lin, F H; Liao, J D; Lan, W H
2001-03-01
Acute trauma or trauma associated with occlusal disturbance can produce tooth crack or fracture. Although several methods are proposed to treat the defect, however, the prognosis is generally poor. If the fusion of a tooth fracture by laser is possible, it will offer an alternative to extraction or at least serve as an adjunctive treatment in the reconstruction. We have tried to use a continuous-wave CO2 laser and a newly developed DP-bioactive glass paste (DPGP) to fuse or bridge tooth crack or fracture lines. Both the DP-bioactive glass paste and tooth enamel have strong absorption bands at the wavelength of 10.6 microm. Therefore, under CO2 laser, DPGP and enamel should have an effective absorption and melt together. The interface between DPGP and enamel could be regarded as a mixture of DPGP and enamel (DPG-E). The study focused on the phase transformation, microstructure, functional group and thermal behavior of DPG-E with or without CO2 laser irradiation, by the analytical techniques of XRD, FTIR, DTA/TGA, and SEM. The results of XRD showed that the main crystal phase in the DPG-E was dicalcium phosphate dihydrate (CaHPO4.2H2O). It changed into CaHPO4, gamma-Ca2P2O7, beta-Ca2P2O7 and finally alpha-Ca2P2O7 with increasing temperature. In the FTIR analysis, the 720 cm(-1) absorption band ascribed to the P-O-P linkage in pyrophosphate rose up and the intensities of the OH- bands reduced after laser irradiation. In regard to the results of DTA/TGA after irradiation, the weight loss decreased due to the removal of part of absorption water and crystallization water by the CO2 laser. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight chemical bond between the enamel and DPGP. We expect that DPGP with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture.
Research on industrial 10kW CO2 laser achieves major breakthrough
NASA Astrophysics Data System (ADS)
1991-01-01
The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.
Błochowiak, Katarzyna; Andrysiak, Piotr; Sidorowicz, Krzysztof; Witmanowski, Henryk; Hędzelek, Wiesław; Sokalski, Jerzy
2015-10-01
Benign neoplasms and hyperplastic tumorous lesions are common oral pathologies. These lesions require to be surgically removed by conventional surgery, laser, or electrosurgery. Surgical treatment aims at complete removal of pathological lesions and ensuring proper healing of the tissues to minimize the risk of lesion recurrence. To present possible applications of Er:YAG and CO2 lasers in removal of benign neoplasms and tumorous lesions developing on oral mucosa as well as to specify indications and limitations of these two methods. Temperature-induced injuries due to laser light application, possibility of post-operative histopathological evaluation of the removed tissue, efficacy of the cut and coagulation, healing process and completeness of laser surgeries give rise to our special concern. The main asset of the CO2 laser comparing to Er:YAG laser is an effective coagulation while thermal injury to the tissues is its limitation, especially with multiple passage of the beam and too high power applied. Er:YAG laser application does not exclude histopathological examination of the removed lesion tissue which is its advantage over CO2 laser. Still, insufficient coagulation is a limitation ofits use in the case of richly vascularized lesions.
Detection of NO sub x,C2H4 concentrations by using CO and CO2 lasers
NASA Technical Reports Server (NTRS)
Gengchen, W.; Qinxin, K.
1986-01-01
A laser, especially the infrared line tunable laser, opens up a new way to monitor the atmospheric environment, and already has gotten effective practical application. One of the most serious problems in open path remote measurement at atmospheric pressure is the broadening effect which leads to increased linewidths, spectral interferences, and, as a result, tends to reduce detection sensitivity, so measuring laser wavelengths should be selected carefully, and interaction between the measuring wavelength and gas to be measured must be known very well. Therefore, N2O, No, NO2, CH4, NH3 and C2H4 absorption properties at some lines of CO and CO2 line tunable lasers were studied. The absorption coefficients of NO, NO2, and C2H4; some results on detection of NO sub x, C2H4 concentrations in both laboratory and field; and selection of measuring wavelengths and error analysis are discussed.
Carbon dioxide insufflation deflects airborne particles from an open surgical wound model.
Kokhanenko, P; Papotti, G; Cater, J E; Lynch, A C; van der Linden, J A; Spence, C J T
2017-01-01
Surgical site infections remain a significant burden on healthcare systems and may benefit from new countermeasures. To assess the merits of open surgical wound CO 2 insufflation via a gas diffuser to reduce airborne contamination, and to determine the distribution of CO 2 in and over a wound. An experimental approach with engineers and clinical researchers was employed to measure the gas flow pattern and motion of airborne particles in a model of an open surgical wound in a simulated theatre setting. Laser-illuminated flow visualizations were performed and the degree of protection was quantified by collecting and characterizing particles deposited in and outside the wound cavity. The average number of particles entering the wound with a diameter of <5μm was reduced 1000-fold with 10L/min CO 2 insufflation. Larger and heavier particles had a greater penetration potential and were reduced by a factor of 20. The degree of protection was found to be unaffected by exaggerated movements of hands in and out of the wound cavity. The steady-state CO 2 concentration within the majority of the wound cavity was >95% and diminished rapidly above the wound to an atmospheric level (∼0%) at a height of 25mm. Airborne particles were deflected from entering the wound by the CO 2 in the cavity akin to a protective barrier. Insufflation of CO 2 may be an effective means of reducing intraoperative infection rates in open surgeries. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.
2004-01-01
We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.
Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser
NASA Astrophysics Data System (ADS)
Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.
2017-10-01
TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
Monte-Carlo based Uncertainty Analysis For CO2 Laser Microchanneling Model
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Nitish; Kumar, Subrata
2016-09-01
CO2 laser microchanneling has emerged as a potential technique for the fabrication of microfluidic devices on PMMA (Poly-methyl-meth-acrylate). PMMA directly vaporizes when subjected to high intensity focused CO2 laser beam. This process results in clean cut and acceptable surface finish on microchannel walls. Overall, CO2 laser microchanneling process is cost effective and easy to implement. While fabricating microchannels on PMMA using a CO2 laser, the maximum depth of the fabricated microchannel is the key feature. There are few analytical models available to predict the maximum depth of the microchannels and cut channel profile on PMMA substrate using a CO2 laser. These models depend upon the values of thermophysical properties of PMMA and laser beam parameters. There are a number of variants of transparent PMMA available in the market with different values of thermophysical properties. Therefore, for applying such analytical models, the values of these thermophysical properties are required to be known exactly. Although, the values of laser beam parameters are readily available, extensive experiments are required to be conducted to determine the value of thermophysical properties of PMMA. The unavailability of exact values of these property parameters restrict the proper control over the microchannel dimension for given power and scanning speed of the laser beam. In order to have dimensional control over the maximum depth of fabricated microchannels, it is necessary to have an idea of uncertainty associated with the predicted microchannel depth. In this research work, the uncertainty associated with the maximum depth dimension has been determined using Monte Carlo method (MCM). The propagation of uncertainty with different power and scanning speed has been predicted. The relative impact of each thermophysical property has been determined using sensitivity analysis.
JPRS report: Science and technology. Central Eurasia: Physics and mathematics
NASA Astrophysics Data System (ADS)
1993-11-01
Translated articles cover the following topics: laser-acoustic cleaning of surfaces from mechanical microparticles; supersonic CO laser with HF excitation in combustion products; possibility of use of interaction between acoustic and light waves in fiber light conductors for generation of short light pulses; steady three-dimensional flow of viscous gas through channels and nozzles; current fluctuations in superconductor with superlattice in strong electric and magnetic fields; influence of strong electric field on conductivity of high-temperature superconductor ceramic of YBaCuO system; effect of electron bombardment on peak-effect in YBa2 Cu3Ox single crystals; and evolution of homogeneous isotropic universe, dark mass, and absence of monopoles.
[The use of lasers in dermatology].
Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E
2013-01-01
Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, A N; Orishich, A M; Terent'eva, Ya S
The spectral characteristics of the thermal wake of a pulsating optical discharge (POD) in a supersonic air flow are studied. The POD is stimulated by radiation of a mechanically Q-switched, repetitively pulsed CO{sub 2} laser with a pulse repetition rate of 7 – 150 kHz and a power up to 4.5 kW. The flow is produced by means of the supersonic aerodynamic MAU-M setup having a conic nozzle with a critical cross-section size of 50 mm, the Mach number being 1.3 – 1.6. We describe in detail the system of optical diagnostics that allows the detection of the spectrum ofmore » the weak thermal wake glow against the background of high-power POD radiation. The glow of the thermal wake is due to the emission of light by atoms and ions of nitrogen and oxygen, carried by the flow in the form of hot low-density gas clouds (caverns). The wavelengths of the thermal wake emission and the data on the transitions, corresponding to the spectral lines are presented. (laser applications and other topics in quantum electronics)« less
Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori
2015-06-01
Interest in erosion and its role in tooth wear has increased considerably. Due to the limited contribution of patients in modifying their dietary habits, therapeutic resources aiming to reduce the progression of erosion-like lesions have been discussed. This study sought to evaluate the effect of TiF4 and CO2 laser in controlling the permeability of in situ eroded enamel. Ten volunteers wore an intraoral palatal device containing two enamel slabs, treated with TiF4 gel and TiF4 gel + CO2 or placebo gel and placebo gel + CO2. After the washout period, volunteers were crossed over to the other treatment. During both phases, specimens were submitted to erosive challenges and then evaluated for permeability measured as the percentage of copper ion penetration over the total enamel thickness. Two-way analysis of variance (ANOVA) revealed that there was a significant interaction between the factors under study (p = 0.0002). Tukey's test showed that TiF4 significantly reduced the enamel permeability of eroded enamel specimens, regardless of whether CO2 laser irradiation was performed. It may be concluded that when the placebo gel was applied, CO2 laser was able to reduce enamel permeability; however, when TiF4 was applied, laser irradiation did not imply a reduction in permeability. TiF4 provided a lower permeability of eroded enamel, regardless of whether the CO2 laser was used. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdel-Kader, Mahmoud H.; El-Nozahy, Adel M.; Ahmed, Salwa M. S.; Khalifa, Ibtesam A.
2007-02-01
The present work was carried out to evaluate the actual effect of subleathal dosage of LD30 of two different lasers (Argon-ion and CO2 lasers) on the main metabolites, phosphatases enzymes, transaminases, acetylcholinestrase and peroxidases in the one day adult stage of Trogoderma granarium treated as 2-3 days old pupae. Our results clearly indicated that two different wavelengths of laser radiation increased significantly the total proteins content, whereas no significant changes occurred in the total lipids for the two laser radiation wavelenghts. On the other hand the total carbohydrates were significantly decreased when irradiating using CO2 laser wavelength which is not the case for the Argon-ion laser radiation. Significant changes of phosphatases occurred for both wavelengths. Inhibition of transaminases GOT (glutamic oxaloacetic transaminases) and insignificant changes of GPT (glutamic pyruvic oxaloacetic transaminases) was observed for both laser wavelengths. Significant inhibition of acetyl cholinestrase was observed using CO2 laser and insignificant changes were recorded for Argon ion laser radiation where as insignificant decrease of peroxideses was observed for both lasers.
Mathew, Anju; Reddy, N. Venugopal; Sugumaran, D. K.; Peter, Joby; Shameer, M.; Dauravu, Liju Marcely
2013-01-01
Background: Dental caries is essentially a process of diffusion and dissolution. If the aspect of dissolution can be curtailed some degree of prevention can be achieved. Aims: The present study was carried out to evaluate and compare the effect of Er:YAG laser and Co2 laser irradiation combined with acidulated phosphate fluoride treatment on in vitro acid resistance of human enamel. Design: An in vitro study was carried out on 30 human premolars to evaluate the enamel's acid resistance using an atomic emission spectrometry analysis. Materials and Methods: A total of 60 enamel specimens were prepared from 30 human premolars and were randomly assigned to 6 groups: (1) Untreated (control); (2) 1.23% acidulated phosphate fluoride (APF) gel application alone for 4 min; (3) Er:YAG laser treatment alone; (4) Co2 laser treatment alone; (5) Er:YAG laser + APF gel application; (6) Co2 laser + APF gel application. The specimens were then individually immersed in 5 ml of acetate buffer solution (0.1 mol/L, pH 4.5) and incubated at 37°C for 24 h, and the acid resistance was evaluated by determining the calcium ion concentration using the atomic emission spectrometry. Statistical Analysis: An ANOVA model was constructed (P value of 0.05), followed by Tukey's test for multiple pair wise comparisons of mean values. Results: Significant differences were found between the control group and the test groups (P < 0.001). Conclusions: Combining acidulated phosphate fluoride with either Er:YAG or Co2 laser had a synergistic effect in decreasing the enamel demineralization more than either fluoride treatment or laser treatment alone. PMID:24015004
Robati, Reza M; Asadi, Elmira
2017-02-01
Ablative fractional lasers were introduced for treating facial rhytides. Few studies have compared fractional CO 2 and Er:YAG lasers on cutaneous photodamages by a split trial. The aim of the present study was to compare these modalities in a randomized controlled double-blind split-face design with multiple sessions and larger sample size compared to previous studies done before. Forty patients with facial wrinkles were enrolled. Patients were randomly assigned to receive three monthly treatments on each side of the face, one with a fractional CO 2 and one with a fractional Er:YAG laser. The evaluations included investigating clinical outcome determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of cheeks using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, possible side effects and patients' satisfaction have been recorded at baseline, 1 month after each treatment, and 3 months after the last treatment session. Clinical assessment showed both modalities significantly reduce facial wrinkles (p value < 0.05), with no appreciable difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to the baseline in both laser groups. There was no serious long-standing adverse effect after both laser treatments, but the discomfort was more pronounced by the participants after CO 2 laser treatment. According to the present study, both fractional CO 2 and fractional Er:YAG lasers show considerable clinical improvement of facial skin wrinkles with no serious adverse effects, but post-treatment discomfort seems to be lower with Er:YAG laser.
Thoracoscopic CO laser coagulation shrinkage of blebs in treatment of spontaneous pneumothorax
NASA Astrophysics Data System (ADS)
Sensaki, Koji; Arai, Tsunenori; Kikuchi, Keiichi; Takagi, Keigo; Tanaka, Susumu; Kikuchi, Makoto
1992-06-01
Spontaneous pneumothorax is a common disease in young people. Operative intervention has been done in most of the recurrent cases. Recently thoracoscopic treatment has been tested as a less invasive treatment modarity. We adopted carbon monoxide (CO) laser for thoracoscopic treatment of recurrent spontaneous pneumothorax. CO laser (wavelength; 5.4 micrometers ) could be delivered by chalcogenide glass (As - S) covered with a teflon sheath and ZnSe fiber tip. The sterilized flexible bronchoscope was inserted through the thoracoscopic outer sheath under local anesthesia. Shrinkage of blebs was obtained by non-contact method of CO laser irradiation. Laser power at the tip was 2.5 - 5 W and irradiation duration was 0.5 s each. Excellent shrinkage of bleb and bulla could be obtained by CO laser without perforation complication. Advantages of CO laser as a thoracoscopic treatment were: (1) capability of fiber delivery (flexible thoracoscopy was easy to operate and clear to visualize the blebs which were frequently found at the apical portion of the lung, and (2) shallow extinction length (good shrinkage of blebs, low risk of perforation, and thin layer of carbonization). In conclusion, our new technique of thoracoscopic CO laser irradiation was found to be a safe and effective treatment of spontaneous pneumothorax.
Kraeva, Ekaterina; Ho, Derek; Jagdeo, Jared
2017-09-01
Keloids are fibrous growths that occur as a result of abnormal response to dermal injury. Keloids are cosmetically disfiguring and may impair function, often resulting in decreased patient quality-of-life. Treatment of keloids remains challenging, and rate of recurrence is high. We present a case of a 39-year-old African-American man (Fitzpatrick VI) with a 10-year history of keloid, who was successfully treated with eight sessions of fractionated carbon dioxide (CO2) laser immediately followed by laser-assisted drug delivery (LADD) of topical triamcinolone acetonide (TAC) ointment and review the medical literature on fractionated CO2 laser treatment of keloids. To the best of our knowledge, this is the first report of successful treatment of a keloid using combination therapy of fractionated CO2 laser and LADD with topical TAC ointment in an African-American man (Fitzpatrick VI) with excellent cosmetic results sustained at 22 months post-treatment. We believe that this combination treatment modality may be safe and efficacious for keloids in skin of color (Fitzpatrick IV-VI) and other patients. This case highlights the ability of laser surgeons to safely use fractionated CO2 lasers in patients of all skin colors.
J Drugs Dermatol. 2017;16(9):925-927.
.Laser versus cold instruments for microlaryngoscopic surgery.
Zeitels, S M
1996-05-01
Controversy has arisen concerning the merits of the CO2 laser in microlaryngoscopic surgery because of the potentially harmful effects that the injudicious application of the laser could have on voice production. In an effort to develop a logical approach to instrument selection, the author examined the use of both cold instruments and the CO2 laser in the treatment of various benign and malignant lesions. A retrospective review of 307 microlaryngeal procedures performed over a 3-year period revealed that 263 (86%) were glottal and 44 (14%) were supraglottal. Of the 263 glottal procedures, 203 (77%) employed cold instruments alone and 60 (23%) used both cold instruments and the CO2 laser. The laser was used to assist in all 44 supraglottal procedures. Therefore, 203 (66%) of 307 procedures were done with cold instruments alone, and 104 (34%) of 307 procedures were performed using the CO2 laser with cold instruments. Lesions were stratified on the basis of pathology and size, as well as surgical approach. A primary phonomicrosurgical principle in glottal surgery is to maximally preserve the vocal fold's layered microstructure (laminae propria and epithelium). Precise tangential dissection was necessary for achieving this goal. For limited lesions, this dissection was best accomplished with cold instruments alone. The CO2 laser facilitated hemostatic surgical dissection for all supraglottal lesions and for selected larger glottal lesions in which bleeding would obscure visualization of the microanatomy of the musculomembranous vocal fold.
Azevedo, Ana-Salvaterra; Ferreira, Fernando; Delgado, Maria-Leonor; Garcês, Fernanda; Carreira, Sofia; Martins, Marco; Suarez-Quintanilla, Juan
2016-01-01
Background Lasers have become standard tools for the surgical treatment of oral lesions. The purpose of this study is to determine the surgical margins and histologically evaluate the tissue thermal effects induced by different types of surgical instruments. Material and Methods Cuts were made in pork tongues’ mucosa with different lasers (Er:YAG at 2W with and without air / water spray and at 4W with and without air / water spray; CO2 at 3.5W and 7W in pulsed mode and at 7W in continuous mode; the diode laser at 3.5W and boost 3.5W in pulsed mode; Nd:YAG at 6W, 40Hz and electroscalpel at 5W and conventional scalpel as control. Macroscopic and microscopic morphological changes were evaluated. Results The results of this study showed that the surgical instruments that caused greater tissue damage extension were: the Nd:YAG laser (670.68μm), the diode 3.5W and boost PW (626.82μm), the CO2 7W CW (571.18μm), the CO2 at 7W PW (485.45μm), the diode 3.5W PW (456.15μm), the electroscalpel (409.57μm) and lastly the CO2 laser 3.5W PW (306.19μm) and Er:YAG (74.66μm) laser, regardless of power, mode or air / water spray used. An association between the Tissue Damage Extension and the Degree of Carbonization (r = 0.789; P = 0.01), and an association between the Tissue Damage Extension and Regularity of the Incision were found (r = -, 299; P = 0.01). Conclusions The results of this study suggest that lasers can be used in soft tissues biopsies of the oral cavity, enabling a correct histopathological analysis, as long as the biological effects of each laser type are considered. The Er:YAG laser revealed its potential for biopsies of the oral mucosa ensuring a successful histological evaluation and the CO2 laser at 3,5W in pulsed mode presented itself as the best choice for surgeries with hemostasis. Key words:CO2 laser, diode laser, Er:YAG laser, laser surgery, Nd:YAG laser, oral mucosa, thermal effect. PMID:27703606
Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Shumate, M. S.
1971-01-01
The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.
Constantin, Alina; Dumitrescu, Madalina; Mihai Corotchi, Maria Cristina; Jianu, Dana; Simionescu, Maya
2017-01-01
CO 2 laser has a beneficial effect on stem cells by mechanisms that are not clearly elucidated. We hypothesize that the effect of fractional CO 2 laser on human adipose-derived stem cells (ADSC) could be due to changes in redox homeostasis and secretion of factors contributing to cellular proliferation and angiogenic potential. ADSC incubated in medium containing 0.5 or 10 % FBS were exposed to a single irradiation of a 10,600-nm fractional CO 2 laser; non-irradiated ADSC were used as control. Viability/proliferation of ADSC was assessed by MTT assay; the intracellular reactive oxygen species (ROS) levels and the mitochondrial membrane potential (∆Ψ m ) were determined with DCFH-DA and JC-1 fluorescent probes, respectively. Molecules secreted by ADSC in the medium were determined by ELISA assay, and their capacity to support endothelial tube-like formation by the Matrigel assay. The results showed that compared to controls, ADSC kept in low FBS medium and irradiated with CO 2 laser at 9 W exhibited: (a) increased proliferation (∼20 %), (b) transient increase of mitochondrial ROS and the capacity to restore Δψ m after rotenone induced depolarization, and (c) augmented secretion in the conditioned medium of MMP-2 (twofold), MMP-9 (eightfold), VEGF (twofold), and adiponectin (∼50 %) that have the capacity to support angiogenesis of endothelial progenitor cells. In conclusion, the mechanisms underlying the benefic effect of CO 2 laser on ADSC are the activation of the redox pathways which increases cell proliferation and enhances secretion of angiogenic molecules. These results explain, in part, the mechanisms involved in the increased regenerative potential of CO 2 laser-exposed ADSC that could be exploited for clinical applications.
Fox, Sara A; Shanblatt, Ashley A; Beckman, Hugh; Strasswimmer, John; Terentis, Andrew C
2014-12-01
The number of cases of non-melanoma skin cancer (NMSC), which include squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), continues to rise as the aging population grows. Mohs micrographic surgery has become the treatment of choice in many cases but is not always necessary or feasible. Ablation with a high-powered CO2 laser offers the advantage of highly precise, hemostatic tissue removal. However, confirmation of complete cancer removal following ablation is difficult. In this study we tested for the first time the feasibility of using Raman spectroscopy as an in situ diagnostic method to differentiate NMSC from normal tissue following partial ablation with a high-powered CO2 laser. Twenty-five tissue samples were obtained from eleven patients undergoing Mohs micrographic surgery to remove NMSC tumors. Laser treatment was performed with a SmartXide DOT Fractional CO2 Laser (DEKA Laser Technologies, Inc.) emitting a wavelength of 10.6 μm. Treatment levels ranged from 20 mJ to 1200 mJ total energy delivered per laser treatment spot (350 μm spot size). Raman spectra were collected from both untreated and CO2 laser-treated samples using a 785 nm diode laser. Principal Component Analysis (PCA) and Binary Logistic Regression (LR) were used to classify spectra as originating from either normal or NMSC tissue, and from treated or untreated tissue. Partial laser ablation did not adversely affect the ability of Raman spectroscopy to differentiate normal from cancerous residual tissue, with the spectral classification model correctly identifying SCC tissue with 95% sensitivity and 100% specificity following partial laser ablation, compared with 92% sensitivity and 60% selectivity for untreated NMSC tissue. The main biochemical difference identified between normal and NMSC tissue was high levels of collagen in the normal tissue, which was lacking in the NMSC tissue. The feasibility of a combined high-powered CO2 laser ablation, Raman diagnostic procedure for the treatment of NMSC is demonstrated since CO2 laser treatment does not hinder the ability of Raman spectroscopy to differentiate normal from diseased tissue. This combined approach could be employed clinically to greatly enhance the speed and effectiveness of NMSC treatment in many cases. © 2014 Wiley Periodicals, Inc.
Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm.
Tulea, Cristian-Alexander; Caron, Jan; Gehlich, Nils; Lenenbach, Achim; Noll, Reinhard; Loosen, Peter
2015-10-01
Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water–air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2 mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.
Treatment of striae distensae with needling therapy versus CO2 fractional laser.
Khater, Mohamed H; Khattab, Fathia M; Abdelhaleem, Manal R
2016-01-01
Striae are atrophic dermal scars with overlying epidermal atrophy causing cosmetic concern. This study assesses and compares the efficacy and safety of needling therapy versus CO2 fractional laser in treatment of striae. Twenty Egyptian female patients with striae in the abdomen and lower limbs were involved in the study. The patients were treated with needling therapy and CO2 laser every 1 month for 3 sessions. Follow-up by digital photography and skin biopsy was conducted at baseline and 6 months after treatment. Clinical improvement was assessed by comparing photographs and patient's satisfaction before and after treatment. Nine of 10 (90%) needle-treated patients showed improvement. Among them, 3 (30%) had good, 4 (40%) had fair, and 2 (20%) had poor improvements; however, 1 (10%) did not show any improvement after the treatment. In CO2-laser treated patients, 5 of 10 (50%) of the patients showed clinical improvement; 1 (10%) were good, 3 (30%) were fair, and 1 (10%) were poor; however, 5 (50%) did not show improvement. The results support the use of microneedle therapy over CO2 lasers for striae treatment.
Lévesque, Luc; Noël, Jean-Marc; Scott, Calum
2015-12-01
Temperature of porcine bone specimens are investigated by aiming a pulsed CO2 laser beam at the bone-air surface. This method of controlling temperature is believed to be flexible in medical applications as it avoids the uses of thermal devices, which are often cumbersome and generate rather larger temperature variations with time. The control of temperature using this method is modeled by the heat-conduction equation. In this investigation, it is assumed that the energy delivered by the CO2 laser is confined within a very thin surface layer of roughly 9 μm. It is shown that temperature can be maintained at a steady temperature using a CO2 laser and we demonstrate that the method can be adapted to be used in tandem with another laser beam. This method to control the temperature is believed to be useful in de-contamination of bone during the implantation treatment, in bone augmentation when using natural or synthetic materials and in low-level laser therapy.
"One-shot" CO2 versus Er:YAG laser stapedotomy: is the outcome the same?
Marchese, Maria Raffaella; Scorpecci, Alessandro; Cianfrone, Francesca; Paludetti, Gaetano
2011-03-01
To assess and compare the functional results obtained by means of multiple-shot Erbium: yttrium-aluminum-garnet (Er:YAG) laser to those obtained using "one-shot" CO(2) laser stapedotomy in patients affected by otosclerosis. A retrospective case review was performed. Of the total number of 123 patients (114 ears) who underwent primary small-fenestra stapedotomy from January 2006 to September 2008, seven patients who received multiple-shot laser CO(2) stapedotomy were excluded from the study. The remaining 116 patients (104 ears) were sorted, and "one-shot" CO(2) laser stapedotomy (group A) was performed in 35/104 and Er:YAG laser stapedotomy (group B) in 69/104. After surgery, air conduction-pure tone average (AC-PTA) and air-bone gap (ABG) improved significantly in both groups, whereas sensorineural hearing loss (SNHL) and bone conduction (BC)-PTA did not change in both the groups. In group A, the postoperative ABG was significantly better (12.63 vs. 14.86 dB). Moreover, after "one-shot" stapedotomy, the AC-PTA significantly improved in all tested frequencies. On the contrary, in group B the AC-PTA improved significantly only in two frequencies (0.5 and 1 kHz). Consistent with previous reports, our findings confirm that laser stapedotomy is a safe and effective surgery, regardless of the technique. Based on our functional results, the "one-shot" CO(2) laser technique seems to be associated with a significantly better postoperative ABG if compared to Er:YAG laser stapedotomy.
Early effect of fractional CO2 laser treatment in Post-menopausal women with vaginal atrophy.
Eder, Scott Evan
2018-03-31
Fractional CO 2 lasers have been shown to provide improvement of vulvovaginal atrophy (VVA). The aim of the current study was to assess the early effect of a fractional CO 2 laser system in treating postmenopausal women with clinical symptoms of VVA. 28 healthy post-menopausal women (mean age 60.1 ± 5.55 years) with VVA-related symptoms were treated with fractional CO 2 laser 3 times, in 4-week intervals. At each study visit, VHIS score and VVA symptom severity were recorded. Sexual function was assessed with the Female Sexual Function Index (FSFI). One month following the first laser treatment, the mean VHIS score was significantly improved (13.89 ± 4.25 vs. baseline 11.93 ± 3.82; p < 0.05), and improved further at 3 and 6 months following all three laser treatments (16.43 ± 4.20 and 17.46 ± 4.07, respectively). Almost all VVA symptoms were significantly improved at one month following the first treatment. A further significant improvement in VVA symptoms was noted at 3 and 6 months following the third laser treatment. Following treatments, the FSFI score increased significantly (22.36 ± 10.40 vs. baseline 13.78 ± 7.70; p < 0.05), and remained significantly higher than baseline at the 3- and 6-month follow-up visits. CO 2 laser therapy for post-menopausal women can be considered an effective therapeutic option providing relief of symptoms already noted after one laser treatment.
Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column
NASA Technical Reports Server (NTRS)
Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.
2013-01-01
We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).
The use of pulsed CO2 lasers for the treatment of vulvovaginal atrophy.
Salvatore, Stefano; Athanasiou, Stavros; Candiani, Massimo
2015-12-01
This article reviews the literature regarding the safety and efficacy of the use of a pulsed CO2 laser for the treatment of vulvovaginal atrophy (VVA). Prospective observational studies have demonstrated histological changes after the use of pulsed CO2 laser vaginally in atrophic conditions. Increased collagen and extracellular matrix production has been reported together with an increase in the thickness of the vaginal epithelium with the formation of new papilla. Three different observational studies reported a significant improvement of VVA assessed subjectively (with a 10-point visual analogue scale) and objectively (using the Vaginal Health Index) after a cycle of three treatments of pulsed CO2 laser. Also sexual function (assessed with the Female Sexual Function Index) and quality of life (evaluated with the SF12 questionnaire) significantly improved. No complications or side-effects were reported during or after the laser procedure that was performed in an outpatient setting. Increasing evidence with histological and clinical data supports the use of pulsed CO2 lasers in the treatment of VVA; however, no randomized control trial (sham versus treatment) has yet been produced and no data on the duration of therapy are currently available.
NASA Technical Reports Server (NTRS)
Sokoloski, Martin M. (Editor)
1989-01-01
Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.
Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru; Endo, Akira
2012-11-15
In this Letter, we investigate, for the first time to our knowledge, the spectral properties of a quantum-cascade laser (QCL) from a point of view of a new application as a laser seeder for a nanosecond-pulse high-repetition frequency CO(2) laser operating at 10.6 μm wavelength. The motivation for this work is a renewed interest in such a pulse format and wavelength driven by a development of extreme UV (EUV) laser-produced-plasma (LPP) sources. These sources use pulsed multikilowatt CO(2) lasers to drive the EUV-emitting plasmas. Basic spectral performance characteristics of a custom-made QCL chip are measured, such as tuning range and chirp rate. The QCL is shown to have all essential qualities of a robust seed source for a high-repetition nanosecond-pulsed CO(2) laser required by EUV LPP sources.
Du, Feiya; Yu, Yusheng; Zhou, Zhiqin; Wang, Liujia; Zheng, Shusen
2018-04-01
Fractional CO 2 laser is one of the most effective treatment options used to resurface scars. However, most previous studies have been performed on mature scars at least 2 months after surgery. Recent studies have emphasized the importance of early treatment to reduce scar formation. In the present study, we described our experience with fractional CO 2 laser intervention before skin suture during scar revision surgery in Asians, and found the treatment was safe and effective.
Laser arthroscopic surgery of the shoulder and knee
NASA Astrophysics Data System (ADS)
Smith, Chadwick F.; Johansen, Ed; Bonvalet, Todd; Sutter, Leroy V., Jr.; Marshall, G. June
1990-06-01
The laser is used less in orthopaedics than in any other medical specialty. Improving technology and the impressive effect of the CO2 laser on orthopaedic tissues has, however, accelerated the interest of orthopaedic surgeons over the past two years. The carbon dioxide laser is now commonly used in orthopaedics for difficult to access lesions of the knee - particularly those of a degenerative nature with high surface area and low volume. The results are presented in this paper and reveal no evidence of lasting complications. Although several types of lasers are being experimentally utilized in orthopaedics, the YAG and CO2 lasers are the only lasers commonly utilized. The YAG laser is utilized for shoulder arthroscopy and offers the advantage of passage of energy through fiber and the ability to utilize the tool in an aqueous environment. It is too early to determine as to whether or not the YAG laser or the CO2 laser will be the most efficient energy delivery system for use in the shoulder.
Residual stress and damage-induced critical fracture on CO2 laser treated fused silica
NASA Astrophysics Data System (ADS)
Matthews, M. J.; Stolken, J. S.; Vignes, R. M.; Norton, M. A.; Yang, S.; Cooke, J. D.; Guss, G. M.; Adams, J. J.
2009-10-01
Localized damage repair and polishing of silica-based optics using mid- and far-IR CO2 lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO2 laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work we present the results of 351 nm, 3ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO2 laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1~40s square pulse CO2 laser exposures created over 0.5-1.25kW/cm2 with a 1-3mm 1/e2 diameter beam (Tmax~1500-3000K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for Tmax>=2000K. The effect of cooling rate on fictive temperature caused by CO2 laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.
Impact of CO2 laser and stannous fluoride on primary tooth erosion.
Rocha, Cristiane Tomaz; Turssi, Cecilia Pedroso; Rodrigues-Júnior, Antonio Luiz; Corona, Silmara Aparecida Milori
2016-04-01
This study evaluated in vitro the effect of input power of CO2 laser, either associated or not to stannous fluoride (SnF2) gel, for the control of intrinsic erosion in primary teeth. One hundred four enamel slabs (3 × 3 × 2 mm) from human primary molars were flattened and polished. Adhesive tapes were placed on their surface leaving a window of 3 × 1 mm. Slabs were then cycled four times in 0.01 M hydrochloric acid (pH 2, 2 min) and in artificial saliva (2 h) for creation of erosive lesions. Specimens were randomly assigned into eight groups (n = 13) according to fluoride application [absent (control) or 0.4% stannous fluoride gel (SnF2)] and input power of CO2 laser [unlased (control), 0.5, 1.0 or 1.5 W]. The CO2 laser irradiation was performed in an ultra-pulse mode (100 μs of pulse duration), 4-mm working distance, for 10 s. Specimens were then submitted to further erosive episodes for 5 days and evaluated for enamel relative permeability. Fluoride did not show any protective effect for any of the laser-treated groups or control (p = 0.185). However, a significant effect was detected for input power of CO2 laser (p = 0.037). Tukey's test showed that there was a significant statistically difference between specimens irradiated with 0.5 and 1.5 W (p = 0.028). The input power of 0.5 W showed lower permeability. Variation of input power CO2 laser can influence enamel permeability, at the power of 1.5 W which promoted greater permeability.
Design and development of equipment for laser wire stripping
NASA Technical Reports Server (NTRS)
Iceland, W. F.
1977-01-01
Three laser wire strippers have been built for the stripping of Kapton-insulated wire, the baseline wire of the space shuttle orbiter. The strippers are: (1) a bench-model stripper powered with a cw CO2 10.6-micron laser, (2) a hand-held stripper powered with a cw 1.06-micron Nd-YAG laser with an output of 5-7 watts, and (3) a hand-held stripper with a five-inch-long CO2 laser inside the stripping head.
Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation
NASA Astrophysics Data System (ADS)
Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.
2018-02-01
We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.
NASA Technical Reports Server (NTRS)
Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo
1988-01-01
A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.
NASA Astrophysics Data System (ADS)
Mucha, P.; Berger, P.; Weber, R.; Speker, N.; Sommer, B.; Graf, T.
2015-03-01
Laser machining has great potential for automated manufacturing of parts made of carbon-fiber-reinforced plastic (CFRP) due to the nearly force and tool-wear free processing. The high vaporization temperatures and the large heat conductivity of the carbon fibers, however, lead to unintentional heat conduction into the material causing damage in zones close to the process. In this paper, the matrix damage zone (MDZ) is subdivided into a matrix sublimation zone (MSZ) where the matrix material was sublimated and a zone where the temperature temporarily exceeded a value causing structural damage in the matrix. In order to investigate the extent of these zones, a one-dimensional heat flow model was applied, which was calibrated by cutting experiments using temperature sensors embedded in the CFRP samples. The investigations showed that the extents of the MSZ and MDZ are dominated by a total interaction time, which includes the passage of the laser beam and the continued interaction of the cloud of hot ablation products with the carbon fibers at the kerf wall and that from a practical point of view, the experimentally determined effective heat conductivity is suitable for simple estimations of the heat-affected zones in CFRP.
Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.
Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S
2018-08-17
This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.
Karaman, Murat; Gün, Taylan; Temelkuran, Burak; Aynacı, Engin; Kaya, Cem; Tekin, Ahmet Mahmut
2017-05-01
To compare intra-operative and post-operative effectiveness of fiber delivered CO 2 laser to monopolar electrocautery in robot assisted tongue base surgery. Prospective non-randomized clinical study. Twenty moderate to severe obstructive sleep apnea (OSA) patients, non-compliant with Continuous Positive Airway Pressure (CPAP), underwent Transoral Robotic Surgery (TORS) using the Da Vinci surgical robot in our University Hospital. OSA was treated with monopolar electrocautery in 10 patients, and with flexible CO 2 laser fiber in another 10 patients. The following parameters in the two sets are analyzed: Intraoperative bleeding that required cauterization, robot operating time, need for tracheotomy, postoperative self-limiting bleeding, length of hospitalization, duration until start of oral intake, pre-operative and post-operative minimum arterial oxygen saturation, pre-operative and post-operative Epworth Sleepiness Scale score, postoperative airway complication and postoperative pain. Mean follow-up was 12 months. None of the patients required tracheotomy and there were no intraoperative complications related to the use of the robot or the CO 2 laser. The use of CO 2 laser in TORS-assisted tongue base surgery resulted in less intraoperative bleeding that required cauterization, shorter robot operating time, shorter length of hospitalization, shorter duration until start of oral intake and less postoperative pain, when compared to electrocautery. Postoperative apnea-hypopnea index scores showed better efficacy of CO 2 laser than electrocautery. Comparison of postoperative airway complication rates and Epworth sleepiness scale scores were found to be statistically insignificant between the two groups. The use of CO 2 laser in robot assisted tongue base surgery has various intraoperative and post-operative advantages when compared to monopolar electrocautery.
Flow Visualization and Laser Velocimetry for Wind Tunnels
NASA Technical Reports Server (NTRS)
Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)
1982-01-01
The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.
Abergel, Avraham; Gabay, Ilan; Fliss, Dan M; Katzir, Abraham; Gil, Ziv
2011-06-01
Laser soldering of a thick multilayer organ using conventional CO(2) lasers is ineffective. The purpose of this work was to develop a method for bonding the multilayer tissue of the upper aerodigestive tracts (UADT) without the need of sutures or stapling. Animal model. Academic research laboratory. The authors developed a multi-wavelength laser system, based on 2 fiber-optic lasers applied simultaneously. A highly absorbable CO(2) laser interacts with the muscular layer, and a nonabsorbable GaAs laser interacts with indocyanine-green solid albumin, placed between the mucosa and the muscular layer. The authors used an ex vivo porcine model to examine the capability of this system to effectively correct esophageal tears. The soldered esophagi burst pressure was >175 cm H(2)O (98% success rate) in 88 of the 90 experiments. A conventional CO(2) laser soldering resulted in insufficient bonding (mean burst pressure of 40 ± 7 cm H(2)O, n = 5), while the multi-wavelength laser system provided an ~9-fold tighter seal (359 ± 75.4 cm H(2)O, P < .0001, n = 15). Burst pressures after conventional suturing of the defect was significantly lower (106 ± 65.8 cm H(2)O, P < .001) than in the multi-wavelength laser system. Bonding of the UADT mucosa using a multi-wavelength, temperature-controlled laser soldering system can support significantly higher pressures then conventional CO(2) laser soldering and suture repair. The mean bonding pressure was 3.5-fold higher than the maximal swallowing pressure. Our findings provide a basis for implementation of new surgical tools for repair of esophageal perforations.
Aspects of CO2 laser engraving of printing cylinders.
Atanasov, P A; Maeno, K; Manolov, V P
1999-03-20
Results of the experimental and theoretical investigations of CO(2) laser-engraved cylinders are presented. The processed surfaces of test samples are examined by a phase-stepping laser interferometer, digital microscope, and computer-controlled profilometer. Fourier analysis is made on the patterns parallel to the axis of the laser-scribed test ceramic cylinders. The problem of the visually observed banding is discussed.
Simulation of planetary entry radiative heating with a CO2 gasdynamic laser
NASA Technical Reports Server (NTRS)
Lundell, J. H.; Dickey, R. R.; Howe, J. T.
1975-01-01
Heating encountered during entry into the atmospheres of Jupiter, Saturn, and Uranus is described, followed by a discussion of the use of a CO2 gasdynamic laser to simulate the radiative component of the heating. Operation and performance of the laser is briefly described. Finally, results of laser tests of some candidate heat-shield materials are presented.
Corona Preionization Technique for Carbon Dioxide TEA Lasers.
1982-11-30
34’" " " " "- -. .. " "I~ 82R8O701-02 CORONA PREIONIZATION TECHNIQUE FOR CARBON DIOXIDE TEA LASERS W after R. Kamnki SUnited Technologiles Research Center C...TITLE (and Subtitle) S. TYPE OF REPORT a PERIOD COVERED CORONA PREIONIZATION TECHNIQUE FOR CARBON Final Report DIOXIDE TEA LASERS May 5, 1981...Preionization Laser UV Preionization Pulsed CO2 Laser Corona Preionization CO2 TEA Laser 10. ABSTRACT (Continue on reverse side If neceeeiny md Identify
Nemeth, A J
1993-10-01
The advances in laser surgery over the past decade have been remarkable and have significantly altered the management of a host of dermatologic disorders. This article focuses on the CO2 laser as a cutting and vaporization tool and reviews the features that distinguish CO2 laser-induced wounds from those created by a scalpel. Tissue welding, wound management after skin treatment with the visible light lasers based on the principle of selective photothermolysis, as well as the controversial field of low-energy laser therapy (biostimulation) are also addressed.
Nd:YAG and CO2 laser therapy of oral mucosal lesions.
White, J M; Chaudhry, S I; Kudler, J J; Sekandari, N; Schoelch, M L; Silverman, S
1998-12-01
Experiences gained in the management of oral mucosal lesions by CO2 and Nd:YAG laser therapy in an outpatient clinic treated over an 80-year period are described. Lasers have indications for use in dentistry for incision, excision, and coagulation of intraoral soft tissue. Advances in laser technology have provided delivery systems for site-specific delivery of laser energy with short interaction items on tissue to be ablated. This study retrospectively evaluates a series of clinical case studies. Sixty-four patients with a variety of benign oral soft tissue lesions were treated by laser excision. Thirty-five patients were treated by a pulsed fiberoptic delivered Nd:YAG contact laser, and 29 by a continuous free-beam CO2 non-contact laser. The largest group of lesions treated were leukoplakia (39 cases). Other lesions excised and biopsied were lichen planus, squamous papilloma, pyogenic granuloma, focal melanosis, nonhealing traumatic ulceration, hemangioma, and lymphangioma. All patients were followed postoperatively (mean 6.8 months, range 1-36 months). Laser excision was well tolerated by patients with no intraoperative or postoperative adverse effects. All patients healed postsurgically with no loss of function. CO2 and Nd:YAG lasers are successful surgical options when performing excision of benign intraoral lesions. Advantages of laser therapy include minimal postoperative pain, conservative site-specific minimally invasive surgeries, and elimination of need for sutures.
Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J
2012-10-01
Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
de Riese, Cornelia
2004-07-01
This presentation is designed as a brief overview of laser use in gynecology, for non-medical researchers involved in development of new laser techniques. The literature of the past decade is reviewed. Differences in penetration, absorption, and suitable delivery media for the beams dictate clinical application. The use of CO2 laser in the treatment of uterine cervical intraepithelial lesions is well established and indications as well as techniques have not changed over 30 years. The Cochrane Systematic Review from 2000 suggests no obviously superior technique. CO2 laser ablation of the vagina is also established as a safe treatment modality for VAIN. CO2 laser permits treatment of lesions with excellent cosmetic and functional results. The treatment of heavy menstrual bleeding by destruction of the endometrial lining using various techniques has been the subject of a 2002 Cochran Database Review. Among the compared treatment modalities are newer and modified laser techniques. Conclusion by reviewers is that outcomes and complication profiles of newer techniques compare favorably with the gold standard of endometrial resection. The ELITT diode laser system is one of the new successful additions. CO2 laser is also the dominant laser type used with laparoscopy for ablation of endometriotic implants. Myoma coagulation or myolysis with Nd:Yag laser through the laparoscope or hysteroscope is a conservative treatment option. Even MRI guided percutaneous approaches have been described. No long-term data are available.
Laser Sounder for Measuring Atmospheric CO2 Concentrations: Progress Toward Ascends
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Sun, X.; Stephen, M. A.; Wilson, E.; Burris, J. F.; Mao, J.
2008-01-01
The next generation of space-based, active remote sensing instruments for measurement of tropospheric CO2 promises a capability to quantify global carbon sources and sinks at regional scales. Active (laser) methods will extend CO2 measurement coverage in time, space, and perhaps precision such that the underlying mechanisms for carbon exchange at the surface can be understood with .sufficient detail to confidently project the future of carbon-climate interaction and the influence of remediative policy actions. The recent Decadal Survey for Earth Science by the US National Research Council has recommended such a mission called the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) for launch in 2013-2016. We have been developing a laser technique for measurement of tropospheric CO2 for a number of years. Our immediate goal is to develop and demonstrate the method and instrument technology that will permit measurements of the CO2 column abundance over a horizontal path and from aircraft at the few-ppmv level. Our longer-term goal is to demonstrate the required capabilities of the technique, develop a space mission approach, and design the instrument for an ASCENDS-type mission. Our approach is to use a dual channel laser absorption spectrometer (i.e., differential absorption in altimeter mode), which continuously measures from a near-polar circular orbit. We use several co-aligned tunable fiber laser transmitters allowing simultaneous measurement of the absorption from a CO2 line in the 1570 nm band, O2 extinction in the oxygen A-band (near 765 nm), and aerosol backscatter in the same measurement path. We measure the energy of the laser echoes at nadir reflected from land and water surfaces, day and night. The lasers have spectral widths much narrower than the gas absorption lines and are turned on and off the selected CO2 and O2 lines at kHz rates. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and off-line singnals via the DIAL technique. We used pulsed laser signals, photon counting detectors, and time gating to isolate the laser returns from the surface, and to reject photons scattered from thin clouds and aerosols. High signal-to-noise ratios are required and the CO2 estimates can be sensitive to small drifts or other errors in the instrument, so the absorption estimates need to be quite stable for hours. We have constructed a breadboard version of the CO2 sensor that uses a low power fiber laser and a 20 cm diameter telescope. We have used it to make measurements of CO2 absorption in the laboratory and over 200-m to 2-km long open horizontal paths. These have been done in several sessions extending over multiple days, which allows us to assess the measurement stability and to compare absorption variations to readings from an external in situ CO2 sensor. We have also calculated characteristics of the technique for space including its expected measurement performance for different modulation types, and have performed an initial space mission accommodation study. We sill describe these results in the presentation.
Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome
2018-01-01
Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO2 laser (10.6 µm CO2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets. PMID:29399311
Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome
2018-01-01
Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO 2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO 2 laser (10.6 µm CO 2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets.
Comparison between a CO2 and a Nd-YAG laser with fibertom system in the treatment of frenulum breve
NASA Astrophysics Data System (ADS)
Wozniak, Jakub; Dydowicz, Piotr; Jedrzejczak, Piotr; Opala, Tomasz; Wilczak, Maciej; Pisarska-Krawczyk, Magdalena; Pisarski, Tadeusz
1997-10-01
The study showed the treatment of frenulum breve in 24 patients. Nine of them were treated with CO2 and eight ones with Nd:YAG lasers. In seven males the classical surgical procedures were done. All patients were treated in Department of Reproduction, Institute of Gynecology and Obstetrics, Karol Marcinkowski School of Medical Sciences, Poznan, Poland between March 1995 and September 1996. All procedures were collected successful and no serious complications were observed. The all males are still under control in our department. The use of lasersurgery is the safe and efficient method in treatment of frenulum breve. Lasersurgery may be conducting as the out-patient procedure or one-day surgery because of possibility of NLA and local anesthesia. The use of CO2 seems to be the better method than Nd:YAG laser with fibertom system in treatment of frenulum breve because of shorter time of healing. There are no differences between hemostasis achieved by CO2 and Nd:YAG lasers. The incision effect is the same, when CO2 and Nd:YAG laser with fibertom system are used.
NASA Astrophysics Data System (ADS)
Qu, Zheng; Zhang, Zhaoguang; Ye, Jianguang; Yu, Jianbo
1999-09-01
This paper reports the clinical experience in transmyocardial laser revascularization (TMLR) with high power CO2 laser and evaluates the preliminary results of TMLR. TMLR may improve angina pectoris and myocardial perfusion significantly. To switch on the laser in proper order may be helpful to shorten duration of surgery. A gentle removal of fat on the apex may increase the successful transmyocardial penetration.
New refractive method for laser thermal keratoplasty with the Co:MgF2 laser.
Horn, G; Spears, K G; Lopez, O; Lewicky, A; Yang, X Y; Riaz, M; Wang, R; Silva, D; Serafin, J
1990-09-01
We have observed corneal curvature changes from laser thermal keratoplasty with a Co:MgF2 laser. We studied corneal curvature changes in rabbits and have identified specific treatment patterns and laser parameters that can correct myopia and astigmatism. These corneal changes, some as large as 8 diopters, have been stable for at least one year, and slitlamp examination demonstrates clear central corneas with normal appearance.
CO2 laser versus cold steel margin analysis following endoscopic excision of glottic cancer
2014-01-01
Objective To compare the suitability of CO2 laser with steel instruments for margin excision in transoral laser microsurgery. Methods Prospective randomized blinded study. Patients with glottic cancer undergoing laser resection were randomized to margin excision by either steel instruments or CO2 laser. Margins were analyzed for size, interpretability and degree of artifact by a pathologist who was blinded to technique. Results 45 patients were enrolled in the study with 226 total margins taken. 39 margins taken by laser had marked artifact and 0 were uninterpretable. 20 margins taken by steel instruments had marked artifact, and 2 were uninterpretable. Controlling for margin size, the laser technique was associated with increasing degrees of margin artifact (p = 0.210), but there was no difference in crude rates of uninterpretability (p = 0.24). Conclusion Laser margin excision is associated with a greater degree of artifact than steel instrument excision, but was not associated with higher rate of uninterpretability. PMID:24502856
Choudhri, Omar; Karamchandani, Jason; Gooderham, Peter; Steinberg, Gary K
2014-03-01
Lasers have a long history in neurosurgery, yet bulky designs and difficult ergonomics limit their use. With its ease of manipulation and multiple applications, the OmniGuide CO2 laser has reintroduced laser technology to the microsurgical resection of brain and spine lesions. This laser, delivered through a hollow-core fiber lined with a unidirectional mirror, minimizes energy loss and allows precise targeting. To analyze resections performed by the senior author from April 2009 to March 2013 of 58 cavernous malformations (CMs) in the brain and spine with the use of the OmniGuide CO2 laser, to reflect on lessons learned from laser use in eloquent areas, and to share data on comparisons of laser power calibration and histopathology. Data were collected from electronic medical records, radiology reports, operative room records, OmniGuide CO2 laser case logs, and pathology records. Of 58 CMs, approximately 50% were in the brainstem (30) and the rest were in supratentorial (26) and intramedullary spinal locations (2). Fifty-seven, ranging from 5 to 45 mm, were resected, with a subtotal resection in 1. Laser power ranged from 2 to 10 W. Pathology specimens showed minimal thermal damage compared with traditionally resected specimens with bipolar coagulation. The OmniGuide CO2 laser is safe and has excellent precision for the resection of supratentorial, brainstem, and spinal intramedullary CMs. No laser-associated complications occurred, and very low energy was used to dissect malformations from their surrounding hemosiderin-stained parenchymas. The authors recommend its use for deep-seated and critically located CMs, along with traditional tools.
Standard guidelines of care: CO2 laser for removal of benign skin lesions and resurfacing.
Krupashankar, D S
2008-01-01
Resurfacing is a treatment to remove acne and chicken pox scars, and changes in the skin due to ageing. MACHINES: Both ablative and nonablative lasers are available for use. CO 2 laser is the gold standard in ablative lasers. Detailed knowledge of the machines is essential. INDICATIONS FOR CO 2 LASER: Therapeutic indications: Actinic and seborrheic keratosis, warts, moles, skin tags, epidermal and dermal nevi, vitiligo blister and punch grafting, rhinophyma, sebaceous hyperplasia, xanthelasma, syringomas, actinic cheilitis angiofibroma, scar treatment, keloid, skin cancer, neurofibroma and diffuse actinic keratoses. CO 2 laser is not recommended for the removal of tattoos. AESTHETIC INDICATIONS: Resurfacing for acne, chicken pox and surgical scars, periorbital and perioral wrinkles, photo ageing changes, facial resurfacing. PHYSICIANS' QUALIFICATIONS: Any qualified dermatologist (DVD or MD) may practice CO 2 laser. The dermatologist should possess postgraduate qualification in dermatology and should have had specific hands-on training in lasers either during postgraduation or later at a facility which routinely performs laser procedures under a competent dermatologist/plastic surgeon, who has experience and training in using lasers. For the use of CO 2 lasers for benign growths, a full day workshop is adequate. As parameters may vary in different machines, specific training with the available machine at either the manufacturer's facility or at another centre using the machine is recommended. CO 2 lasers can be used in the dermatologist's minor procedure room for the above indications. However, when used for full-face resurfacing, the hospital operation theatre or day care facility with immediate access to emergency medical care is essential. Smoke evacuator is mandatory. Detailed counseling with respect to the treatment, desired effects, possible postoperative complications, should be discussed with the patient. The patient should be provided brochures to study and also given adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. Consent forms should include information on the machine used; possible postoperative course expected and postoperative complications. Preoperative photography should be carried out in all cases of resurfacing. Choice of the machine and the parameters depends on the site, type of lesion, result needed, and the physician's experience. Localized lesions can be treated under eutectic mixture of local anesthesia (EMLA) cream anesthesia or local infiltration anesthesia. Full-face resurfacing can be performed under general anesthesia. Proper postoperative care is important to avoid complications.
Use Of Lasers In Seam Welding Of Engine Parts For Cars
NASA Astrophysics Data System (ADS)
Luttke, A.
1986-11-01
The decision in favour of active research into laser technology was taken in our company in 1978. In the following years we started with the setting-up of a laser laboratory charged with the task of performing basic manufacturing technology experiments in order to examine the ap-plications of laser technology for cutting, welding, hardening, remelting and secondary alloys. The first laboratory-laser - a 2,5 kW fast axial flow CO2 laser - is connected with a CNC-controlled workpiece manipulation unit, which is designed in such a way that workpieces from the smallest component of a car gearbox up to crankcases for commercial vehicles can be manipulated at speeds considered theoretically feasible for laser machining. The use of the laser beam for cutting, hardening and welding tasks has been under investigation in our company, in this laboratory for some 6 years. Laser cutting is now no longer a question of development, but is instead standard practice and is already used in various sec-tions of our production division for pilot-series manufacturing and for small batches. Laser hardening has, in our opinion, great possibilities for tasks which, for distortion and accessibility reasons, cannot be satisfactorily performed using present-day processes, for instance induction hardening. However, a great deal of development work is still necessary before economically reasonable and quality-assured production installation can be undertaken. Laser-welding is now used in series-production in our company for two engine components. More details are given below.
NASA Technical Reports Server (NTRS)
Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.
2011-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, and in-situ measurements were made using its CO2 sensor and radiosondes. We have conducted an analysis of the ranging and IPDA lidar measurements from these four flights. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We used a cross-correlation approach to process the laser echo records. This was used to estimate the range to the scattering surface, to define the edges of the laser pulses and to determine echo pulse energy at each wavelength. We used a minimum mean square approach to fit an instrument response function and to solve for the best-fit CO2 absorption line shape. We then calculated the differential optical depth (DOD) of the fitted CO2 line. We computed its statistics at the various altitude steps, and compare them to the DODs calculated from spectroscopy based on HITRAN 2008 and the column conditions calculated from the airborne in-situ readings. The results show the lidar and in-situ measurements have very similar DOD change with altitude and greater than 10 segments per flight where the scatter in the lidar measurements are less than or equal to 1ppm. We also present the results from subsequent CO2 column absorption measurements, which were made with stronger detected signals during three flights on the NASA DC-8 over the southwestern US in during July 2010.
Solar pumped continuous wave carbon dioxide laser
NASA Technical Reports Server (NTRS)
Yesil, O.; Christiansen, W. H.
1978-01-01
In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.
Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass
NASA Astrophysics Data System (ADS)
Bai, Gongxun; Tao, Lili; Li, Kefeng; Hu, Lili; Tsang, Yuen Hong
2013-04-01
Laser glass gain medium that can convert low cost 808 nm diode laser into 2.7 μm has attracted considerable interest due to its potential application for medical surgery fiber laser system. In this study, enhanced 2.7 μm emission has been achieved in Er3+:germanate glass by co-doping with Nd3+ ions under the excitation of an 808 nm diode laser. In the co-doped sample, the experimental results show that the harmful visible emissions via up-conversion were effectively restricted. The reduction of 1.5 μm emission was also detected in the co-doped sample, which indicates significant de-excitation of 4I13/2 Er3+ ion through energy transfer and non-radiative decay in Nd3+ ions. In conclusion, the 2.7 μm emission enhancement achieved was due to the increased optical absorption of 808 nm, efficient energy transfer (ET) with efficiency of 81.73% between Er3+ and Nd3+ ions, and shortening the lifetime of the lower lasing level 4I13/2 Er3+ in the co-doped sample. Therefore, Er3+/Nd3+ co-doped germanate glass could be used to fabricate fiber optical gain media for 2.7 μm laser generation.
Cutaneous pain effects induced by Nd:YAG and CO2 laser stimuli
NASA Astrophysics Data System (ADS)
Wang, Jia-Rui; Yu, Guang-Yuan; Yang, Zai-Fu; Chen, Hong-Xia; Hu, Dong-Dong; Zou, Xian-Biao
2012-12-01
The near infrared laser technique can activate cutaneous nociceptors with high specificity and reproducibility and be used in anti-riot equipment. This study aimed to explore cutaneous pain effect and determine the threshold induced by Nd:YAG and CO2 laser stimuli. The corresponding wavelength was 1.32μm and 10.6μm. The pain effect was assessed in three healthy subjects (1 woman and 2 men) on the skin of dorsum of both hands. The energy of each pulse and whether the subjects felt a painful sensation after each stimulus were recorded. A simplified Bliss Method was used to calculate the pain threshold which were determined under three pulse durations for Nd:YAG laser and one pulse duration for CO2 laser. As a result the pain thresholds were determined to be 5.6J/cm2, 5.4J/cm2 and 5.0J/cm2 respectively when using Nd:YAG laser, 4.0mm beam diameter, 8ms, 0.1s and 1s pulse duration. The pain threshold was 1.0J/cm2 when using CO2 laser, 4.0mm beam diameter and 0.1s pulse duration. We concluded that the threshold of cutaneous pain elicited by 1.32μm laser was independent upon the pulse duration when the exposure time ranged from 8ms to 1s. Under the same exposure condition, the threshold of cutaneous pain elicited by 1.32μm laser was higher than that elicited by 10.6μm laser.
The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies.
El Gamal, Ahmed; Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie
2016-03-31
The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.
1985-01-01
Techniques are established for visualizing velocity in gaseous flows. Two approaches are considered, both of which are capable of yielding velocity simultaneously at a large number of flowfield locations, thereby providing images of velocity. The first technique employs a laser to mark specific fluid elements and a camera to track their subsequent motion. Marking is done by laser-induced phosphorescence of biacetyl, added as a tracer species in a flow of N2, or by laser-induced formation of sulfur particulates in SF6-H2-N2 mixtures. The second technique is based on the Doppler effect, and uses an intensified photodiode array camera and a planar form of laser-induced fluorescence to detect 2-d velocities of I2 (in I2-N2 mixtures) via Doppler-shifted absorption of narrow-linewidth laser radiation at 514.5 nm.
A compact, rugged, high repetition rate CO2 laser incorporating catalyst
NASA Technical Reports Server (NTRS)
Schwarzenberger, P. M.; Matzangou, X.
1990-01-01
The principal design features and operating characteristics of a high repetition rate CO2 laser are outlined. The laser is a compact, rugged unit, completely sealed and incorporating an unheated solid catalyst. Stable operation has been successfully demonstrated over a temperature range of -35 C to 65 C.
A blackbody radiation-pumped CO2 laser experiment
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Insuik, R. J.; Deyoung, R. J.
1982-01-01
Thermal radiation from a high temperature oven was used as an optical pump to achieve lasing from CO2 mixtures. Laser output as a function of blackbody temperature and gas conditions is described. This achievement represents the first blackbody cavity pumped laser and has potential for solar pumping.
Room-temperature operation of a Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Welford, D.; Moulton, P. F.
1988-01-01
A normal-mode, pulsed Co:MgF2 laser has been operated at room temperature for the first time. Continuous tuning from 1750 to 2500 nm with pulse energies up to 70 mJ and 46-percent slope efficiency was obtained with a 1338-nm Nd:YAG pump laser.
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong
2015-01-01
Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.
The use of laser CO2 in salivary gland diseases
NASA Astrophysics Data System (ADS)
Ciolfi, C.; Rocchetti, F.; Fioravanti, M.; Tenore, G.; Palaia, G.; Romeo, U.
2016-03-01
Salivary gland diseases can include reactive lesions, obstructive lesions, and benign tumors. All these clinical entities are slow growing. Salivary glands reactive lesions, such as mucoceles, can result from extravasation of saliva into the surrounding soft tissue or from retention of saliva within the duct. Sialolithiasis, one of the most common obstructive lesions, is generally due to calculi, which are attributed to retention of saliva. Monomorphic adenoma is a salivary gland benign tumor, which is exclusively resulted from proliferation of epithelial cells, with no alterations interesting the connective tissue. The elective therapy of these lesions is surgical excision because sometimes they can be accompained by difficulties during chewing and phonation and can interfere with prosthesis's stability. The aim of the study is to evaluate the efficacy of CO2 laser in the treatment of patients with salivary gland diseases. Three different cases - a mucocele, a scialolithiasis and a monomorphic adenoma - were treated with CO2 laser excision (CW and 4W), under local anesthesia. Two different techniques were used: circumferential incision for the adenoma, and mucosa preservation technique for mucocele and sialolithiasis. In each case final haemostasis was obtained by thermocoagulation, but suture was applied to guarantee good healing by sewing up the flaps. The patients were checked after twenty days and the healing was good. The carbon dioxide laser (CO2 laser) was one of the earliest gas laser to be developed, and is still the highest-power continuous wave laser that is currently available. In dentistry the CO2 laser produces a beam of infrared light with the principal wavelength bands centering around 9.4 and 10.6 micrometers. Laser excision can be very useful in oral surgery. In the cases presented CO2 laser offered, differently from traditional surgery, simplified surgical technique, shorter duration of operation, minimal postoperative pain, minimal scarring, bloodless field and the possibility to realize minimally invasive surgery. These advantages made the operation tolerable for the patients, that became more compliant. Optimum functional results can be expected.
Sealed-off CO2 laser with In-Au alloy sealing
NASA Astrophysics Data System (ADS)
Iehisa, N.; Fukaya, K.; Karube, N.
1986-02-01
The In-Au alloy sealing was found to satisfy all the requirements imposed on the sealed-off CO2 lasers. The sealing between different materials such as quartz, SUS 303, Si, and ZnSe was shown to withstand the thermal shock test, and gave the He leak rate lower than 1×10-9 atm cc/s both before and after the tests. It was also proved that the transmittance characteristics of dielectric coated output couplers did not change after the sealing. The sealed-off CO2 lasers with La1-xSrxCoO3 perovskite oxide cathodes sealed with this technique produced the operational life of 3000 h at the laser power level of 50 W/m.
NASA Technical Reports Server (NTRS)
Boedeker, Laurence R.
1992-01-01
A 'tagging' approach in which the photolysis of H2O by an excimer laser creates a zone of enhanced OH concentration, while a second, pulsed-UV laser detects tagged-zone convection via time-delayed excitation of OH fluorescence, depends on the photodissociation process and the kinetics of OH decay (relative to velocity). For application to the fuel-rich, high supersonic Mach number exhaust flow of the SSME, the detection of OH is being accomplished with either a pulsed narrowband UV dye laser or a tunable XeCl excimer laser for excitation of an OH 0-0 band transition, while the two-photon photolysis of H2O is conducted by focusing an injection-locked KrF excimer laser into the flow.
Smolentsev, Grigory; Guda, Alexander; Zhang, Xiaoyi; Haldrup, Kristoffer; Andreiadis, Eugen; Chavarot-Kerlidou, Murielle; Canton, Sophie E; Nachtegaal, Maarten; Artero, Vincent; Sundstrom, Villy
2013-08-29
A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed.
Smolentsev, Grigory; Guda, Alexander; Zhang, XIaoyi; Haldrup, Kristoffer; Andreiadis, Eugen; Chavarot-Kerlidou, Murielle; Canton, Sophie E.; Nachtegaal, Maarten; Artero, Vincent; Sundstrom, Villy
2014-01-01
A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed. PMID:24443663
NASA Technical Reports Server (NTRS)
Johnsen, Rainer
1993-01-01
Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.
Experimental Investigation of Airbreathing Laser Propulsion Engines: CO2TEA vs. EDL
NASA Astrophysics Data System (ADS)
Mori, Koichi; Sasoh, Akihiro; Myrabo, Leik N.
2005-04-01
Single pulse laboratory experiments were carried out with a high-power CO2 Transversely-Exited Atmospheric (TEA) laser using parabolic laser propulsion (LP) engines of historic interest: 1) an original Pirri/ AERL bell engine, and 2) a scaled-up 11-cm diameter version with identical geometry. The objective was to quantify the effects of pulse duration upon the impulse coupling coefficient performance — with pulse energy as the parametric variable. Performance data from the TEA laser are contrasted with former results derived from AVCO Everett Research Laboratory and PLVTS CO2 electron discharge lasers (EDL). The `short-pulse' 2-microsecond TEA laser tests generated results that were distinctively different from that of the `long-pulse' EDL sources. The TC-300 TEA laser employed an unstable resonator to deliver up to 380 joules, and the square output beam measured 15-cm on a side, with a hollow 8-cm center. A standard ballistic pendulum was employed to measure the performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
...). The workers were engaged in employment related to the production of infrared and CO 2 laser optics... 2 laser optics, and related materials, from 2009 to 2010 or from January- October 2010 compared to... that the workers' firm did not shift production of infrared and CO 2 laser optics, and related...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
...). The workers were engaged in employment related to the production of infrared and CO 2 laser optics... 2 laser optics, and related materials, from 2009 to 2010 or from January- October 2010 compared to... investigation revealed that the workers' firm did not shift production of infrared and CO 2 laser optics, and...
NASA Astrophysics Data System (ADS)
Angelastro, A.; Campanelli, S. L.; Casalino, G.
2017-09-01
This paper presents a study on process parameters and building strategy for the deposition of Colmonoy 227-F powder by CO2 laser with a focal spot diameter of 0.3 mm. Colmonoy 227-F is a nickel alloy especially designed for mold manufacturing. The substrate material is a 10 mm thick plate of AISI 304 steel. A commercial CO2 laser welding machine was equipped with a low-cost powder feeding system. In this work, following another one in which laser power, scanning speed and powder flow rate had been studied, the effects of two important process parameters, i.e. hatch spacing and step height, on the properties of the built parts were analysed. The explored ranges of hatch spacing and step height were respectively 150-300 μm and 100-200 μm, whose dimensions were comparable with that of the laser spot. The roughness, adhesion, microstructure, microhardness and density of the manufactured specimens were studied for multi-layer samples, which were made of 30 layers. The statistical significance of the studied process parameters was assessed by the analysis of the variance. The process parameters used allowed to obtain both first layer-to-substrate and layer-to-layer good adhesions. The microstructure was fine and almost defect-free. The microhardness of the deposited material was about 100 HV higher than that of the starting powder. The density as high as 98% of that of the same bulk alloy was more than satisfactory. Finally, simultaneous optimization of density and roughness was performed using the contour plots.
NASA Technical Reports Server (NTRS)
Lin, Bing
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.
NASA Astrophysics Data System (ADS)
Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi
2018-04-01
To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.
NASA Astrophysics Data System (ADS)
Acosta, Roberto I.
The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Astrophysics Data System (ADS)
Magnotti, Gaetano
Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO 2
Wang, Congjun; Ranasingha, Oshadha; Natesakhawat, Sittichai; ...
2013-01-01
Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO 2 and H 2 reactants to CH 4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au–ZnO from 30 to ~600 °C and simultaneously tune the CH 4 : CO product ratio. The laser induced heating and resulting CH 4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction ismore » a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO 2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO 2 reduction is low ( ~2.5 x 10 5 W m -2) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO 2 utilization and other practical thermal catalytic applications.« less
Modematic: a fast laser beam analyzing system for high power CO2-laser beams
NASA Astrophysics Data System (ADS)
Olsen, Flemming O.; Ulrich, Dan
2003-03-01
The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.
Catalysts for long-life closed-cycle CO2 lasers
NASA Technical Reports Server (NTRS)
Schryer, David R.; Sidney, Barry D.; Miller, Irvin M.; Hess, Robert V.; Wood, George M.; Batten, Carmen E.; Burney, Lewis G.; Hoyt, Ronald F.; Paulin, Patricia A.; Brown, Kenneth G.
1987-01-01
Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin (IV) oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-LaRC on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) achievement of 98% to 100% conversion of a stoichiometric mixture of CO and O2 to CO2 for 318 hours (greater than 1 x 10 to the 6th power seconds), continuous, at a catalyst temperature of 60 C, and (2) development of a technique verified in a 30-hour test, to prevent isotopic scrambling when CO-18 and O-18(2) are reacted in the presence of a common-isotope Pt/Sn O-16(2) catalyst.
367 cases of CO2 laser therapy on facial acne
NASA Astrophysics Data System (ADS)
Gao, Yunqing; Liu, Songhao; Zhang, You; Liu, T. C.
1996-09-01
Since 1989, we have cured 367 persons of facial acne of different course by using direct irradiation of high-power CO2 laser combing with operative therapy of low-power CO2 laser. The cure rate is 100 percent. In this paper, we stated the therapeutic approach. It was shown that this therapeutic approach is simple and effective, and its recurrence rate is zero. There are no cicatrices after healing. It is easy to accept it, and is worthy of extension.
Effect of surface-breakdown plasma on metal drilling by pulsed CO2-laser radiation
NASA Astrophysics Data System (ADS)
Arutiunian, P. V.; Baranov, V. Iu.; Bobkov, I. V.; Bol'Shakov, L. A.; Dolgov, V. A.
1988-03-01
The effect of low-threshold surface breakdown produced by short (5-microsec) CO2-laser pulses on the metal drilling process is investigated. Data on the interaction of metals with laser pulses having the same duration but different shape are shown to be different. The effect of the ambient atmospheric pressure on the laser drilling process is investigated.
Pulsed CO2 characterization for lidar use
NASA Technical Reports Server (NTRS)
Jaenisch, Holger M.
1992-01-01
An account is given of a scaled functional testbed laser for space-qualified coherent-detection lidar applications which employs a CO2 laser. This laser has undergone modification and characterization for inherent performance capabilities as a model of coherent detection. While characterization results show good overall performance that is in agreement with theoretical predictions, frequency-stability and pulse-length limitations severely limit the laser's use in coherent detection.
Truschnegg, Astrid; Acham, Stephan; Kqiku, Lumnije; Beham, Alfred; Jakse, Norbert
2016-09-01
This article reports the CO2 laser excision of a pyogenic granuloma related to dental implants and reviews the current literature on this pathology in association with dental implants. Five publications describe pyogenic granulomas related to dental implants, and a further one describes the removal of such a lesion with an Er:YAG laser; removal with a CO2 laser is not reported. A 67-year-old male patient presented with a hyperplastic gingival lesion around two implants in the left lower jaw. The hyperplastic tissue was removed with a CO2 laser (Lasram; model OPAL 25, 25 W continuous wave, 10.600 nm, gas laser), and a vestibuloplasty was performed. The excised tissue was examined histopathologically. The patient was followed up after 4 weeks, 6 weeks, 6 months, and 1 year, and a panoramic X-ray was also made. There were no complications during surgery or follow-up. The panoramic X-ray taken 1 year after excision showed neither vertical bone loss nor impaired osseointegration of the implant. Histopathology reported a pyogenic granuloma. After vestibuloplasty, the height of the fixed mucosa was satisfactory. The CO2 laser seems to be a safe and appropriate tool for removal of a pyogenic granuloma in close proximity to dental implants. The laser parameters must, however, be chosen carefully and any additional irritants should be excluded to prevent a recurrence.
CO2-Doped Diamond: A Potential Solid-State CO2 Laser Material?
NASA Technical Reports Server (NTRS)
Tratt, D.
1994-01-01
This paper describes a novel concept for a solid-state CO subscript 2 laser medium which, by eschewing the gas-phase approach, may offer prospects for a compact, robust 9 - 11 (micro)m coherent source, coupled with the potentially superior frequency stability characteristics afforded by monolithic solid-state construction.
Alster, T S
1999-02-01
The development and integration of pulsed and scanned CO2 and erbium:YAG laser systems into mainstream surgical practice over the past years has revolutionized cutaneous resurfacing. These lasers are capable of delivering to skin high peak fluences to effect controlled tissue vaporization, while leaving an acceptably narrow zone of residual thermal damage. The inherent technological differences that exist between the two distant laser systems in terms of ablation depths, degree of thermal coagulation, and postoperative side-effects and complications guide patient selection and management. This article reviews the basic principles of CO2 and erbium:YAG laser resurfacing, including preoperative, intraoperative, and postoperative patient considerations. Side-effects and complications encountered after laser resurfacing are discussed with specific guidelines provided on their appropriate management. Anticipated future developments and cutting-edge research endeavors in cutaneous laser resurfacing are also briefly outlined.
Experimental comparative study on morphological effects of different lasers on the liver.
Godlewski, G; Miro, L; Chevalier, J M; Bureau, J P
1982-01-01
Three types of laser radiation were compared as to their capabilities in hepatic surgery using 17 New Zealand rabbits. In four animals, subtotal scalpel lobectomy was performed, the hepatic pedicle being clamped. Hemostasis is obtained by means of argon or Nd YAG laser as long as the internal diameter of the vessels encountered is less than 4.5 mm. Nd YAG laser requires a power output four times higher than argon laser to obtain hemostasis. In six animals limited resection was performed by means of Nd YAG and CO2 lasers. CO2 radiation supplied insufficient hemostasis whenever the vessel diameter was more than 1 mm despite an excellent cutting power. Nd YAG radiation created an important necrosis zone due to thermal diffusion. In seven animals various focal hepatic lesions produced by the three types of laser were compared. Argon laser induced superficial and regularly round lesion, Nd YAG laser deeper, cauliflower-like lesions with thermal diffusion following especially vessels. Veins presented thrombosis of their blood content and coagulation necrosis of their wall. The amount of glycogenic granulation decreased. The CO2 laser induced very sharp punctual lesion without necrosis. Electron-microscopic sections revealed faint shadowy liver cells closet to the thermal source and bubbled mitochondria containing disrupted critea around the lesion. In later lesions Nd YAG laser produced more extensive fibrosis than argon or CO2 laser. After first clinical trials we believe that laser irradiation is actually an adjuvant safety factor in current hepatic surgery, whereas the Nd YAG laser could be of real interest in metastatic carcinoma destruction in liver.
Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing
NASA Technical Reports Server (NTRS)
Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.
2011-01-01
Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.
First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser.
Castrillo, A; Casa, G; van Burgel, M; Tedesco, D; Gianfrani, L
2004-12-27
Carbon isotope ratio analysis using a laser-based technique has been performed in the field, on the gaseous emissions from an active volcano. We here describe that 13CO2/12CO2 determinations can be carried out in a quasi-continuous regime using a compact, selective and sensitive diode laser spectrometer at a wavelength of 2 mum. Within the Solfatara crater (near Naples, Italy), in a very harsh environment, we were able to determine relative 13CO2/12CO2 values, on the highest flux fumarole, with an accuracy of 0.5 per thousand. Regular and frequent observations of the carbon isotopes in volcanic gases, which become possible with our methodology, are of the utmost importance for geochemical surveillance of volcanoes.
Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor
NASA Astrophysics Data System (ADS)
Kagawa, Naoki; Wada, Osami; Koga, Ryuji
1999-05-01
This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.
Grover, Harpreet Singh; Choudhary, Pankaj
2016-01-01
Introduction Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. Aim To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Materials and Methods Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey’s post hoc multiple comparison test. Results All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Conclusion Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser. PMID:27630957
Saluja, Mini; Grover, Harpreet Singh; Choudhary, Pankaj
2016-07-01
Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey's post hoc multiple comparison test. All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1979-01-01
The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.
Nowak, Krzysztof M; Kurosawa, Yoshiaki; Suganuma, Takashi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saito, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru
2016-07-01
One of the unique features of the quantum-cascade-laser-seeded, nanosecond-pulse CO2 laser, invented for the purpose of generation of extreme UV by laser-produced-plasma, is a robust synthesis of arbitrary pulse waveforms. In the present Letter we report on experimental results that are, to our best knowledge, the first demonstration of such functionality obtainable from nanosecond-pulse CO2 laser technology. An online pulse duration adjustment within 10-40 ns was demonstrated, and a few exemplary pulse waveforms were synthesized, such as "tophat," "tailspike," and "leadspike" shapes. Such output characteristics may be useful to optimize the performance of LPP EUV source.
CO2 and Er:YAG laser interaction with grass tissues
NASA Astrophysics Data System (ADS)
Kim, Jaehun; Ki, Hyungson
2013-01-01
Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.
A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.
Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion
2010-01-01
The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulot, H.; Lefebvre, G.; Jagueux, M.
This experiment investigates CO/sub 2/-laser-induced histological effects on fallopian tubes obtained during hysterectomies in women. Tubal transversal sections were performed at isthmic and ampullar sites. Forty strips were available for histological study of the cut section area. The role of different parameters such as radiation power and beam fractionation (continuous versus pulsed) on tissue lesions was assessed. In tubal microsurgery, the CO/sub 2/ laser can be used as a scalpel with the predominant advantage of minimal tissular alterations. As a result of this study, our recommended parameters are the following: radiation power, 7-10 W; beam focalization zone, 0.2 mm; energymore » density, 20,000-35,000 W/cm2; continuous operation; moving speed, 1 cm/s.« less
Pretreatment of Platinum/Tin Oxide-Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.
Room temperature CO and H2 sensing with carbon nanoparticles.
Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo
2011-12-02
We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H(2) at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H(2) at room temperature even without Pd or Pt catalysts commonly used for splitting H(2) molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H(2) molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.
NASA Astrophysics Data System (ADS)
Dolinina, V. I.; Koterov, V. N.; Pyatakhin, Mikhail V.; Urin, B. M.
1989-02-01
Numerical methods were used to investigate theoretically the dynamics of the energy balance of a discharge in a CO-N2 mixture, taking into account the mutual influence of the distributions of the electron energy and of the populations of the molecules over the vibrational levels. It was shown that this influence plays a decisive part in substantially redistributing the pump energy between the vibrational levels of the CO and N2 molecules in favor of the N2 molecules. A stabilizing action of the nitrogen on the thermal regime of the CO laser-active medium was discovered and the range of optimal CO:N2 ratios was determined.
New method of writing long-period fiber gratings using high-frequency CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Gao-Ran; Song, Ying; Zhang, Wen-Tao; Jiang, Yue; Li, Fang
2016-11-01
In the paper, the Long period fiber gratings (LPFG) were fabricated in a single-mode fiber using a high frequency CO2 laser system with the point-to-point technique. The experimental setup consists of a CO2 laser controlling system, a focusing system located at a motorized linear stage, a fiber alignment stage, and an optical spectrum analyzer to monitor the transmission spectrum of the LPFG. The period of the LPFG is precisely inscribed by periodically turning on/off the laser shutter while the motorized linear stage is driven to move at a constant speed. The efficiency of fiber writing process is improved.
López-Jornet, Pía
2013-01-01
Objective: The aim of this study was to compare conventional surgery with carbon dioxide (CO2) laser in patients with oral leukoplakia, and to evaluate the postoperative pain and swelling. Study design: A total of 48 patients (27 males and 21 females) with a mean age of 53.7 ± 11.7 years and diagnosed with oral leukoplakia were randomly assigned to receive treatment either with conventional surgery using a cold knife or with a CO2 laser technique. A visual analog scale (VAS) was used to score pain and swelling at different postoperative time points. Results: Pain and swelling reported by the patients was greater with the conventional cold knife than with the CO2 laser, statistically significant differences for pain and swelling were observed between the two techniques during the first three days after surgery. Followed by a gradual decrease over one week. In neither group was granuloma formation observed, and none of the patients showed malignant transformation during the period of follow-up. Conclusions: The CO2 laser causes only minimal pain and swelling, thus suggesting that it may be an alternative method to conventional surgery in treating patients with oral leukoplakia. Key words:Oral leukoplakia, treatment, laser surgery, cold knife, pain, swelling. PMID:23229239
Platinum/Tin Oxide/Silica Gel Catalyst Oxidizes CO
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Davis, Patricia P.; Schryer, David R.; Miller, Irvin M.; Brown, David; Van Norman, John D.; Brown, Kenneth G.
1991-01-01
Heterogeneous catalyst of platinum, tin oxide, and silica gel combines small concentrations of laser dissociation products, CO and O2, to form CO22 during long times at ambient temperature. Developed as means to prevent accumulation of these products in sealed CO2 lasers. Effective at ambient operating temperatures and installs directly in laser envelope. Formulated to have very high surface area and to chemisorb controlled quantities of moisture: chemisorbed water contained within and upon its structure, makes it highly active and very longlived so only small quantity needed for long times.
Sobhi, Rehab Mohamed; Sharaoui, Iman; El Nabarawy, Eman Ahmad; El Nemr Esmail, Reham Shehab; Hegazy, Rehab Aly; Aref, Dina Hesham Fouad
2018-05-01
Macular amyloidosis (MA) represents a common variant of primary localized cutaneous amyloidosis. It has a characteristic female predominance; none of the treatment modalities described is either curative or uniformly effective in patients with macular amyloidosis. To determine the effect of fractional CO 2 laser in macular amyloidosis in comparison to fractional CO 2 laser-assisted drug delivery of topical steroids and topical vitamin C, the study includes 10 female patients with cutaneous macular amyloidosis aged between 20 and 62 years. Patients were treated with four sessions of fractional CO 2 laser with 4 weeks interval. Laser treatments were performed using fractional CO 2 laser with the following parameters (power 18 W, spacing 800 μm, dwell time 600 μs, stacking 3). The lesion is divided into three areas: area 1, treated by fractional laser only; area 2, treated by fractional laser followed by topical corticosteroid application under occlusion for 24 h; and area 3, treated by fractional laser followed by topical vitamin C serum application under occlusion for 24 h. All lesions were examined clinically and histologically before the therapy and 1 month after the end of the therapy to evaluate the degree of improvement. All treated areas show significant decrease in pigmentation score after treatment, significant drop in rippling (P value < 0.016), and improvement of lichenification; as regards the histological improvement, there was a significant decrease of the amyloid amount after treatment. As regards the amyloid amount, results show significant decrease in the amount of amyloid in all of the three treated areas. Area 2 reported the highest decrease in the amyloid amount followed by areas 1 and 3. One patient (10%) was highly satisfied by the treatment, 6 (60%) reported moderate degree of satisfaction, while only 3 (30%) reported mild satisfaction. Minimal complication occurred in the form of post-inflammatory hyperpigmentation in 1 patient. None of the patients suffered pain, ulceration, or infection. Fractional CO 2 alone can be used to improve the texture of macular amyloidosis. If used to assist the delivery of topical steroids and topical vitamin C, improvement can be highly increased.
Vanarase, Mithila; Gautam, Ram Krishan; Arora, Pooja; Bajaj, Sonali; Meena, Neha; Khurana, Ananta
2017-10-01
Q-switched lasers are conventionally used for the treatment of black tattoo. However, they require multiple sittings, and the response may be slow due to competing epidermal pigment in dark skin. To compare the efficacy of Q-switched Nd:YAG laser alone with its combination with ultrapulse CO 2 for the removal of black tattoo. Sixty patients with black tattoo were randomized into two groups viz., group A and group B. Group A was treated with QS Nd:YAG laser (1064 nm) alone, and group B received combination of ablative ultrapulse CO 2 followed by fixed-dose QS Nd:YAG laser (1064 nm), at 6-week interval for a maximum of 6 sittings. After each sitting, 3 independent physicians noted percentage of improvement that was evaluated using visual analogue scale (VAS) and grading system for tattoo ink lightening (TIL). Combination laser (group B) showed statistically significant improvement in mean VAS score in the last 2 noted visits as compared to 1st session (p < 0.007, p < 0.001) and TIL mean score in last three noted visits as compared to 1st session (p < 0.008, p < 0.020, and p < 0.004). There was no statistically significant difference in the side effect profile of both the groups. For refractory professional tattoos, combination of ultrapulse CO 2 laser and QS Nd:YAG laser is superior to QS Nd:YAG laser alone.
Tan, Jun; Lei, Ying; Ouyang, Hua-Wei; Gold, Michael H
2014-12-01
The purpose of this clinical paper is to explore the therapeutic effects, healing times, adverse effects, and maintenance periods of using a CO2 fractional laser in the treatment of photoaging in Asian skin. One fractional CO2 laser procedure was performed on the full face in 56 patients with photoaging. Based on the Dover scoring system, we evaluated the degree of skin aging before treatment and at one-month post laser and at five years post laser therapy in 30 of the patients. Statistical analysis was performed by the Wilcoxon's method. Thirty of the treated patients have had follow-up for 5 years at this time. The photoaging scores in these thirty patients were significantly changed (P < 0.01) at one month, one year, and five years after the fractional laser treatment, as compared with their baseline. Adverse events seen during this analysis were found to be minimal and not of clinical significance. Fractional CO2 laser resurfacing in the treatment of photoaging in Asians is a useful modality with results, for the first time, being shown to have continued efficacy for up to 5 years. © 2014 Wiley Periodicals, Inc.
Inhibition of caries in vital teeth by CO2 laser treatment
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Fried, Daniel; Le, Charles Q.; Nelson, Gerald; Rapozo-Hilo, Marcia; Rechmann, Beate M. T.; Featherstone, John D. B.
2008-02-01
In multiple well-controlled laboratory studies enhancing caries resistance of enamel has been successfully reported using short-pulsed 9.6 µm CO2 laser irradiation. The aim of this study was to prove in a short term clinical pilot trial that the use of the CO2 laser will significantly inhibit the formation of carious lesions around orthodontic brackets in vivo in comparison to a non-irradiated control area. Twelve subjects scheduled for extraction of premolars for orthodontic treatment reasons with an average age of 14.6 years were recruited for the 4-week study. Orthodontic brackets were placed on those premolars with a conventional composite resin (Transbond XT, 3M Unitek, REF 712-035) and a defined area next to the bracket was irradiated with a CO2 laser, Pulse System, Inc (PSI) (Model #LPS-500, Los Alamos, New Mexico), wavelength 9.6 μm, pulse duration 20 μs, pulse repetition rate 20 Hz, beam diameter 1,100 μm, average fluence 4.31 +/- 0.11 J/cm2, 20 laser pulses per spot. Premolars were extracted after four weeks for a quantitative assessment of demineralization by cross sectional microhardness testing. The relative mineral loss ΔZ (vol% x µm) for the laser treated enamel was 402 +/- 85 (SE) while the control area showed a significantly higher mineral loss (mean ΔZ 738 +/- 131; P=0.04, unpaired t-test). The laser treatment produced a 46% demineralization inhibition around the orthodontic brackets in comparison to the non-laser treated areas. This study showed, for the first time that a pulsed 9.6 µm CO2 laser works for the prevention of dental caries in the enamel in vital teeth in human mouths.
Seitz, Anna-Theresa; Grunewald, Sonja; Wagner, Justinus A; Simon, Jan C; Paasch, Uwe
2014-12-01
Q-switched laser treatments are considered the standard method for removing both regular and traumatic tattoos. Recently, the removal of tattoo ink using ablative fractional lasers has been reported. Ablative fractional CO2 laser and q-switched ruby laser treatments were used in a split-face mode to compare the safety and efficacy of the two types of laser in removing a traumatic tattoo caused by the explosion of a firework. A male patient suffering from a traumatic tattoo due to explosive deposits in his entire face was subjected to therapy. A series of eleven treatments were performed. The right side of the face was always treated using an ablative fractional CO2 laser, whereas the left side was treated only using a q-switched ruby laser. After a series of eleven treatments, the patient demonstrated a significant lightening on both sides of his traumatic tattoo, with no clinical difference. After the first six treatments, the patient displayed greater lightening on the right side of his face, whereas after another five treatments, the left side of the patient's face appeared lighter. No side effects were reported. In the initial stage of removing the traumatic tattoo, the ablative fractional laser treatment appeared to be as effective as the standard ruby laser therapy. However, from the 6th treatment onward, the ruby laser therapy was more effective. Although ablative fractional CO2 lasers have the potential to remove traumatic tattoos, they remain a second-line treatment option.
Effects of pulsed CO2 laser in caries selective ablation
NASA Astrophysics Data System (ADS)
Colojoara, Carmen; David, Ion; Marinovici, Mariana
1995-03-01
We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.
2μm all fiber multi-wavelength Tm/Ho co-doped fiber laser
NASA Astrophysics Data System (ADS)
Zhang, Junhong; Jiang, Qiuxia; Wang, Xiaofa
2017-10-01
A 2 μm all fiber multi-wavelength Tm/Ho co-doped fiber laser based on a simple ring cavity is experimentally demonstrated. Compared with other 2 μm multi-wavelength Tm/Ho co-doped fiber lasers, the multi-wavelength fiber laser is obtained by the gain saturation effect and inhomogeneous broadening effect without any frequency selector component, filter component or polarization-dependent component. When the pump power is about 304 mW, the fiber laser enters into single-wavelength working state around 1967.76 nm. Further increasing the pump power to 455 mW, a stable dual-wavelength laser is obtained at room temperature. The bimodal power difference between λ1 and λ2 is 5.528 dB. The fluctuations of wavelength and power are less than 0.03 nm and 0.264 dB in an hour, which demonstrates that the multi-wavelength fiber laser works at a stable state. Furthermore, a research about the relationship between the pump power and the output spectra has been made.
Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling
NASA Technical Reports Server (NTRS)
Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.
2004-01-01
Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).