Sample records for flow current falls

  1. Equilibrium and initial linear stability analysis of liquid metal falling film flows in a varying spanwise magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, D.; Morley, N. B.

    2002-12-01

    A 2D model for MHD free surface flow in a spanwise field is developed. The model, designed to simulate film flows of liquid metals in future thermo­nuclear fusion reactors, considers an applied spanwise magnetic field with spatial and temporal variation and an applied streamwise external current. A special case - a thin falling film flow in spanwise magnetic field with constant gradient and constant applied external streamwise current, is here investigated in depth to gain insight into the behavior of the MHD film flow. The fully developed flow solution is derived and initial linear stability analysis is performed for this special case. It is seen that the velocity profile is significantly changed due to the presence of the MHD effect, resulting in the free surface analog of the classic M-shape velocity profile seen in developing pipe flows in a field gradient. The field gradient is also seen to destabilize the film flow under most conditions. The effect of external current depends on the relative direction of the field gradient to the current direction. By controlling the magnitude of an external current, it is possible to obtain a linearly stable falling film under these magnetic field conditions. Tables 1, Figs 12, Refs 20.

  2. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.

  3. Circulation on the Inner-Shelf of Long Bay, South Carolina: Vertical Current Variability and Evidence for Cross-Shelf Variation in Near-Bed Currents

    NASA Astrophysics Data System (ADS)

    Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.

    2004-12-01

    Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.

  4. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principle performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power deposition resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  5. Cross-shore variation of wind-driven flows on the inner shelf in Long Bay, South Carolina, United States

    NASA Astrophysics Data System (ADS)

    Gutierrez, Benjamin T.; Voulgaris, George; Work, Paul A.

    2006-03-01

    The cross-shore structure of subtidal flows on the inner shelf (7 to 12 m water depth) of Long Bay, South Carolina, a concave-shaped bay, is examined through the analysis of nearly 80 days of near-bed (1.7-2.2 m above bottom) current observations acquired during the spring and fall of 2001. In the spring and under northeastward winds (upwelling favorable) a two-layered flow was observed at depths greater than 10 m, while closer to the shore the currents were aligned with the wind. The two-layered flow is attributed to the presence of stratification, which has been observed under similar conditions in the South Atlantic Bight. When the wind stress was southwestward (downwelling favorable) and exceeded 0.1 N/m2, vertical mixing occurred, the two-layered flow pattern disappeared, and currents were directed alongshore with the wind at all sites and throughout the water column. In the fall, near-bed flows close to the shore (water depth <7 m) were often reduced compared to or opposed those measured farther offshore under southwestward winds. A simplified analysis of the depth-averaged, alongshore momentum balance illustrates that the alongshore pressure gradient approached or exceeded the magnitude of the alongshore wind stress at the same time that the nearshore alongshore current opposed the wind stress and alongshore currents farther offshore. In addition, the analysis suggests that the wind stress is reduced closer to shore so that the alongshore pressure gradient is large enough to drive the flow against the wind.

  6. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around the crater only in a post-plinian phase. During this phase, the convective plume was purely coignimbritic. The runout (from 4 to 11 km) and the degree of valley -confinement progressively increased from S1 to S4 currents. The eruption ended with the collapse of a 2.6 km summit caldera. During this last eruptive phase, coarse lithic-rich flow units with runout shorter than previously were emplaced. The parallel evolution of column height (grain-size), fountain height (size of ballistics) and flow properties (surges vs. flows) compares well with the numerical simulations of pyroclastic dispersion performed by Neri et al. (2002). In the whole dispersion area, the fall bed has a polymodal grain-size. The coarse modes of the fall appear related to the plinian column, while the fines ones have a co-ignimbrite fall origin. Sub-pop ulation analysis shows that the fine modes are related to ash aggregation that in transitional eruptions plays a significant role in the deposition of very fine sizzes also in very proximal areas. The fall deposit is totally eroded and reworked by the syn-plinian currents in the proximal areas and partially eroded in the medial areas. Grain-size and maximum clast analysis indicate that a significant fraction of the intraplinian beds is of primary fall origin. Strong similarities are found between the Quilot oa deposits and that accumulated during the transitional phase of the 1991 Pinatubo eruption (Rosi et al., 2001). These evidences should be carefully taken in account for risk assessment when analysing deposits accumulated in the transitional eruptive regi me with the aim at calculating the physical parameters characterizing the density currents ( Brissette and Lajoie, 1990). References : Brissette FP and Lajoie J (1990) Depositional mechanics of turbulent nuées ardentes (surges) from their grain-sizes. Bull Volcanol 53:60-66. Carey S, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93:15314-15328 Kaminski E and Jaupart C (2001) Marginal stability of atmospheric eruption columns and pyroclastic flow generation J Geophys Res 106: 21785-21798 Neri A, Papale P and Macedonio G (1998) The role of magma composition and water content in explosive eruptions: 2. Pyroclastic dispersion dynamics. J Volcanol Geotherm Res 87: 95-115 Neri A, Di Muro A, Rosi M (2002) Mass partition during collapsing and transitional columns by using numerical simulations. In press on J Volcanol Geotherm Res Rosi M., Paladio-Melosantos M.L., Di Muro A., Leoni R., Bacolcol T. (2001) Fall vs Flow Activity During the 1991 Climactic Eruption of Mt. Pinatubo (Philippines). Bull Volcanol 62: 549-566 Valentine G.A., Giannetti B. (1995) Single Pyroclastic beds deposited by simultaneous fallout and surge processes: Roccamonfina volcano, Italy. J Volcanol Geotherm Res 64:129-137. Veitch G and Woods A (2002) Particle recycling and oscillations of volcanic eruption columns. J of Geophys Res, 105: 2829-2842. Wilson C.J.N., Hildreth W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy J of Geol. 105:407-439.

  7. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  8. Report on the Program "Fluid-mediated particle transport in geophysical flows" at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    NASA Astrophysics Data System (ADS)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-01

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  9. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  10. Quantifying flow-dependent changes in subyearling fall chinook salmon rearing habitat using two-dimensional spatially explicit modeling

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.

    2002-01-01

    We used an analysis based on a geographic information system (GIS) to determine the amount of rearing habitat and stranding area for subyearling fall chinook salmon Oncorhynchus tshawytscha in the Hanford Reach of the Columbia River at steady-state flows ranging from 1,416 to 11,328 m3/s. High-resolution river channel bathymetry was used in conjunction with a two-dimensional hydrodynamic model to estimate water velocities, depths, and lateral slopes throughout our 33-km study area. To relate the probability of fish presence in nearshore habitats to measures of physical habitat, we developed a logistic regression model from point electrofishing data. We only considered variables that were compatible with a GIS and therefore excluded other variables known to be important to juvenile salmonids. Water velocity and lateral slope were the only two variables included in our final model. The amount of available rearing habitat generally decreased as flow increased, with the greatest decreases occurring between 1,416 and 4,814 m3/s. When river discharges were between 3,682 and 7,080 m3/s, flow fluctuations of 566 m3/s produced the smallest change in available rearing area (from -6.3% to +6.8% of the total). Stranding pool area was greatly reduced at steady-state flows exceeding 4,531 m3/s, but the highest net gain in stranding area was produced by 850 m3/s decreases in flow when river discharges were between 5,381 and 5,664 m3/s. Current measures to protect rearing fall chinook salmon include limiting flow fluctuations at Priest Rapids Dam to 850 m3/s when the dam is spilling water and when the weekly flows average less than 4,814 m3/s. We believe that limiting flow fluctuations at all discharges would further protect subyearling fall chinook salmon.

  11. Measuring Power Flow in Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Griffin, Daniel C., Jr; Wiker, G. A.

    1983-01-01

    Instrument accommodates fast rise and fall times of waveforms characteristic of modern, efficient power controllers. Power meter multiplies analog signals proportional to voltage and current, and converts resulting signal to frequency. Two mechanical counters provided: one for charging, one for discharging.

  12. Investigation of the falling water flow with evaporation for the passive containment cooling system and its scaling-down criteria

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming; Li, Le

    2018-02-01

    Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.

  13. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    NASA Astrophysics Data System (ADS)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  14. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation lengthmore » of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.« less

  15. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  16. Hysteretic behavior of stage-discharge relationships in urban streams

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Lindner, G. A.

    2009-12-01

    Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements used in many rating curves probably have been collected on the falling limb and therefore may not capture the correct stage-discharge relationship for the rising limb. In some cases model results selected only from the falling limb are able to match the existing rating curve very closely. Although hysteresis may be explained with reference to the innate properties of the flood wave, other factors also lead to hysteretic behavior. Downstream constrictions and obstructions associated with urban infrastructure may cause substantial backwater effects, particularly during flood flows. Flood conditions at tributary confluences also can exert a controlling influence upstream. Based on our results we recommend that at some sites it is advisable to develop separate rating curves for the rising and falling limbs, and to develop a range of modeling scenarios for predicting the range of potential uncertainty.

  17. Report on the Program “Fluid-mediated particle transport in geophysical flows” at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-15

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  18. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.

  19. Towards a social and context-aware multi-sensor fall detection and risk assessment platform.

    PubMed

    De Backere, F; Ongenae, F; Van den Abeele, F; Nelis, J; Bonte, P; Clement, E; Philpott, M; Hoebeke, J; Verstichel, S; Ackaert, A; De Turck, F

    2015-09-01

    For elderly people fall incidents are life-changing events that lead to degradation or even loss of autonomy. Current fall detection systems are not integrated and often associated with undetected falls and/or false alarms. In this paper, a social- and context-aware multi-sensor platform is presented, which integrates information gathered by a plethora of fall detection systems and sensors at the home of the elderly, by using a cloud-based solution, making use of an ontology. Within the ontology, both static and dynamic information is captured to model the situation of a specific patient and his/her (in)formal caregivers. This integrated contextual information allows to automatically and continuously assess the fall risk of the elderly, to more accurately detect falls and identify false alarms and to automatically notify the appropriate caregiver, e.g., based on location or their current task. The main advantage of the proposed platform is that multiple fall detection systems and sensors can be integrated, as they can be easily plugged in, this can be done based on the specific needs of the patient. The combination of several systems and sensors leads to a more reliable system, with better accuracy. The proof of concept was tested with the use of the visualizer, which enables a better way to analyze the data flow within the back-end and with the use of the portable testbed, which is equipped with several different sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sea-floor observations in the tongue of the ocean, Bahamas: An Argo/SeaMARC survey

    USGS Publications Warehouse

    Schwab, W.C.; Uchupi, E.; Ballard, Richard D.; Dettweiler, T.K.

    1989-01-01

    SeaMARC side-scan sonographs and Argo video and photographic data suggest that the recent sedimentary environment of the floor of the Tongue of the Ocean is controlled by an interplay of turbidity current flow from the south, sediment spill-over from the carbonate platform to the east (windward side), and rock falls from the west carbonate escarpment (lee side). The spill-over forms a sandy sedimentary deposit that acts as a topographic obstruction to the turbidity current flow from the south. This obstruction is expressed by the westward migration of a northwest-southeast oriented turbidity-current-cut channel. ?? 1989 Springer-Verlag New York Inc.

  1. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  2. Solid state rapid thermocycling

    DOEpatents

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  3. Highlights of the high-temperature falling particle receiver project: 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Christian, J.; Yellowhair, J.; Jeter, S.; Golob, M.; Nguyen, C.; Repole, K.; Abdel-Khalik, S.; Siegel, N.; Al-Ansary, H.; El-Leathy, A.; Gobereit, B.

    2017-06-01

    A 1 MWt continuously recirculating falling particle receiver has been demonstrated at Sandia National Laboratories. Free-fall and obstructed-flow receiver designs were tested with particle mass flow rates of ˜1 - 7 kg/s and average irradiances up to 1,000 suns. Average particle outlet temperatures exceeded 700 °C for the free-fall tests and reached nearly 800 °C for the obstructed-flow tests, with peak particle temperatures exceeding 900 °C. High particle heating rates of ˜50 to 200 °C per meter of illuminated drop length were achieved for the free-fall tests with mass flow rates ranging from 1 - 7 kg/s and for average irradiances up to ˜ 700 kW/m2. Higher temperatures were achieved at the lower particle mass flow rates due to less shading. The obstructed-flow design yielded particle heating rates over 300 °C per meter of illuminated drop length for mass flow rates of 1 - 3 kg/s for irradiances up to ˜1,000 kW/m2. The thermal efficiency was determined to be ˜60 - 70% for the free-falling particle tests and up to ˜80% for the obstructed-flow tests. Challenges encountered during the tests include particle attrition and particle loss through the aperture, reduced particle mass flow rates at high temperatures due to slot aperture narrowing and increased friction, and deterioration of the obstructed-flow structures due to wear and oxidation. Computational models were validated using the test data and will be used in future studies to design receiver configurations that can increase the thermal efficiency.

  4. Anode Fall As Relevant to Plasma Thrusters.

    DTIC Science & Technology

    1997-06-01

    considered, whether induced or external magnetic fields are included, as to how the flow chemistry is modeled, among others. For the cathode, sheath...the extent of the anode fall region, a region where flow chemistry becomes paramount, determining plasma equilibrium. But is the anode fall stable...i * =n* * = =0 and when the plasma boundary is approached. The latter condition immediately emphasizes the flow chemistry , ionization and

  5. Multiple constraints on the age of a Pleistocene lava dam across the Little Colorado River at Grand Falls, Arizona

    USGS Publications Warehouse

    Duffield, W.; Riggs, N.; Kaufman, D.; Champion, D.; Fenton, C.; Forman, S.; McIntosh, W.; Hereford, R.; Plescia, J.; Ort, M.

    2006-01-01

    The Grand Falls basalt lava flow in northern Arizona was emplaced in late Pleistocene time. It flowed 10 km from its vent area to the Little Colorado River, where it cascaded into and filled a 65-m-deep canyon to form the Grand Falls lava dam. Lava continued ???25 km downstream and ???1 km onto the far rim beyond where the canyon was filled. Subsequent fluvial sedimentation filled the reservoir behind the dam, and eventually the river established a channel along the margin of the lava flow to the site where water falls back into the pre-eruption canyon. The ca. 150 ka age of the Grand Falls flow provided by whole-rock K-Ar analysis in the 1970s is inconsistent with the preservation of centimeter-scale flow-top features on the surface of the flow and the near absence of physical and chemical weathering on the flow downstream of the falls. The buried Little Colorado River channel and the present-day channel are at nearly the same elevation, indicating that very little, if any, regional downcutting has occurred since emplacement of the flow. Newly applied dating techniques better define the age of the lava dam. Infrared-stimulated luminescence dating of silty mudstone baked by the lava yielded an age of 19.6 ?? 1.2 ka. Samples from three noneroded or slightly eroded outcrops at the top of the lava flow yielded 3He cosmogenic ages of 16 ?? 1 ka, 17 ?? 1 ka, and 20 ?? 1 ka. A mean age of 8 ?? 19 ka was obtained from averaging four samples using the 40Ar/39Ar step-heating method. Finally, paleomagnetic directions in lava samples from two sites at Grand Falls and one at the vent area are nearly identical and match the curve of magnetic secular variation at ca. 15 ka, 19 ka, 23 ka, and 28 ka. We conclude that the Grand Falls flow was emplaced at ca. 20 ka. ?? 2006 Geological Society of America.

  6. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.

  7. Generator of the low-temperature heterogeneous plasma flow

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  8. Kasei Valles

    NASA Image and Video Library

    2015-10-14

    Kasei Valles is a valley system was likely carved by some combination of flowing water and lava. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. The flowing liquid is gone but the channels and "dry falls" remain. Since its formation, Kasei Valles has suffered impacts-resulting in craters-and has been mantled in dust, sand, and fine gravel as evidenced by the rippled textures. http://photojournal.jpl.nasa.gov/catalog/PIA20004

  9. Bootstrap position analysis for forecasting low flow frequency

    USGS Publications Warehouse

    Tasker, Gary D.; Dunne, P.

    1997-01-01

    A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.

  10. Combustion mode switching with a turbocharged/supercharged engine

    DOEpatents

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  11. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  12. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    USGS Publications Warehouse

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  13. Mass transfer in thin films under counter-current gas: experiments and numerical study

    NASA Astrophysics Data System (ADS)

    Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant

    2016-11-01

    Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.

  14. The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption

    NASA Astrophysics Data System (ADS)

    Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.

    1993-11-01

    The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.

  15. Quantifying the Journey of a Turbidity Current: How Water and Sediment Discharges Vary with Distance in Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Chapplow, N.; Talling, P.; Cartigny, M.; Parsons, D. R.; Simmons, S.; Clare, M. A.; Paull, C. K.

    2017-12-01

    Turbidity currents transport vast quantities of sediment across the seafloor and form the largest sediment accumulations on Earth. Such flows pose a hazard to strategically important seafloor infrastructure and are important agents for the transport of organic carbon and nutrients that support deep-sea ecosystems. It is therefore important to quantify the scale of these flows, how much sediment they transport, and how their discharge evolves over time and space along their flow path. Two modes of flow evolution have been proposed based on experimental and numerical models. The first is termed ignition, where flows entrain seafloor sediment and become more voluminous and powerful and increase in discharge. The second is dissipation, where sediment falls out of suspension, flows decelerate and lose discharge. Field-scale turbidity currents have only been measured at a handful of sites worldwide, however, and never at multiple locations along their full course. Therefore, it has not been possible to determine when, where and why flows diverge into these two modes in the deep sea and how discharge of the flows varies. The ambitious multi-institution Coordinated Canyon Experiment measured turbidity currents at seven instrumented moorings along the Monterey Canyon, offshore California. Fifteen flows were recorded, including the fastest events yet measured at high resolution (>8 m/s). This remarkable dataset provides the first opportunity to quantify down-channel sediment and flow discharge evolution of turbidity currents in the deep sea. To understand whether flows ignite or dissipate, we derive total and sediment discharges for each of the flows at all seven mooring locations down the canyon. Discharges are calculated from measured velocities, and sediment concentrations derived using a novel inversion method. Two distinct flow modes are observed, where most flows rapidly dissipated in the upper reaches of the canyon, while three ran out for the full 50 km array length. We then explore why only these three flows ignited and discuss the implications for canyon and channel capacity and evolution.

  16. Water velocity, turbulence, and migration rate of subyearling fall Chinook salmon in the free-flowing and impounded Snake River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Haskell, Craig A.; Connor, William P.; Steinhorst, R. Kirk

    2009-01-01

    We studied the migratory behavior of subyearling fall Chinook salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Snake River to evaluate the hypothesis that velocity and turbulence are the primary causal mechanisms of downstream migration. The hypothesis states that impoundment reduces velocity and turbulence and alters the migratory behavior of juvenile Chinook salmon as a result of their reduced perception of these cues. At a constant flow (m3 /s), both velocity (km/d) and turbulence (the SD of velocity) decreased from riverine to impounded habitat as cross-sectional areas increased. We found evidence for the hypothesis that subyearling Chinook salmon perceive velocity and turbulence cues and respond to these cues by varying their behavior. The percentage of the subyearlings that moved faster than the average current speed decreased as fish made the transition from riverine reaches with high velocities and turbulence to upper reservoir reaches with low velocities and turbulence but increased to riverine levels again as the fish moved further down in the reservoir, where velocity and turbulence remained low. The migration rate (km/d) decreased in accordance with longitudinal reductions in velocity and turbulence, as predicted by the hypothesis. The variation in migration rate was better explained by a repeatedmeasures regression model containing velocity (Akaike’s information criterion ¼ 1,769.0) than a model containing flow (2,232.6). We conclude that subyearling fall Chinook salmon respond to changes in water velocity and turbulence, which work together to affect the migration rate.

  17. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  18. Earth observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-09-03

    ISS007-E-14361 (4 September 2003) --- This view featuring Victoria Falls and the Zambezi River was photographed by one of the Expedition 7 crewmembers onboard the International Space Station (ISS). Victoria Falls is one of the most famous tourist sites in sub-Saharan Africa. The falls and their famous spray clouds are 1700 meters long, the longest sheet of falling water in the world. The falls appear as a ragged white line in this image. The small town of Victoria Falls in Zimbabwe appears just west of the falls, with smaller tourist facilities on the east bank in Zambia. A major river in south-central Africa, the Zambezi River flows from western Zambia to the Indian Ocean in Mozambique. It flows southeast in a wide bed before plunging suddenly 130 meters over the Victoria Falls into a narrow gorge.

  19. Recirculation of the Canary Current in fall 2014

    NASA Astrophysics Data System (ADS)

    Hernández-Guerra, Alonso; Espino-Falcón, Elisabet; Vélez-Belchí, Pedro; Dolores Pérez-Hernández, M.; Martínez-Marrero, Antonio; Cana, Luis

    2017-10-01

    Hydrographic measurements together with Ship mounted Acoustic Doppler Current Profilers and Lowered Acoustic Doppler Current Profilers (LADCP) obtained in October 2014 are used to describe water masses, geostrophic circulation and mass transport of the Canary Current System, as the Eastern Boundary of the North Atlantic Subtropical Gyre. Geostrophic velocities are adjusted to velocities from LADCP data to estimate an initial velocity at the reference layer. The adjustment results in a northward circulation at the thermocline layers over the African slope from an initial convergent flow. Final reference velocities and consequently absolute circulation are estimated from an inverse box model applied to an ocean divided into 13 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport is estimated from the wind data derived from the Weather Research and Forecasting model. Ekman transport is added to the first layer and adjusted with the inverse model. The Canary Current located west of Lanzarote Island transports to the south a mass of - 1.5 ± 0.7 Sv (1 Sv = 106 m3 s- 1 ≈ 109 kg s- 1) of North Atlantic Central Water at the surface and thermocline layers ( 0-700 m). In fall 2014, hydrographic data shows that the Canary Current in the thermocline (below at about 80 m depth to 700 m) recirculates to the north over the African slope and flows through the Lanzarote Passage. At intermediate layers ( 700-1400 m), the Intermediate Poleward Undercurrent transports northward a relatively fresh Antarctic Intermediate Water in the range of 0.8 ± 0.4 Sv through the Lanzarote Passage and west of Lanzarote Island beneath the recirculation of the Canary Current.

  20. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  1. Volcanic hazard at Vesuvius: An analysis for the revision of the current emergency plan

    NASA Astrophysics Data System (ADS)

    Rolandi, G.

    2010-01-01

    Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection ( Dipartimento della Protezione Civile) . The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard zone, since there are some important public structures not considered in the current Red Zone that could be exposed to flow risk; c) Modern wind records clearly indicate that at the time of a future eruption winds could blow not only from the west, but also from the east, so that the Yellow Zone (the area with the potential to be affected by significant tephra fall deposits) must be redefined. As a result the relationship between the Yellow Zone and Green Zone (the area within and beyond which the impact of tephra fall is expected to be insignificant) must be reconsidered mainly in the Naples area; d) The May 1998 landslide, caused in the Apennine region east of the volcano by continuous rain fall, led to the definition of a zone affected by re-mobilisation of tephra (Blue Zone), confined in the Nola valley. However, as described in the 1631 chronicles of the eruption, if generation of debris flows occurs during and after a future eruption, a much wider region east of the Somma-Vesuvius must be affected by events of this type.

  2. Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska

    USGS Publications Warehouse

    Houghton, Bruce F.; Wilson, C.J.N.; Fierstein, J.; Hildreth, W.

    2004-01-01

    Proximal (<3 km) deposits from episodes II and III of the 60-h-long Novarupta 1912 eruption exhibit a very complex stratigraphy, the result of at least four transport regimes and diverse depositional mechanisms. They contrast with the relatively simple stratigraphy (and inferred emplacement mechanisms) for the previously documented, better known, medial-distal fall deposits and the Valley of Ten Thousand Smokes ignimbrite. The proximal products include alternations and mixtures of both locally and regionally dispersed fall ejecta, and numerous thin complex deposits of pyroclastic density currents (PDCs) with no regional analogs. The locally dispersed component of the fall deposits forms sector-confined wedges of material whose thicknesses halve radially from and concentrically about the vent over distances of 100-300 m (cf. several kilometers for the medial-distal fall deposits). This locally dispersed fall material (and many of the associated PDC deposits) is rich in andesitic and banded pumices and richer in shallow-derived wall-rock lithics in comparison with the coeval medial fall units of almost entirely dacitic composition. There are no marked contrasts in grain size in the near-vent deposits, however, between locally and widely dispersed beds, and all samples of the proximal fall deposits plot as a simple continuation of grain size trends for medial-distal samples. Associated PDC deposits form a spectrum of facies from fines-poor, avalanched beds through thin-bedded, landscape-mantling beds to channelized lobes of pumice-block-rich ignimbrite. The origins of the Novarupta near-vent deposits are considered within a spectrum of four transport regimes: (1) sustained buoyant plume, (2) fountaining with co-current flow, (3) fountaining with counter-current flow, and (4) direct lateral ejection. The Novarupta deposits suggest a model where buoyant, stable, regime-1 plumes characterized most of episodes II and III, but were accompanied by transient and variable partitioning of clasts into the other three regimes. Only one short period of vent blockage and cessation of the Plinian plume occurred, separating episodes II and III, which was followed by a single PDC interpreted as an overpressured "blast" involving direct lateral ejection. In contrast, regimes 2 and 3 were reflected by spasmodic sedimentation from the margins of the jet and perhaps lower plume, which were being strongly affected by short-lived instabilities. These instabilities in turn are inferred to be associated with heterogeneities in the mixture of gas and pyroclasts emerging from the vent. Of the parameters that control explosive eruptive behavior, only such sudden and asymmetrical changes in the particle concentration could operate on time scales sufficiently short to explain the rapid changes in the proximal 1912 products. ?? Springer-Verlag 2003.

  3. Bouncing and coalescence of droplets on falling liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Deygas, Amandine; Matar, Omar

    2014-11-01

    When a droplet impacts on a falling liquid film, the outcome depends on the fluid properties of the droplet, its speed, and angle of incidence, as well as on the film flow rate and associated flow regimes. In this study, the oblique impact of droplets on a falling liquid film is investigated experimentally. The falling film is created on an inclined substrate and the Reynolds number is varied. Droplets with different sizes and different speeds are used to study the impact process for different Weber and Ohnesorge numbers. Different phenomena of droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. An impact regime map is generated, and the effects of droplet impact speed and size, and the film flow rates are studied. The propagation of waves on the liquid film post-impact is analysed. The results show that the flowing film can significantly affect the impact process of droplets, and the latter can alter the propagation of waves on the falling film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  4. Hydraulics of subaqueous ash flows as deduced from their deposits

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico M.; Dellino, Pierfrancesco

    2012-09-01

    Subaqueous ash flows are gravity currents consisting of a mixture of sea water and ash particles. Also called volcaniclastic turbidity currents (VTCs), they can be generated because of remobilization of pyroclastic fall deposits, which are emplaced into the sea around a volcanic island, as well as far away, during an explosive eruption. The VTC upper part is the turbulent transport system for the flow, whereas the viscous basal one is the depositional system. Typical sequences of VTC deposits are characterized by cross-laminations, planar and convolute laminations, and massive beds, which reflect the stratified nature of the flow. Here, the analysis of some VTC hydraulic parameters is presented in order to depict flow behavior and sedimentation during deposition. A reverse engineering approach is proposed, which consists of calculating hydraulic parameters by starting from deposit features. The calculated values show that a VTC is homogeneously-turbulent for most of the thickness, but is viscous at its base. First, cross-laminations are directly acquired over the rough pre-existing seafloor, then planar or convolute laminations aggrade over the newly formed substrate. Finally, fine-grained suspended particles gently settle and cap the flow deposit.

  5. Assessment of Ground-Water Resources in the Seacoast Region of New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.

    2009-01-01

    Numerical ground-water-flow models were developed for a 160-square-mile area of coastal New Hampshire to provide insight into the recharge, discharge, and availability of ground water. Population growth and increasing water use prompted concern for the sustainability of the region's ground-water resources. Previously, the regional hydraulic characteristics of the fractured bedrock aquifer in the Seacoast region of New Hampshire were not well known. In the current study, the ground-water-flow system was assessed by using two different models developed and calibrated under steady-state seasonal low-flow and transient monthly conditions to ground-water heads and base-flow discharges. The models were, (1) a steady-state model representing current (2003-04) seasonal low-flow conditions used to simulate current and future projected water use during low-flow conditions; and (2) a transient model representing current average and estimated future monthly conditions over a 2-year period used to simulate current and future projected climate-change conditions. The analysis by the ground-water-flow models indicates that the Seacoast aquifer system is a transient flow system with seasonal variations in ground-water flow. A pseudosteady- state condition exists in the fall when the steady-state model was calibrated. The average annual recharge during the period analyzed, 2000-04, was approximately 51 percent of the annual precipitation. The average net monthly recharge rate between 2003 and 2004 varied from 5.5 inches per month in March, to zero in July, and to about 0.3 inches per month in August and September. Recharge normally increases to about 2 inches per month in late fall and early winter (November through December) and declines to about 1.5 inches per month in late winter (January and February). About 50 percent of the annual recharge coincides with snowmelt in the spring (March and April), and 20 percent occurs in the late fall and early winter (November through February). Net recharge, calculated as infiltration of precipitation minus evapotranspiration, can be negative during summer months (particularly July). Regional bulk hydraulic conductivities of the bedrock aquifer were estimated to be about 0.1 to 1.0 feet per day. Estimated hydraulic conductivities in model areas representing the Rye Complex and the Kittery Formation were higher (0.5 to 1 foot per day) than in areas representing the Eliot Formation, the Exeter Diorite, and the Newburyport Complex, which have estimated hydraulic conductivities of 0.1 to 0.2 foot per day. A northeast-southwest regional anisotropy of about 5:1 was estimated in some areas of the model; this pattern is parallel to the regional structural trend and predominant fracture orientation. In areas of the model with more observation data, the upper and lower 95-percent confidence intervals for the estimated bedrock hydraulic conductivity were about half an order of magnitude above and below the parameter, respectively, and the estimated confidence intervals for estimated specific storage were within an order of magnitude of the parameter. In areas of the model with few data points, or few stresses, confidence intervals were several orders of magnitude. Estimated model parameters and their confidence intervals are a function of the conceptual model design, observation data, and the weights placed on the data. The amount of recharge that enters the bedrock aquifer at a specific point depends on (1) the location of the point in the flow field; (2) the hydraulic conductivity of the bedrock (or the connectivity of fractures); and (3) the stresses within the bedrock aquifer. In addition, ground water stored in unconsolidated overburden sediments, including till and other fine-grained sediments, may constitute a large percentage of the water available from storage to the bedrock aquifer. Recharge into the bedrock aquifer at a point can range from zero to nearly all the recharge at the surface dependin

  6. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  7. Construction of a groundwater-flow model for the Big Sioux Aquifer using airborne electromagnetic methods, Sioux Falls, South Dakota

    USGS Publications Warehouse

    Valder, Joshua F.; Delzer, Gregory C.; Carter, Janet M.; Smith, Bruce D.; Smith, David V.

    2016-09-28

    The city of Sioux Falls is the fastest growing community in South Dakota. In response to this continued growth and planning for future development, Sioux Falls requires a sustainable supply of municipal water. Planning and managing sustainable groundwater supplies requires a thorough understanding of local groundwater resources. The Big Sioux aquifer consists of glacial outwash sands and gravels and is hydraulically connected to the Big Sioux River, which provided about 90 percent of the city’s source-water production in 2015. Managing sustainable groundwater supplies also requires an understanding of groundwater availability. An effective mechanism to inform water management decisions is the development and utilization of a groundwater-flow model. A groundwater-flow model provides a quantitative framework for synthesizing field information and conceptualizing hydrogeologic processes. These groundwater-flow models can support decision making processes by mapping and characterizing the aquifer. Accordingly, the city of Sioux Falls partnered with the U.S. Geological Survey to construct a groundwater-flow model. Model inputs will include data from advanced geophysical techniques, specifically airborne electromagnetic methods.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntington, Charles W.

    If implemented, the Orofino Creek Passage Project will provide adult fish passage at barrier waterfalls on Orofino Creek, Idaho, and give anadromous salmonids access to upstream habitat. Anadromous fish are currently blocked at Orofino Falls, 8.3 km above the stream's confluence with the Clearwater River. This report summarizes results of a study to determine the potential for increasing natural production of summer steelhead (Salmo gairdneri) and spring chinook salmon (Oncorhynchus tschawytscha) in the Orofino Creek drainage by enhancing adult fish passage. Data on fish habitat, migration barriers, stream temperatures and fish populations in the drainage were collected during 1987 andmore » provided a basis for estimating the potential for self-sustaining anadromous salmonid production above Orofino Falls. Between 84.7 and 103.6 km of currently inaccessible streams would be available to anadromous fish following project implementation, depending on the level of passage enhancement above Orofino Falls. These streams contain habitat of poor to good quality for anadromous salmonids. Low summer flows and high water temperatures reduce habitat quality in lower mainstem Orofino Creek. Several streams in the upper watershed have habitat that is dominated by brook trout and may be poorly utilized by steelhead or salmon. 32 refs., 20 figs., 22 tabs.« less

  9. Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, Eugenio; MachíN, Francisco; VéLez-Belchí, Pedro; López-Laatzen, Federico; Borges, Rafael; BeníTez-Barrios, Verónica; HernáNdez-Guerra, Alonso

    2010-09-01

    One of the longest current meter time series in the Lanzarote Passage in the eastern boundary of the North Atlantic Subtropical Gyre has been used to determine and quantify the 9-year mean transport, the inter-annual and seasonal mass transport variability for the three water masses present in the area. Results show North Atlantic Central Water (NACW) flowing southward in the upper levels with a mean mass transport of -0.81 ± 1.48 Sv, Antarctic Intermediate Water (AAIW) flowing northward at intermediate levels with a mean transport of +0.09 ± 0.57 Sv and Mediterranean Water (MW) flowing southward in the deep part of the passage with a mean transport of -0.05 ± 0.17 Sv. Harmonic and wavelet analysis show the presence of a seasonal pattern in the passage for the three water masses. A maximum southward transport in winter and spring has been observed for the NACW followed by a minimum in summer and fall. Near zero values during winter and spring are found for AAIW, with a maximum northward value in summer and a negative value in fall, when this water mass reverses its flow. MW has a similar seasonal pattern to NACW. The vertical structure in the Lanzarote Passage can be approximated by four significant oscillatory modes which cumulatively explain 86.4% of the variance. The strong transport fluctuation found at the seasonal and inter-annual timescales demonstrates that the Eastern Boundary Current transport has a strong impact on meridional overturning estimates, thus indicating that to understand Meridional Overturning Circulation variability, these transport estimates at the eastern Atlantic margin are necessary.

  10. Experimental study of near-field entrainment of moderately overpressured jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.

    2011-01-01

    Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.

  11. Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Kucharek, H.; Clark, G.; O'Neill, M.; Petersen, L.; Bzowski, M.; Saul, L.; Wurz, P.; Fuselier, S. A.; Izmodenov, V. V.; McComas, D. J.; Müller, H. R.; Alexashov, D. B.

    2009-08-01

    Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly- α backscattering observations and the two Voyager crossings of the termination shock.

  12. Comparison of base flows to selected streamflow statistics representative of 1930-2002 in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2012-01-01

    Base flows were compared with published streamflow statistics to assess climate variability and to determine the published statistics that can be substituted for annual and seasonal base flows of unregulated streams in West Virginia. The comparison study was done by the U.S. Geological Survey, in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management. The seasons were defined as winter (January 1-March 31), spring (April 1-June 30), summer (July 1-September 30), and fall (October 1-December 31). Differences in mean annual base flows for five record sub-periods (1930-42, 1943-62, 1963-69, 1970-79, and 1980-2002) range from -14.9 to 14.6 percent when compared to the values for the period 1930-2002. Differences between mean seasonal base flows and values for the period 1930-2002 are less variable for winter and spring, -11.2 to 11.0 percent, than for summer and fall, -47.0 to 43.6 percent. Mean summer base flows (July-September) and mean monthly base flows for July, August, September, and October are approximately equal, within 7.4 percentage points of mean annual base flow. The mean of each of annual, spring, summer, fall, and winter base flows are approximately equal to the annual 50-percent (standard error of 10.3 percent), 45-percent (error of 14.6 percent), 75-percent (error of 11.8 percent), 55-percent (error of 11.2 percent), and 35-percent duration flows (error of 11.1 percent), respectively. The mean seasonal base flows for spring, summer, fall, and winter are approximately equal to the spring 50- to 55-percent (standard error of 6.8 percent), summer 45- to 50-percent (error of 6.7 percent), fall 45-percent (error of 15.2 percent), and winter 60-percent duration flows (error of 8.5 percent), respectively. Annual and seasonal base flows representative of the period 1930-2002 at unregulated streamflow-gaging stations and ungaged locations in West Virginia can be estimated using previously published values of statistics and procedures.

  13. Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Kume, Jack; Hammermeister, D.P.

    1990-01-01

    This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)

  14. Estimating turbidity current conditions from channel morphology: A Froude number approach

    NASA Astrophysics Data System (ADS)

    Sequeiros, Octavio E.

    2012-04-01

    There is a growing need across different disciplines to develop better predictive tools for flow conditions of density and turbidity currents. Apart from resorting to complex numerical modeling or expensive field measurements, little is known about how to estimate gravity flow parameters from scarce available data and how they relate to each other. This study presents a new method to estimate normal flow conditions of gravity flows from channel morphology based on an extensive data set of laboratory and field measurements. The compilation consists of 78 published works containing 1092 combined measurements of velocity and concentration of gravity flows dating as far back as the early 1950s. Because the available data do not span all ranges of the critical parameters, such as bottom slope, a validated Reynolds-averaged Navier-Stokes (RANS)κ-ɛnumerical model is used to cover the gaps. It is shown that gravity flows fall within a range of Froude numbers spanning 1 order of magnitude centered on unity, as opposed to rivers and open-channel flows which extend to a much wider range. It is also observed that the transition from subcritical to supercritical flow regime occurs around a slope of 1%, with a spread caused by parameters other than the bed slope, like friction and suspended sediment settling velocity. The method is based on a set of equations relating Froude number to bed slope, combined friction, suspended material, and other flow parameters. The applications range from quick estimations of gravity flow conditions to improved numerical modeling and back calculation of missing parameters. A real case scenario of turbidity current estimation from a submarine canyon off the Nigerian coast is provided as an example.

  15. Chemistry of through-fall and stem-flow leachate following rainfall simulation over pinyon and juniper

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that leachate from pinyon and juniper canopies, following rainfall events, may contribute sizable levels of solutes and C to the soil surface. We quantified solutes and dissolved carbon in stem-flow (SF) and through-fall (TF) following replicated rainfall simulation events in a pinyo...

  16. 78 FR 42799 - Glen Canyon Dam Adaptive Management Work Group Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... Environmental Impact Statement, (2) results of the 2012 Fall high flow experiment, (3) basin hydrology and the potential for a fall high flow experiment, (4) reports from the Glen Canyon Dam Tribal Liaison. The AMWG... Office, 125 South State Street, Room 6107, Salt Lake City, Utah, 84138; telephone 801-524-3781; facsimile...

  17. Migration of Amphitheater-Headed Valleys in Kauai Basalts: Wailua Falls as a Case Example

    NASA Astrophysics Data System (ADS)

    Pederson, D. T.; Blay, C.

    2006-12-01

    Amphitheater-headed valleys in Kauai basalts migrate upstream primarily because of weathering processes. Basalt weathering rates are enhanced by the presence of water and/or vegetation. When both weathering process are present, weathering rates are greater than the sum of the two processes. Because waterfalls can create an environment where vegetation growth is greatly inhibited by the impact of falling water, weathering rates may be much greater on each side of the falls where vegetation can grow. Sources of water for weathering include groundwater discharge, waterfall spray, and condensation of atmospheric water. Because basalts weather rapidly in tropical environments, streams require only the capability to transport smaller particle sizes to sustain amphitheater migration. It should be noted that most waterfalls occupy only a small fraction of the amphitheater head which further supports weathering as the principal agent in amphitheater development and migration. Lava flows building shield volcanos are usually episodic with crystallization and possible weathering occurring before the next flow. The rate of cooling of a flow determines the crystal size of minerals and in combination with the magma chemistry the susceptibility of a flow to weathering process as well as the strength of the rock. With time, soils and topography will develop on the now crystallized flow. Because clays are a product of basalt weathering, soils when buried by later flows, represent low permeability layers. Additionally, new flows may follow (and bury) surface drainage systems resulting in localized thicker flows that cool more slowly and have different properties then the adjacent thinner flows. Consequently, most amphitheater heads have significant heterogenieties, especially in a vertical section representing multiple basalt flows. Wailua Falls on Kauai will be used as a field example of amphitheater weathering processes and migration.

  18. Eruption and deposition of the Fisher Tuff (Alaska)--Evidence for the evolution of pyroclastic flows

    USGS Publications Warehouse

    Burgisser, Alain; Gardner, J.E.; Stelling, P.

    2007-01-01

    Recognition that the Fisher Tuff (Unimak Island, Alaska) was deposited on the leeside of an ∼500–700‐m‐high mountain range (Tugamak Range) more than 10 km away from its source played a major role in defining pyroclastic flows as momentum‐driven currents. We reexamined the Fisher Tuff to evaluate whether deposition from expanded turbulent clouds can better explain its depositional features. We studied the tuff at 89 sites and sieved bulk samples from 27 of those sites. We find that the tuff consists of a complex sequence of deposits that record the evolution of the eruption from a buoyant plume (22 km) that deposited ∼0.2 km3 of dacite magma as a pyroclastic fall layer to erupting ∼10–100 km3 of andesitic magma as Scoria‐rich pyroclastic falls and flows that were mainly deposited to the north and northwest of the caldera, including those in valleys within the Tugamak Range. The distribution of the flow deposits and their welding, internal stratification, and the occurrence of lithic breccia all suggest that the pyroclastic flows were fed from a fountaining column that vented from an inclined conduit, the first time such a conduit has been recognized during a large‐volume caldera eruption. Pyroclastic flow deposits before and after the mountain range and thin veneer deposits high in the range are best explained by a flow that was stratified into a dense undercurrent and an overriding dilute turbulent cloud, from which deposition before the range was mainly from the undercurrent. When the flow ran into the mountain range, however, the undercurrent was blocked, but the turbulent cloud continued on. As the flow continued north, it restratified, forming another undercurrent. The Fisher Tuff thus records the passing of a flow that was significantly higher (800–1100 m thick) than the mountain range and thus did not require excessive momentum.

  19. Liquid oxygen dicting cleaned by falling film method

    NASA Technical Reports Server (NTRS)

    Paul, H. I.

    1967-01-01

    Principle of a vertical falling film is used to clean contaminated large diameter and length liquid oxygen /LOX/ cylindrical ducting. The cleaning cycle is performed by flowing trichloroethylene in a falling film down a vertically mounted duct for approximately one hour.

  20. Effect of Niagara power project on ground-water flow in the upper part of the Lockport Dolomite, Niagara Falls area, New York

    USGS Publications Warehouse

    Miller, Todd S.; Kappel, W.M.

    1987-01-01

    The Niagara River Power Project near Niagara Falls, N.Y., has created recharge and discharge areas that have modified the direction of groundwater flow east and northeast of the falls. Before construction of the power project in 1962, the configuration of the potentiometric surface in the upper part of the Silurian Lockport Dolomite generally paralleled the buried upper surface of the bedrock. Ground water in the central and east parts of the city of Niagara Falls flowed south and southwestward toward the upper Niagara River (above the falls), and ground water in the western part flowed westward into Niagara River gorge. The power project consists of two hydroelectric powerplants separated by a forebay canal that receives water from the upper Niagara River through two 4-mi-long, parallel, buried conduits. During periods of nonpeak power demand, some water in the forebay canal is pumped to a storage reservoir for later release to generate electricity during peak-demand periods. Since the power project began operation in 1962, groundwater within 0.5 mi of the buried conduits has seeped into the drain system that surrounds the conduits, then flows both south from the forebay canal and north from the Niagara River toward the Falls Street tunnel--a former sewer that crosses the conduits 0.65 mi north of the upper Niagara River. Approximately 6 million gallons of ground water a day leaks into the Falls Street tunnel, which carries it 2.3 mi westward to the Niagara River gorge below the falls. Daily water-level fluctuations in the forebay canal affect water levels in the drain system that surrounds the conduits, and this , in turn, affects the potentiometric surface in the Lockport Dolomite within 0.5 mi of the conduits. The drains transmit changes in pressure head near the forebay canal southward at least as far as the Falls Street tunnel area and possibly to the upper Niagara River. Some water in the pumped-storage reservoir recharges ground water in the Lockport Dolomite by seepage through bedding joints, which are exposed in the unlined reservoir bottom, and through the grout curtain beneath the reservoir 's dike. Water-level fluctuations in the reservoir cause slight ground-water fluctuations near the reservoir. (Author 's abstract)

  1. Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002

    USGS Publications Warehouse

    Taillandier, V.; Griffa, A.; Poulain, P.-M.; Signell, R.; Chiggiato, J.; Carniel, S.

    2008-01-01

    In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters. Copyright 2008 by the American Geophysical Union.

  2. The Niagara Falls of Mars

    NASA Image and Video Library

    2017-06-26

    Various researchers are often pre-occupied with the quest for flowing water on Mars. However, this image from NASA's Mars Reconnaissance Orbiter (MRO), shows one of the many examples from Mars where lava (when it was molten) behaved in a similar fashion to liquid water. The northern rim of a 30-kilometer diameter crater situated in the western part of the Tharsis volcanic province is shown. The image shows that a lava flow coming from the north-northeast surrounded the crater rim, and rose to such levels that it breached the crater rim at four locations to produce spectacular multi-level lava falls (one in the northwest and three in the north). These lava "falls" cascaded down the wall and terraces of the crater to produce a quasi-circular flow deposit. It seems that the flows were insufficient to fill or even cover the pre-existing deposits of the crater floor. This is evidenced by the darker-toned lavas that overlie the older, and possibly dustier, lighter-toned deposits on the crater floor. This image covers the three falls in the north-central region of the crater wall. The lava flows and falls are distinct as they are rougher than the original features that are smooth and knobby. In a close-up image the rough-textured lava flow to the north has breached the crater wall at a narrow point, where it then cascades downwards, fanning out and draping the steeper slopes of the wall in the process. Image scale is 54.5 centimeters (21.5 inches) per pixel (with 2 x 2 binning); objects on the order of 164 centimeters (64.6 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21763

  3. The alpha (α)-glucosidase inhibitor, acarbose, attenuates the blood pressure and splanchnic blood flow responses to intraduodenal sucrose in older adults.

    PubMed

    Gentilcore, Diana; Vanis, Lora; Wishart, Judith M; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L

    2011-08-01

    Postprandial hypotension is an important problem in the elderly and may be triggered by the increase in splanchnic blood flow induced by a meal. Acarbose attenuates the fall in blood pressure (BP) induced by oral sucrose and may be useful in the management of postprandial hypotension. It is not known whether the effect of acarbose on postprandial BP reflects slowing of gastric emptying and/or carbohydrate absorption nor whether acarbose affects splanchnic blood flow. We examined the effects of intraduodenal (ID) acarbose on the BP, heart rate, superior mesenteric artery (SMA) flow, and glycemic and insulin responses to ID sucrose in older participants--this approach excluded any "gastric" effect of acarbose. Eight healthy participants (four male and four female, age 66-77 years) received an ID infusion of sucrose (~6 kcal/min), with or without acarbose (100 mg), over 60 minutes. BP, heart rate, SMA flow, blood glucose, and serum insulin were measured. Acarbose markedly attenuated the falls in systolic (p < .01) and diastolic (p < .05) BP and rises in heart rate (p < .05), SMA flow (p < .05), blood glucose (p < .01), and serum insulin (p < .05). The maximum fall in systolic BP and peak SMA flow was inversely related on the control day (r(2) = -.53, p < .05) but not with acarbose (r(2) = .03, p = .70). We conclude that in healthy older participants receiving ID sucrose, (a) acarbose markedly attenuates the hypotensive response by slowing carbohydrate absorption and attenuating the rise in splanchnic blood flow and (b) the fall in BP is related to the concomitant increase in SMA flow.

  4. Field-aligned currents in Saturn's northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations

    NASA Astrophysics Data System (ADS)

    Hunt, G. J.; Cowley, S. W. H.; Provan, G.; Bunce, E. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.; Coates, A. J.

    2015-09-01

    We investigate the magnetic perturbations associated with field-aligned currents observed on 34 Cassini passes over the premidnight northern auroral region during 2008. These are found to be significantly modulated not only by the northern planetary-period oscillation (PPO) system, similar to the southern currents by the southern PPO system found previously, but also by the southern PPO system as well, thus providing the first clear evidence of PPO-related interhemispheric current flow. The principal field-aligned currents of the two PPO systems are found to be co-located in northern ionospheric colatitude, together with the currents of the PPO-independent (subcorotation) system, located between the vicinity of the open-closed field boundary and field lines mapping to ~9 Saturn radius (Rs) in the equatorial plane. All three systems are of comparable magnitude, ~3 MA in each PPO half-cycle. Smaller PPO-related field-aligned currents of opposite polarity also flow in the interior region, mapping between ~6 and ~9 Rs in the equatorial plane, carrying a current of ~ ±2 MA per half-cycle, which significantly reduce the oscillation amplitudes in the interior region. Within this interior region the amplitudes of the northern and southern oscillations are found to fall continuously with distance along the field lines from the corresponding hemisphere, thus showing the presence of cross-field currents, with the southern oscillations being dominant in the south, and modestly lower in amplitude than the northern oscillations in the north. As in previous studies, no oscillations related to the opposite hemisphere are found on open field lines in either hemisphere.

  5. Physical oceanographic investigation of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Geyer, W. Rockwell; Gardner, George B.; Brown, Wendell S.; Irish, James D.; Butman, Bradford; Loder, T.C.; Signell, Richard P.

    1992-01-01

    This physical oceanographic study of the Massachusetts Bays (fig. 1) was designed to provide for the first time a bay-wide description of the circulation and mixing processes on a seasonal basis. Most of the measurements were conducted between April 1990 and June 1991 and consisted of moored observations to study the current flow patterns (fig. 2), hydrographic surveys to document the changes in water properties (fig. 3), high-resolution surveys of velocity and water properties to provide information on the spatial variability of the flow, drifter deployments to measure the currents, and acquisition of satellite images to provide a bay-wide picture of the surface temperature and its spatial variability. A longterm objective of the Massachusetts Bays program is to develop an understanding of the transport of water, dissolved substances and particles throughout the bays. Because horizontal and vertical transport is important to biological, chemical, and geological processes in Massachusetts and Cape Cod Bays, this physical oceanographic study will have broad application and will improve the ability to manage and monitor the water and sediment quality of the Bays. Key results are:There is a marked seasonal variation in stratification in the bays, from well mixed conditions during the winter to strong stratification in the summertime. The stratification acts as a partial barrier to exchange between the surface waters and the deeper waters and causes the motion of the surface waters to be decoupled from the more sluggish flow of the deep waters. During much of the year, there is weak but persistent counterclockwise flow around the bays, made up of southwesterly flow past Cape Ann, southward flow along the western shore, and outflow north of Race Point. The data suggest that this residual flow pattern reverses in fall. Fluctuations caused by wind and density variations are typically larger than the long-term mean. With the exception of western Massachusetts Bay, flushing of the Bays is largely the result of the mean throughflow. Residence time estimates of the surface waters range from 20-45 days. The deeper water has a longer residence time, but its value is difficult to estimate. There is evidence that the deep waters in Stellwagen Basin are not renewed between the onset of stratification and the fall cooling period.Current measurements made near the new outfall site in western Massachusetts Bay suggest that water and material discharged there are not swept away in a consistent direction by a well-defined steady current but are mixed and transported by a variety of processes, including the action of tides, winds, and river inflow. One-day particle excursions are typically less than 10 km. The outfall is apparently located in a region to the west of the basin-wide residual flow pattern.Observations in western Massachusetts Bay, near the location of the future Boston sewage outfall, show that the surficial sediments are episodically resuspended from the seafloor during storms. The observations suggest onshore transport of suspended material during tranquil periods and episodic offshore and southerly alongshore transport of resuspended sediments during storms. The spatial complexity of the flow in the Massachusetts Bays is typical of nearshore areas that have irregular coastal shorelines and topography and currents that are forced locally by wind and river runoff as well as by the flow in adjacent regions. Numerical models are providing a mechanism to interpret the complex spatial flow patterns that cannot be completely resolved by field observations and to investigate key physical processes that control the physics of water and particle transport.

  6. Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management.

    PubMed

    Pittelkow, Cameron M; Clover, Matthew W; Hoeft, Robert G; Nafziger, Emerson D; Warren, Jeffery J; Gonzini, Lisa C; Greer, Kristin D

    2017-09-01

    Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Hydrologic Controls on Sediment Retention in a Diversion-Fed Coastal Wetland

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.; Snedden, G.; Renfro, A. A.

    2017-12-01

    The morphodynamics of river-dominated deltas are largely controlled by the supply and retention of sediment within deltaic wetlands and the rate of relative sea-level rise. Yet, sediment budgets for deltas are often poorly constrained. In the Mississippi River Delta, a system rapidly losing land to natural and anthropogenic causes, restoration efforts seek to build new land through the use of river diversions. At Davis Pond Freshwater Diversion, a new crevasse splay has emerged since construction was completed in 2002. Here, we use beryllium-7 (7Be) activity in sediment cores and USGS measurements of discharge and turbidity to calculate seasonal sediment input, deposition, and retention within the Davis Pond receiving basin. In winter/spring 2015, Davis Pond received 104,000 metric tons of sediment, 43.8% of which was retained within the basin. During this time, mean flow velocity was 0.21 m/s and turbidity was 56 formazin nephelometric units (FNU). In summer/fall 2015, Davis Pond received 35,100 metric tons of sediment, 82.1% of which was retained. Mean flow velocity in summer/fall was 0.10 m/s and turbidity was 55 FNU. The increase in sediment retention from winter/spring 2015 to summer/fall 2015 is likely due to the corresponding drop in water flow velocity, which allowed more sediment to settle out of suspension. Although high water discharge increases sediment input and deposition, increased turbulence associated with higher current velocity may increase sediment throughput and decrease the percent of sediments retained in the system. Sediment retention in Davis Pond is on the high end of the range seen in deltaic wetlands, likely due to the enclosed geometry of the receiving basin. Future diversion design and operation should target moderate water discharge and flow velocities in order to jointly maximize sediment deposition and retention and provide optimal conditions for delta growth.

  8. Groundwater resources of the Devils Postpile National Monument—Current conditions and future vulnerabilities

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, Deborah

    2017-06-15

    This study presents an extensive database on groundwater conditions in and around Devils Postpile National Monument. The database contains chemical analyses of springs and the monument water-supply well, including major-ion chemistry, trace element chemistry, and the first information on a list of organic compounds known as emerging contaminants. Diurnal, seasonal, and annual variations in groundwater discharge and chemistry are evaluated from data collected at five main monitoring sites, where streams carry the aggregate flow from entire groups of springs. These springs drain the Mammoth Mountain area and, during the fall months, contribute a significant fraction of the San Joaquin River flow within the monument. The period of this study, from fall 2012 to fall 2015, includes some of the driest years on record, though the seasonal variability observed in 2013 might have been near normal. The spring-fed streams generally flowed at rates well below those observed during a sequence of wet years in the late 1990s. However, persistence of flow and reasonably stable water chemistry through the recent dry years are indicative of a sizeable groundwater system that should provide a reliable resource during similar droughts in the future. Only a few emerging contaminants were detected at trace levels below 1 microgram per liter (μg/L), suggesting that local human visitation is not degrading groundwater quality. No indication of salt from the ski area on the north side of Mammoth Mountain could be found in any of the groundwaters. Chemical data instead show that natural mineral water, such as that discharged from local soda springs, is the main source of anomalous chloride in the monument supply well and in the San Joaquin River. The results of the study are used to develop a set of recommendations for future monitoring to enable detection of deleterious impacts to groundwater quality and quantity

  9. Analysis of energy flow during playground surface impacts.

    PubMed

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  10. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow

    PubMed Central

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-01-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800

  11. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges

    NASA Astrophysics Data System (ADS)

    Fujii, Toshitsugu; Nakada, Setsuya

    1999-04-01

    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high concentration (main body), an overriding and intermediate fluidization zone, and an overlying dilute cloud. Release of pressurized gas in lava block pores, due to collisions among blocks and the resulting upward current, caused a zone of fluidization just above the main body. The mixture of gas and ash sorted in the fluidization zone moved ahead and to the side of the main body as a gravitational current, where the ash was deposited as surge deposits. The main body, which had high internal friction and shear near its base, then overran the surge deposits, partially eroding them. When the upward current of gas (fluidization) waned, better-sorted ash suspended in the fluidization zone was deposited on block-and-ash deposits. In the distal places of block-and-ash deposits, unit 2 probably was deposited in non-turbulent fashion without any erosion of the underlying layer (unit 1).

  12. Episodic acidification of a coastal plain stream in Virginia

    USGS Publications Warehouse

    O'Brien, A. K.; Eshleman, K.N.

    1996-01-01

    This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid- base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO4/2- concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl- concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO4/2- concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl- concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO4/2- concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO4/2- concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow appears to be the likely mechanism by which solutes are transported to the stream during storm flow.

  13. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    PubMed

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  14. Velocity and void distribution in a counter-current two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less

  15. Tree leaf control on low flow water quality in a small Virginia stream

    USGS Publications Warehouse

    Slack, K.V.; Feltz, H.R.

    1968-01-01

    Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.

  16. Spatio-temporal Evolution of Velocity Structure, Concentration and Grain-size Stratification within Experimental Particulate Gravity Flows: Potential Input Parameters for Numerical Models

    NASA Astrophysics Data System (ADS)

    McCaffrey, W.; Choux, C.; Baas, J.; Haughton, P.

    2001-12-01

    Little is known about the combined spatio-temporal evolution of velocity structure, concentration and grain size stratification within particulate gravity currents. Yet these data are of primary importance for numerical model validation, prior to application to natural flows, such as pyroclastic density currents and turbidity currents. A comprehensive study was carried out on a series of experimental particulate gravity flows of 5% by volume initial concentration. The sediment analogue was polydisperse silica flour (mean grain size ~8 microns). A uniform 30 liter suspension was prepared in an overhead reservoir, then allowed to drain (in about one minute) into an flume 10 m long and 0.3 m wide, water-filled to a depth of 0.3 m. Each flow was siphoned continuously for 52 s at 5 different heights (spaced evenly from 0.6 to 4.6 cm) with samples collected at a frequency of 0.25Hz, generating 325 samples for grain-size and concentration analysis. Simultaneously, six 4-MHz UDVP (Ultrasonic Doppler Velocity Profiling) probes recorded the horizontal component of flow velocity. All but the highest probe were positioned at the same height as the siphons. The sampling location was shifted 1.32m down-current for each of five nominally identical flows, yielding sample locations at 1.32, 2.64, 3.96, 5.28 and 6.60m from the inlet point. These data can be combined to give both the temporal and spatial evolution of a single idealised flow. The concentration data can be used to defined the structure of the flow. The flow first propagated as a jet, then became stratified. The length of the head increased with increasing distance from the reservoir (although the head propagation velocity was uniform). The maximum concentration was located at the base of the flow towards the rear of the head. Grain-size analysis showed that the head was enriched in coarse particles even at the most distal sampling location. Distinct flow stratification developed at a distance between 1.3 m and 2.6 m from the reservoir. In the body of the current, the suspended sediment was normally graded, whereas the tail exhibited inverse grading. This inverse grading may be linked to coarse particles in the head being swept upwards and backwards, then falling back into the body of the current. Alternatively, body turbulence may inhibit the settling of coarse particles. Turbulence may also explain the presence of coarse particles in the flow's head, with turbulence intensity apparently correlated with the flow competence.

  17. [Pharmacological study of nicergoline. (III). Effects on cerebral and peripheral circulation in animals].

    PubMed

    Shintomi, K; Ogawa, Y; Yoshimoto, K; Narita, H

    1986-05-01

    Effects of nicergoline on the cerebral and peripheral circulation were compared with those of dihydroergotoxine (DHE) and papaverine (PAP) in anesthetized and/or immobilized cats. The i.a. injection of nicergoline (0.032 approximately 32 micrograms/kg), similarly to PAP, caused dose-dependent increases in intramaxillary artery (as the human intracarotid artery) blood flow (IMBF) and femoral artery blood flow, but the injection of DHE had no effect on these blood flows. The i.v. injection of nicergoline (32 approximately 128 micrograms/kg) caused a dose-dependent fall in blood pressure (BP) and a transient slight decrease in cerebral vascular resistance, but did not affect IMBF, regional cerebral blood flow (r-CBF), intracranial pressure (ICP) and heart rate (HR). The i.v. injection of DHE produced a slight fall in BP and a marked long-lasting decrease in HR, without affecting other parameters. The i.v. injection of PAP (4 mg/kg) induced marked increases in IMBF, r-CBF, ICP and HR and caused a transient fall followed by a marked elevation in BP. The p.o. administration of nicergoline (0.06 approximately 4 mg/kg) caused a dose-dependent fall in BP and selective inhibition of pressure response to adrenaline (ID50: 0.25 mg/kg). The administration of DHE produced marked inhibition of pressure responses to both adrenaline and noradrenaline, accompanied with a slight fall in BP. Furthermore, the administration of nicergoline (3 approximately 100 mg/kg) induced a dose-dependent fall in BP in SHR. These results suggest that the cerebral and peripheral circulatory effects of nicergoline may be due to direct vasodilating action and alpha-blocking action in the animals.

  18. Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution

    NASA Astrophysics Data System (ADS)

    Olbricht, M.; Addy, J.; Luke, A.

    2016-09-01

    Horizontal tube bundles are often used as falling film evaporators in absorption chillers, especially for systems working at low pressure as H2O/LiBr. Experimental investigations are carried out in a falling film evaporator consisting of a horizontal tube bundle with eighty horizontal tubes installed in an absorption chiller because of a lack of consistent data for heat and mass transfer in the literature. The heat and mass transfer mechanisms and the flow pattern in the falling film are analysed and compared with correlations from literature. The deviations of the experimental data from those of the correlations are within a tolerance of 30%. These deviations may be explained by a change of the flow pattern at a lower Reynolds number than compared to the literature.

  19. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews

    NASA Astrophysics Data System (ADS)

    Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro

    2016-05-01

    A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.

  20. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.

  1. Simultaneous heat and mass transfer inside a vertical channel in evaporating a heated falling glycols liquid film

    NASA Astrophysics Data System (ADS)

    Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham

    2015-12-01

    The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.

  2. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    PubMed

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Stratigraphy and Geochemistry of a Fond St. Jean Cinder Cone, Dominica

    NASA Astrophysics Data System (ADS)

    Isenburg, T.; Frey, H. M.; Waters, L. E.; Dunn, S.; Manon, M. R. F.

    2017-12-01

    Current geologic maps of Dominica generally classify the south-eastern portion of the island surrounding the Foundland stratovolcano as "mafic breccias and thin lava flows of Foundland center" (Smith et al. 2013). A detailed survey of the stratigraphy of a road cut at Fond St. Jean provides evidence for a mafic cinder cone on the flanks of Foundland. The 39 m thick stratigraphic sequence, dipping 60˚ north, includes a basal unit of scoria overlain by a meter of basaltic breccia and repeating layers of massive and rubbly flows, which range from 1 to 10 m in thickness. These flows transition into an additional, 2 m thick scoria deposit capped by a meter of massive basalt, which sits beneath another 3-4 m scoria deposit. Another layer of massive flow then transitions to three units of alternating air fall and ash lenses. Air fall units are 0.5 m in thickness but pinch and swell regularly, and ash lenses are roughly 10 cm thick. All units contain plagioclase + olivine + clinopyroxene + orthopyroxene + titanomagnetite. Though the phase assemblage is consistent between basaltic units, different crystal morphologies serve to define individual massive flows. Variations in the texture of materials deposited by the cinder cone provides evidence for cyclic explosive and effusive episodes. Massive samples at the bottom of the stratigraphic section contain abundant, large olivine and tabular, elongate plagioclase. Plagioclase compositions between individual stratigraphic units span a similar range in composition. Massive flows throughout the column contain similar, weakly zoned plagioclase cores (An84-94) with 10-30 µm sodic rims (An58-78; most rims are 68). Plagioclase microlites (long axes ≤100µm) span a wide range of compositions (An50-90). Three different air fall units contain plagioclase rims ranging in composition from An58-86 and cores ranging from An84-92, with the exception of a single core that has a composition of An61. Olivine in most units ranges in composition from Fo55-70. Spinels are ubiquitous throughout each of the units in the section and are consistently titanomagnetites. The potential genetic relationship between the cinder cone and Foundland is unclear, as the Foundland basalts are olivine-poor and contain amphibole, suggesting a wetter source magma for Foundland.

  4. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    NASA Astrophysics Data System (ADS)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  5. Application of the Systems Impact Assessment Model (SIAM) to Fishery Resource Issues in the Klamath River, California

    USGS Publications Warehouse

    Campbell, Sharon G.; Bartholow, John M.; Heasley, John

    2010-01-01

    At the request of two offices of the U.S. Fish and Wildlife Service (FWS) located in Yreka and Arcata, Calif., we applied the Systems Impact Assessment Model (SIAM) to analyze a variety of water management concerns associated with the Federal Energy Regulatory Commission (FERC) relicensing of the Klamath hydropower projects or with ongoing management of anadromous fish stocks in the mainstem Klamath River, Oregon and California. Requested SIAM analyses include predicted effects of reservoir withdrawal elevations, use of full active storage in Copco and Iron Gate Reservoirs to augment spring flows, and predicted spawning and juvenile outmigration timing of fall Chinook salmon. In an effort to further refine the analysis of spring flow effects on predicted fall Chinook production, additional SIAM analyses were performed for predicted response to spring flow release variability from Iron Gate Dam, high and low pulse flow releases, the predicted effects of operational constraints for both Upper Klamath Lake water surface elevations, and projected flow releases specified in the Klamath Project 2006 Operations Plan (April 10, 2006). Results of SIAM simulations to determine flow and water temperature relationships indicate that up to 4 degrees C of thermal variability can be attributed to flow variations, but the effect is seasonal. Much more of thermal variability can be attributed to air temperature variations, up to 6 degrees C. Reservoirs affect the annual thermal signature by delaying spring warming by about 3 weeks and fall cooling by about 2 weeks. Multi-level release outlets on Iron Gate Dam would have limited utility; however, if releases are small (700 cfs) and a near-surface and bottom-level outlet could be blended, then water temperature may be reduced by 2-4 degrees C for a 4-week period during September. Using the full active storage in Copco and Iron Gate Reservoir, although feasible, had undesirable ramifications such as earlier spring warming, loss of hydropower production, and inability to re-fill the reservoirs without causing shortages elsewhere in the system. Altering spawning and outmigration timing may be important management objectives for the salmon fishery, but difficult to implement. SIAM predicted benefits that might occur if water temperature was cooler in fall and spring emergence was advanced; however, model simulations were based on purely arbitrary thermal reductions. Spring flow variability did indicate that juvenile fall Chinook rearing habitat was the major biological 'bottleneck' for year class success. Rearing habitat is maximal in a range between 4,500 and 5,500 cfs below Iron Gate Dam. These flow levels are not typically provided by Klamath River system operations, except in very wet years. The incremental spring flow analysis provided insight into when and how long a pulse flow should occur to provide predicted fall Chinook salmon production increases. In general, March 15th - April 30th of any year was the period for pulse flows and 4000 cfs was the target flow release that provided near-optimal juvenile rearing habitat. Again, competition for water resources in the Klamath River Basin may make implementation of pulsed flows difficult.

  6. Retrieval-travel-time model for free-fall-flow-rack automated storage and retrieval system

    NASA Astrophysics Data System (ADS)

    Metahri, Dhiyaeddine; Hachemi, Khalid

    2018-03-01

    Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval-travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for drug distribution. This system is a new variation of flow-rack AS/RS that uses an operator or a single machine for storage operations, and uses a combination between the free-fall movement and a transport conveyor for retrieval operations. The main contribution of this paper is to develop an analytical model of the expected retrieval-travel time for the free-fall flow-rack under a dedicated storage assignment policy. The proposed model, which is based on a continuous approach, is compared for accuracy, via simulation, with discrete model. The obtained results show that the maximum deviation between the continuous model and the simulation is less than 5%, which shows the accuracy of our model to estimate the retrieval time. The analytical model is useful to optimise the dimensions of the rack, assess the system throughput, and evaluate different storage policies.

  7. The variation in frequency locations in Doppler ultrasound spectra for maximum blood flow velocities in narrowed vessels.

    PubMed

    Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan

    2017-11-01

    This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape.

    PubMed

    Pilliod, David S; Arkle, Robert S; Robertson, Jeanne M; Murphy, Melanie A; Funk, W Chris

    2015-09-01

    Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900-1930), recent (1981-2010), and future (2071-2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May - September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50-80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.

  9. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  10. Local wind forcing of the Monterey Bay area inner shelf

    USGS Publications Warehouse

    Drake, P.T.; McManus, M.A.; Storlazzi, C.D.

    2005-01-01

    Wind forcing and the seasonal cycles of temperature and currents were investigated on the inner shelf of the Monterey Bay area of the California coast for 460 days, from June 2001 to September 2002. Temperature measurements spanned an approximate 100 km stretch of coastline from a bluff just north of Monterey Bay south to Point Sur. Inner shelf currents were measured at two sites near the bay's northern shore. Seasonal temperature variations were consistent with previous observations from the central California shelf. During the spring, summer and fall, a seasonal mean alongshore current was observed flowing northwestward in the northern bay, in direct opposition to a southeastward wind stress. A barotropic alongshore pressure gradient, potentially driving the northwestward flow, was needed to balance the alongshore momentum equation. With the exception of the winter season, vertical profiles of mean cross-shore currents were consistent with two-dimensional upwelling and existing observations from upwelling regions with poleward subsurface flow. At periods of 15-60 days, temperature fluctuations were coherent both throughout the domain and with the regional wind field. Remote wind forcing was minimal. During the spring upwelling season, alongshore currents and temperatures in the northern bay were most coherent with winds measured at a nearby land meteorological station. This wind site showed relatively low correlations to offshore buoy wind stations, indicating localized wind effects are important to the circulation along this stretch of Monterey Bay's inner shelf. ?? 2004 Elsevier Ltd. All rights reserved.

  11. Forming of film surface of very viscous liquid flowing with gas in pipes

    NASA Astrophysics Data System (ADS)

    Czernek, Krystian; Witczak, Stanisław

    2017-10-01

    The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.

  12. Assembling an ignimbrite: Compositionally defined eruptive packages in the 1912 Valley of Ten Thousand Smokes ignimbrite, Alaska

    USGS Publications Warehouse

    Fierstein, J.; Wilson, C.J.N.

    2005-01-01

    The 1912 Valley of Ten Thousand Smokes (VTTS) ignimbrite was constructed from 9 compositionally distinct, sequentially emplaced packages, each with distinct proportions of rhyolite (R), dacite (D), and andesite (A) pumices that permit us to map package boundaries and flow paths from vent to distal extents. Changing pumice proportions and interbedding relationships link ignimbrite formation to coeval fall deposition during the first ???16 h (Episode I) of the eruption. Pumice compositional proportions in the ignimbrite were estimated by counts on ???100 lapilli at multiple levels in vertical sections wherever accessible and more widely over most of the ignimbrite surface in the VTTS. The initial, 100% rhyolite ignimbrite package (equivalent to regional fall Layer A and occupying ???3.5 h) was followed by packages with increasing proportions of andesite, then dacite, emplaced over ???12.5 h and equivalent to regional fall Layers B1-B3. Coeval fall deposits are locally intercalated with the ignimbrite and show parallel changes in R:D (rhyolite:dacite) proportions, but lack significant amounts of andesite. Andesite was thus dominantly a low-fountaining component in the eruption column and is preferentially represented in packages filling the VTTS north of the vent. The most extensive packages (3 and 4) occur in B1 and early B2 times where flow mobility and volume were optimized; earlier all-rhyolite flows (Package 1) were highly energetic but less voluminous, while later packages (5-9) were both less voluminous and emplaced at lower velocities. Package boundaries are expressed as one or more of the following: sharp color changes corresponding to compositional variations; persistent finer-grained basal parts of flow units; compaction swales filled by later packages; erosional channels cut by the flows that fill them; lobate accumulations of one package; and (mostly south of the vent) intercalated fall deposit layers. Clear flow-unit boundaries are best developed between ignimbrite of non-successive packages, indicating time breaks of tens of minutes to hours. Less well-defined stratification may represent rapidly emplaced successive flow units but often changes over short distances and indicates variations in localized depositional conditions. ?? 2005 Geological Society of America.

  13. Fall and winter microhabitat use and suitability for spring chinook salmon parr in a U.S. Pacific Northwest River

    USGS Publications Warehouse

    Favrot, Scott D.; Jonasson, Brian C.; Peterson, James T.

    2018-01-01

    Habitat degradation has been implicated as a primary threat to Pacific salmon Oncorhynchus spp. Habitat restoration and conservation are key toward stemming population declines; however, winter microhabitat use and suitability knowledge are lacking for small juvenile salmonids. Our objective was to characterize microhabitat use and suitability for spring Chinook Salmon Oncorhynchus tshawytscha parr during fall and winter. Using radiotelemetry techniques during October–February (2009–2011), we identified fall and winter microhabitat use by spring Chinook Salmon parr in Catherine Creek, northeastern Oregon. Tagged fish occupied two distinct gradient reaches (moderate and low). Using a mixed‐effects logistic regression resource selection function (RSF) model, we found evidence that microhabitat use was similar between free‐flowing and surface ice conditions. However, habitat use shifted between seasons; most notably, there was greater use of silt substrate and areas farther from the bank during winter. Between gradients, microhabitat use differed with greater use of large wood (LW) and submerged aquatic vegetation in the low‐gradient reach. Using a Bayesian RSF approach, we developed gradient‐specific habitat suitability criteria. Throughout the study area, deep depths and slow currents were most suitable, with the exception of the low‐gradient reach where moderate depths were optimal. Near‐cover coarse and fine substrates were most suitable in the moderate‐ and low‐gradient reaches, respectively. Near‐bank LW was most suitable throughout the study area. Multivariate principal component analyses (PCA) indicated co‐occurring deep depths supporting slow currents near cover were intensively occupied in the moderate‐gradient reach. In the low‐gradient reach, PCA indicated co‐occurring moderate depths, slow currents, and near‐bank cover were most frequently occupied. Our study identified suitable and interrelated microhabitat combinations that can guide habitat restoration for fall migrant and overwintering Chinook Salmon parr in Catherine Creek and potentially the Pacific Northwest.

  14. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  15. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  16. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    USGS Publications Warehouse

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  17. Neufeld Receives 2009 Donald L. Turcotte Award

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Jerome Neufeld has been awarded the Donald L. Turcotte Award, given annually to recent Ph.D. recipients for outstanding dissertation research that contributes directly to the field of nonlinear geophysics. Neufeld's thesis is entitled “Solidification in the fast lane: Flow-induced morphological instability in geological systems.” He was formally presented with the award at the Nonlinear Geophysics Focus Group reception during the 2009 AGU Fall Meeting, held 14-18 December in San Francisco, Calif. Jerome received his B.A.S. in engineering science from the University of Toronto in 2001, and a Ph.D. in geophysics from Yale University in 2008, under the supervision of J. S. Wettlaufer, on the impact of oceanic currents on the formation of sea ice. He is currently a fellow at the Institute of Theoretical Geophysics, University of Cambridge, working on the fluid dynamics of geophysical systems including carbon dioxide sequestration, the influence of flow on the crystal structure of mushy layers, and the evolution of icicles.

  18. Experimental and theoretical study of fluid-structure interactions in plunging hydrofoils and gravity-driven falling plates

    NASA Astrophysics Data System (ADS)

    Tian, Ruijun

    Two typical unsteady fluid-structure interaction problems have been investigated in the present study. One of them was about actively plunged flexible hydrofoil; the other was about gravity-driven falling plates in water. Real-time velocity field and dynamic response on the moving objects were measured to study these unsteady and highly nonlinear problems. For a long time, scientists have believed that bird and insect flight benefits greatly from the flexibility and morphing facility of their wings via flapping motion. A significant advantage flexible wing models have over quasi-steady rigid wing models is a much higher lift generation capability. Both experimental and computational studies have shown that the leading and trailing edge vortexes (LEV and TEV) play a major role in the efficient generation of such unconventionally high lift force. In this study, two NACA0012 miniature hydrofoils, one flexible and the other rigid, were actively plunged at various frequencies in a viscous glycerol-water solution to study the influence of flexibility. Two-dimensional, phase-locked particle image velocimetry (PIV) measurements were conducted to investigate the temporal and spacial development of LEVs and TEVs. Simultaneous measurements of lift and thrust forces were recorded to reveal the relationship between hydrodynamic force and the evolution of the surrounding flow field. Results from the flexible hydrofoil were compared to those from the rigid one in order to quantitatively analyze the effects of flexibility. The second problem focused on fluid-structure interaction of gravity driven falling plates. Falling leaves and paper cards in air has drawn plenty of research interest in the past decades to investigate the interaction between the fluid flow and the falling object. In this research, time-resolved PIV were employed to experimentally visualize the flow field evolution around the gravity-driven falling plates. The plates were made of different materials with various geometric dimensions, in order to investigate the effects of non-dimensional parameters such as Reynolds number (Re) and dimensionless moment of inertia (I*). Within the range of relative high Reynolds numbers (Re > 500), three types of falling modes were observed: i.e., periodic fluttering, periodic tumbling and marginal chaotic motion. It was found that the nondimensional moment of inertia controlled the falling mode. The flow features through the falling path of the plate were characterized and compared with their corresponding kinematics. Based on theoretical analysis and experimental results, a semi-analytic model was developed to calculate the real-time hydrodynamic force and moment applied on falling plates. With this model, the falling trajectory of 2D plates with arbitrary material/dimension combinations can be predicted. The model yielded a good match for both the dynamic force simulation and trajectory prediction.

  19. Home Camera-Based Fall Detection System for the Elderly.

    PubMed

    de Miguel, Koldo; Brunete, Alberto; Hernando, Miguel; Gambao, Ernesto

    2017-12-09

    Falls are the leading cause of injury and death in elderly individuals. Unfortunately, fall detectors are typically based on wearable devices, and the elderly often forget to wear them. In addition, fall detectors based on artificial vision are not yet available on the market. In this paper, we present a new low-cost fall detector for smart homes based on artificial vision algorithms. Our detector combines several algorithms (background subtraction, Kalman filtering and optical flow) as input to a machine learning algorithm with high detection accuracy. Tests conducted on over 50 different fall videos have shown a detection ratio of greater than 96%.

  20. Home Camera-Based Fall Detection System for the Elderly

    PubMed Central

    de Miguel, Koldo

    2017-01-01

    Falls are the leading cause of injury and death in elderly individuals. Unfortunately, fall detectors are typically based on wearable devices, and the elderly often forget to wear them. In addition, fall detectors based on artificial vision are not yet available on the market. In this paper, we present a new low-cost fall detector for smart homes based on artificial vision algorithms. Our detector combines several algorithms (background subtraction, Kalman filtering and optical flow) as input to a machine learning algorithm with high detection accuracy. Tests conducted on over 50 different fall videos have shown a detection ratio of greater than 96%. PMID:29232846

  1. Methods of measuring pumpage through closed-conduit irrigation systems

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1991-01-01

    Methods of measuring volumes of water withdrawn from the Snake River and its tributaries and pumped through closed-conduit irrigation systems were needed for equitable management of and resolution of conflicts over water use. On the basis of evaluations and field tests by researchers from the University of Idaho, Water Resources Research Institute, Moscow, Idaho, an impeller meter was selected to monitor pumpage through closed-conduit systems. In 1988, impeller meters were installed at 20 pumping stations along the Snake River between the Upper Salmon Falls and C.J. Strike Dams. Impeller-derived pumpage data were adjusted if they differed substantially from ultrasonic flow-meter- or current-meter-derived values. Comparisons of pumpage data obtained by ultrasonic flow-meter and current-meter measurements indicated that the ultrasonic flow meter was a reliable means to check operation of impeller meters. The equipment generally performed satisfactorily, and reliable pumpage data could be obtained using impeller meters in closed-conduit irrigation systems. Many pumping stations that divert water from the Snake River for irrigation remain unmeasured; however, regression analyses indicate that total pumpage can be reasonably estimated on the basis of electrical power consumption data, an approximation of total head at a pumping station, and a derived coefficient.

  2. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  3. The fluid dynamics of the chocolate fountain

    NASA Astrophysics Data System (ADS)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  4. Angiotensin converting enzyme inhibition and the kidney

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1988-01-01

    Angiotensin II (Ang II) induces a marked reduction in renal blood flow at doses well below those required to induce a pressor response, and as blood flow falls there is a decline in glomerular filtration rate and sodium excretion. This striking sensitivity of the renal blood supply led many workers to consider the possibility that angiotensin functions as a local renal hormone. As angiotensin converting enzyme (ACE) was found in particular abundance in the lung, it seemed reasonable to suspect that most of the conversion occurred there, and that the function of Ang II would be primarily systemic, rather than intrarenal. In this review, I will explore the evidence that has accumulated on these two possibilities, since they have important implications for our current understanding of normal kidney function and derangements of kidney function in disease.

  5. Shy-Drager syndrome. Effect of fludrocortisone and L-threo-3,4-dihydroxyphenylserine on the blood pressure and regional cerebral blood flow.

    PubMed Central

    Matsubara, S; Sawa, Y; Yokoji, H; Takamori, M

    1990-01-01

    In nine cases of Shy-Drager syndrome, the changes in blood pressure and cerebral blood flow on sitting up from a supine position were studied. The influence of fludrocortisone, a synthetic mineralocorticoid, and L-threo-3,4-dihydroxyphenylserine (DOPS), a precursor of norepinephrine, on these changes was examined. On sitting up, the regional cerebral blood flow (rCBF) measured by Xe133 inhalation showed a tendency to decrease. Fludrocortisone reduced the fall of the mean blood pressure significantly. DOPS reduced the fall of both the diastolic blood pressure and rCBF significantly. PMID:2283531

  6. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  7. Falls and Frailty in Prostate Cancer Survivors: Current, Past, and Never Users of Androgen Deprivation Therapy.

    PubMed

    Winters-Stone, Kerri M; Moe, Esther; Graff, Julie N; Dieckmann, Nathan F; Stoyles, Sydnee; Borsch, Carolyn; Alumkal, Joshi J; Amling, Christopher L; Beer, Tomasz M

    2017-07-01

    To compare the prevalence of and association between falls and frailty of prostate cancer survivors (PCSs) who were current, past or never users of androgen deprivation therapy (ADT). Cross-sectional. Mail and electronic survey. PCSs (N = 280; mean age 72 ± 8). Cancer history, falls, and frailty status (robust, prefrail, frail) using traditionally defined and obese phenotypes. Current (37%) or past (34%) ADT users were more than twice as likely to have fallen in the previous year as never users (15%) (P = .002). ADT users had twice as many recurrent falls (P < .001) and more fall-related injuries than unexposed men (P = .01). Current (43%) or past (40%) ADT users were more likely to be classified as prefrail or frail than never users (15%) (P < .001), and the prevalence of combined obese frailty + prefrailty was even greater in current (59%) or past (62%) ADT users than never users (25%) (P < .001). Traditional and obese frailty significantly increased the likelihood of reporting falls in the previous year (odds ratio (OR) = 2.15, 95% CI = 1.18-3.94 and OR = 2.97, 95% CI = 1.62-5.58, respectively) and was also associated with greater risk of recurrent falls (OR = 3.10, 95% CI = 1.48-6.5 and OR = 3.99, 95% CI = 1.79-8.89, respectively). Current and past exposure to ADT is linked to higher risk of falls and frailty than no treatment. PCSs should be appropriately counseled on fall prevention strategies, and approaches to reduce frailty should be considered. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. A survey to explore what information, advice and support community-dwelling people with stroke currently receive to manage instability and falls.

    PubMed

    Shovlin, Eleanor; Kunkel, Dorit

    2017-09-13

    To describe and determine the benefits of the information and support services currently offered to people with stroke experiencing instability and falls. A cross-sectional survey study. Two hundred and fifty-six surveys were sent out to community stroke groups in Hampshire and the Isle of Wight, as well as to people with stroke on a patient register. One hundred and twenty-five surveys were returned. A total of 107 participants (86%) reported instability and 62 (50%) had experienced a fall in the preceding year; 29 (28%) had reportedly received information on falls prevention. Forty-four participants (43%) sought help from health professionals following instability and falls; just over half reported that the information they received was useful. One quarter (n = 11) of those seeking help were referred on to falls clinics; all attended and 86% felt attending had been beneficial. However, only one participant was followed up by these clinics. Findings suggest that the majority of people with stroke who have experienced instability and falls did not receive any information and support, with very few referred on to falls clinics. Health professionals play a key role in information provision and facilitating access to falls prevention programs. Further research is required to determine the most effective ways to implement current guidelines to manage instability and falls in this high-risk group. Implications for rehabilitation: Many community-dwelling people with stroke did not receive any information, help or support after experiencing instability and falls. Clinicians must stress that falls are a complication, not an expectation, post-stroke. Information on falls prevention and available support services should be offered to individuals prior to discharge from hospital, in GP practices and in rehabilitation settings. All individuals with stroke seeking health professional help following instability and falls should be referred on to falls clinics for individualized multifactorial assessment and intervention to comply with current guidelines.

  9. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  10. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999

    USGS Publications Warehouse

    Morton, Douglas M.; Hauser, Rachel M.

    2001-01-01

    This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  11. Migratory Behavior and Physiological Development as Potential Determinants of Life History Diversity in Fall Chinook Salmon in the Clearwater River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall Chinook Salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio-tagged fish that moved faster than the average current velocity were highest in the free-flowing Clearwater River compared to impounded reaches. This provided support for our hypothesis that water velocity is a primary determinant of downstream movement regardless of a fish’s physiological development. In contrast, movement rates slowed andmore » detections became fewer in impounded reaches where velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lower-most reach of Lower Granite Reservoir suggesting that behavioral disposition to move downstream was low. These findings contrast those of a similar, previous study of Snake River subyearlings in spite of hydrodynamic conditions being similar. Physiological differences between Snake and Clearwater river migrants shed light on this disparity. Subyearlings from the Clearwater River were parr-like in their development and never showed an increase in gill Na+/K+-ATPase activity as did smolts from the Snake River. The later emergence timing and cooler rearing temperatures in the Clearwater River may suppress normal physiological development that causes many fish to delay downstream movement and adopt a yearling life history strategy.« less

  12. Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions.

    PubMed

    Petraco, Ricardo; Sen, Sayan; Nijjer, Sukhjinder; Echavarria-Pinto, Mauro; Escaned, Javier; Francis, Darrel P; Davies, Justin E

    2013-03-01

    This study sought to evaluate the effects of fractional flow reserve (FFR) measurement variability on FFR-guided treatment strategy. Current appropriateness guidelines recommend the utilization of FFR to guide coronary revascularization based on a fixed cut-off of 0.8. This rigid approach does not take into account the intrinsic biological variability of a single FFR result and the clinical judgment of experienced interventional cardiologists. [corrected]. FFR reproducibility data from the landmark Deferral Versus Performance of PTCA in Patients Without Documented Ischemia (DEFER) trial was analyzed (two repeated FFR measurements in the same lesion, 10 min apart) and the standard deviation of the difference (SDD) between repeated measurements was calculated. The measurement certainty (probability that the FFR-guided revascularization strategy will not change if the test is repeated 10 min later) was subsequently established across the whole range of FFR values, from 0.2 to 1. Outside the [0.75 to 0.85] FFR range, measurement certainty of a single FFR result is >95%. However, closer to its cut-off, certainty falls to less than 80% within 0.77 to 0.83, reaching a nadir of 50% around 0.8. In clinical practice, that means that each time a single FFR value falls between 0.75 and 0.85, there is a chance that the FFR-derived revascularization recommendation will change if the measurement is repeated 10 min later, with this chance increasing the closer the FFR result is to 0.8. A measurement FFR gray-zone is found between 0.75 and 0.85]. Therefore, clinicians should make revascularization decisions based on broadened clinical judgment when a single FFR result falls within this uncertainty zone, particularly between 0.77 and 0.83, when measurement certainty falls to less than 80%. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Areas contributing recharge to production wells and effects of climate change on the groundwater system in the Chipuxet River and Chickasheen Brook Basins, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.; Stone, Janet R.

    2015-01-01

    Predicted changes in the magnitude and seasonal distribution of recharge in the 21st century increase simulated base flows and groundwater levels in the winter months for both emission scenarios, but because of less recharge in the fall and less or about the same recharge in the preceding months of spring and summer, base flows and groundwater levels in the fall months decrease for both emission scenarios. October has the largest base flow and groundwater level decreases. By the late 21st century, base flows at the Chipuxet River in October are projected to decrease by 9 percent for the lower emissions scenario and 18 percent for the higher emissions scenario. For a headwater stream in the upland till with shorter groundwater-flow paths and lower storage properties in its drainage area, base flows in October are projected to diminish by 28 percent and 42 percent for the lower and higher emissions scenarios by the late 21st century. Groundwater level changes in the uplands show substantial decreases in fall, but because of the large storage capacity of stratified deposits, water levels change minimally in the valley. By the late 21st century, water levels in large areas of upland till deposits in October are projected to decrease by up to 2 feet for the lower emissions scenario, whereas large areas decrease by up to 5 feet, with small areas with decreases of as much as 10 feet, for the higher emissions scenario. For both emission scenarios, additional areas of till go dry in fall compared with the late 20th century. Thus projected changes in recharge in the 21st century might extend low flows and low water levels for the year later in fall and there might be more intermittent headwater streams compared with the late 20th century with corresponding implications to aquatic habitat. Finally, the size and location of the simulated areas contributing recharge to the production wells are minimally affected by climate change because mean annual recharge, which is used to determine the contributing areas to the production wells, is projected to change little in the 21st century.

  14. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects

    NASA Astrophysics Data System (ADS)

    Savidge, Dana K.; Amft, Julie A.

    2009-10-01

    Over the past 30 years, shelf circulation on the West Antarctic Peninsula (WAP) has been derived from hydrographic data with a reasonable level of confidence. However, with the exception of a very few drifter tracks and current-meter timeseries from moorings, direct velocity measurements have not previously been available. In this article, shelf and shelf-edge circulation is examined using a new velocity dataset, consisting of several years of acoustic Doppler current profiler transects, routinely collected along the ship tracks of the R/V Gould and the R/V Palmer since the fall of 1997. Initial processing and quality control is performed by Dr. Teresa Chereskin and Dr. Eric Firing, who then place the data in an archive accessible by public website, resulting in the broad availability of the data for a variety of uses. In this study, gridded Eulerian means have been calculated to examine circulation on the shelf and slope off the South Shetland Islands, in Bransfield Strait, and on the shelf and slope south of these regions, including Marguerite Bay and the adjacent shelf and shelf-edge. Shelf-edge flow is northeastward in the study area from the offshore of northern Alexander Island to Smith Island, while a southward flowing shelf-edge feature, probably the shallow component of the polar slope current, appears between Elephant Island and Livingston Island. The shallow polar slope current appears to turn shoreward to pass through Boyd Strait between Smith and Livingston Islands. In Bransfield Strait, there is cyclonic circulation. The previously identified northeastward-flowing South Shetland Island jet is strong and present in all seasons, with a large barotropic component not revealed by the hydrography-based velocities derived in the past. On the shelf seaward of Adelaide, Anvers and Brabant Islands, the strong along-shelf Antarctic Peninsula coastal current flows southwestward, with strongest velocities in winter (June-September) off Anvers and Brabant Islands, but stronger in summer (December-March) off Adelaide Island. Seaward of Marguerite Bay, there is seaward flow in the upper 400 m of the water column over the southwest bank of Marguerite Trough, strongest in summer, and shoreward flow near the northeast bank and adjacent shallower shelf areas.

  15. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in themore » Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.« less

  16. Field-Aligned Currents in Saturn's Nightside Magnetosphere: Subcorotation and Planetary Period Oscillation Components During Northern Spring

    NASA Astrophysics Data System (ADS)

    Bradley, T. J.; Cowley, S. W. H.; Provan, G.; Hunt, G. J.; Bunce, E. J.; Wharton, S. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.

    2018-05-01

    We newly analyze Cassini magnetic field data from the 2012/2013 Saturn northern spring interval of highly inclined orbits and compare them with similar data from late southern summer in 2008, thus providing unique information on the seasonality of the currents that couple momentum between Saturn's ionosphere and magnetosphere. Inferred meridional ionospheric currents in both cases consist of a steady component related to plasma subcorotation, together with the rotating current systems of the northern and southern planetary period oscillations (PPOs). Subcorotation currents during the two intervals show opposite north-south polar region asymmetries, with strong equatorward currents flowing in the summer hemispheres but only weak currents flowing to within a few degrees of the open-closed boundary (OCB) in the winter hemispheres, inferred due to weak polar ionospheric conductivities. Currents peak at 1 MA rad-1 in both hemispheres just equatorward of the open-closed boundary, associated with total downward polar currents 6 MA, then fall across the narrow auroral upward current region to small values at subauroral latitudes. PPO-related currents have a similar form in both summer and winter with principal upward and downward field-aligned currents peaking at 1.25 MA rad-1 being essentially collocated with the auroral upward current and approximately equal in strength. Though northern and southern PPO currents were approximately equal during both intervals, the currents in both hemispheres were dual modulated by both systems during 2012/2013, with approximately half the main current closing in the opposite ionosphere and half cross field in the magnetosphere, while only the northern hemisphere currents were similarly dual modulated in 2008.

  17. 2. View of Potomac River at Great Falls looking upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Potomac River at Great Falls looking upstream from Observation Tower. The majestic character of this wild and untrammeled spot is vividly shown. Scanty flow is evidenced by light colored normal water line markings on rock formation. Washington Agueduct Dam is shown in upper portion. Maryland on right and Virginia on left. Natives quoted as saying the water was as low or lower than during the drought conditions of 1930. Mr. Horyduzak, Photographer, 1943. - Potowmack Company: Great Falls Canal & Locks, Great Falls, Fairfax County, VA

  18. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  19. The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: A guide for assessing local volcanic hazards

    USGS Publications Warehouse

    Scott, William E.; Gardner, Cynthia A.; Devoli, Graziella; Alvarez, Antonio

    2006-01-01

    The January 1835 eruption of Volcán Cosigüina in northwestern Nicaragua was one of the largest and most explosive in Central America since Spanish colonization. We report on the results of reconnaissance stratigraphic studies and laboratory work aimed at better defining the distribution and character of deposits emplaced by the eruption as a means of developing a preliminary hazards assessment for future eruptions. On the lower flanks of the volcano, a basal tephra-fall deposit comprises either ash and fine lithic lapilli or, locally, dacitic pumice. An overlying tephra-fall deposit forms an extensive blanket of brown to gray andesitic scoria that is 35–60 cm thick at 5–10 km from the summit-caldera rim, except southwest of the volcano, where it is considerably thinner. The scoria fall produced the most voluminous deposit of the eruption and underlies pyroclastic-surge and -flow deposits that chiefly comprise gray andesitic scoria. In northern and southeastern sectors of the volcano, these flowage deposits form broad fans and valley fills that locally reach the Gulf of Fonseca. An arcuate ridge 2 km west of the caldera rim and a low ridge east of the caldera deflected pyroclastic flows northward and southeastward. Pyroclastic flows did not reach the lower west and southwest flanks, which instead received thick, fine-grained, accretionary-lapilli–rich ashfall deposits that probably derived chiefly from ash clouds elutriated from pyroclastic flows. We estimate the total bulk volume of erupted deposits to be ∼6 km3. Following the eruption, lahars inundated large portions of the lower flanks, and erosion of deposits and creation of new channels triggered rapid alluviation. Pre-1835 eruptions are poorly dated; however, scoria-fall, pyroclastic-flow, and lahar deposits record a penultimate eruption of smaller magnitude than that of 1835. It occurred a few centuries earlier—perhaps in the fifteenth century. An undated sequence of thick tephra-fall deposits on the west flank of the volcano records tens of eruptions, some of which were greater in magnitude than that of 1835. Weathering evidence suggests this sequence is at least several thousand years old. The wide extent of pyroclastic flows and thick tephra fall during 1835, the greater magnitude of some previous Holocene eruptions, and the location of Cosigüina on a peninsula limit the options to reduce risk during future unrest and eruption.

  20. Development of Advanced Low Emission Injectors and High-Bandwidth Fuel Flow Modulation Valves

    NASA Technical Reports Server (NTRS)

    Mansour, Adel

    2015-01-01

    Parker Hannifin Corporation developed the 3-Zone fuel nozzle for NASA's Environmentally Responsible Aviation Program to meet NASAs target of 75 LTO NOx reduction from CAEP6 regulation. The nozzle concept was envisioned as a drop-in replacement for currently used fuel nozzle stem, and is built up from laminates to provide energetic mixing suitable for lean direct injection mode at high combustor pressure. A high frequency fuel valve was also developed to provide fuel modulation for the pilot injector. Final testing result shows the LTO NOx level falling just shy of NASAs goal at 31.

  1. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  2. Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.

  3. Influence of the postion of crew members on aerodynamics performance of two-man bobsleigh.

    PubMed

    Dabnichki, Peter; Avital, Eldad

    2006-01-01

    Bobsleigh aerodynamics has long been recognised as one of the crucial performance factors. Although the published research in the area is very limited, it is well known that the leading nations in the sport devote significant resources in research and development of sleds' aerodynamics. However, the rules and regulations pose strict design constraints on the shape modifications aiming at aerodynamics improvements. The reason for that is two-fold: (i) safety of the athletes and (ii) reduction of equipment impact on competition outcome. One particular area that has not been looked at and falls outside the current rules and regulations is the influence of the crew positioning and internal modifications on the aerodynamic performance. The current study presents results on numerical simulation of the flow in the cavity underpinned with some experimental measurements including flow visualisation of the air circulation around the bobsleigh. A simplified computational model was developed to assess the trends and its results validated by windtunnel tests. The results show that crew members influence the drag level significantly and suggest that purely internal modifications can be introduced to reduce the overall resistance drag.

  4. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimesmore » fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)« less

  5. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkattraman, Ayyaswamy

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less

  6. Falls from height during the floor slab formwork of buildings: current situation in Spain.

    PubMed

    Adam, Jose M; Pallarés, Francisco J; Calderón, Pedro A

    2009-01-01

    One of the phases with the highest risk of falls from a height in the construction of a building is during the floor slab formwork stage. This paper analyzes this particular risk, as well as the most frequently used fall-protection systems. A survey was carried out to define the current situation in Spain with regard to falls from a height during floor slab formwork and the fall-protection systems used to prevent such a risk. The results of the survey clarified the current situation in Spain with regard to this risk, and made it clear that there is considerable risk of falling from a height during the floor slab formwork stage. All the safety systems analyzed presented a series of weak points that should be studied in detail before they can be used on building sites. The risk of falling associated with floor slab formwork and the most frequently used protection systems are analyzed. As no research had been carried out to date on this type of risk, we consider the research presented in this article to be a pioneer in the field.

  7. Electrophysiology of connection current spikes.

    PubMed

    Fish, Raymond M; Geddes, Leslie A

    2008-12-01

    Connection to a 60-Hz or other voltage source can result in cardiac dysrhythmias, a startle reaction, muscle contractions, and a variety of other physiological responses. Such responses can lead to injury, especially if significant ventricular cardiac dysrhythmias occur, or if a person is working at some height above ground and falls as a result of a musculoskeletal response. Physiological reactions are known to relate to intensity and duration of current exposure. The connection current that flows is a function of the applied voltage at the instant of connection, and the electrical impedance encountered by the voltage source in contact with the skin or other body tissues. In this article we describe a rarely investigated phenomenon, namely a contact, or connection, current spike that is many times higher than the steady-state current. This current spike occurs when an electrical connection is made at a non-zero voltage time in a sine wave or other waveform. Such current spikes may occur when electronic or manual switching or connecting of conductors occurs in electronic instrumentation connected to a patient. These findings are relevant to medical devices and instrumentation and to electrical safety in general.

  8. Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.

    2005-12-01

    Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.

  9. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape

    USGS Publications Warehouse

    Pilliod, David S.; Arkle, Robert S.; Robertson, Jeanne M; Murphy, Melanie; Funk, W. Chris

    2015-01-01

    Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900–1930), recent (1981–2010), and future (2071–2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May – September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50–80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.

  10. North Qorveh volcanic field, western Iran: eruption styles, petrology and geological setting

    NASA Astrophysics Data System (ADS)

    Asiabanha, Abbas; Bardintzeff, Jacques-Marie; Veysi, Sara

    2017-11-01

    In the metamorphic Sanandaj-Sirjan Zone of western Iran, the "North Qorveh Volcanic Field" is constituted by Pleistocene scoria cones and associated deposits. Most scoria cones in the area display a simple structure resulted by Strombolian eruptions. Some of them are more complex, such as the Kuh-e Qarineh cone in where basaltic scoriaceous falls are underlain by felsic pyroclastic density-current deposits due to gas streaming at the base of eruption columns and are overlain by basaltic lava flows linked to basaltic fire fountains. Thus, it seems that the latter cones have been likely constructed by more or less violent Strombolian and then Hawaiian activities. Two types of enclaves have been found: gneissic xenoliths scavenged from the metamorphic basement and ultramafic-mafic (37-47 wt% SiO2) cumulates with the same paragenesis as the basaltic scoriaceous falls and lava flows. Three classes of cumulates were identified: (1) apatite mica hornblendite; (2) apatite hornblendite; and (3) olivine biotitite. Moreover, the mineral assemblage of basaltic rocks in the area (olivine (Fo79 - 83) + diopside + pargasite + phlogopite + Fe-Ti oxides ± plagioclase ± apatite) is very similar to lamprophyric facies. So, it seems that the parental magma was originated by mantle metasomatism. Although the felsic pyroclastic density-current deposits show a calcalkaline trend, the whole-rock and mineral chemistry of the basaltic rocks in the area imply an alkaline affinity. Also, the samples show subduction and continental collision signatures. Thus, the alkaline composition of this young volcanic centre in a metamorphic terrain could be explained by descending slab-break off and reactivation of small-scale convection at the lithosphere-asthenosphere boundary.

  11. Rise and fall of a small ice-dammed lake - Role of deglaciation processes and morphology

    NASA Astrophysics Data System (ADS)

    Nehyba, Slavomír; Hanáček, Martin; Engel, Zbyněk; Stachoň, Zdeněk

    2017-10-01

    A small ice-dammed lake, which developed along the margin of Nordenskiöldbreen on the northern coast of Adolfbukta, (central Spitsbergen, Svalbard) has been studied by a combination of facies analysis, ground penetrating radar, analysis of photos and satellite imagery, and by surface mapping by Unmanned Aerial Vehicle (drone). The lake existed between the years 1990-2012 and occupied two partial depressions in the bedrock, separated by a bedrock ridge for the dominant period of its history. Whereas the eastern depression was almost completely infilled due to direct fluvial input, the western depression revealed only thin sedimentary cover and was dotted from the eastern depression by an outflow of surficial waters. Gilbert delta deposits with typical tripartite zones of topset, foreset and bottomset were recognised in the eastern depression. Topset was comprised by deposits of a braided river. Foreset is formed by deposits of sediment gravity flows (turbidity currents and debris flows). Bottomset is represented by alternating suspension deposits and deposits of hyperpycnal underflows (low-density turbidity currents). The ruling factors of the evolution of the delta were glacier retreat, bedrock morphology, both affecting the relative lake level, and the rate of sediment delivery. Glacier retreat over stepped and inclined bedrock morphology led to delta prograding and downstepping. The recognised fluvio-deltaic terraces revealed four lake level falls followed by fluvial downcutting, erosion and redeposition of the older deltaic/lake deposits, the shifting of the lake's position towards the damming glacier and the transition of the sediment input in the same direction. The termination of the lake was a result of further glacier retreat and the opening of subglacial drainage.

  12. Discharge and nutrient transport between lakes in a hydrologically complex area of Voyageurs National Park, Minnesota, 2010-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Wakeman, Eric; Maki, Ryan P.

    2016-01-01

    An acoustic Doppler velocity meter (ADVM) was deployed in the narrows between Namakan and Kabetogama Lakes in Voyageurs National Park, Minnesota, from November 3, 2010, through October 3, 2012. The ADVM can account for wind, seiche, and changing flow direction in hydrologically complex areas. The objectives were to (1) estimate discharge and document the direction of water flow, (2) assess whether specific conductance can be used to determine flow direction, and (3) document nutrient and chlorophyll a concentrations at the narrows. The discharge direction through the narrows was seasonal. Water generally flowed out of Kabetogama Lake and into Namakan Lake throughout the ice-covered season. During spring, water flow was generally from Namakan Lake to Kabetogama Lake. During the summer and fall, the water flowed in both directions, affected in part by wind. Water flowed into Namakan Lake 70% of water year 2011 and 56% of water year 2012. Nutrient and chlorophyll a concentrations were highest during the summer months when water-flow direction was unpredictable. The use of an ADVM was effective for assessing flow direction and provided flow direction under ice. The results indicated the eutrophic Kabetogama Lake may have a negative effect on the more pristine Namakan Lake. The results also provide data on the effects of the current water-level management plan and may help determine if adjustments are necessary to help protect the aquatic ecosystem of Voyageurs National Park.

  13. Turbidity currents with equilibrium basal driving layers: a mechanism for long-runout turbidity currents

    NASA Astrophysics Data System (ADS)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2017-12-01

    Turbidity currents in lakes and oceans involve leveed channels that document coherent runouts of 100's and up to 1000's of km. They do so without dissipating themselves via excess entrainment of ambient water. It is generally known that currents associated with stable stratification, such as thermohaline underflows, undergo dissipation as they entrain ambient water. Here we ask why some continuous turbidity currents do not follow this tendency, as they can run out extremely long distances while maintaining their coherency. A current that becomes ever thicker downstream due to ambient water entrainment cannot select the scales necessary to maintain a coherent, slowly-varying channel depth and width over 1000 km. It has been assumed that a turbidity current may tend to a state with a densimetric Froude so low that ambient water entrainment is largely suppressed. Here, we show that such an argument is a case of special pleading. Instead, suspended sediment 'fights back' against upward mixing through its fall velocity; the water may be entrained, but the sediment need not follow. We use a formulation capturing the flow vertical structure to show the conditions under which a turbidity current can asymptotically partition itself into two layers. The lower 'driving layer' approaches an asymptotic state with invariant flow thickness, velocity profile and suspended sediment concentration profile when traversing a constant bed slope under bypass conditions. This thickness provides a scale for channel characteristics. The upper 'driven layer' continues to entrain ambient water, but the concentration there becomes ever more dilute, and the layer ultimately has no interaction with near-bed processes (and by implication bed morphology). This partition is a likely candidate for the mechanism by which the driving layer is able to run out long distances, maintaining coherence and keeping confined, over repeated flow events, within a leveed subaqueous channel of its own creation.

  14. Development and Field Testing of the FootFall Planning System for the ATHLETE Robots

    NASA Technical Reports Server (NTRS)

    SunSpiral, Vytas; Wheeler, D. W.; Chavez-Clementa, Daniel; Mittman, David

    2011-01-01

    The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory (JPL) and is a large six-legged robot designed to serve multiple roles during manned and unmanned missions to the Moon; its roles include transportation, construction and exploration. Over the four years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites (the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010). Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 meters, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-DOF (Degree Of Freedom) robot, especially the compliance of the wheels, which affected many aspects of statically-stable walking. This paper will review the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness.

  15. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  16. 78 FR 69124 - Trinity Adaptive Management Working Group; Public Meeting and Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... Recommendation, Bylaw discussion, 2014 Flow Alternatives, Status of Klamath fall flow release, Mining issues...Point, or rich text file). Registered speakers who wish to expand on their oral statements, or those who...

  17. Direct numerical simulation of supercritical gas flow in complex nanoporous media: Elucidating the relationship between permeability and pore space geometry

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2015-12-01

    Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 < Kn < 1.0). Therefore, flow-rates will significantly deviate from Navier-Stokes predictions. Currently, the study of slip-flows is mostly limited to simple tube and channel geometries, but the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.

  18. Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity

    NASA Astrophysics Data System (ADS)

    Lirer, Lucio; Petrosino, Paola; Alberico, Ines; Postiglione, Immacolata

    2001-02-01

    Distributions of pyroclastic deposits from the main explosive events at Somma-Vesuvio during the 8,000-year B.P.-A.D. 1906 time-span have been analysed to provide maps of volcanic hazard for long-term eruption forecasting. In order to define hazard ratings, the spatial distributions and loads (kg/m2) exerted by the fall deposits on the roofs of buildings have been considered. A load higher than 300 kg/m2 is defined as destructive. The relationship load/frequency (the latter defined as the number of times that an area has been impacted by the deposition of fall deposits) is considered to be a suitable parameter for differentiating among areas according to hazard rating. Using past fall deposit distributions as the basis for future eruptive scenarios, the total area that could be affected by the products of a future Vesuvio explosive eruption is 1,500 km2. The perivolcanic area (274 km2) has the greatest hazard rating because it could be buried by pyroclastic flow deposits thicker than 0.5 m and up to several tens of metres in thickness. Currently, the perivolcanic area also has the highest risk because of the high exposed value, mainly arising from the high population density.

  19. Social-aware Event Handling within the FallRisk Project.

    PubMed

    De Backere, Femke; Van den Bergh, Jan; Coppers, Sven; Elprama, Shirley; Nelis, Jelle; Verstichel, Stijn; Jacobs, An; Coninx, Karin; Ongenae, Femke; De Turck, Filip

    2017-01-09

    With the uprise of the Internet of Things, wearables and smartphones are moving to the foreground. Ambient Assisted Living solutions are, for example, created to facilitate ageing in place. One example of such systems are fall detection systems. Currently, there exists a wide variety of fall detection systems using different methodologies and technologies. However, these systems often do not take into account the fall handling process, which starts after a fall is identified or this process only consists of sending a notification. The FallRisk system delivers an accurate analysis of incidents occurring in the home of the older adults using several sensors and smart devices. Moreover, the input from these devices can be used to create a social-aware event handling process, which leads to assisting the older adult as soon as possible and in the best possible way. The FallRisk system consists of several components, located in different places. When an incident is identified by the FallRisk system, the event handling process will be followed to assess the fall incident and select the most appropriate caregiver, based on the input of the smartphones of the caregivers. In this process, availability and location are automatically taken into account. The event handling process was evaluated during a decision tree workshop to verify if the current day practices reflect the requirements of all the stakeholders. Other knowledge, which is uncovered during this workshop can be taken into account to further improve the process. The FallRisk offers a way to detect fall incidents in an accurate way and uses context information to assign the incident to the most appropriate caregiver. This way, the consequences of the fall are minimized and help is at location as fast as possible. It could be concluded that the current guidelines on fall handling reflect the needs of the stakeholders. However, current technology evolutions, such as the uptake of wearables and smartphones, enables the improvement of these guidelines, such as the automatic ordering of the caregivers based on their location and availability.

  20. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the green river downstream of Flaming Gorge Dam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2009-01-09

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified researchmore » activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less correlated with the fall condition values than the spring condition values and did not show the same relationships to flows, to macroinvertebrates, or across years as the above-mentioned spring relative weight values. We found that the condition ratio of rainbow trout at Tailrace was positively correlated with within-day flow variability but was not correlated with flow volume, between-day-, or within-season flow variability. The condition ratios of rainbow trout at Little Hole and of both trout species at Tailrace were not correlated to any of the measured flow variables. The condition ratios of both trout species were positively correlated with the abundance of January benthic macroinvertebrates at the Little Hole site and with January dipterans (brown trout) or total coleopterans (rainbow trout) at the Tailrace site. The relationships among flows, macroinvertebrates, and trout condition were varied among species and locations.« less

  1. A Saturnian cam current system driven by asymmetric thermospheric heating

    NASA Astrophysics Data System (ADS)

    Smith, C. G. A.

    2011-02-01

    We show that asymmetric heating of Saturn's thermosphere can drive a current system consistent with the magnetospheric ‘cam’ proposed by Espinosa, Southwood & Dougherty. A geometrically simple heating distribution is imposed on the Northern hemisphere of a simplified three-dimensional global circulation model of Saturn's thermosphere. Currents driven by the resulting winds are calculated using a globally averaged ionosphere model. Using a simple assumption about how divergences in these currents close by flowing along dipolar field lines between the Northern and Southern hemispheres, we estimate the magnetic field perturbations in the equatorial plane and show that they are broadly consistent with the proposed cam fields, showing a roughly uniform field implying radial and azimuthal components in quadrature. We also identify a small longitudinal phase drift in the cam current with radial distance as a characteristic of a thermosphere-driven current system. However, at present our model does not produce magnetic field perturbations of the required magnitude, falling short by a factor of ˜100, a discrepancy that may be a consequence of an incomplete model of the ionospheric conductance.

  2. A study of flow in alluvial channels: the effect of large concentrations of fine sediment on the mechanics of flow in a small flume

    USGS Publications Warehouse

    Haushild, William Leland; Simons, Daryl Baldwin; Richadrson, Everett V.

    1961-01-01

    concentration with the dune bed form and was increased by as much as 550 percent for the transition, standing wave, and antidune forms of bed roughness. Resistance to flow was less (C/√ g increased by 45 percent) with fine sediment-laden flow than with clear-water flow for the dune, and transition bed forms; and was greater (C/√ g   reduced by 25 percent) for the standing waves and the antidunes. A narrow range of bentonite concentration for each form of bed roughness was established as a limit below which only minor changes in bed form, bed material transport, and resistance to flow occurred. The variation of the liquid properties, specific weight and viscosity, for water-bentonite dispersions were studied and their effect on the properties of the bed material particles measured. The fall velocity of the particles in a dispersion of 100, 000 parts per million fine sediment in water was reduced to about one-half their fall velocity in clear water.

  3. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy.

    PubMed

    Rudolph, A M

    2018-04-24

    Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.

  4. Hazardous Waste Cleanup: Ciba Geigy – Hercules Plant in Queensbury (Glen Falls), New York

    EPA Pesticide Factsheets

    The approximately 45-acre Main Plant site is located in the Town of Queensbury, just east of the City of Glens Falls in Warren County, New York. The site is in a mixed industrial/residential area on the northern bank of an easterly flowing segment of the

  5. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjomn

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearlingmore » chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).« less

  6. "Staying safe" - a narrative review of falls prevention in people with Parkinson's - "PDSAFE".

    PubMed

    Hulbert, Sophia; Rochester, Lynn; Nieuwboer, Alice; Goodwin, Vicki; Fitton, Carolyn; Chivers-Seymour, Kim; Ashburn, Ann

    2018-05-18

    Parkinson's disease demonstrates a spectrum of motor and non-motor symptoms. Falling is common and disabling. Current medical management shows minimal impact to reduce falls or fall-related risk factors, such as deficits in gait, strength, and postural instability. Despite evidence supporting rehabilitation in reducing fall risk factors, the most appropriate intervention to reduce overall fall rate remains inconclusive. This article aims to 1) synthesise current evidence and conceptual models of falls rehabilitation in Parkinson's in a narrative review; and based on this evidence, 2) introduce the treatment protocol used in the falls prevention and multi-centre clinical trial "PDSAFE". Search of four bibliographic databases using the terms "Parkinson*" and "Fall*" combined with each of the following; "Rehab*, Balanc*, Strength*, Strateg*and Exercis*" and a framework for narrative review was followed. A total of 3557 papers were identified, 416 were selected for review. The majority report the impact of rehabilitation on isolated fall risk factors. Twelve directly measure the impact on overall fall rate. Results were used to construct a narrative review with conceptual discussion based on the "International Classification of Functioning", leading to presentation of the "PDSAFE" intervention protocol. Evidence suggests training single, fall risk factors may not affect overall fall rate. Combining with behavioural and strategy training in a functional, personalised multi-dimensional model, addressing all components of the "International Classification of Functioning" is likely to provide a greater influence on falls reduction. "PDSAFE" is a multi-dimensional, physiotherapist delivered, individually tailored, progressive, home-based programme. It is designed with a strong evidence-based approach and illustrates a model for the clinical delivery of the conceptual theory discussed. Implications for Rehabilitation Parkinson's disease demonstrates a spectrum of motor and non-motor symptoms, where falling is common and disabling. Current medical and surgical management have minimal impact on falls, rehabilitation of falls risk factors has strong evidence but the most appropriate intervention to reduce overall fall rate remains inconclusive. Addressing all components of the International Classification of Function in a multifactorial model when designing falls rehabilitation interventions may be more effective at reducing fall rates in people with Parkinson's than treating isolated risk factors. The clinical model for falls rehabilitation in people with Parkinson's should be multi-dimensional.

  7. The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska

    USGS Publications Warehouse

    Hildreth, W.

    1983-01-01

    On June 6-8, 1912, ??? 15 km3 of magma erupted from the Novarupta caldera at the head of the Valley of Ten Thousand Smokes (VTTS), producing ??? 20 km3 of air-fall tephra and 11-15 km3 of ash-flow tuff within ??? 60 hours. Three discrete periods of ash-fall at Kodiak correlate, respectively, with Plinian tephra layers designated A, CD, and FG by Curtis (1968) in the VTTS. The ash-flow sequence overlapped with but outlasted pumice fall A, terminating within 20 hours of the initial outbreak and prior to pumice fall C. Layers E and H consist mostly of vitric dust that settled during lulls, and Layer B is the feather edge of the ash flow. The fall units filled and obscured the caldera, but arcuate and radial fissures outline a 6-km2 depression. The Novarupta lava dome and its ejecta ring were emplaced later within the depression. At Mt. Katmai, 10 km east of the 1912 vent, a 600-m-deep caldera of similar area also collapsed at about this time, probably owing to hydraulic connection with the venting magma system; but all known ejecta are thought to have erupted at Novarupta. Mingling of three distinctive magmas during the eruption produced an abundance of banded pumice, and mechanical mixing of chilled ejecta resulted in deposits with a wide range of bulk composition. Pumice in the initial fall unit (A) is 100% rhyolite, but fall units atop the ash flow are > 98% dacite; black andesitic scoria is common only in the ash flows and in near-vent air-fall tephra. Pumice counts show the first half of the ash-flow deposit to be 91-98% rhyolite, but progressive increases of dacite and andesite eventually reduced the rhyolitic component to 20 km to the lowermost VTTS, and deposited 1-8 m of debris there. Rhyolitic ejecta contain only 1-2% phenocrysts but andesite and dacite have 30-45%. Quartz is present and augite absent only in the rhyolite, but all ejecta contain plagioclase, orthopyroxene, titanomagnetite, ilmenite, apatite, and pyrrhotite; rare olivine occurs in the andesite. The zoning ranges of phenocrysts in the rhyolitic and intermediate ejecta do not overlap. New chemical data show the bulk SiO2 range to be: rhyolite 77 ?? 0.6, dacite 66-64.5, and andesite 61.5-58.5%. The dacitic and andesitic ejecta contrast in color and density, and it is not certain whether they form a compositional continuum. Analyses reported by Fenner within the 66-76% SiO2 range were of banded pumice and lava and of bulk tephra that mechanically fractionated and mixed during flight. Despite the gap of 10% SiO2, Fe-Ti-oxide temperatures show a continuous range from rhyolite (805-850??C) through dacite (855-955??C) to andesite (955-990??C). Thermal continuity and isotopic and trace-element data suggest that all were derived from a single magmatic system, whether or not they were physically contiguous before eruption. If the rhyolitic liquid separated from dacitic magma, extraction was so efficient that no dacitic phenocrysts were retained and no bulk compositions in the range 66-76% SiO2 were created; if it were a partial me

  8. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearingmore » and seaward migration through Columbia River basin reservoirs.« less

  9. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.

    PubMed

    Bolivar, Juan M; Krämer, Christina E M; Ungerböck, Birgit; Mayr, Torsten; Nidetzky, Bernd

    2016-09-01

    Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width: 600 μm; depth: 200 μm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here: d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4)  m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5)  m · s(-1) and a specific surface area of up to 10(5)  m(-1) . Biotechnol. Bioeng. 2016;113: 1862-1872. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawningmore » of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.« less

  11. Modeling visual-based pitch, lift and speed control strategies in hoverflies

    PubMed Central

    Vercher, Jean-Louis

    2018-01-01

    To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude. PMID:29361632

  12. The numerical modelling of falling film thickness flow on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Hassan, I. A.; Sadikin, A.; Isa, N. Mat

    2017-04-01

    This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.

  13. Resuspension and Shelf-Deep Ocean Exchange in the Northern California Current: New Insights From Underwater Gliders

    NASA Astrophysics Data System (ADS)

    Erofeev, A.; Barth, J. A.; Shearman, R. K.; Pierce, S. D.

    2016-02-01

    Shelf-deep ocean exchange is dominated by wind-driven upwelling and downwelling in the northern California Current. The interaction of strong, along-shelf jets with coastline and bottom topographic features can also create significant cross-margin exchange. We are using data from over 60,000 kilometers of autonomous underwater glider tracks to understand the temporal and spatial distribution of shelf-deep ocean exchange off central Oregon. Year-round glider observations of temperature, salinity, depth-averaged currents, chlorophyll fluorescence, light backscatter, and colored dissolved organic matter fluorescence from a single cross-margin transect are used to examine shelf-deep ocean exchange mechanisms. During summer, cross-margin exchange is dominated by wind-driven upwelling and the relaxation or reversal of the dominant southward winds. This process has been fairly well observed and studied due to the relatively low sea states and winds during summer. There is far less data from fall and winter off Oregon, a time of strong winds and large waves. We use autonomous underwater gliders to sample during the winter, including through the fall and spring transitions. Glider observations of suspended material detected via light backscatter, show time-space variations in resuspension in the bottom boundary layer due to winds, waves and currents. Examples of shelf-deep ocean exchange are shown by layers with high light backscatter separating from the bottom near the shelf break and extending into the interior along isopycnals. We describe these features and events in relationship to wind-forcing, along-shelf flows, and other forcing mechanisms.

  14. Mind-wandering and falls risk in older adults

    PubMed Central

    Nagamatsu, Lindsay S.; Kam, Julia W. Y.; Liu-Ambrose, Teresa; Chan, Alison; Handy, Todd C.

    2014-01-01

    While mind-wandering is common, engaging in task-irrelevant thoughts can have negative functional consequences. We examined whether mind-wandering frequency may be related to falls – a major health care problem. Seniors completed a sustained attention task and self-reported their current attentional states. Monthly falls reports were collected over 12 months. Falls were associated with an increased frequency of mind-wandering. Additionally, poorer performance on the sustained attention task was associated with more falls over 12 months. Given that fallers are known to have impaired executive cognitive functioning, our results are consistent with the current theory that poor attentional control may contribute to the occurrence of mind-wandering. PMID:24041001

  15. Habitat change and geomorphic response related to sediment releases during reservoir drawdowns at Fall Creek Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Keith, M. K.; Wallick, R.; Bangs, B. L.; Taylor, G.; Gordon, G. W.; White, J. S.; Mangano, J.

    2017-12-01

    Reservoir drawdowns at Fall Creek Lake, Oregon lower lake levels to facilitate downstream passage of juvenile spring Chinook salmon through the 55-m high dam. Since 2011, annual fall and winter drawdowns have improved fish passage, but temporarily lowering the lake nearly to streambed has increased downstream transport of predominantly fine (<2 mm) sediment to the lower gravel-bed reaches of Fall Creek and the Middle Fork Willamette River. Repeated releases of reservoir sediments have uncertain long-term consequences for downstream reaches where dam construction has reduced peak flows, coarse sediment transport, and habitat creation. Here, we evaluate site and reach-scale geomorphic responses to sediment released from the reservoir over 2011-17. At the reach-scale, sediment aggradation is most apparent in low velocity zones along channel margins and in side channels and alcoves of Fall Creek nearest to the dam. These areas accumulate sediment following the drawdown and are colonized with vegetation, such as reed canary grass, thereby increasing the trapping efficiency for fine sediment during the following year's drawdown. Fine sediment accumulation in off-channel areas has reduced the available rearing area for some salmonid species but may provide alternative habitat suitable for other native aquatic species such as Pacific lamprey ammocoetes that live in fine substrates for several years. Changes in off-channel aquatic habitat and bare gravel bars related to the drawdowns are small relative to the historically dynamic conditions on the Middle Fork (presently stable). Fall Creek, historically and presently stable, has fewer off-channel areas than the Middle Fork, so filling those areas has greater reach-scale impacts on habitat. Locally, deposition measured following the 2015 drawdown showed most aggradation on high-elevation gravel bars and low-elevation floodplains occurred when flows were higher on Fall Creek ( 2,000 ft3/s) and the Middle Fork (near bankfull events, 19,000 ft3/s). Rapid mobilization and re-deposition of reservoir sediments indicates that strategically planned flow releases could be used flush sediment through the channel, potentially minimizing habitat impacts.

  16. A Novel Detection Model and Its Optimal Features to Classify Falls from Low- and High-Acceleration Activities of Daily Life Using an Insole Sensor System

    PubMed Central

    Cates, Benjamin; Sim, Taeyong; Heo, Hyun Mu; Kim, Bori; Kim, Hyunggun; Mun, Joung Hwan

    2018-01-01

    In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe. PMID:29673165

  17. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  18. Hydrology, water quality, and simulation of ground-water flow at a taconite-tailings basin near Keewatin, Minnesota

    USGS Publications Warehouse

    Myette, C.F.

    1991-01-01

    Numerical-model simulations of ground-water flow near the vicinity of the tailings basin indicate that, if areal recharge were doubled during spring and fall, water levels in wells could average about 4 feet above 1983 levels during these periods. Model results indicate that water levels in the tailings could possibly remain about 5 feet above 1983 levels at the end of the year. Water levels in the tailings at the outlet of the basin could be about 1 foot above 1983 levels during the spring stress period and could be nearly 1.5 feet above 1983 levels during the fall stress period. Under these hypothetical climatic conditions, ground-water contribution to discharge at the outlet could be about 50 cubic feet per second during spring and about 80 cubic feet per second during fall.

  19. Mathematical modeling of the burden distribution in the blast furnace shaft

    NASA Astrophysics Data System (ADS)

    Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan

    2011-06-01

    Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.

  20. Water resources of the Salmon Falls Creek basin, Idaho-Nevada

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1969-01-01

    The northern part of the Salmon Falls Creek basin, referred to as the Salmon Falls tract, contains a large acreage of good agricultural land, but the surface-water supply is inadequate to develop the area fully. Attempts to develop ground water for irrigation have been successful only locally. Specific capacities of wells drilled for irrigation and for test purposes ranged from less than 0.5 to 70 gallons per minute per foot of drawdown. The surface-water supply averages 107,000 acre-feet annually, of which about 76,000 acre-feet is diverted for irrigation. The Idavada Volcanics, the most widespread and oldest water-bearing formation in the Salmon Falls tract, consists of massive, dense, thick flows and blankets of welded silicic tuff with associated fine- to coarse-grained ash, clay, silt, sand, and gravel. Fault zones and jointed rock yield large amounts of water to wells, but massive nonjointed units yield little water. Sand, tuff, and ash beds yield moderate quantities of water. Clay, sandy clay, sand, and pea gravel occur in topographic lows on the Idavada Volcanics. The finegrained sediments yield little water to wells, but the gravel yields moderate quantities. Vesicular porphyritic irregularly jointed olivine basalt flows, which overlie the Idavada Volcanics, underlie almost all the Salmon Falls tract. Lenticular fine-grained sedimentary beds as much as 15 feet thick separate some of the flows. Joints and contacts between flows yield small to moderate amounts of water to wells. Alluvial and windblown deposits blanket most of the tract. Where they occur below the water table, the alluvial deposits yield adequate supplies for stock and domestic wells. Perched water in the alluvium along Deep Creek supplies some stock and domestic wells during most years. Ground-water supplies adequate for domestic and stock use can be obtained everywhere in the tract, but extensive exploration has discovered only five local areas where pumping ground water for irrigation is presently economically feasible. About 8,000 acre-feet was withdrawn for all uses in 1960. Natural discharge of ground water is northward -- toward the Twin Falls South Side Project and the Snake River--and is provisionally estimated to be 115,000 acre-feet annually. Ground water in the Salmon Falls tract has a medium- to high salinity hazard and a low sodium hazard. The salinity does not appear to affect crops presently grown in the tract. The southern part of the Salmon Falls Creek basin, referred to as the upper drainage basin, has little agricultural development and is used mostly for grazing livestock. Silicic volcanic rocks and tuffaceous sedimentary rocks of Tertiary age and alluvial deposits yield water to livestock, domestic, and commercial wells.

  1. Stratigraphy of the Grande Savane Ignimbrite Sequence, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Smith, A. L.; Deuerling, K.; Killingsworth, N.; Daly, G.

    2007-12-01

    The island of Dominica, located in the central part of the Lesser Antilles island arc has eight potentially active volcanoes. One of these, Morne Diablotins, is a composite stratovolcano with several superimposed stratigraphic sequences ranging in age from Pliocene (4-2 Ma) to "Younger" Pleistocene (<1.8 Ma). The most recent major eruptive activity from this volcano was a series of Plinian eruptions that produced ignimbrites that gave dates of >22,000 and >40,000 years B.P. The ignimbrite sequences form four flow fans that reached both the east and west coasts of the island. One of these flow fans, the Grande Savane, on the west coast of the island, also extends off-shore for a distance of at least 14 km as a distinctive submarine fan. Stratigraphical studies of the on- shore deposits that make up this fan indicate an older sequence of block and ash flow deposits, within which occurs a distinctive vulcanian fall deposit. These are overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites containing welded horizons (ranging in thickness from around 4 m to 16m). The lack of fall deposits beneath the ignimbrites suggest they may have been formed by instantaneous continuous collapse of the eruption column. This whole succession is overlain by a series of planar and dune bedded pumiceous surge deposits with interbedded pumiceous lapilli fall and ash fall deposits, that extend laterally outside of the main area of ignimbrite deposition. Beds within this upper sequence often contain accretionary lapilli and gas cavities suggesting magma-water interaction. The youngest deposits from Morne Diablotins appear to be valley- fill deposits of both ignimbrite and block and ash flow. A comparison of the of the Grande Savane pyroclastic sequence with the Pointe Ronde (west coast) and Londonderry (east coast) pyroclastic flow fans will provide information on the eruptive history of this major Plinian episode.

  2. Effects of regulated river flows on habitat suitability for the robust redhorse

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.

    2015-01-01

    The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.

  3. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic habitat at the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  4. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  5. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA

    USGS Publications Warehouse

    Noble, M.A.; Xu, J. P.

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but other coastal ocean processes obscure their distinctive characteristics.

  6. 78 FR 1934 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... brake pipe air flow from the present rule of 60 cubic feet per minute (CFM) to 90 CFM for distributed... higher air flow of 90 CFM on distributed power trains for the past 2 years. Recently, BNSF conducted demonstration testing in Great Falls, MT, for air flows between 60 and 90 CFM; a summary of which has been...

  7. The rate of rise, fall and gravity spreading at Siahou diapir (Southern Iran)

    NASA Astrophysics Data System (ADS)

    Aftabi, P.; Roustaie, M.

    2009-04-01

    InSAR imaging can be used for extracting three dimensional information of the diapirs surface by using the phase part of the radar signal. We used InSAR to examine the cumulative surface deformation between 920706 to 060518, in a 10×10 km region surrounding the salt diapir at Kuh-e-Namak Siahou. The interferograms span periods was between 35-70 and 1248 days. Images acquired in 12 increments provided by ESA. This technique used here involves computation and subsequent combinations of interferometric phase gradient maps were used for mapping the salt flow deformation in the Zagros. Kuh-e-Namak Siahou is one of the salt extrusions currently active in the Zagros range in Iran. Salt rises from a mother salt horizon about 4 km deep and extruded as a dome with glacier on the surface. The geometry and inferred flow pattern of the salt changed between the increments, emphasizing that the extrusion rate and gravity spreading is not steady. Elevations in the salt mountain range from 1000 to 1640 meters and the displacements exceed to 20cm per year . Our InSAR study(Fig1) suggest that the dimensions and velocity of the salt movements are changing between 2 to 20mm per year(-0.7 to0.59 mm per day).The rate of surface dissolution changed between 2 to 4 cm a-1, and its rate of rise out of its orifice at 0 to 200 mm per year. The InSAR study suggest that the vigorous salt extrusion in Siahou is probably active.The deep source probably rise at a similar rates in the past but it fall in the time of InSAR study. The rate of fall was 260 mm per year(for 14 years). The InSAR images suggest that salt extrusion in Siahou flow laterally at rate 20-25 mm per year and the namakiers felt at -2 mm per month. The InSAR results indicated concentric and radial flow in the diapir from a central point at summit and spreading glaciers in sideways.Phase differences measured in our interferograms generally in the range of 0-260 mm/yr(-260 mm) within the studied period, with exceptional high rates that exceed 50 mm/yr in diapir Siahou. Comparison of our InSAR observations with models suggest a similarity in the strain pattern in the model and prototype. Our observations also show that in certain locations of Zagros, movements appear to be structurally controlled by salt flow, and diapirism. This report will improve our understanding on how the salt diapirs work and our capability to predict future flow and the associated hazards for storages in salt and provides the first direct, spatially resolved, measurement of ongoing flow of salt. Key words: Salt tectonics,InSAR,Monitoring,Iran,Zagros,Salt diapir,salt kinematics, Zagros fold-thrust belt, Hormuz salt, analogue modelling,salt extrusion, crustal shortening

  8. Sensitivity of intermittent streams to climate variations in the United States

    NASA Astrophysics Data System (ADS)

    Eng, K.

    2015-12-01

    There is growing interest in the effects of climate change on streamflows because of the potential negative effects on aquatic biota and water supplies. Previous studies of climate controls on flows have primarily focused on perennial streams, and few studies have examined the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions showing similar patterns of intermittency, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with precipitation (magnitudes, durations and intensity) and temperature, and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonal patterns of flow intermittency: fall, fall-to-winter, non-seasonal, summer, and summer-to-winter intermittent streams. In addition, strong associations between the low-flow metrics and historical climate variability were found. However, the lack of trends in historical variations in precipitation results in no significant seasonal shifts or decade-to-decade trends in the low-flow metrics over the period of record (1950 to 2013).

  9. Longitudinal Trends in Fall Accidents in Community Dwelling Korean Adults: The 2008-2013 Korean Community Health Survey.

    PubMed

    Hong, Ickpyo; Simpson, Annie N; Logan, Sarah; Woo, Hee-Soon

    2016-08-01

    To describe the longitudinal characteristics of unintentional fall accidents using a representative population-based sample of Korean adults. We examined data from the Korean Community Health Survey from 2008 to 2013. Univariate analysis and multivariable logistic regression were used to identify the characteristics of fall accidents in adults. Between 2008 and 2013, the incidence rate of fall accidents requiring medical treatment increased from 1,248 to 3,423 per 100,000 people (p<0.001), while the proportion of indoor fall accidents decreased from 38.12% to 23.16% (p<0.001). Females had more annual fall accidents than males (p<0.001). The major reason for fall accidents was slippery floors (33.7% in 2011 and 36.3% in 2013). Between 2008 and 2010, variables associated with higher fall accident risk included specific months (August and September), old age, female gender, current drinker, current smoker, diabetes, osteoarthritis, osteoporosis, and depression. A high level of education and living with a partner were negatively associated with fall accident risk. In 2013, people experiencing more than 1 fall accident felt more fear of falling than those having no fall accidents (odds ratio [OR] for 1 fall, 2.12; 95% confidence interval [CI], 2.04-2.12; OR for more than 2 falls, 2.97; 95% CI, 2.83-3.10). The occurrence of fall accidents has consistently increased in Korea from 2008 to 2013. Future intervention studies are needed to reduce the increasing incidence rates of fall accidents in community dwelling adults.

  10. Longitudinal Trends in Fall Accidents in Community Dwelling Korean Adults: The 2008–2013 Korean Community Health Survey

    PubMed Central

    Logan, Sarah

    2016-01-01

    Objective To describe the longitudinal characteristics of unintentional fall accidents using a representative population-based sample of Korean adults. Methods We examined data from the Korean Community Health Survey from 2008 to 2013. Univariate analysis and multivariable logistic regression were used to identify the characteristics of fall accidents in adults. Results Between 2008 and 2013, the incidence rate of fall accidents requiring medical treatment increased from 1,248 to 3,423 per 100,000 people (p<0.001), while the proportion of indoor fall accidents decreased from 38.12% to 23.16% (p<0.001). Females had more annual fall accidents than males (p<0.001). The major reason for fall accidents was slippery floors (33.7% in 2011 and 36.3% in 2013). Between 2008 and 2010, variables associated with higher fall accident risk included specific months (August and September), old age, female gender, current drinker, current smoker, diabetes, osteoarthritis, osteoporosis, and depression. A high level of education and living with a partner were negatively associated with fall accident risk. In 2013, people experiencing more than 1 fall accident felt more fear of falling than those having no fall accidents (odds ratio [OR] for 1 fall, 2.12; 95% confidence interval [CI], 2.04–2.12; OR for more than 2 falls, 2.97; 95% CI, 2.83–3.10). Conclusion The occurrence of fall accidents has consistently increased in Korea from 2008 to 2013. Future intervention studies are needed to reduce the increasing incidence rates of fall accidents in community dwelling adults. PMID:27606272

  11. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.

  12. Analog and numerical experiments investigating force chain influences on bed conditions in granular flows

    NASA Astrophysics Data System (ADS)

    Estep, J.; Dufek, J.

    2013-12-01

    Granular flows are fundamental processes in several terrestrial and planetary natural events; including surficial flows on volcanic edifices, debris flows, landslides, dune formation, rock falls, sector collapses, and avalanches. Often granular flows can be two-phase, whereby interstitial fluids occupy void space within the particulates. The mobility of granular flows has received significant attention, however the physics that govern their internal behavior remain poorly understood. Here we extend upon previous research showing that force chains can transmit extreme localized forces to the substrates of free surface granular flows, and we combine experimental and computational approaches to further investigate the forces at the bed of simplified granular flows. Analog experiments resolve discrete bed forces via a photoelastic technique, while numerical experiments validate laboratory tests using discrete element model (DEM) simulations. The current work investigates (1) the role of distributed grain sizes on force transmission via force chains, and (2) how the inclusion of interstitial fluids effects force chain development. We also include 3D numerical simulations to apply observed 2D characteristics into real world perspective, and ascertain if the added dimension alters force chain behavior. Previous research showed that bed forces generated by force chain structures can transiently greatly exceed (by several 100%) the bed forces predicted from continuum approaches, and that natural materials are more prone to excessive bed forces than photoelastic materials due to their larger contact stiffnesses. This work suggests that force chain activity may play an important role in the bed physics of dense granular flows by influencing substrate entrainment. Photoelastic experiment image showing force chains in gravity driven granular flow.

  13. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    USGS Publications Warehouse

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  14. Official Positions for FRAX® clinical regarding falls and frailty: can falls and frailty be used in FRAX®? From Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®.

    PubMed

    Masud, Tahir; Binkley, Neil; Boonen, Steven; Hannan, Marian T

    2011-01-01

    Risk factors for fracture can be purely skeletal, e.g., bone mass, microarchitecture or geometry, or a combination of bone and falls risk related factors such as age and functional status. The remit of this Task Force was to review the evidence and consider if falls should be incorporated into the FRAX® model or, alternatively, to provide guidance to assist clinicians in clinical decision-making for patients with a falls history. It is clear that falls are a risk factor for fracture. Fracture probability may be underestimated by FRAX® in individuals with a history of frequent falls. The substantial evidence that various interventions are effective in reducing falls risk was reviewed. Targeting falls risk reduction strategies towards frail older people at high risk for indoor falls is appropriate. This Task Force believes that further fracture reduction requires measures to reduce falls risk in addition to bone directed therapy. Clinicians should recognize that patients with frequent falls are at higher fracture risk than currently estimated by FRAX® and include this in decision-making. However, quantitative adjustment of the FRAX® estimated risk based on falls history is not currently possible. In the long term, incorporation of falls as a risk factor in the FRAX® model would be ideal. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  15. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  16. Nitroglycerin-mediated, but not flow-mediated vasodilation, is associated with blunted nocturnal blood pressure fall in patients with resistant hypertension.

    PubMed

    Fontes-Guerra, Priscila C A; Cardoso, Claudia R L; Muxfeldt, Elizabeth S; Salles, Gil F

    2015-08-01

    Endothelial function by flow-mediated (FMD) and nitroglycerin-mediated vasodilations (NMD) was scarcely investigated in resistant hypertension. We aimed to assess the independent correlates of FMD and NMD in resistant hypertensive patients, particularly their associations with ambulatory blood pressures (BP) and nocturnal BP fall patterns. In a cross-sectional study, 280 resistant hypertensive patients performed 24-h ambulatory BP monitoring, carotid-femoral pulse wave velocity, polysomnography, and brachial artery FMD and NMD by high-resolution ultrasonography. Independent correlates of FMD, NMD, and brachial artery diameter (BAD) were assessed by multiple linear and logistic regressions. Median (interquartile range) FMD was 0.75% (-0.6 to +4.4%) and NMD was 11.8% (7.1-18.4%). Baseline BAD and diabetes were independently associated with both FMD and NMD. Older age and prior cardiovascular diseases were associated with altered FMD, whereas higher night-time SBP and lower nocturnal SBP fall were associated with impaired NMD. Moreover, there was a significant gradient of impaired NMD according to blunted nocturnal BP decline patterns. BAD was independently associated with age, sex, BMI, albuminuria, and nocturnal SBP fall. Further adjustments to blood flow velocity, aortic stiffness, plasma aldosterone concentration, and sleep apnea did not change these relationships. NMD, but not FMD, is independently associated with unfavorable night-time BP levels and nondipping patterns, and may be a better cardiovascular risk marker in patients with resistant hypertension. BAD also may provide additional prognostic information.

  17. Will it rise or will it fall? Managing the complex effects of urbanization on base flow

    USGS Publications Warehouse

    Bhaskar, Aditi; Beesley, Leah; Burns, Matthew J.; Fletcher, T. D.; Hamel, Perrine; Oldham, Carolyn; Roy, Allison

    2016-01-01

    Sustaining natural levels of base flow is critical to maintaining ecological function as stream catchments are urbanized. Research shows a variable response of stream base flow to urbanization, with base flow or water tables rising in some locations, falling in others, or elsewhere remaining constant. The variable baseflow response is due to the array of natural (e.g., physiographic setting and climate) and anthropogenic (e.g., urban development and infrastructure) factors that influence hydrology. Perhaps as a consequence of this complexity, few simple tools exist to assist managers to predict baseflow change in their local urban area. This paper addresses this management need by presenting a decision support tool. The tool considers the natural vulnerability of the landscape, together with aspects of urban development in predicting the likelihood and direction of baseflow change. Where the tool identifies a likely increase or decrease it guides managers toward strategies that can reduce or increase groundwater recharge, respectively. Where the tool finds an equivocal result, it suggests a detailed water balance be performed. The decision support tool is embedded within an adaptive-management framework that encourages managers to define their ecological objectives, assess the vulnerability of their ecological objectives to changes in water table height, and monitor baseflow responses to urbanization. We trial our framework using two very different case studies: Perth, Western Australia, and Baltimore, Maryland, USA. Together, these studies show how pre-development water table height, climate and geology together with aspects of urban infrastructure (e.g., stormwater practices, leaky pipes) interact such that urbanization has overall led to rising base flow (Perth) and falling base flow (Baltimore). Greater consideration of subsurface components of the water cycle will help to protect and restore the ecology of urban freshwaters.

  18. Estimation of the kinetic energy dissipation in fall-arrest system and manikin during fall impact.

    PubMed

    Wu, John Z; Powers, John R; Harris, James R; Pan, Christopher S

    2011-04-01

    Fall-arrest systems (FASs) have been widely applied to provide a safe stop during fall incidents for occupational activities. The mechanical interaction and kinetic energy exchange between the human body and the fall-arrest system during fall impact is one of the most important factors in FAS ergonomic design. In the current study, we developed a systematic approach to evaluate the energy dissipated in the energy absorbing lanyard (EAL) and in the harness/manikin during fall impact. The kinematics of the manikin and EAL during the impact were derived using the arrest-force time histories that were measured experimentally. We applied the proposed method to analyse the experimental data of drop tests at heights of 1.83 and 3.35 m. Our preliminary results indicate that approximately 84-92% of the kinetic energy is dissipated in the EAL system and the remainder is dissipated in the harness/manikin during fall impact. The proposed approach would be useful for the ergonomic design and performance evaluation of an FAS. STATEMENT OF RELEVANCE: Mechanical interaction, especially kinetic energy exchange, between the human body and the fall-arrest system during fall impact is one of the most important factors in the ergonomic design of a fall-arrest system. In the current study, we propose an approach to quantify the kinetic energy dissipated in the energy absorbing lanyard and in the harness/body system during fall impact.

  19. A Model of Anode Sheath Potential Evolution in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Foster, John E.; Gallimore, Alec D.

    1996-11-01

    It has been conjectured that the growth in the magnitude of the anode fall voltage with changing transverse magnetic field is a function of the ratio of available transverse current to the discharge current. It has been postulated that at small values of this ratio, the anode fall voltage and thus the near-anode electric field increases in order to assure that the prescribed discharge is maintained.footnote H. Hugel, IEEE Tran. Plas. Sci., PS-8,4, 1980 In this present work, a model is presented which predicts the behavior of the anode fall voltage as a function of transverse magnetic field. The model attempts to explain why the anode fall voltage depends so strongly on this ratio. In addition, it is further shown that because of the current ratio's strong dependence on local electron number density, ultimately it is the changes in near-anode ionization processes with varying transverse magnetic field that control the anode fall voltage.

  20. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar

    2018-05-01

    Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.

  1. Graphical fault tree analysis for fatal falls in the construction industry.

    PubMed

    Chi, Chia-Fen; Lin, Syuan-Zih; Dewi, Ratna Sari

    2014-11-01

    The current study applied a fault tree analysis to represent the causal relationships among events and causes that contributed to fatal falls in the construction industry. Four hundred and eleven work-related fatalities in the Taiwanese construction industry were analyzed in terms of age, gender, experience, falling site, falling height, company size, and the causes for each fatality. Given that most fatal accidents involve multiple events, the current study coded up to a maximum of three causes for each fall fatality. After the Boolean algebra and minimal cut set analyses, accident causes associated with each falling site can be presented as a fault tree to provide an overview of the basic causes, which could trigger fall fatalities in the construction industry. Graphical icons were designed for each falling site along with the associated accident causes to illustrate the fault tree in a graphical manner. A graphical fault tree can improve inter-disciplinary discussion of risk management and the communication of accident causation to first line supervisors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. High Temperature Falling Particle Receiver (2012 - 2016) - Final DOE Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.

    The objective of this work was to advance falling particle receiver designs for concentrating solar power applications that will enable higher temperatures (>700 °C) and greater power-cycle efficiencies (≥50% thermal-to-electric). Modeling, design, and testing of components in Phases 1 and 2 led to the successful on-sun demonstration in Phase 3 of the world’s first continuously recirculating high-temperature 1 MW t falling particle receiver that achieved >700 °C particle outlet temperatures at mass flow rates ranging from 1 – 7 kg/s.

  3. Identifying Balance Measures Most Likely to Identify Recent Falls.

    PubMed

    Criter, Robin E; Honaker, Julie A

    2016-01-01

    Falls sustained by older adults are an increasing health care issue. Early identification of those at risk for falling can lead to successful prevention of falls. Balance complaints are common among individuals who fall or are at risk for falling. The purpose of this study was to evaluate the clinical utility of a multifaceted balance protocol used for fall risk screening, with the hypothesis that this protocol would successfully identify individuals who had a recent fall (within the previous 12 months). This is a retrospective review of 30 individuals who self-referred for a free fall risk screening. Measures included case history, Activities-Specific Balance Confidence Scale, modified Clinical Test of Sensory Interaction on Balance, Timed Up and Go test, and Dynamic Visual Acuity. Statistical analyses were focused on the ability of the test protocol to identify a fall within the past 12 months and included descriptive statistics, clinical utility indices, logistic regression, receiver operating characteristic curve, area under the curve analysis, effect size (Cohen d), and Spearman correlation coefficients. All individuals who self-referred for this free screening had current imbalance complaints, and were typically women (70%), had a mean age of 77.2 years, and had a fear of falling (70%). Almost half (46.7%) reported at least 1 lifetime fall and 40.0% within the past 12 months. Regression analysis suggested that the Timed Up and Go test was the most important indicator of a recent fall. A cutoff score of 12 or more seconds was optimal (sensitivity: 83.3%; specificity: 61.1%). Older adults with current complaints of imbalance have a higher rate of falls, fall-related injury, and fear of falling than the general community-dwelling public. The Timed Up and Go test is useful for determining recent fall history in individuals with imbalance.

  4. Increasing fall risk awareness using wearables: A fall risk awareness protocol.

    PubMed

    Danielsen, Asbjørn; Olofsen, Hans; Bremdal, Bernt Arild

    2016-10-01

    Each year about a third of elderly aged 65 or older experience a fall. Many of these falls may have been avoided if fall risk assessment and prevention tools where available in a daily living situation. We identify what kind of information is relevant for doing fall risk assessment and prevention using wearable sensors in a daily living environment by investigating current research, distinguishing between prospective and context-aware fall risk assessment and prevention. Based on our findings, we propose a fall risk awareness protocol as a fall prevention tool integrating both wearables and ambient sensing technology into a single platform. Copyright © 2016. Published by Elsevier Inc.

  5. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Experimental study

    NASA Astrophysics Data System (ADS)

    Violet, J.; Evans, C.; Sheets, B.; Paola, C.; Pratson, L.; Parker, G.

    2001-12-01

    We report on the transport and deposition of sediment by turbidity currents in an experimental basin designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in two stages in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. Stage I consisted of 15 turbidity-current events in the following sequence: one 36-minute continuous event, six 1.85-minute small pulses, one 3.8-minute large pulse, six more small pulses, one more large pulse, and finally one more continuous event. The continuous events and the small pulses had a flow discharge of 1.5 liters/s and the large pulse had a flow discharge of 4.5 liters/s. The flows all had a volume concentration of sediment of 0.05. The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%). The basin subsided continuously during Stage I. Stage II consisted of the same sequence of events as Stage I, but with no further subsidence. The sand content was eliminated during the latter part of Stage II. The deposit was imaged as it developed during the experiment using high-frequency sonar. The sonar records show indications of incipient self-channelization as well as clear erosion, bypass, and deposition. Erosion was promoted by large pulse events and the absence of sand. The deposit shows well developed lamination and normal grading.

  6. 78 FR 17448 - Limited Exemption of the American Recovery and Reinvestment Act With Respect to the Purchase of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Respect to the Purchase of a Variable Refrigerant Flow System AGENCY: National Science Foundation. ACTION... purchase of a variable refrigerant flow system that will be used in the renovation of the St. Anthony Falls...) with respect to the variable refrigerant flow (VRF) system that will be used in the renovation of the...

  7. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the dam until further orders: (b) Excepting as specially provided in this section the normal flow of... when the natural flow of the Mississippi River is falling or when such natural flow is less than..., such permit to state the period which such ponding may cover and the maximum variation in stage below...

  8. Shallow marine event sedimentation in a volcanic arc-related setting: The Ordovician Suri Formation, Famatina range, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1996-01-01

    The Loma del Kilome??tro Member of the Lower Ordovician Suri Formation records arc-related shelf sedimentation in the Famatina Basin of northwest Argentina. Nine facies, grouped into three facies assemblages, are recognized. Facies assemblage 1 [massive and parallel-laminated mudstones (facies A) locally punctuated by normally graded or parallel-laminated silty sandstones (facies B] records deposition from suspension fall-out and episodic storm-induced turbidity currents in an outer shelf setting. Facies assemblage 2 [massive and parallel-laminated mudstones (facies A) interbedded with rippled-top very fine-grained sandstones (facies D)] is interpreted as the product of background sedimentation alternating with distal storm events in a middle shelf environment. Facies assemblage 3 [normally graded coarse to fine-grained sandstones (facies C); parallel-laminated to low angle cross-stratified sandstones (facies E); hummocky cross-stratified sandstones and siltstones (facies F); interstratified fine-grained sandstones and mudstones (facies G); massive muddy siltstones and sandstones (facies H); tuffaceous sandstones (facies I); and interbedded thin units of massive and parallel-laminated mudstones (facies A)] is thought to represent volcaniclastic mass flow and storm deposition coupled with subordinated suspension fall-out in an inner-shelf to lower-shoreface setting. The Loma del Kilo??metro Member records regressive-transgressive sedimentation in a storm- and mass flow-dominated high-gradient shelf. Volcano-tectonic activity was the important control on shelf morphology, while relative sea-level change influenced sedimentation. The lower part of the succession is attributed to mud blanketing during high stand and volcanic quiescence. Progradation of the inner shelf to lower shoreface facies assemblage in the middle part represents an abrupt basinward shoreline migration. An erosive-based, non-volcaniclastic, turbidite unit at the base of this package suggests a sea level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.

  9. Evidence-based exercise prescription for balance and falls prevention: a current review of the literature.

    PubMed

    Shubert, Tiffany E

    2011-01-01

    Falls are the leading cause of emergency department visits, hospital admissions, and unintentional death for older adults. Balance and strength impairments are common falls risk factors for community-dwelling older adults. Though physical therapists commonly treat balance and strength, standardized falls screening has not been fully incorporated into physical therapy practice and there is much variation in the frequency, intensity, and duration of therapy prescribed to achieve optimal results. For community-dwelling older adults, a progressive exercise program that focuses on moderate to high-intensity balance exercises appears to be one of the most effective interventions to prevent falls. For more frail older adults in institutional settings, exercise programs in addition to multifactorial interventions appear to show promise as effective falls prevention interventions. The minimum dose of exercise to protect an older adult against falls is 50 hours. This article describes the current best practices for physical therapists to effectively improve balance and manage falls risk in patients. The unique challenges and opportunities for physical therapists to incorporate evidence-based fall-prevention strategies are discussed. Innovative practice models incorporating evidence-based fall-prevention programs and partnerships with public health and aging service providers to create a continuum of care and achieve the optimal dose of balance training are presented.

  10. Falling microbead counter-flow process for separating gas mixtures

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-07-07

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  11. Drug metabolism and ageing.

    PubMed

    Wynne, Hilary

    2005-06-01

    Older people are major consumers of drugs and because of this, as well as co-morbidity and age-related changes in pharmacokinetics and pharmacodynamics, are at risk of associated adverse drug reactions. While age does not alter drug absorption in a clinically significant way, and age-related changes in volume of drug distribution and protein binding are not of concern in chronic therapy, reduction in hepatic drug clearance is clinically important. Liver blood flow falls by about 35% between young adulthood and old age, and liver size by about 24-35% over the same period. First-pass metabolism of oral drugs avidly cleared by the liver and clearance of capacity-limited hepatically metabolized drugs fall in parallel with the fall in liver size, and clearance of drugs with a high hepatic extraction ratio falls in parallel with the fall in hepatic blood flow. In normal ageing, in general, activity of the cytochrome P450 enzymes is preserved, although a decline in frail older people has been noted, as well as in association with liver disease, cancer, trauma, sepsis, critical illness and renal failure. As the contribution of age, co-morbidity and concurrent drug therapy to altered drug clearance is impossible to predict in an individual older patient, it is wise to start any drug at a low dose and increase this slowly, monitoring carefully for beneficial and adverse effects.

  12. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source.

    PubMed

    Xu, Jingjiang; Song, Shaozhen; Wei, Wei; Wang, Ruikang K

    2017-01-01

    Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo . We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging.

  13. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

    PubMed Central

    Xu, Jingjiang; Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-01-01

    Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo. We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging. PMID:28101428

  14. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  15. Seniors Falls Investigative Methodology (SFIM): A Systems Approach to the Study of Falls in Seniors

    ERIC Educational Resources Information Center

    Zecevic, Aleksandra A.; Salmoni, Alan W.; Lewko, John H.; Vandervoort, Anthony A.

    2007-01-01

    An in-depth understanding of human factors and human error is lacking in current research on seniors' falls. Additional knowledge is needed to understand why seniors are falling. The purpose of this article is to describe the adapting of the Integrated Safety Investigation Methodology (ISIM) (used for investigating transportation and industrial…

  16. "The Great Cataract" - Effects of Late Holocene Debris Flows on Lava Falls Rapid, Grand Canyon National National Park, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Wise, Thomas W.; Elliott, John G.

    1996-01-01

    Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Although the rapid was once thought to be controlled by the remnants of lava dams of Pleistocene age, Lava Falls was created and is maintained by frequent debris flows from Prospect Canyon. We used 232 historical photographs, of which 121 were replicated, and 14C and 3He dating methods to reconstruct the ages and, in some cases, the magnitudes of late Holocene debris flows. We quantified the interaction between Prospect Canyon debris flows and the Colorado River using image processing of the historical photographs. The highest and oldest debris-flow deposits on the debris fan yielded a 3He date of 2.9?0.6 ka (950 BC), which indicates predominately late Holocene aggradation of one of the largest debris fans in Grand Canyon. The deposit, which has a 25-m escarpment caused by river reworking, crossed the Colorado River and raised its base level by 30 m for an indeterminate, although probably short, period. We mapped depositional surfaces of 6 debris flows that occurred after 950 BC. The most recent prehistoric debris flow occurred no more than 500 years ago (AD 1434). From April 1872 to July 1939, no debris flows occurred in Prospect Canyon. Debris flows in 1939, 1954, 1955, 1963, 1966, and 1995 constricted the Colorado River between 35 and 80 percent and completely changed the pattern of flow through the rapid. The debris flows had discharges estimated between about 290 and 1,000 m3/s and transported boulders as heavy as 30 Mg. The recurrence interval of these debris flows, calculated from the volume of the aggraded debris fan, ranged from 35 to 200 yrs. The 1939 debris flow in Prospect Canyon appears to have been the largest debris flow in Grand Canyon during the last 125 years. Debris flows in Prospect Canyon are initiated by streamflow pouring over a 325-m waterfall onto unconsolidated colluvium, a process called the firehose effect. Floods in Prospect Valley above the waterfall are generated during regional winter storms, localized summer thunderstorms, and occasional tropical cyclones. Winter precipitation has increased in the Grand Canyon region since the early 1960s, and the most recent debris flows have occurred during winter storms. Summer rainfall has declined in the same period, decreasing the potential for debris flows in the summer months. The history of river reworking of the Prospect Canyon debris fan illustrates the interrelation between tributary debris fans and mainstem floods in bedrock canyons. Lava Falls Rapid did not change despite Colorado River floods of 8,500 m3/s in 1884 and 6,230 m3/s in 1921. Floods up to 3,540 m3/s that occurred after the historical, pre-dam debris flows removed most of the deposits within 3 years. Releases in 1965 from Glen Canyon Dam that were above powerplant capacity but less than 1,640 m3/s removed most of the debris fan deposited in 1963, and the combination of dam releases and a 1973 flood on the Little Colorado River removed the 1966 aggradation. About 4,800 m3 of the 1995 deposit was reworked on the day of the 1995 debris flow, dam releases of less than 570 m3/s had not reworked the remainder of the aggraded debris fan. Lava Falls Rapid has been the most unstable reach of whitewater in Grand Canyon during the late Holocene and particularly during the last 120 years. Rapids in bedrock canyons controlled by tributary deposition in the main channel are aggradational features that reflect the net effect of tributary-mainstem interactions. Boulders that form the core of rapids in Grand Canyon are essentially immobile by both regulated and unregulated Colorado River flows. Historical operation of Glen Canyon Dam, which was completed in 1963, has reduced the potential for reworking of debris fans, and has accelerated the rate of net aggradation at the mouths of tributary canyons. Because debris fans that formed after 196

  17. Mass budget partitioning during explosive eruptions: insights from the 2006 paroxysm of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Bernard, Julien; Eychenne, Julia; Le Pennec, Jean-Luc; Narváez, Diego

    2016-08-01

    How and how much the mass of juvenile magma is split between vent-derived tephra, PDC deposits and lavas (i.e., mass partition) is related to eruption dynamics and style. Estimating such mass partitioning budgets may reveal important for hazard evaluation purposes. We calculated the volume of each product emplaced during the August 2006 paroxysmal eruption of Tungurahua volcano (Ecuador) and converted it into masses using high-resolution grainsize, componentry and density data. This data set is one of the first complete descriptions of mass partitioning associated with a VEI 3 andesitic event. The scoria fall deposit, near-vent agglutinate and lava flow include 28, 16 and 12 wt. % of the erupted juvenile mass, respectively. Much (44 wt. %) of the juvenile material fed Pyroclastic Density Currents (i.e., dense flows, dilute surges and co-PDC plumes), highlighting that tephra fall deposits do not depict adequately the size and fragmentation processes of moderate PDC-forming event. The main parameters controlling the mass partitioning are the type of magmatic fragmentation, conditions of magma ascent, and crater area topography. Comparisons of our data set with other PDC-forming eruptions of different style and magma composition suggest that moderate andesitic eruptions are more prone to produce PDCs, in proportions, than any other eruption type. This finding may be explained by the relatively low magmatic fragmentation efficiency of moderate andesitic eruptions. These mass partitioning data reveal important trends that may be critical for hazard assessment, notably at frequently active andesitic edifices.

  18. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    USGS Publications Warehouse

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction between range and fall water depth was the most important variable (relative weight of 1.0) followed by spring and fall water depths (0.99), range (0.96), hydroperiod (0.95) and interaction between range and hydroperiod (0.95). Our work provides additional evidence that restoring a greater range in annual water depths is important for improvement of alligator body condition and ecosystem function. This information can be incorporated into both planning and operations to assist in reaching Everglades restoration goals.

  19. Laboratory Testing Protocols for Heparin-Induced Thrombocytopenia (HIT) Testing.

    PubMed

    Lau, Kun Kan Edwin; Mohammed, Soma; Pasalic, Leonardo; Favaloro, Emmanuel J

    2017-01-01

    Heparin-induced thrombocytopenia (HIT) represents a significant high morbidity complication of heparin therapy. The clinicopathological diagnosis of HIT remains challenging for many reasons; thus, laboratory testing represents an important component of an accurate diagnosis. Although there are many assays available to assess HIT, these essentially fall into two categories-(a) immunological assays, and (b) functional assays. The current chapter presents protocols for several HIT assays, being those that are most commonly performed in laboratory practice and have the widest geographic distribution. These comprise a manual lateral flow-based system (STiC), a fully automated latex immunoturbidimetric assay, a fully automated chemiluminescent assay (CLIA), light transmission aggregation (LTA), and whole blood aggregation (Multiplate).

  20. Late Pleistocene sequence architecture on the geostrophic current-dominated southwest margin of the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do

    2018-06-01

    High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.

  1. Late Pleistocene sequence architecture on the geostrophic current-dominated southwest margin of the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do

    2017-11-01

    High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.

  2. Changes in the timing of high river flows in New England over the 20th Century

    USGS Publications Warehouse

    Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G.

    2003-01-01

    The annual timing of river flows is a good indicator of climate-related changes, or lack of changes, for rivers with long-term data that drain unregulated basins with stable land use. Changes in the timing of annual winter/spring (January 1 to May 31) and fall (October 1 to December 31) center of volume dates were analyzed for 27 rural, unregulated river gaging stations in New England, USA with an average of 68 years of record. The center of volume date is the date by which half of the total volume of water for a given period of time flows past a river gaging station, and is a measure of the timing of the bulk of flow within the time period. Winter/spring center of volume (WSCV) dates have become significantly earlier (p < 0.1) at all 11 river gaging stations in areas of New England where snowmelt runoff has the most effect on spring river flows. Most of this change has occurred in the last 30 years with dates advancing by 1-2 weeks. WSCV dates were correlated with March through April air temperatures (r = -0.72) and with January precipitation (r = -0.37). Three of 16 river gaging stations in the remainder of New England had significantly earlier WSCV dates. Four out of 27 river gaging stations had significantly earlier fall center of volume dates in New England. Changes in the timing of winter/spring and fall peak flow dates were consistent with the changes in the respective center of volume dates, given the greater variability in the peak flow dates. Changes in the WSCV dates over the last 30 years are consistent with previous studies of New England last-frost dates, lilac bloom dates, lake ice-out dates, and spring air temperatures. This suggests that these New England spring geophysical and biological changes all were caused by a common mechanism, temperature increases.

  3. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  4. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  5. Pulse generator using transistors and silicon controlled rectifiers produces high current pulses with fast rise and fall times

    NASA Technical Reports Server (NTRS)

    Woolfson, M. G.

    1966-01-01

    Electrical pulse generator uses power transistors and silicon controlled rectifiers for producing a high current pulse having fast rise and fall times. At quiescent conditions, the standby power consumption of the circuit is equal to zero.

  6. A new look at the origin of the 6.67 hr period X-ray pulsar 1E 161348-5055

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Kim, V. Y.; Beskrovnaya, N. G.; Pustil'nik, L. A.

    2013-07-01

    The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67 hr and |dot{P}| ≤1.6 ×10^{-9} s s^{-1}. It is associated with the supernova remnant RCW 103 and is widely believed to be a ˜2000 yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ˜3000 km and the mass-accretion rate ˜ 10^{14} g s^{-1}. This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ˜1012 G and that a presence of ≳10^{-7} M_{⊙} magnetic slab would be sufficient to explain the origin and current state of the pulsar.

  7. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  8. Staircase Falls Rockfall on December 26, 2003, and Geologic Hazards at Curry Village, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.; Borchers, James W.; Reichenbach, Paola

    2007-01-01

    Since 1857, several hundred rockfalls, rockslides, and debris flows have been observed in Yosemite National Park. At 12:45 a.m. on December 26, 2003, a severe winter storm triggered a rockfall west of Glacier Point in Yosemite Valley. Rock debris moved quickly eastward down Staircase Falls toward Curry Village. As the rapidly moving rock mass reached talus at the bottom of Staircase Falls, smaller pieces of flying rock penetrated occupied cabins. Physical characterization of the rockfall site included rockfall volume, joint patterns affecting initial release of rock and the travel path of rockfall, factors affecting weathering and weakening of bedrock, and hydrology affecting slope stability within joints. Although time return intervals are not predictable, a three-dimensional rockfall model was used to assess future rockfall potential and risk. Predictive rockfall and debris-flow methods suggest that landslide hazards beneath these steep cliffs extend farther than impact ranges defined from surface talus in Yosemite Valley, leaving some park facilities vulnerable.

  9. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  10. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when the natural flow of the Mississippi River is falling or when such natural flow is less than... maintained by the power company, such river and pool gages as may be advisable, and make from time to time...

  11. Urban-Rural Flows of Physicians

    ERIC Educational Resources Information Center

    Ricketts, Thomas C.; Randolph, Randy

    2007-01-01

    Context: Physician supply is anticipated to fall short of national requirements over the next 20 years. Rural areas are likely to lose relatively more physicians. Policy makers must know how to anticipate what changes in distribution are likely to happen to better target policies. Purpose: To determine whether there was a significant flow of…

  12. Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA

    USGS Publications Warehouse

    Wieczorek, G.F.; Stock, Gregory M.; Reichenbach, P.; Snyder, J.B.; Borchers, J.W.; Godt, J.W.

    2008-01-01

    Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m 3 of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.

  13. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  14. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings

    PubMed Central

    Beamer, P.I.; Sugeng, A. J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M.

    2014-01-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p<0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites. PMID:24469149

  15. Supporting the information domains of fall-risk management in home care via health information technology.

    PubMed

    Alhuwail, Dari; Koru, Güneş; Mills, Mary Etta

    2016-01-01

    In the United States, home care clinicians often start the episode of care devoid of relevant fall-risk information. By collecting and analyzing qualitative data from 30 clinicians in one home health agency, this case study aimed to understand how the currently adopted information technology solutions supported the clinicians' fall-risk management (FRM) information domains, and explored opportunities to adopt other solutions to better support FRM. The currently adopted electronic health record system and fall-reporting application served only some information domains with a limited capacity. Substantial improvement in addressing the FRM information domains is possible by effectively modifying the existing solutions and purposefully adopting new solutions.

  16. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    PubMed

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  17. Identifying Home Care Clinicians’ Information Needs for Managing Fall Risks

    PubMed Central

    Alhuwail, Dari

    2016-01-01

    Summary Objectives To help manage the risk of falls in home care, this study aimed to (i) identify home care clinicians’ information needs and how they manage missing or inaccurate data, (ii) identify problems that impact effectiveness and efficiency associated with retaining, exchanging, or processing information about fall risks in existing workflows and currently adopted health information technology (IT) solutions, and (iii) offer informatics-based recommendations to improve fall risk management interventions. Methods A case study was carried out in a single not-for-profit suburban Medicare-certified home health agency with three branches. Qualitative data were collected over a six month period through observations, semi-structured interviews, and focus groups. The Framework method was used for analysis. Maximum variation sampling was adopted to recruit a diverse sample of clinicians. Results Overall, the information needs for fall risk management were categorized into physiological, care delivery, educational, social, environmental, and administrative domains. Examples include a brief fall-related patient history, weight-bearing status, medications that affect balance, availability of caregivers at home, and the influence of patients’ cultures on fall management interventions. The unavailability and inaccuracy of critical information related to fall risks can delay necessary therapeutic services aimed at reducing patients’ risk for falling and thereby jeopardizing their safety. Currently adopted IT solutions did not adequately accommodate data related to fall risk management. Conclusion The results highlight the essential information for fall risk management in home care. Home care workflows and health IT solutions must effectively and efficiently retain, exchange, and process information necessary for fall risk management. Interoperability and integration of the various health IT solutions to make data sharing accessible to all clinicians is critical for fall risk management. Findings from this study can help home health agencies better understand their information needs to manage fall risks. PMID:27437035

  18. From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment.

    PubMed

    Ribolzi, Olivier; Evrard, Olivier; Huon, Sylvain; de Rouw, Anneke; Silvera, Norbert; Latsachack, Keo Oudone; Soulileuth, Bounsamai; Lefèvre, Irène; Pierret, Alain; Lacombe, Guillaume; Sengtaheuanghoung, Oloth; Valentin, Christian

    2017-06-21

    Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km -2 . This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower 137 Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.

  19. Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models

    USGS Publications Warehouse

    Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle

    2016-04-05

    Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.

  20. An investigation on near wall transport characteristics in an adiabatic upward gas-liquid two-phase slug flow

    NASA Astrophysics Data System (ADS)

    Zheng, Donghong; Che, Defu

    2007-08-01

    The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.

  1. SEASONAL VARIATIONS IN HUMAN PAROTID FLUID FLOW RATE IN A SUBTROPICAL CLIMATE.

    DTIC Science & Technology

    Parotid fluid was collected under conditions of very minimal stimulation from 3,868 systemically healthy young adult males over a period of two...calendar years. The study was carried out in a subtropical climate in which the only thermal discomfort resulted from the summer heat. Parotid flow rate...fall. During the summer months the mean rate of parotid flow was 0.031 ml./minute; during the winter the flow rate mean increased by 35% to 0.042 ml

  2. Skin and muscle components of forearm blood flow in directly heated resting man.

    NASA Technical Reports Server (NTRS)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  3. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  4. Medication fall risk in old hospitalized patients: a retrospective study.

    PubMed

    Costa-Dias, Maria José; Oliveira, Alexandre Santos; Martins, Teresa; Araújo, Fátima; Santos, Ana Sofia; Moreira, Cristina Nogueira; José, Helena

    2014-02-01

    While the causes of falls in old hospitalized patients are multifactorial, medication has been considered as one of the most significant factors. Given the large impact that this phenomenon has on the lives of the elderly and organizations, it is important to explore such phenomenon in greater depth. The objective of this study was to explore the association between medication and falls and the recurrent falls (n≥2), and identify medication related risk for fall in hospitalized patients, in a large acute hospital. Retrospective and quantitative study from June 2008 to December 2010. The study was conducted in a private hospital for acute patients in Lisbon, Portugal. The study included a sample of 214 episodes of fall event notifications which occurred in 193 patients. The current study was conducted through the "face to face consensus" technique which emerged the treatment groups to investigate. Regarding the data analysis we used Student's t test, ANOVA and Odds Ratio. In the violation of the premises for the use of parametric statistics we used the Kruskal-Wallis test. To assess the fall risk, and the medication-related fall risk, we used the Morse Fall Risk Scale, and the Medication Fall Risk Score. Patients who received drugs from the therapy group of "Central Nervous System", are 10 times more likely to have fall risk (OR 9. 90, 95% CI 1.6-60.63). Association was found between falls (OR 6.09, 95% CI 1.30-28.54) and its recurrence (OR 3.32, 95% CI 1.61-6.85), among patients receiving haloperidol and receiving tramadol for recurrent falls (OR 3.10, 95% CI 1.59-6.07). In 34% of the patients the medication fall risk score was 6 or higher. This current study allowed identifying medication-related risk factors for falls, that nurses should consider when prescribing interventions to prevent falls and its recurrence, when patients are admitted to acute care hospitals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. 12. CLOSEUP OF THE CURRENT TRASH RAKELIFTING MECHANISM (CALLED 'JAWS' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP OF THE CURRENT TRASH RAKE-LIFTING MECHANISM (CALLED 'JAWS' BY THE PRESENT OPERATORS), LOOKING WEST. THIS EQUIPMENT WAS REMOVED IN AUTUMN OF 1996. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  6. Nutrient losses from an irrigated watershed in southern Idaho

    USDA-ARS?s Scientific Manuscript database

    Water, sediment and nutrients flowing into and out of the 82,000 ha Twin Falls, ID irrigation tract were measured from 2005 to 2008. Approximately 80% of the water flowing into the watershed was irrigation water diverted from the Snake River. About 40% of the watershed inflow returned to the Snake R...

  7. Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Anthropogenic activities, such as dam operations, often induce larger and more frequent stage fluctuations than those occurring in natural rivers. However, the long-term impact of such flow variations on thermal and biogeochemical dynamics of the associated hyporheic zone (HZ) is poorly understood. A heterogeneous, two-dimensional thermo-hydro-biogeochemical model revealed an important interaction between high-frequency flow variations and watershed-scale hydrology. High-frequency stage fluctuations had their strongest thermal and biogeochemical impacts when the mean river stage was low during fall and winter. An abnormally thin snowpack in 2015, however, created a low river stage during summer and early fall, whereby high frequency stagemore » fluctuations caused the HZ to be warmer than usual. This study provided the scientific basis to assess the potential ecological consequences of the high-frequency flow variations in a regulated river, as well as guidance on how to maximize the potential benefits—or minimize the drawbacks—of river regulation to river ecosystems.« less

  8. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  9. Nonlinear dynamics of coiling, and mounding in viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Ober, Thomas; McKinley, Gareth

    2009-11-01

    Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.

  10. Fine-scale ignimbrite morphology revealed in LiDAR at Crater Lake, OR

    NASA Astrophysics Data System (ADS)

    Robinson, J. E.; Bacon, C. R.; Wright, H. M.

    2011-12-01

    Mount Mazama erupted ~7,700 years ago resulting in the collapse of Crater Lake caldera, ash fall across the Pacific Northwest, and emplacement of compositionally zoned ignimbrite. Early climactic ignimbrite contains uniform rhyodacitic pumice and traveled far from the vent, whereas late, less mobile ignimbrite is dominated by crystal-rich andesitic scoria and mafic crystal mush. Funded by the USGS, NPS, and FHWA, the DOGAMI-led Oregon LiDAR Consortium contracted with Watershed Services to collect ~800 km2 of LiDAR over Crater Lake National Park from Aug 2010 to Sept 2010. Ground laser returns have an average density of 1.63 returns/m2 over the heavily forested area of interest. The data have a lateral RMSE and vertical accuracy of 0.05 m. A bare earth terrain model allows a virtual removal of the forest, revealing fine-scale surface morphology, notably in the climactic ignimbrite. Secondary pyroclastic flows, explosion craters, erosion by water, and compaction-related deformation modified the originally smooth ignimbrite surface. Distinct pyroclastic flow fronts are evident in the LiDAR in Annie Creek valley. Leveed flows stand approximately 5 m above the lower ignimbrite surface, and individual toes are about 1-2 m high. Preliminary field checking indicates that rhyodacitic pumice dominates the lower ignimbrite surface, but the leveed flows are a subequal mix of locally oxidized rhyodacitic pumice and andesitic scoria. We hypothesize that these deposits were secondary pyroclastic flows formed by gravitational failure of late ignimbrite. In the Castle Creek valley, is a 2-meter collapse scarp that may have spawned a small secondary pyroclastic flow; several such headwall scarps are present in Sand Creek valley. Differential compaction features are common in many thick ignimbrites. We suggest this caused the deformation of the ignimbrite apparent in the LiDAR. In Annie Creek valley are a series of flow parallel asymmetric ridges, with shallower slopes toward the valley center, in the surface of the rhyodacitic ignimbrite. The ridges are 1-2 m high, and have a variable wavelength averaging 60 m. We hypothesize that this terrain is a series of antithetic faults due to downbending towards the thickest part of the ignimbrite. The ignimbrite near the Pumice Desert is likely over 100 m thick. Here, cracks positioned on topographic highs or at breaks in slope are 50 m to 800 m long and up to 30 m wide. The cracks open towards the thickest part of the ignimbrite in the downslope direction. They appear to be tension fractures that opened because of differential compaction of the ignimbrite. Breakaway fractures mark where ignimbrite thickness abruptly decreases laterally, such as north-northeast of the caldera and at valley margins. Some fractures show evidence of water erosion during formation of fractures. On the lee side of Timber Crater, north of Crater Lake, is a series of N-S trending ribs composed of pumice fall from the climactic eruption deposited on glaciated andesite lava. Timber Crater lies on the main dispersal axis of the pumice fall. We suggest that high-energy pyroclastic flows encountered topographic bumps on the flanks of Timber Crater. This affected flow turbulence causing linear troughs to erode into the fall deposit and leaving pumice-fall ribs.

  11. Pumice deposits of the Klamath Indian Reservation, Klamath County, Oregon

    USGS Publications Warehouse

    Walker, George Walton

    1951-01-01

    A large volume of pumice is widely distributed over the Klamath Indian Reservation in 'flow' and 'fall' deposits. The flow material on the Reservation is restricted to the area west of Klamath Marsh, and the fall material is thickest immediately southeast of the Marsh. Tests of the chemical and physical properties of the pumice indicate that the pumice is suitable, with some limitations, for use as an aggregate and as a low-grade abrasive. Preliminary examination also indicates that with proper processing it may have a potential use as pozzuolana. The pumice is similar to material now being marketed for lightweight aggregate in Oregon, but processing of the pumice is necessary to obtain a suitable size distribution of the particles.

  12. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the upper end of Condor Canyon, where a tributary known as Kill Wash, and several springs, contribute flow and moderate high and low water temperature. Kill Wash and the area around its confluence with Meadow Valley Wash appeared important for spawning of all three native species. Detections of PIT-tagged fish indicated that there were substantial movements to this area during the spring. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. A population of non-native rainbow trout (Oncorhynchus mykiss) was found within the 2,000 m of stream immediately downstream of Delmue Falls. Non-native crayfish were very common both upstream and downstream of Delmue Falls. We were not able to quantify crayfish populations, but they compose a significant portion of the biomass of aquatic species in Condor Canyon. There were some distinctive habitat features that may have favored native fish upstream of Delmue Falls. Upstream of the falls, water temperatures were moderated by inputs from springs, turbidity was lower, pool habitat was more prevalent, substrate heterogeneity was higher, and there was less fine sediment than

  13. Exercise for falls prevention in older people: assessing the knowledge of exercise science students.

    PubMed

    Sturnieks, Daina L; Finch, Caroline F; Close, Jacqueline C T; Tiedemann, Anne; Lord, Stephen R; Pascoe, Deborah A

    2010-01-01

    Participation in appropriate exercise can help reduce the risk of falls and falls injury in older people. Delivery of population-level exercise interventions requires an expert workforce with skills in development and delivery of group exercise programs and prescription of individually targeted exercise. This study assessed the current knowledge of university exercise science students (as future exercise professionals) across different levels of study. A structured survey designed to assess knowledge in relation to falls in older people and exercise prescription for falls prevention was administered during second, third and fourth year lectures in seven Australian universities. Students' knowledge was assessed as the percent of correct responses. Overall, 566 students completed the survey and knowledge levels increased significantly with study year. Mean knowledge levels were significantly <70%, indicating limited knowledge. They were lowest for falls risk factor questions and highest for issue/cost related questions in second and third year students. Fourth year students had best knowledge about falls interventions and this was the only group and topic with a mean score >70%. In conclusion, knowledge about falls and exercise prescription for falls prevention in current students does not meet a desired competency level of 70% and is therefore insufficient to ensure an adequately equipped future workforce in this area. There is a clear need for the development and widespread delivery of an evidence-based "exercise for falls prevention" curriculum module for exercise professionals. Copyright (c) 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.

  15. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon - Implications for deposition and surface modification

    NASA Astrophysics Data System (ADS)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-08-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The 7700 calendar year B.P. climactic eruption of Mount Manama, USA, vented 50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Manama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ± 1 m lateral and ± 4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow-parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of closely spaced pits caused by phreatic explosions, fractures and cracks due to extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.

  16. A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river

    PubMed Central

    2017-01-01

    The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914–2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8–29% from 1914–1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37–56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10–31% from 1964–2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1–2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows. PMID:29176868

  17. Yarning about fall prevention: community consultation to discuss falls and appropriate approaches to fall prevention with older Aboriginal and Torres Strait Islander people.

    PubMed

    Lukaszyk, Caroline; Coombes, Julieann; Turner, Norma Jean; Hillmann, Elizabeth; Keay, Lisa; Tiedemann, Anne; Sherrington, Cathie; Ivers, Rebecca

    2017-08-01

    Fall related injury is an emerging issue for older Indigenous people worldwide, yet few targeted fall prevention programs are currently available for Indigenous populations. In order to inform the development of a new Aboriginal-specific fall prevention program in Australia, we conducted community consultation with older Aboriginal people to identify perceptions and beliefs about falls, and to identify desired program elements. Yarning Circles were held with Aboriginal and Torres Strait Islander people aged 45 years and over. Each Yarning Circle was facilitated by an Aboriginal researcher who incorporated six indicative questions into each discussion. Questions explored the impact of falls on Yarning Circle participants, their current use of fall prevention services and investigated Yarning Circle participant's preferences regarding the design and mode of delivery of a fall prevention program. A total of 76 older Aboriginal people participated in ten Yarning Circles across six sites in the state of New South Wales. Participants associated falls with physical disability, a loss of emotional well-being and loss of connection to family and community. Many participants did not use existing fall prevention services due to a lack of availability in their area, having no referral provided by their GP and/or being unaware of fall prevention programs in general. Program elements identified as important by participants were that it be Aboriginal-specific, group-based, and on-going, with the flexibility to be tailored to specific communities, with free transport provided to and from the program. Older Aboriginal people reported falls to be a priority health issue, with a significant impact on their health and well-being. Few older Aboriginal people accessed prevention programs, suggesting there is an important need for targeted Aboriginal-specific programs. A number of important program elements were identified which if incorporated into prevention programs, may help to address the rising burden of falls.

  18. The association of falls and various physical activities in Chinese nonagenarians/centenarians.

    PubMed

    Hao, Qiukui; Yang, Ming; Luo, Li; Hai, Shan; Ding, Xiang; Dong, Birong

    2015-01-01

    Little is known about the relationship between falls and various physical activities in the oldest old people. This study was conducted to observe the association of fall with various exercise habits and farm work in very old people. In this cross-sectional study of a Chinese cohort of men and women aged 90-108 years, we observed the association of fall with habitual (current and former) farm work and exercise in very old people. The population included 805 unrelated Chinese nonagenarians and centenarians (68.94% of the subjects were women, with a mean age of 93.70 years). In the women, the subjects with a continuing exercise habit had a significantly lower prevalence of fall than those without an exercise habit; the subjects who had never exercised had a significantly higher prevalence of fall than those who exercised. In men, there was no significant difference in the prevalence of these habits between the subjects with and without fall. After adjusting for age, gender, body mass index, educational levels, life styles, vision levels and temperament, we found that current habitual farm work (OR=1.755 95% CI (1.107, 2.780)) and exercise OR=0.666 95% CI (0.445, 0.997) had a significant odds ratio for fall; among the females, continuing exercise (vs. having never exercised) had a significant odds ratio for fall (OR=0.620 95% CI (0.395, 0.973)). Habitual farm work might be positively associated with fall; however, habitual exercise might be negatively associated with fall in Chinese long-lived old people. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    NASA Astrophysics Data System (ADS)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand years before being erupted contemporaneously along a 30 km long, structurally controlled vent zone related to extracaldera Basin and Range faults. These data highlight the rapidity with which magma can be generated and erupted over large distances at Yellowstone.

  20. Landslides caused by the Klamath Falls, Oregon, earthquakes of September 20, 1993

    USGS Publications Warehouse

    Keefer, D.K.; Schuster, R.L.

    1993-01-01

    In the Klamath Falls area, the most numerous earthquake-induced rock falls were along the east-to southeast-facing flank of a ridge immediately south and west of Howard Bay (locality 1 on the accompanying map), 18 km east-southeast of the epicenter of the magntiude 6.0 shock at 10:45 p.m. This ridge is more than 240 m high and has slopes steeper than 45° in places. The upper part of the ridge is composed of material from basaltic lava flows, an the lower slopes are covered with colluvium and talus deposits containing abundant boulders. 

  1. Sources of Local Time Asymmetries in Magnetodiscs

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; Kane, M.; Sergis, N.; Khurana, K. K.; Jackman, C. M.

    2015-04-01

    The rapidly rotating magnetospheres at Jupiter and Saturn contain a near-equatorial thin current sheet over most local times known as the magnetodisc, resembling a wrapped-up magnetotail. The Pioneer, Voyager, Ulysses, Galileo, Cassini and New Horizons spacecraft at Jupiter and Saturn have provided extensive datasets from which to observationally identify local time asymmetries in these magnetodiscs. Imaging in the infrared and ultraviolet from ground- and space-based instruments have also revealed the presence of local time asymmetries in the aurora which therefore must map to local time asymmetries in the magnetosphere. Asymmetries are found in (i) the configuration of the magnetic field and magnetospheric currents, where a thicker disc is found in the noon and dusk sectors; (ii) plasma flows where the plasma flow has local time-dependent radial components; (iii) a thicker plasma sheet in the dusk sector. Many of these features are also reproduced in global MHD simulations. Several models have been developed to interpret these various observations and typically fall into two groups: ones which invoke coupling with the solar wind (via reconnection or viscous processes) and ones which invoke internal rotational processes operating inside an asymmetrical external boundary. In this paper we review these observational in situ findings, review the models which seek to explain them, and highlight open questions and directions for future work.

  2. Combined Falling Drop/Open Port Sampling Interface System for Automated Flow Injection Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos; Orcutt, Matt; ...

    2017-11-07

    The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7–15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on themore » sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ~45 s with a ~4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.« less

  3. Combined Falling Drop/Open Port Sampling Interface System for Automated Flow Injection Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J.; Kertesz, Vilmos; Orcutt, Matt

    The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7–15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on themore » sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ~45 s with a ~4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.« less

  4. Characterizing effects of hydropower plants on sub-daily flow regimes

    NASA Astrophysics Data System (ADS)

    Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer

    2017-07-01

    A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets, prioritizing river restoration or dam reoperation efforts and contributing information for relicensing hydropower dams.

  5. Intrinsic factors associated with pregnancy falls.

    PubMed

    Wu, Xuefang; Yeoh, Han T

    2014-10-01

    Approximately 25% to 27% of women sustain a fall during pregnancy, and falls are associated with serious injuries and can affect pregnancy outcomes. The objective of the current study was to identify intrinsic factors associated with pregnancy that may contribute to women's increased risk of falls. A literature search (Medline and Pubmed) identified articles published between January 1980 and June 2013 that measured associations between pregnancy and fall risks, using an existing fall accident investigation framework. The results indicated that physiological, biomechanical, and psychological changes associated with pregnancy may influence the initiation, detection, and recovery phases of falls and increase the risk of falls in this population. Considering the logistic difficulties and ethnic concerns in recruiting pregnant women to participate in this investigation of fall risk factors, identification of these factors could establish effective fall prevention and intervention programs for pregnant women and improve birth outcomes. [Workplace Health Saf 2014;62(10):403-408.]. Copyright 2014, SLACK Incorporated.

  6. Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.

    1996-06-01

    Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived.A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Best number. Terminal velocities were calculated from Re.Alternatively, four Re-X power-law expressions were extracted from the theoretical Re-X relationship. These expressions collectively describe the terminal velocities of all ice particle types. These were parameterized using mass- and area-dimensional power laws, yielding four theoretically based power-law expressions predicting fall speeds in terms of ice particle maximum dimension. When parameterized for a given ice particle type, the theoretical fall speed power law can be compared directly with empirical fall speed-dimensional power laws in the literature for the appropriate Re range. This provides a means of comparing theory with observations.Terminal velocities predicted by this method were compared with fall speeds given by empirical fall speed expressions for the same ice particle type, which were curve fits to measured fall speeds. Such comparisons were done for nine types of ice particles. Fall speeds predicted by this method differed from those based on measurements by no more than 20%.The features that distinguish this method of determining fall speeds from others are that it does not represent particles as spheroids, it is general for any ice particle shape and size, it is conceptually and mathematically simple, it appears accurate, and it provides for physical insight. This method also allows fall speeds to be determined from aircraft measurements of ice particle mass and projected area, rather than directly measuring fall speeds. This approach may be useful for ice crystals characterizing cirrus clouds, for which direct fall speed measurements are difficult.

  7. Doppler radar sensor positioning in a fall detection system.

    PubMed

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.

  8. Effect of nicergoline on cerebral blood flow

    PubMed Central

    Iliff, L. D.; Boulay, G. H. Du; Marshall, John; Russell, R. W. Ross; Symon, Lindsay

    1977-01-01

    Cerebral blood flow (CBF) was measured before and after intravenous injection of the cerebral vasodilator nicergoline in 13 patients with cerebrovascular disease. CBF increased in seven. The possibility that the effect of the drug in the remainder may have been masked by a fall of CBF which occurs during sequential measurement of patients at rest is discussed. PMID:925694

  9. Perirheic mixing and biogeochemical processing in flow-through and backwater floodplain wetlands

    NASA Astrophysics Data System (ADS)

    Jones, C. Nathan; Scott, Durelle T.; Edwards, Brandon L.; Keim, Richard F.

    2014-09-01

    Inundation hydrology and associated processes control biogeochemical processing in floodplains. To better understand how hydrologic connectivity, residence time, and intrafloodplain mixing vary in floodplain wetlands, we examined how water quality of two contrasting areas in the floodplain of the Atchafalaya River—a flow-through and a backwater wetland—responded to an annual flood pulse. Large, synoptic sampling campaigns occurred in both wetlands during the rising limb, peak, and falling limb of the hydrograph. Using a combination of conservative and reactive tracers, we inferred three dominant processes that occurred over the course of the flood pulse: flushing (rising limb), advective transport (peak), and organic matter accumulation (falling limb). Biogeochemistry of the two wetlands was similar during the peak while the river overflowed into both. However, during the rising and falling limbs, flow in the backwater wetland experienced much greater residence time. This led to the accumulation of dissolved organic matter and dissolved phosphorus. There were also elevated ratios of dissolved organic carbon to nitrate in the backwater wetland, suggesting nitrogen removal was limited by nitrate transported into the floodplain there. Collectively, our results suggest inclusion of a temporal component into the perirheic concept more fully describes inundation hydrology and biogeochemistry in large river floodplain. This article was corrected on 6 OCT 2014. See the end of the full text for details

  10. Low-flow characteristics of the Mississippi River upstream from the Twin Cities Metropolitan Area, Minnesota, 1932-2007

    USGS Publications Warehouse

    Kessler, Erich; Lorenz, David L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Metropolitan Council, conducted a study to characterize regional low flows during 1932?2007 in the Mississippi River upstream from the Twin Cities metropolitan area in Minnesota and to describe the low-flow profile of the Mississippi River between the confluence of the Crow River and St. Anthony Falls. Probabilities of extremely low flow were estimated for the streamflow-gaging station (Mississippi River near Anoka) and the coincidence of low-flow periods, defined as the extended periods (at least 7 days) when all the daily flows were less than the 10th percentile of daily mean flows for the entire period of record, at four selected streamflow-gaging stations located upstream. The likelihood of extremely low flows was estimated by a superposition method for the Mississippi River near Anoka that created 5,776 synthetic hydrographs resulting in a minimum synthetic low flow of 398 cubic feet per second at a probability of occurrence of 0.0002 per year. Low-flow conditions at the Mississippi River above Anoka were associated with low-flow conditions at two or fewer of four upstream streamflow-gaging stations 42 percent of the time, indicating that sufficient water is available within the basin for many low flows and the occurrence of extremely low-flows is small. However, summer low-flow conditions at the Mississippi River above Anoka were almost always associated with low-stage elevations in three or more of the six upper basin reservoirs. A low-flow profile of the Mississippi River between the confluence of the Crow River and St. Anthony Falls was completed using a real-time kinematic global positioning system, and the water-surface profile was mapped during October 8?9, 2008, and annotated with local landmarks. This was done so that water-use planners could relate free-board elevations of selected water utility structures to the lowest flow conditions during 2008.

  11. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, W. E.; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  12. Tephrostratigraphy of the A.D. 79 pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Lirer, Lucio; Munno, Rosalba; Petrosino, Paola; Vinci, Anna

    1993-11-01

    Correlations between pyroclastic deposits in perivolcanic areas are often complicated by lateral and vertical textural variations linked to very localized depositional effects. In this regard, a detailed sampling of A.D. 79 eruption products has been performed in the main archaeological sites of the perivolcanic area, with the aim of carrying out a grain-size, compositional and geochemical investigation so as to identify the marker layers from different stratigraphic successions and thus reconstruct the eruptive sequence. In order to process the large number of data available, a statistical approach was considered the most suitable. Statistical processing highlighted 14 marker layers among the fall, stratified surge and pyroclastic flow deposits. Furthermore statistical analysis made it possible to correlate pyroclastic flow and surge deposits interbedded with fall, interpreted as a lateral facies variation. Finally, the passage from magmatic to hydromagmatic activity is marked by the deposition of pyroclastic flow, surge and accretionary lapilli-bearing deposits. No transitional phase from magmatic to hydromagmatic activity has been recognized.

  13. Transformation of a Water Slug in Free Fall Under the Conditions of Exposure to an Air Flow Orthogonal to the Direction of the Slug Motion

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zabelin, M. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-07-01

    An experimental study has been made of the influence of an orthogonal (side) air flow propagating with a velocity to 5 m/s on the phases of transformation of a water slug with an initial volume of 0.05-0.5 liter in free fall from a height of 3 m. Use was made of Phantom V411 and Phantom Miro M310 high-speed video cameras and a Tema Automotive software system with the function of continuous tracking. The laws of retardation of the phases of transformation of the water slug from the instant of formation to that of formation of a droplet cloud under the action of the air flow orthogonal to the direction of the slug motion, and also of the deceleration, removal, and destruction of the droplets and fragments of water separating from the slug surface, have been established.

  14. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  15. Study of magnetic fields from power-frequency current on water lines.

    PubMed

    Lanera, D; Zapotosky, J E; Colby, J A

    1997-01-01

    The magnetic fields from power-frequency current flowing on water lines were investigated in a new approach that involved an area-wide survey in a small town. Magnetic fields were measured outside the residence under power cables and over water lines, and each residence was characterized as to whether it received water from a private well or the municipal water system. The magnetic field data revealed two statistical modes when they were related to water supply type. The data also showed that in the case of the high mode, the magnetic field remained constant along the line formed by power drop wires, at the back of the house, and the water hookup service, in front of the house, all the way to the street. The patterns are explained by the coincidence of measurement points and the presence of net current flowing on power mains, power drop conductors, residential plumbing, water service hookups, and water mains. These patterns, together with other characteristics of this magnetic field source, such as the gradual spatial fall-off of this field and the presence of a constant component in the time sequence, portray a magnetic field more uniform and constant in the residential environment than has been thought to exist. Such characteristics make up for the weakness of the source and make net current a significant source of exposure in the lives of individuals around the house, when human exposure to magnetic fields is assumed to be a cumulative effect over time. This, together with the bimodal statistical distribution of the residential magnetic field (related to water supply type), presents opportunities for retrospective epidemiological analysis. Water line type and its ability to conduct power-frequency current can be used as the historical marker for a bimodal exposure inference, as Wertheimer et al. have shown.

  16. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  17. Worldwide Weather Radar Imagery May Allow Substantial Increase in Meteorite Fall Recovery

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Matson, Robert; Schaefer, Jacob; Fries, Jeffery; Hankey, Mike; Anderson, Lindsay

    2014-01-01

    Weather radar imagery is a valuable new technique for the rapid recovery of meteorite falls, to include falls which would not otherwise be recovered (e.g. Battle Mountain). Weather radar imagery reveals about one new meteorite fall per year (18 falls since 1998), using weather radars in the United States alone. However, an additional 75 other nations operate weather radar networks according to the UN World Meteorological Organization (WMO). If the imagery of those radars were analyzed, the current rate of meteorite falls could be improved considerably, to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverage. Recently, the addition of weather radar imagery, seismometry and internet-based aggregation of eyewitness reports has improved the speed and accuracy of fresh meteorite fall recovery [e.g. 1,2]. This was demonstrated recently with the radar-enabled recovery of the Sutter's Mill fall [3]. Arguably, the meteorites recovered via these methods are of special scientific value as they are relatively unweathered, fresh falls. To illustrate this, a recent SAO/NASA ADS search using the keyword "meteorite" shows that all 50 of the top search results included at least one named meteorite recovered from a meteorite fall. This is true even though only 1260 named meteorite falls are recorded among the >49,000 individual falls recorded in the Meteoritical Society online database. The US NEXRAD system used thus far to locate meteorite falls covers most of the United States' surface area. Using a WMO map of the world's weather radars, we estimate that the total coverage of the other 75 national weather radar networks equals about 3.6x NEXRAD's coverage area. There are two findings to draw from this calculation: 1) For the past 16 years during which 18 falls are seen in US radar data, there should be an additional 65 meteorite falls recorded in worldwide radar imagery. Also: 2) if all of the world's radar data could be analyzed, the rate of recovery of fresh meteorite falls can increase by as much as 3.6x the current rate. The authors' experience to date indicates that the most effective course of action would be to have local meteorite research groups (outside of the US) form research consortia and develop a working relationship with their nation's weather bureau for access to data. These research consortia could utilize the same, proven methods used for US NEXRAD imagery, internet eyewitness report aggregation, seismometry analysis, etc. to locate meteorite falls. The consortia could then recover and analyze meteorite falls and enrich their own research efforts. It would be beneficial to conduct a global program to coordinate the development of methods and data tools, as well as to coordinate meteorite sample sharing and research. Perhaps an institution such as the Meteoritical Society could lead such an effort.

  18. Dense Granular Avalanches: Mathematical Description and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Tai, Y.-C.; Hutter, K.; Gray, J. M. N. T.

    Snow avalanches, landslides, rock falls and debris flows are extremely dangerous and destructive natural phenomena. The frequency of occurrence and amplitudes of these disastrous events appear to have increased in recent years perhaps due to recent climate warming. The events endanger the personal property and infra-structure in mountainous regions. For example, from the winters 1940/41 to 1987/88 more than 7000 snow avalanches occurred in Switzerland with damaged property leading to a total of 1269 deaths. In February 1999, 36 people were buried by a single avalanche in Galtür, Austria. In August 1996, a very large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approximate property damage of more than 19 billion NT dollars (ca. 600 million US dollars) [18]. In Europe, a suddenly released debris flow in North Italy in August 1998 buried 5 German tourists on the Superhighway "Brenner-Autobahn". The topic has gained so much significance that in 1990 the United Nations declared the International Decade for Natural Disasters Reduction (IDNDR); Germany has its own Deutsches IDNDR-Komitee für Katastrophenvorbeugung e.V. Special conferences are devoted to the theme, e.g., the CALAR conference on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January 2000), INTERPRAEVENT, annual conferences on the protection of habitants from floods, debris flows and avalanches, special conferences on debris flow hazard mi tigation and those exclusively on Avalanches.

  19. Effects of wall friction on flow in a quasi-2D hopper

    NASA Astrophysics Data System (ADS)

    Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha

    Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.

  20. 26 CFR 1.1446-6 - Special rules to reduce a partnership's 1446 tax with respect to a foreign partner's allocable...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... any extensions of time to file, which falls before the beginning of the current partnership taxable... including any extensions of time to file, which falls within the current partnership taxable year for which...-tier partnership) that is a partner in another partnership (lower-tier partnership)— (A) The rules of...

  1. Falls and Fall Prevention in Older Adults With Early-Stage Dementia: An Integrative Review.

    PubMed

    Lach, Helen W; Harrison, Barbara E; Phongphanngam, Sutthida

    2017-05-01

    Older adults with mild cognitive impairment (MCI) and early-stage dementia have an increased risk of falling, with risks to their health and quality of life. The purpose of the current integrative review was to evaluate evidence on fall risk and fall prevention in this population. Studies were included if they examined falls or fall risk factors in older adults with MCI or early-stage dementia, or reported interventions in this population; 40 studies met criteria. Evidence supports the increased risk of falls in individuals even in the early stages of dementia or MCI, and changes in gait, balance, and fear of falling that may be related to this increased fall risk. Interventions included exercise and multifactorial interventions that demonstrated some potential to reduce falls in this population. Few studies had strong designs to provide evidence for recommendations. Further study in this area is warranted. [Res Gerontol Nurs. 2017; 10(03):139-148.]. Copyright 2016, SLACK Incorporated.

  2. Wave and Current Measurements From the Coastal Storms Program (CSP) Buoy 41012 off St. Augustine, FL

    NASA Astrophysics Data System (ADS)

    Crout, R. L.

    2008-05-01

    The Coastal Storms Program (CSP) is a NOAA program that involves several different branches within NOAA. Components of the National Ocean Service, the National Weather Service, the National Marine Fisheries Service, and the Office of Oceanic and Atmospheric Research participate in CSP, which is administered by the Coastal Services Center. CSP selects an area where an impact in support of the NOAA Societal Goals can be made. The first area selected was the northeast coast of Florida in 2002. In addition to coastal water level stations and modeling efforts, a 3-meter discuss buoy (WMO 41012) was deployed off the coast of St. Augustine, FL in approximately 38 meters of water. In addition to the normal complement of meteorological sensors, Buoy 41012 contained a sensor to measure directional waves at hourly intervals, a temperature-conductivity sensor to measure near-surface temperature and salinity, and a current profiler to obtain near-surface to near-bottom currents at hourly intervals. These data on the continental shelf provide a view of the oceanography on the inner margin of the Gulf Stream. The data are served over the National Data Buoy Center's web page and over the Global Telecommunications System. The waves and currents during the period from September 2005 through December 2007 are related to coastal storms, hurricanes, tides, and Gulf Stream intrusions. During several late fall and winter periods the waves exceeded 4.5 meters. The on-offshore component of the currents appears to be tidally driven, however, predominant on- and off-shore flows are observed in response to storms and Gulf Stream intrusions. The primary component of the flow is aligned alongshore and although the tidal influence is obvious, extended periods of northward and southward currents are observed. Currents approaching 2 knots are observed at various times during the period that the buoy has been active. The high currents appear to be in response to strong wind events (atmospheric frontal passages) and Gulf Stream intrusions.

  3. The Dst Recovery Near Substorm Onset Due to the Transformation of the Blocked Cross-Tail Current into the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    McWilliams, K. A.; Sofko, G. J.; Hussey, G. C.; Reimer, A. S.

    2016-12-01

    During the growth phase the convex curvature of the lobe field lines permits eastward curvature current to dominate on those lobe lines, which blocks the westward cross-tail current (XTJ). The blocked XTJ (BXTJ) is diverted earthward through the tailward portion of the transition plasmasheet (TPS) region of predominantly dipole lines tailward of the plasmapause. The flow shear of the BXTJ in the TPS produces a downward meridional FAC that results in the pre-onset proton arc in the subauroral region. This ionospheric signature of the growth phase lasts for about an hour, ending about 15 minutes before onset, when the pre-onset electron arc appears. Ions in the outer radiation belt precipitate equatorward of the meridional FAC system, because they are on stretched field lines tailward of the ion trapping boundary. The ion precipitation causes the ionospheric conductivity to increases substantially, providing a new high-conductivity route in the ionosphere for the BXTJ. This diversion of the BXTJ forms the Substorm Current Wedge. During the pre-onset proton arc interval, the intensification of the ring current and the flow of the BXTJ cause the Dst index to fall. When the BXTJ is diverted into the ionosphere and forms the substorm current wedge, it produces a northward magnetic field that causes Dst to have a brief positive deflection of 15-20 nT, despite all indications that the ring current continues to grow. The positive Dst deflection is the result both of the loss of the BXTJ from the tailward portion of the TPS and of its new northward field generated by its new route along the SCW. Note that there are two disruptions of the XTJ, first the early growth phase lobe line blocking that diverts the BXTJ earthward into the TPS region, and second (over an hour later, near onset) by the transformation of the BXTJ into the SCW.

  4. Particle Diffusion in Chaotic Magnetic Fields Generated by Asymmetric Current Configurations

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Dasgupta, B.

    2008-12-01

    The observed cross-field diffusion of charged particles in cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. In these studies the irregular component of the magnetic field is prescribed in an ad hoc fashion. In contrast, we consider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. These magnetic fields are completely deterministic and, for certain range of parameters, chaotic. We will present analytical and numerical studies on the spatial characteristics of these fields. The motion of charged particles in the nonlinear and chaotic magnetic fields is determined using the Lorentz equation. A particle moving in a deterministic chaotic magnetic field superposed on a uniform background magnetic field is found to undergo spatial transport. This shows that chaotic magnetic fields generated by simple current configurations can produce cross-field diffusion. A detailed analysis of particle motion and diffusion along with application to space plasmas will be presented. [1] E.N. Parker, Planet. Space Sci. 13, 9 (1965). [2] J.R. Jokipii, Astrophys. J. 146, 480 (1966), and J.R. Jokipii, Astrophys. J. 149, 405 (1967). [3] A.K. Ram and B. Dasgupta, Eos Trans. AGU 87 (52), Fall Meet. Suppl. Abstract NG31B-1593 (2006); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  5. Particle motions beneath irrotational water waves

    NASA Astrophysics Data System (ADS)

    Bakhoday-Paskyabi, Mostafa

    2015-08-01

    Neutral and buoyant particle motions in an irrotational flow are investigated under the passage of linear, nonlinear gravity, and weakly nonlinear solitary waves at a constant water depth. The developed numerical models for the particle trajectories in a non-turbulent flow incorporate particle momentum, size, and mass (i.e., inertial particles) under the influence of various surface waves such as Korteweg-de Vries waves which admit a three parameter family of periodic cnoidal wave solutions. We then formulate expressions of mass-transport velocities for the neutral and buoyant particles. A series of test cases suggests that the inertial particles possess a combined horizontal and vertical drifts from the locations of their release, with a fall velocity as a function of particle material properties, ambient flow, and wave parameters. The estimated solutions exhibit good agreement with previously explained particle behavior beneath progressive surface gravity waves. We further investigate the response of a neutrally buoyant water parcel trajectories in a rotating fluid when subjected to a series of wind and wave events. The results confirm the importance of the wave-induced Coriolis-Stokes force effect in both amplifying (destroying) the pre-existing inertial oscillations and in modulating the direction of the flow particles. Although this work has mainly focused on wave-current-particle interaction in the absence of turbulence stochastic forcing effects, the exercise of the suggested numerical models provides additional insights into the mechanisms of wave effects on the passive trajectories for both living and nonliving particles such as swimming trajectories of plankton in non-turbulent flows.

  6. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  7. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  8. The coastal oasis: ice age springs on emerged continental shelves

    NASA Astrophysics Data System (ADS)

    Faure, Hugues; Walter, Robert C.; Grant, Douglas R.

    2002-06-01

    As ice caps expanded during each of the last five glaciations, sea level fell at least 120 m below current levels, exposing continental shelves worldwide to create vast areas of new land. As a result of this exposure, the ecology, climate, pedology, and geology of global shorelines were dramatically transformed, which in turn altered the carbon cycle and biodynamics of this new landmass. In this paper, we focus on a little-known hydrogeological phenomenon that may have had profound influences on biodiversity, human evolution, and carbon storage during periods of severe climatic stress of the Pleistocene Ice Ages. We propose that freshwater springs appeared on emerged continental shelves because falling sea level not only drew down and steepened the coastal water table gradient, thus increasing the hydrostatic head on inland groundwater aquifers, but also removed up to 120 m of hydrostatic pressure on the shelf, further enhancing groundwater flow. We call this phenomenon the "coastal oasis", a model based on three well-established facts. (1) In all coastal areas of the world, continental aquifers discharge a continuous flow of fresh water to the oceans. (2) Many submarine sedimentary and morphological features, as well as seepages and flow of fresh water, are known on and below the shelves from petroleum explorations, deep-sea drilling programs, and mariners' observations. (3) Hydraulic principles (Darcy's law) predict increased groundwater flow at the coast when sea level drops because the piezometric head increases by the equivalent depth of sea-level lowering. Sea level is presently in a relatively high interglacial position. Direct observation and verification of our model is difficult and must rely on explorations of terrain that are now deeply submerged on continental shelves. For this reason, we draw parallels between our predicted model and simple, well-exposed terrestrial hydrological systems, such as present-day springs that appear on the exposed shores of lakes whose free-air water levels fell during periods of aridity. Such modern examples are seen in the Caspian Sea and Dead Sea, the Afar Depression, and the Sahara Desert. These modern analogues demonstrate the likelihood that underground water will be more abundant on emerged shelves during sea-level fall, causing springs, oases, and wetlands to appear. Our model creates an apparent paradox: in tropical and subtropical arid lands, such as most of Africa, sea-level fall during hyperarid glacial phases would produce abundant fresh water flow onto emerged continental shelves as the continental interior desiccated. Thus, emergent shoreline springs provided new habitats for terrestrial vegetation and animals displaced from the interior by increasingly arid conditions, shrinking ecosystems, and dwindling water supplies. Such a scenario would have had a profound influence on the vegetation that spreads naturally to colonize the emerged shelves during glacio-eustatic sea-level lowstands, as well as creating new habitats for terrestrial mammals, including early humans.

  9. Effect of stem water content on sap flow from dormant maple and butternut stems: induction of sap flow in butternut.

    PubMed

    Johnson, R W; Tyree, M T

    1992-10-01

    Sap flow from excised maple stems collected over the winter (1986/87) was correlated with stem water content. Stem water content was high in the fall (>0.80) and decreased rapidly during 2 weeks of continuous freezing temperatures in late winter (<0.60). Exudation of sap from stem segments subjected to freeze/thaw cycles was small (<10 mL/kg) in the fall, but substantial exudation (45-50 mL/kg) occurred following the decline in water content. These observations are consistent with Milburn's and O'Malley's models (J.A. Milburn, P.E.R. O'Malley [1984] Can J Bot 62: 2101-2106; P.E.R. O'Malley, J.A. Milburn [1983] Can J Bot 61:3100-3106) of sap absorption into gas-filled fibers during freezing. Exudation volume was increased 200 to 300% in maple stems originally at high water content (>0.80) after perfusion with sucrose and dehydration at -12 degrees C. Sap flow was also induced in butternut stem segments after the same treatment. Thus, sap flow may not be unique to maples. Sap flow could not be increased in stem segments dehydrated at 4 degrees C. Migration of water molecules from small ice crystals in fibers to larger crystals in vessels while stems were frozen may account for increase exudation after dehydration at -12 degrees C. This would result in preferential dehydration of fibers and a distribution of gas and sap favorable for stem-based sap flow.

  10. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    NASA Astrophysics Data System (ADS)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio

    2012-10-01

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  11. Feasibility Report for Hydropower, St. Anthony Falls Locks and Dams, Mississippi River, Minneapolis, Minnesota.

    DTIC Science & Technology

    1984-02-01

    Added Generators and Breakers 116 * ix I~ Table of Contents (cont.) Item Pace Excitation System 117 Connection to Load 117 Bridge Crane 117 Lower St...118 Added Generator and Breaker 119 Excitation System 120 Connection to Load 120 Mobile Crane 120 Civil Features - Upper Falls 120 Powerhouse 121...intermediate plants fully integrated with the base loaded thermal plants in the area. Gavins Point is generally base- loaded to provide steady flows for

  12. Acoustics and hydrodynamics of a drop impact on a water surface

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2017-01-01

    Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.

  13. Availability of water from the Outwash Aquifer, Marion County, Indiana

    USGS Publications Warehouse

    Smith, B.S.

    1983-01-01

    The outwash aquifer in Marion County, Indiana is a continuous, unconfined sand and gravel deposit containing isolated boulder, till, silt, and clay deposits along the White River, Fall Creek, and Eagle Creek. Flow in the aquifer is from the boundaries of the aquifer with the Tipton till plain toward the streams and major pumping centers in the aquifer. A two-dimensional, finite-difference model of the outwash aquifer was calibrated to water levels of October 6 to 10, 1980 and used to estimate availability of water in the aquifer. A drawdown limit of 50-percent saturated thickness applied to 78 simulated-pumping wells assumed to be 1 foot in diameter produced 97 cubic feet per second from the outwash aquifer. Streamflow reductions caused by 97 cubic feet per second simulated pumpage and constant-flux boundaries were estimated to be 85 cubic feet per second in the White River and 12 cubic feet per second in Fall Creek. In comparison, the 7-day, 10-year low flows were 83 cubic feet per second in the White River near Nora and 23 cubic feet per second in Fall Creek at Millersville. Simulated pumpage of 115 cubic feet per second and constant-flux boundaries produced streamflow reductions of 101 cubic feet per second on the White River and 13 cubic feet per second on Fall Creek. (USGS)

  14. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less

  15. THE EFFECTS OF CURRENT FLOW ON BIOELECTRIC POTENTIAL

    PubMed Central

    Blinks, L. R.

    1936-01-01

    String galvanometer records show the effect of current flow upon the bioelectric potential of Nitella cells. Three classes of effects are distinguished. 1. Counter E.M.F'S, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv., or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv.) since larger outward currents produce the next characteristic effect. 2. Stimulation. This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 µa/cm.2 of cell surface. At this threshold a regular counter E.M.F. starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive P.D., in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell. During the most profound depression of P.D. in stimulation, current flow produces little or no counter E.M.F., the resistance of the cell being purely ohmic and very low. Then as the P.D. begins to recover, after a second or two, counter E.M.F. also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation; recovery is slightly slower in this case however. Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive P.D. (polarization). 3. Restorative Effects.—The flow of inward current during a negative variation somewhat speeds up recovery. This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery from a negative variation. Small currents in either direction now produce no counter E.M.F., so that the effective resistance of the cells is very low. With inward currents at a threshold density of some 10 to 20 µa/cm.2, however, there is a counter E.M.F. produced, which builds up in a sigmoid curve to some 100 to 200 mv. positive P.D. This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped. Further increases of current density produce this P.D. more rapidly, while decreased densities again cease to be effective below a certain threshold. The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter E.M.F.'S (polarizations) are due to the presence of an intact surface film or other structure offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"); movement of inorganic ions such as potassium; movement of organic ions, (such as Osterhout's substance R), or the radicals (such as fatty acid) of the surface film itself. Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity. PMID:19872991

  16. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Futher Research and Results

    NASA Astrophysics Data System (ADS)

    Violet, J. A.; Sheets, B. A.; Paola, C.; Pratson, L. F.; Parker, G.

    2002-12-01

    We illustrate further research results on the transport and deposition of sediment by turbidity currents in an experimental basin, designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in 2001 in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. The run consisted of two stages that each contained the same sequence of events, which were of three different variations (1.85-minute pulses of 1.5 liters/s discharges, 3.8-minute pulses of 4.5 liters/s discharges, or 36 minute events of 1.5 liters/s discharges). The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%) and all flows had a volume concentration of sediment of 5%. The only difference between stage I and II was that no subsidence occurred during stage II, and that the 110 micron sand was removed from the flows late in stage II to study the effects of a smaller mean flow-grainsize. Research since the run has focused on the correction of high-frequency sonar data taken during the run, digital photography taken of dried deposit stratigraphy and grainsize data also taken at various locations in the dried deposit. The sonar data is utilized in the creation of post-event topographies and isopach maps to illustrate what the controls on erosion, deposition, flow path, deposit thickness and even the channelization of early flow events are. Comparisons of the stratigraphy and the grainsize data with the conclusions from the sonar data are made, as sonar is also constructed in a manner that exhibits synthetic or predicted stratigraphy (before compaction). Finally the stratigraphy is structurally described in the proximal, medial, and distal segments of the deposit and comparisons to the field are made.

  17. Hydraulic Geometry Characteristics of Continuous-Record Streamflow-Gaging Stations on Four Urban Watersheds Along the Main Stem of Gwynns Falls, Baltimore County and Baltimore City, Maryland

    USGS Publications Warehouse

    Doheny, Edward J.; Fisher, Gary T.

    2007-01-01

    Four continuous-record streamflow-gaging stations are currently being operated by the U.S. Geological Survey on the main stem of Gwynns Falls in western Baltimore County and Baltimore City, Maryland. The four streamflow-gaging stations drain urban or suburban watersheds with significantly different drainage areas. In addition to providing continuous- record discharge data at these four locations, operation of these stations also provides a long-term record of channel geometry variables such as cross-sectional area, channel width, mean channel depth, and mean velocity that are obtained from physical measurement of the discharge at a variety of flow conditions. Hydraulic geometry analyses were performed using discharge-measurement data from four continuous-record streamflow-gaging stations on the main stem of Gwynns Falls. Simple linear regression was used to develop relations that (1) quantify changes in cross-sectional area, channel width, mean channel depth, and mean velocity with changes in discharge at each station, and (2) quantify changes in these variables in the Gwynns Falls watershed with changes in drainage area and annual mean discharge. Results of the hydraulic geometry analyses indicated that mean velocity is more responsive to changes in discharge than channel width and mean channel depth for all four streamflow-gaging stations on the main stem of Gwynns Falls. For the two largest and most developed watersheds, on Gwynns Falls at Villa Nova, and Gwynns Falls at Washington Boulevard at Baltimore, the slope of the regression lines, or hydraulic exponents, indicated that mean velocity was more responsive to changes in discharge than any of the other hydraulic variables that were analyzed. This was true even when considering changes in cross-sectional area with discharge, which incorporates the combined effects of channel width and mean channel depth. A comparison of hydraulic exponents for Gwynns Falls to average values from previous work indicated that the velocity exponents for all four stations on the Gwynns Falls are larger than the average value of 0.34. For stations 01589300 and 01589352, the exponents for mean velocity are about twice as large as the average value. Analyses of cross-sectional area, channel width, mean channel depth, and mean velocity in conjunction with changes in drainage area and annual mean discharge indicated that channel width is much more responsive to changes in drainage area and annual mean discharge than are mean channel depth or mean velocity. Cross-sectional area, which combines the effects of channel width and mean channel depth, was also found to be highly responsive to changes in drainage area and annual mean discharge.

  18. Realizing life-scalable experimental pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting conditions (velocity, mass flux, particle solids concentration and temperature) can be precisely varied to obtain a wide range of PDC gas-particle transport and sedimentation conditions that match dynamic and kinematic scaling of natural flows. For instance, bulk flow scaling shows full turbulence (Re>106); while at the same time, the variation in Stokes and Stability numbers (describing Lagrangian acceleration of particles due to gravity and viscous drag) cover a wide range of natural conditions. The resulting PDC flow regimes include convection dominated dilute suspension that produce lateral ash-cloud surges, inertial dry granular to partially fluidised flows with high dynamic pressures, and, intermittent flow regimes of intermediate particle solids concentration. Depending on the PDC starting conditions, stratified, dune-bedded or inversely graded bedforms are created, whose formation can be tracked using high-speed cinematography and particle-image-velocimetry. We present here the first overview results from these experiments and invite further multi-organisational collaboration in ongoing simulations.

  19. Vertical Impact of a Sphere Falling into Water

    ERIC Educational Resources Information Center

    Cross, Rod

    2016-01-01

    The nature of the drag force on an object moving through a fluid is well documented and many experiments have been described to allow students to measure the force. For low speed flows the drag force is proportional to the velocity of the object, while at high flow speeds the drag force is proportional to the velocity squared. The basic physics…

  20. Exploring Older Adult ED Fall Patients' Understanding of Their Fall: A Qualitative Study.

    PubMed

    Shankar, Kalpana N; Taylor, Devon; Rizzo, Caroline T; Liu, Shan W

    2017-12-01

    We sought to understand older patients' perspectives about their fall, fall risk factors, and attitude toward emergency department (ED) fall-prevention interventions. We conducted semistructured interviews between July 2015 and January 2016 of community-dwelling, nondemented patients in the ED, who presented with a fall to an urban, teaching hospital. Interviews were halted once we achieve thematic saturation with the data coded and categorized into themes. Of the 63 patients interviewed, patients blamed falls on the environment, accidents, a medical condition, or themselves. Three major themes were generated: (1) patients blamed falls on a multitude of things but never acknowledged a possible multifactorial rationale, (2) patients have variable level of concerns regarding their current fall and future fall risk, and (3) patients demonstrated a range of receptiveness to ED interventions aimed at preventing falls but provided little input as to what those interventions should be. Many older patients who fall do not understand their fall risk. However, based on the responses provided, older adults tend to be more receptive to intervention and more concerned about their future fall risk, making the ED an appropriate setting for intervention.

  1. The Canary Basin contribution to the seasonal cycle of the Atlantic Meridional Overturning Circulation at 26°N

    NASA Astrophysics Data System (ADS)

    Pérez-Hernández, M. D.; McCarthy, G. D.; Vélez-Belchí, P.; Smeed, D. A.; Fraile-Nuez, E.; Hernández-Guerra, A.

    2015-11-01

    This study examines the seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) and its eastern boundary contributions. The cycle has a magnitude of 6 Sv, as measured by the RAPID/MOCHA/WBTS project array at 26°N, which is driven largely by the eastern boundary. The eastern boundary variations are explored in the context of the regional circulation around the Canary Islands. There is a 3 month lag between maximum wind forcing and the largest eastern boundary transports, which is explained in terms of a model for Rossby wave generated at the eastern boundary. Two dynamic processes take place through the Lanzarote Passage (LP) in fall: the recirculation of the Canary Current and the northward flow of the Intermediate Poleward Undercurrent. In contrast, during the remaining seasons the transport through the LP is southward due to the Canary Upwelling Current. These processes are linked to the seasonal cycle of the AMOC.

  2. Development of the cycloidal propeller StECon as a new small hydropower plant for kinetic energy

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Jensen, J.; Wieland, J.; Lohr, W.; Metzger, J.; Stiller, H.-L.

    2016-11-01

    The StECon (Stiller Energy Converter) is a promising new small hydropower plant for kinetic energy. It is an invention of Mr. Hans-Ludwig Stiller and has several advantages compared to the technologies for the use of hydropower known for millennia. It runs completely submerged forwards and backwards, with horizontal or vertical axis and has a compact design by using a single or a double-sided planetary gear with optimum alignment to the flow direction. The possible applications include mobile and stationary tide and current generators as well as hybrid solutions, either as a generator or as a propulsion system. The high expectations have to be confirmed in a research project StEwaKorad at the University of Siegen. Aim of this research project is to investigate the performance and characteristics of the StECon as an energy converter for producing renewable energy from hydropower with low fall heights including sea currents.

  3. Restoration of genetic connectivity among Northern Rockies wolf populations.

    PubMed

    Hebblewhite, Mark; Musiani, Marco; Mills, L Scott

    2010-10-01

    Probably no conservation genetics issue is currently more controversial than the question of whether grey wolves (Canis lupus) in the Northern Rockies have recovered to genetically effective levels. Following the dispersal-based recolonization of Northwestern Montana from Canada, and reintroductions to Yellowstone and Central Idaho, wolves have vastly exceeded population recovery goals of 300 wolves distributed in at least 10 breeding pairs in each of Wyoming, Idaho and Montana. With >1700 wolves currently, efforts to delist wolves from endangered status have become mired in legal battles over the distinct population segment (DPS) clause of the Endangered Species Act (ESA), and whether subpopulations within the DPS were genetically isolated. An earlier study by vonHoldt et al. (2008) suggested Yellowstone National Park wolves were indeed isolated and was used against delisting in 2008. Since then, wolves were temporarily delisted, and a first controversial hunting season occurred in fall of 2009. Yet, concerns over the genetic recovery of wolves in the Northern Rockies remain, and upcoming District court rulings in the summer of 2010 will probably include consideration of gene flow between subpopulations. In this issue of Molecular Ecology, vonHoldt et al. (2010) conduct the largest analysis of gene flow and population structure of the Northern Rockies wolves to date. Using an impressive sampling design and novel analytic methods, vonHoldt et al. (2010) show substantial levels of gene flow between three identified subpopulations of wolves within the Northern Rockies, clarifying previous analyses and convincingly showing genetic recovery. © 2010 Blackwell Publishing Ltd.

  4. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community dwelling seniors age 65 and older

    USDA-ARS?s Scientific Manuscript database

    Purpose: To compare the extent to which 7 available definitions of sarcopenia and 2 related definitions predict the prospective rate of falling. Methods: We studied a cohort of 445 seniors (mean age 71 years, 45% men) living in the community who were followed with a detailed fall assessment for 3 ...

  5. A systematic review of balance and fall risk assessments with mobile phone technology.

    PubMed

    Roeing, Kathleen L; Hsieh, Katherine L; Sosnoff, Jacob J

    2017-11-01

    Falls are a major health concern for older adults. Preventative measures can help reduce the incidence and severity of falls. Methods for assessing balance and fall risk factors are necessary to effectively implement preventative measures. Research groups are currently developing mobile applications to enable seniors, caregivers, and clinicians to monitor balance and fall risk. The following systematic review assesses the current state of mobile health apps for testing balance as a fall risk factor. Thirteen studies were identified and included in the review and analyzed based on study design, population, sample size, measures of balance, main outcome measures, and evaluation of validity and reliability. All studies successfully tested their applications, but only 38% evaluated the validity, and 23% evaluated the reliability of their applications. Of those, all applications were found to accurately and reliably measure balance on select variables. Four of the 13 studies included special populations groups. Out of the 13 studies, 12 reported clinicians as their intended user and seven reported seniors as their intended user. Further research should examine the validity of mobile health applications as well as report on the application's usability. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Managing concerns about falls in older people: evaluation of the implementation of an evidence-based program].

    PubMed

    Zijlstra, G A R; Du Moulin, M F M T; van Haastregt, J C M; de Jonge, M; Kempen, G I J M; van der Poel, A

    2013-12-01

    A cognitive behavioral program reduced concerns about falling and related avoidance behavior among older community-dwelling adults in a randomized controlled trial. In the current study we examined the effects and acceptability of the program after nation-wide implementation into home care organizations in The Netherlands. In a one-group pretest-posttest study with data collection before the start of the program and at 2 and 4 months, the effects and acceptability of the program were assessed in 125 community-dwelling older people. The outcomes of the effect evaluation included concerns about falls, related avoidance behavior, falls, fall-related medical attention, feelings of anxiety, symptoms of depression, and loneliness. Pretest-posttest analyses with the Wilcoxon signed-rank test and the paired t-test showed significant improvements at 4 months for concerns about falls, activity avoidance, number of falls in the past 2 months, feelings of anxiety, and symptoms of depression. No significant differences were shown for the other outcomes. After implementation in home care organizations, the outcomes indicate positive program effects on concerns about falls, avoidance behavior, and falls in community-dwelling older people. Given the similarity in results, i.e. between those of the previously performed randomized controlled trial and those of the current pretest-posttest study, we conclude that the program can be successfully implemented in practice. This article is an adjusted, Dutch version of Zijlstra GA, van Haastregt JC, Du Moulin MF, de Jonge MC, van der Poel A, Kempen GI. Effects of the implementation of an evidenc-based program to manage concerns about falls in older adults. The Gerontologist 2013;53(5):839-849; doi: 10.1093/geront/gns142.

  7. Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling

    USGS Publications Warehouse

    Holtschlag, David J.; Hoard, C.J.

    2009-01-01

    St. Clair River is a connecting channel that transports water from Lake Huron to the St. Clair River Delta and Lake St. Clair. A negative trend has been detected in differences between water levels on Lake Huron and Lake St. Clair. This trend may indicate a combination of flow and conveyance changes within St. Clair River. To identify where conveyance change may be taking place, eight water-level gaging stations along St. Clair River were selected to delimit seven reaches. Positive trends in water-level fall were detected in two reaches, and negative trends were detected in two other reaches. The presence of both positive and negative trends in water-level fall indicates that changes in conveyance are likely occurring among some reaches because all reaches transmit essentially the same flow. Annual water-level fall in reaches and reach lengths was used to compute conveyance ratios for all pairs of reaches by use of water-level data from 1962 to 2007. Positive and negative trends in conveyance ratios indicate that relative conveyance is changing among some reaches. Inverse one-dimensional (1-D) hydrodynamic modeling was used to estimate a partial annual series of effective channel-roughness parameters in reaches forming the St. Clair River for 21 years when flow measurements were sufficient to support parameter estimation. Monotonic, persistent but non-monotonic, and irregular changes in estimated effective channel roughness with time were interpreted as systematic changes in conveyances in five reaches. Time-varying parameter estimates were used to simulate flow throughout the St. Clair River and compute changes in conveyance with time. Based on the partial annual series of parameters, conveyance in the St. Clair River increased about 10 percent from 1962 to 2002. Conveyance decreased, however, about 4.1 percent from 2003 to 2007, so that conveyance was about 5.9 percent higher in 2007 than in 1962.

  8. Effect of perturbations and a meal on superior mesenteric artery flow in patients with orthostatic hypotension

    NASA Technical Reports Server (NTRS)

    Fujimura, J.; Camilleri, M.; Low, P. A.; Novak, V.; Novak, P.; Opfer-Gehrking, T. L.

    1997-01-01

    Our aims were to evaluate to role of superior mesenteric blood flow in the pathophysiology of orthostatic hypotension in patients with generalized autonomic failure. METHODS: Twelve patients with symptomatic neurogenic orthostatic hypotension and 12 healthy controls underwent superior mesenteric artery flow measurements using Doppler ultrasonography during head-up tilt and tilt plus meal ingestion. Autonomic failure was assessed using standard tests of the function of the sympathetic adrenergic, cardiovagal and postganglionic sympathetic sudomotor function. RESULTS: Superior mesenteric flow volume and time-averaged velocity were similar in patients and controls at supine rest; however, responses to cold pressor test and upright tilt were attenuated (p < 0.05) in patients compared to controls. Head-up tilt after the meal evoked a profound fall of blood pressure and mesenteric blood flow in the patients; the reduction of mesenteric blood flow correlated (r = 0.89) with the fall of blood pressure in these patients, providing another manifestation of failed baroreflexes. We make the novel finding that the severity of postprandial orthostatic hypotension regressed negatively with the postprandial increase in mesenteric flow in patients with orthostatic hypotension. CONCLUSION: Mesenteric flow is under baroreflex control, which when defective, results in, or worsens orthostatic hypotension. Its large size and baroreflexivity renders it quantitatively important in the maintenance of postural normotension. The effects of orthostatic stress can be significantly attenuated by reducing the splanchnic-mesenteric volume increase in response to food. Evaluation of mesenteric flow in response to eating and head-up tilt provide important information on intra-abdominal sympathetic adrenergic function, and the ability of the patient to cope with orthostatic stress.

  9. The AD 1300 1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Le Pennec, J.-L.; Jaya, D.; Samaniego, P.; Ramón, P.; Moreno Yánez, S.; Egred, J.; van der Plicht, J.

    2008-09-01

    Tungurahua is a frequently active and hazardous volcano of the Ecuadorian Andes that has experienced pyroclastic flow-forming eruption in 1773, 1886, 1916-18 and 2006-08. Earlier eruptions in Late Pre-Hispanic and Early Colonial times have remained poorly known and are debated in the literature. To reconstruct the eruptive chronology in that time interval we examine relevant historical narratives recently found in Sevilla, Spain, and Rome, Italy, and we combine stratigraphic field constraints with 22 new radiocarbon age determinations. Results show that pyroclastic flow-forming eruptions and tephra falls took place repeatedly since ~ 700 14C yr BP, when the Tungurahua region was already populated. Radiocarbon ages averaging around 625 yr BP reveal a period of notable eruptive activity in the 14th century (Late Integration cultural period). The associated andesitic eruptions produced ash and scoria falls of regional extent and left scoria flow deposits on the western flanks of the edifice. The fact that Tungurahua was known by the Puruhás Indians as a volcano at the time of the Spanish Conquest in 1533 perhaps refers to these eruptions. A group of ages ranging from 380 to 270 yr BP is attributed to younger periods of activity that also predates the 1773 event, and calibration results yield eruption dates from late 15th to late 17th centuries (i.e. Inca and Early Colonial Periods). The historical narratives mention an Early Colonial eruption between the Spanish Conquest and the end of the 16th century, followed by a distinct eruptive period in the 1640s. The descriptions are vague but point to destructive eruptions likely accompanied by pyroclastic flows. The dated tephras consist of andesitic scoria flow deposits and the contemporaneous fallout layers occur to the west. These findings reveal that the eruption recurrence rate at Tungurahua is at least one pyroclastic flow-forming event per century since the 13th century and the occurrence of such eruptions in 2006-08 is thus fully consistent with the rate inferred for the past seven centuries. In addition, historical chronicles suggest that a notch opened in the crater margin during the 1640 decade, as has occurred repeatedly in the past millennium at Tungurahua. Such small-volume collapse events represent a previously unrecognized source of hazards which deserve special attention for risk assessment purposes in the context of the currently ongoing eruption.

  10. An investigation into inflection-point instability in the entrance region of a pulsating pipe flow

    PubMed Central

    Wang, R. H.; Jian, T. W.; Hsu, Y. T.

    2017-01-01

    This paper investigates the inflection-point instability that governs the flow disturbance initiated in the entrance region of a pulsating pipe flow. Under such a flow condition, the flow instability grows within a certain phase region in a pulsating cycle, during which the inflection point in the unsteady mean flow lifts away from the viscous effect-dominated region known as the Stokes layer. The characteristic frequency of the instability is found to be in agreement with that predicted by the mixing-layer model. In comparison with those cases not falling in this category, it is further verified that the flow phenomenon will take place only if the inflection point lifts away sufficiently from the Stokes layer. PMID:28265188

  11. From managed care to consumer health insurance: the fall and rise of Aetna.

    PubMed

    Robinson, James C

    2004-01-01

    This paper documents Aetna's fall as the nation's largest managed care plan and its subsequent reemergence as a smaller but more profitable multiproduct insurer. The paper emphasizes the transformation in corporate goals, product design, organizational structure, information technology, product mix, premiums, cash flow, net income, and share prices. Disciplined underwriting and pricing have restored the firm to profitability and set the foundation for new growth. The implications for the health care system as a whole are less unambiguously positive.

  12. Lessons Learned from Predicting the Poorly Gauged Sweetwater Creek Basin, in Central Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.; Peckham, S.; Muskatirovic, J.

    2005-12-01

    The flow regime of a poorly gauged basin in central Idaho was modeled in response to Agency, Tribal and Irrigation District needs to provide water for irrigation while still providing flows for a healthy ecosystem in Sweetwater Creek. This modeling effort shows some strengths and weakness of our present state of knowledge in simulating the hydrology of a basin. The spring freshet of a normal and a high flow year were simulated relatively successfully. However, the low flow year and summer thunderstorm events were not simulated as well, with the model over simulating the flow rates for these events. Improvements in a number of areas would increase the accuracy of the modeled flows. Improved meteorological data collection may help considerably. It is known that storm systems are funneled up the valley of Clearwater River where the present meteorological gauging sites are. Having meteorological gauging sites further into Sweetwater Creek Basin and away from the effects of the Clearwater River would improve the input conditions. Additionally, this semi-arid watershed commonly breaks the assumption of a moist soil profile. When these soils are dry, a wetting front must establish and propagate its way through the soil before a shallow groundwater flow system can be set up. Much of the precipitation input from the intermittent summer rainstorms can be absorbed into the soil profile and evaporated without having a significant discharge signal. An improved, semiarid groundwater model is needed for this type of environment. An irrigation project exists on Sweetwater Creek near Lewiston Idaho that decreases the flows on the creek, particularly during low flow periods, including late summer and early fall. There are concerns over the effects of the operation of the irrigation system on in-stream habitat. Limited data have been collected, which would allow an evaluation of the natural flow regime of Sweetwater Creek. Due to the lack of natural flow data, a numerical model was used to simulate the natural flow regime of Sweetwater Creek. This study provided information on the natural flow regime that is being used in the decision making process to balance ecosystem health with irrigation demands by determining the volumes of flows needed to provide for a healthy river system with high-quality physical conditions. A spatially distributed river basin simulation model TopoFlow was used to generate stream flows under a variety of meteorological conditions. In order to capture the range of variability present in flows of Sweetwater Creek, three years were modeled representing high (1996), low (1992) and near average (1986) modern flow conditions. The model results show that the low flow conditions during the late summer and fall months and during dry years are controlled from falling below certain levels by the Twenty One Ranch springs. These springs are feed through a groundwater flow system from Lake Waha. Lake Waha is a naturally dammed lake created by a very large landslide and has no surface flow outlet. The low flows are naturally controlled by this spring system and the magnitude of the flows depend on the lake level and the efficiency of the groundwater flow system. The modeling effort shows that the higher winter and spring flows are controlled by the weather during the immediate time period and the snow accumulations and fast reacting ground water pool levels controlled by previous weather and hydrologic conditions.

  13. Experimental investigation of recirculating cells in laminar coaxial jets.

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Nagib, H. M.; Lavan, Z.

    1972-01-01

    Utilizing several unique means of introducing smoke into the flow field for careful visualization in addition to hot-wire techniques, experiments are performed in a specially designed facility producing laminar flows up to considerably high Reynolds numbers. Characteristics of the cells and the flow conditions that bring them about are documented by smoke photographs in the Reynolds number velocity ratio plane and the results are compared to previous analytical predictions. The cells are found to fall into three categories with different flow characteristics involving unsteadiness in position, and shear layer instabilities which result in higher mixing with the outer streams.-

  14. Analytical data from phases I and II of the Willamette River basin water quality study, Oregon

    USGS Publications Warehouse

    Harrison, Howard E.; Anderson, Chauncey W.; Rinella, Frank A.; Gasser, Timothy M.; Pogue, Ted R.

    1995-01-01

    The data were collected at 50 sites, representing runoff from agricultural, forested, and urbanized subbasins. In Phase I, water samples were collected during high and low flows in 1992 and 1993 to represent a wide range of hydrologic conditions. Bed-sediment samples were collected during low flows in 1993. In Phase II, water samples were collected in the spring of 1994 after the first high-flow event following the application of agricultural fertilizers and pesticides and in the fall during the first high-flow events following the conclusion of the agricultural season.

  15. Fall classification by machine learning using mobile phones.

    PubMed

    Albert, Mark V; Kording, Konrad; Herrmann, Megan; Jayaraman, Arun

    2012-01-01

    Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls-left and right lateral, forward trips, and backward slips-while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.

  16. [INFLUENCE OF THE NUTRITIONAL COMPOSITION OF DIFFERENT FIBER-ENRICHED ENTERAL NUTRITION FORMULAS ON THE ADMINISTRATION TIME BY GRAVITY AND THE RISK OF TUBE FEEDING OBSTRUCTION].

    PubMed

    Bonada Sanjaume, Anna; Gils Contreras, Anna; Salas-Salvadó, Jordi

    2015-08-01

    the administration of enteral nutrition by gravity is a very useful method in clinical practice; nevertheless, it may not be very precise. Indeed, this method presents some important limitations, such as the difficulty in establishing a precise dripping rate and the possibility for the dripping rate decrease depending on the formula. assess the administration time and the risk of clogging of 5 fiber-enriched enteral nutrition formulas with different protein concentrations and caloric density, all administered by gravity through nasogastric (NG) tubes of different sizes. Assess the influence of the composition on the dripping rate, by gravity, of the tested formulas. 5 fiber-enriched EN formulas were compared by using nasogastric tubes of the calibers 8, 10 and 12 Fr. The fluidity of these gravity-administered NE formulas was estimated by timing the complete passage of each formula at full speed, thus allowing one to calculate the mean time of free fall (MTFF) and to register any possible obstruction. Subsequently, an in vitro simulation of a 1 500 ml administration was performed for each formula at a particular speed, so that the administration time was 5 hours. Slowing flow and stagnated flow were detected as indicators of the risk of obstruction. the two products that especially differed in MTFF were the ones with the highest energy concentration. The passage time in free fall of these two products through the 8 Fr tube exceeded four hours. For the rest of the products and NG tubes used, this time was less than 2 hours and 5 minutes. No slowing flow or tube obstruction was detected in free fall and at maximum speed. When the dripping was adjusted to be administered in 5 hours, three of the studied products (those with the least caloric concentration and viscosity) showed slowing flow and, in some cases, the dripping stopped completely. The most important factor associated to the MTFF was the lipid content, followed by viscosity, energy and protein content. The MTFF measured was not significantly related to the fiber content of the nutritional formula. all studied products can be administered by gravity via nasogastric tubes in free fall without any risk of obstruction, even though the free fall time was very variable. The lowest caliber tubes, the highest energy content and the viscosity of the EN mixture turn-out to be the limiting factors when fiber-enriched formulas are to be administered by gravity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. 21 CFR 520.1263c - Lincomycin powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... water containing lincomycin. Not for use in layer and breeder chickens. (3) Honey bees—(i) Amount. Mix... the fall and consumed by the bees before the main honey flow begins to avoid contamination of...

  18. 21 CFR 520.1263c - Lincomycin powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water containing lincomycin. Not for use in layer and breeder chickens. (3) Honey bees—(i) Amount. Mix... the fall and consumed by the bees before the main honey flow begins to avoid contamination of...

  19. Effect of Promoting High-Quality Staff Interactions on Fall Prevention in Nursing Homes: A Cluster-Randomized Trial.

    PubMed

    Colón-Emeric, Cathleen S; Corazzini, Kirsten; McConnell, Eleanor S; Pan, Wei; Toles, Mark; Hall, Rasheeda; Cary, Michael P; Batchelor-Murphy, Melissa; Yap, Tracey; Anderson, Amber L; Burd, Andrew; Amarasekara, Sathya; Anderson, Ruth A

    2017-11-01

    New approaches are needed to enhance implementation of complex interventions for geriatric syndromes such as falls. To test whether a complexity science-based staff training intervention (CONNECT) promoting high-quality staff interactions improves the impact of an evidence-based falls quality improvement program (FALLS). Cluster-randomized trial in 24 nursing homes receiving either CONNECT followed by FALLS (intervention), or FALLS alone (control). Nursing home staff in all positions were asked to complete surveys at baseline, 3, 6, and 9 months. Medical records of residents with at least 1 fall in the 6-month pre- and postintervention windows (n = 1794) were abstracted for fall risk reduction measures, falls, and injurious falls. CONNECT taught staff to improve their connections with coworkers, increase information flow, and use cognitive diversity in problem solving. Intervention components included 2 classroom sessions, relationship mapping, and self-monitoring. FALLS provided instruction in the Agency for Healthcare Research and Quality's Falls Management Program. Primary outcomes were (1) mean number of fall risk reduction activities documented within 30 days of falls and (2) median fall rates among residents with at least 1 fall during the study period. In addition, validated scales measured staff communication quality, frequency, timeliness, and safety climate. Surveys were completed by 1545 staff members, representing 734 (37%) and 811 (44%) of eligible staff in intervention and control facilities, respectively; 511 (33%) respondents were hands-on care workers. Neither the CONNECT nor the FALLS-only facilities improved the mean count of fall risk reduction activities following FALLS (3.3 [1.6] vs 3.2 [1.5] of 10); furthermore, adjusted median recurrent fall rates did not differ between the groups (4.06 [interquartile range {IQR}, 2.03-8.11] vs 4.06 [IQR, 2.04-8.11] falls/resident/y). A modest improvement in staff communication measures was observed overall (mean, 0.03 [SE, 0.01] points on a 5-point scale; P = .03) and for communication timeliness (mean, 0.8 [SE, 0.03] points on a 5-point scale; P = .02). There was wide variation across facilities in intervention penetration. An intervention targeting gaps in staff communication and coordination did not improve the impact of a falls quality improvement program. New approaches to implementing evidence-based care for complex conditions in the nursing home are urgently needed. clinicaltrials.gov Identifier: NCT00636675.

  20. Hydrology of C-3 watershed, Seney National Wildlife Refuge, Michigan

    USGS Publications Warehouse

    Sweat, Michael J.

    2001-01-01

    Proposed changes to watershed management practices near C-3 Pool at Seney National Wildlife Refuge will affect surface-water flow patterns, ground-water levels, and possibly local plant communities. Data were collected between fall 1998 and spring 2000 to document existing conditions and to assess potential changes in hydrology that might occur as a consequence of modifications to water management practices in C-3 watershed.Minimum and maximum measured inflows and outflows for the study period are presented in light of proposed management changes to C-3 watershed. Streamflows ranged from 0 to 8.61 cubic meters per second. Low or zero flow was generally measured in late summer and early fall, and highest flows were measured during spring runoff and winter rain events. Ground-water levels varied by about a half meter, with levels closest to or above the land surface during spring runoff into the early summer, and with levels generally below land surface during late fall into early winter.A series of optional management practices that could conserve and restore habitat of the C-3 watershed is described. Modifications to the existing system of a drainage ditch and control structures are examined, as are the possibilities of reconnecting streams to their historical channels and the construction of additional or larger control structures to further manage the distribution of water in the watershed. The options considered could reduce erosion, restore presettlement streamflow conditions, and modify the ground-water gradient.

  1. Stabilising falling liquid film flows using feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for themore » fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.« less

  2. Passive control of a falling sphere by elliptic-shaped appendages

    NASA Astrophysics Data System (ADS)

    Lācis, Uǧis; Olivieri, Stefano; Mazzino, Andrea; Bagheri, Shervin

    2017-03-01

    The majority of investigations characterizing the motion of single or multiple particles in fluid flows consider canonical body shapes, such as spheres, cylinders, discs, etc. However, protrusions on bodies—either surface imperfections or appendages that serve a function—are ubiquitous in both nature and applications. In this work, we characterize how the dynamics of a sphere with an axis-symmetric wake is modified in the presence of thin three-dimensional elliptic-shaped protrusions. By investigating a wide range of three-dimensional appendages with different aspect ratios and lengths, we clearly show that the sphere with an appendage may robustly undergo an inverted-pendulum-like (IPL) instability. This means that the position of the appendage placed behind the sphere and aligned with the free-stream direction is unstable, similar to how an inverted pendulum is unstable under gravity. Due to this instability, nontrivial forces are generated on the body, leading to turn and drift, if the body is free to fall under gravity. Moreover, we identify the aspect ratio and length of the appendage that induces the largest side force on the sphere, and therefore also the largest drift for a freely falling body. Finally, we explain the physical mechanisms behind these observations in the context of the IPL instability, i.e., the balance between surface area of the appendage exposed to reversed flow in the wake and the surface area of the appendage exposed to fast free-stream flow.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, T

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flankmore » of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the State of California, it would be prudent to carefully evaluate this question before proceeding with geothermal energy development on Medicine Lake Volcano.« less

  4. Low Volume Resuscitation with Cell Impermeants

    DTIC Science & Technology

    2016-04-01

    to rise) and a fall in peripheral vascular resistance . In this model, hemorrhage and blood loss was controlled so any changes in hemoglobin...appealing. The increase in capillary filling together with reduced resistance to flow in these peripheral beds leads to increased blood flow and oxygen...delivery. The low resistance , compared to saline controls, likely represents a physical decompression of the capillary beds by controlling cell and

  5. Falls among Older Adults: Public Health Impact and Prevention Strategies.

    ERIC Educational Resources Information Center

    Stevens, Judy A.

    2003-01-01

    Provides an overview of the epidemiology of falls among older adults, describes current prevention strategies, and highlights key areas that need to be addressed, including risk assessments, exercise, and environmental changes. (Contains 50 references.) (JOW)

  6. Beaver herbivory of willow under two flow regimes: A comparative study on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, Stewart W.; Wilson, Kenneth R.; Andersen, Douglas C.

    2003-01-01

    The effect of flow regulation on plant-herbivore ecology has received very little attention, despite the fact that flow regulation can alter both plant and animal abundance and environmental factors that mediate interactions between them. To determine how regulated flows have impacted beaver (Castor canadensis) and sandbar willow (Salix exigua) ecology, we first quantified the abundance and mapped the spatial distribution of sandbar willow on alluvial sections of the flow-regulated Green River and free-flowing Yampa River in northwestern Colorado. We then established 16 and 15 plots (1 m × 2.7 m) in patches of willow on the Green and Yampa Rivers, respectively, to determine whether rates of beaver herbivory of willow differed between rivers (Green versus Yampa River), seasons (fall-winter versus spring-summer), and years (spring 1998-spring 1999 versus spring 1999-spring 2000). Areal extent of willow was similar on each river, but Green River willow patches were smaller and more numerous. Beavers cut more stems during fall and winter than spring and summer and cut over 6 times more stems (percentage basis) on the Green River than on the Yampa River. We attribute the between-river difference in herbivory to higher availability of willow, greater beaver density, and lower availability of young Fremont cottonwood (Populus deltoides subsp. wislizenii; an alternative food source) on the Green River. Flow regulation increased willow availability to beaver by promoting the formation of island patches that are continuously adjacent to water and feature a perimeter with a relatively high proportion of willow interfacing with water.

  7. Heat-flow data and their relation to observed geothermal phenomena near Klamath Falls, Oregon

    USGS Publications Warehouse

    Sass, J.H.; Sammel, Edward A.

    1976-01-01

    Two holes were drilled to depths of about 180 m in the Lower Klamath Lake basin south of Klamath Falls, Oregon, to obtain heat flow data and to provide estimates of the thermal conductivity of the valley fill. Twenty-nine thermal conductivity determinations on eight cores give a mean conductivity of 1.82 mcal/cm s °C (0.75 W/m °K). Curvature in the upper 50 m of both terriperature profiles indicates a decrease in surface temperature of about 1.8°C, presumably resulting frorn reclamation of what was marshland in the early part of this century. A surprisingly low heat flow of 0.3 HFU (1 HFU = 10−6 cal/cm2 s = 41.8 mW/m2) was measured at site LS near the center of the basin. At site OC-1, 7 km east of LS and 2 km from the Klamath Hills geothermal zone, the heat flow was 1.44 HFU, also a low value in this setting. Temperature profiles in 15 unused water wells in the area had linear gradients ranging from 47° to 170°C/km. The corresponding lower limits of heat flow (conductivities measured at the two heat flow sites being used) range from 0.8 to 3.1 HFU. These variations in heat flow evidently are caused by temperature variations in a convecting system within the near-surface volcanic rocks and do not provide firm constraints on the nature of heat sources at depth.

  8. Apollo: AN Automatic Procedure to Forecast Transport and Deposition of Tephra

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Macedonio, G.

    2007-05-01

    Volcanic ash fallout represents a serious threat to communities around active volcanoes. Reliable short term predictions constitute a valuable support for to mitigate the effects of fallout on the surrounding area during an episode of crisis. We present a platform-independent automatic procedure aimed to daily forecast volcanic ash dispersal. The procedure builds on a series of programs and interfaces that allow an automatic data/results flow. Firstly the procedure downloads mesoscale meteorological forecasts for the region and period of interest, filters and converts data from its native format (typically GRIB format files), and sets up the CALMET diagnostic meteorological model to obtain hourly wind field and micro-meteorological variables on a finer mesh. Secondly a 1-D version of the buoyant plume equations assesses the distribution of mass along the eruptive column depending on the obtained wind field and on the conditions at the vent (granulometry, mass flow rate, etc.). All these data are used as input for the ash dispersion model(s). Any model able to face physical complexity and coupling processes with adequate solving times can be plugged into the system by means of an interface. Currently, the procedure contains the models HAZMAP, TEPHRA and FALL3D, the latter in both serial and parallel versions. Parallelization of FALL3D is done at two levels one for particle classes and one for spatial domain. The last step is to post-processes the model(s) outcomes to end up with homogeneous maps written on portable format files. Maps plot relevant quantities such as predicted ground load, expected deposit thickness or visual and flight safety concentration thresholds. Several applications are shown as examples.

  9. Surface drifter derived circulation in the northern and middle Adriatic Sea: Response to wind regime and season

    USGS Publications Warehouse

    Ursella, L.; Poulain, P.-M.; Signell, R.P.

    2007-01-01

    More than 120 satellite-tracked drifters were deployed in the northern and middle Adriatic (NMA) Sea between September 2002 and November 2003, with the purpose of studying the surface circulation at mesoscale to seasonal scale in relation to wind forcing, river runoff, and bottom topography. Pseudo-Eulerian and Lagrangian statistics were calculated from the low-pass-filtered drifter velocity data between September 2002 and December 2003. The structure of the mean circulation is determined with unprecedented high horizontal resolution by the new data. In particular, mean currents, velocity variance, and kinetic energy levels are shown to be maximal in the Western Adriatic Current (WAC). Separating data into seasons, we found that the mean kinetic energy is maximal in fall, with high values also in winter, while it is significantly weaker in summer. High-resolution Local Area Model Italy winds were used to relate the drifter velocities to the wind fields. The surface currents appear to be significantly influenced by the winds. The mean flow during the northeasterly bora regime shows an intensification of the across-basin recirculating currents. In addition, the WAC is strongly intensified both in intensity and in its offshore lateral extension. In the southeasterly sirocco regime, northward flow without recirculation dominates in the eastern half of the basin, while during northwesterly maestro the WAC is enhanced. Separating the data into low and high Po River discharge rates for low-wind conditions shows that the WAC and the velocity fluctuations in front of the Po delta are stronger for high Po River runoff. Lagrangian covariance, diffusivity, and integral time and space scales are larger in the along-basin direction and are maximal in the southern portion of the WAC. Copyright 2006 by the American Geophysical Union.

  10. Reliability and Validity of the Short Falls Efficacy Scale International in English, Mandarin, and Bahasa Malaysia in Malaysia.

    PubMed

    Tan, Maw Pin; Nalathamby, Nemala; Mat, Sumaiyah; Tan, Pey June; Kamaruzzaman, Shahrul Bahyah; Morgan, Karen

    2018-01-01

    While the prevalence of falls among Malaysian older adults is comparable to other older populations around the world, little is currently known about fear of falling in Malaysia. The Falls Efficacy Scale International (FES-I) and short FES-I scales to measure fear of falling have not yet been validated for use within the Malaysian population, and are currently not available in Bahasa Malaysia (BM). A total of 402 participants aged ≥63 years were recruited. The questionnaire was readministered to 149 participants, 4 to 8 weeks after the first administration to determine test-retest reliability. The original version of the 7-item short FES-I is available in English, while the Mandarin was adapted from the 16-item Mandarin FES-I. The BM version was translated according to protocol by four experts. The internal structure of the FES-I was examined by factor analysis. The 7-item short FES-I showed good internal reliability and test-retest reliability for English, Mandarin, and BM versions for Malaysia.

  11. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    USGS Publications Warehouse

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice cover and dredging in the lower river, require further investigation.

  12. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment concentration. Spatial analyses of ADCP data showed that a strategy of repeated surveys and flow-field interpolation has the potential to simplify computation of flow and sediment discharge through complex waterways. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement of products by the US Government. ?? 2005 Elsevier B.V. All rights reserved.

  13. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deendarlianto; Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden; Ousaka, Akiharu

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined atmore » 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)« less

  14. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, Steven T.; Biesecker, D.; Esser, R.; Gloeckler, G.; Zurbuchen, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Fall 1998 SOlar-Heliospheric Observatory (SOHO) - Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4 deg South of the equator, and off the West line of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters (density, temperature, flow speed) of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-alpha and OVI 1032 and 1037 Angstrom lines, measured by the Ultra Violet Coronagraph Spectrometer (UVCS) on SOHO. The densities, temperatures and outflow speed are compared with the same characteristic flow parameters for high-latitude fast wind streams and typical slow solar wind.

  15. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum through their interfaces via vertical time-series profiles of velocity, particle concentration, gas and particle transport directionality and turbulent eddy characteristics. We highlight the importance of each region for the PDC runout dynamics and introduce a new transport and sedimentation model for downslope evolving pyroclastic flows.

  16. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  17. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were 12 to 13 percent of total annual flow in some subbasins and of total monthly flow throughout the basin in summer and early fall. Water-management alternatives were evaluated by simulating hypothetical scenarios of increased withdrawals and altered recharge for average 1989?98 conditions with the flow models. Increased withdrawals to maximum State-permitted levels would result in withdrawals of about 15 million gallons per day, or about 50 percent more than current withdrawals. Model-calculated effects of these increased withdrawals included reductions in stream base flow that were greatest (as a percentage of total flow) in late summer and early fall. These reductions ranged from less than 5 percent to more than 60 percent of model-calculated 1989?98 base flow along reaches of the Charles River and major tributaries during low-flow periods. Reductions in base flow generally were comparable to upstream increases in withdrawals, but were slightly less than upstream withdrawals in areas where septic-system return flow was simulated. Increased withdrawals also increased the proportion of wastewater in the Charles River downstream of treatment facilities. The wastewater component increased downstream from a treatment facility in Milford from 80 percent of September base flow under 1989?98 conditions to 90 percent of base flow, and from 18 to 27 percent of September base flow downstream of a treatment facility in Medway. In another set of hypothetical scenarios, additional recharge equal to the transfer of water out of a typical subbasin by sewers was found to increase model-calculated base flows by about 12 percent of model-calculated base flows. Addition of recharge equal to that available from artificial recharge of residential rooftop runoff had smaller effects, augmenting simulated September base flow by about 3 percent. Simulation-optimization methods were applied to an area near Populatic Pond and the confluence of the Mill and Charles Rivers in Franklin,

  18. Efficacy of a multifaceted podiatry intervention to improve balance and prevent falls in older people: study protocol for a randomised trial.

    PubMed

    Spink, Martin J; Menz, Hylton B; Lord, Stephen R

    2008-11-25

    Falls in older people are a major public health problem, with at least one in three people aged over 65 years falling each year. There is increasing evidence that foot problems and inappropriate footwear increase the risk of falls, however no studies have been undertaken to determine whether modifying these risk factors decreases the risk of falling. This article describes the design of a randomised trial to evaluate the efficacy of a multifaceted podiatry intervention to reduce foot pain, improve balance, and reduce falls in older people. Three hundred community-dwelling men and women aged 65 years and over with current foot pain and an increased risk of falling will be randomly allocated to a control or intervention group. The "usual cae" control group will receive routine podiatry (i.e. nail care and callus debridement). The intervention group will receive usual care plus a multifaceted podiatry intervention consisting of: (i) prefabricated insoles customised to accommodate plantar lesions; (ii) footwear advice and assistance with the purchase of new footwear if current footwear is inappropriate; (iii) a home-based exercise program to strengthen foot and ankle muscles; and (iv) a falls prevention education booklet. Primary outcome measures will be the number of fallers, number of multiple fallers and the falls rate recorded by a falls diary over a 12 month period. Secondary outcome measures assessed six months after baseline will include the Medical Outcomes Study Short Form 12 (SF-12), the Manchester Foot Pain and Disability Index, the Falls Efficacy Scale International, and a series of balance and functional tests. Data will be analysed using the intention to treat principle. This study is the first randomised trial to evaluate the efficacy of podiatry in improving balance and preventing falls. The trial has been pragmatically designed to ensure that the findings can be generalised to clinical practice. If found to be effective, the multifaceted podiatry intervention will be a unique addition to common falls prevention strategies already in use. Australian New Zealand Clinical Trials Registry: ACTRN12608000065392.

  19. Effects of an Evidence-Based Falls Risk-Reduction Program on Physical Activity and Falls Efficacy among Oldest-Old Adults.

    PubMed

    Cho, Jinmyoung; Smith, Matthew Lee; Ahn, SangNam; Kim, Keonyeop; Appiah, Bernard; Ory, Marcia G

    2014-01-01

    The current study was designed to examine changes in falls efficacy and physical activities among oldest-old and young-old participants in a falls risk-reduction program called a matter of balance/volunteer lay leader model. An oldest-old group (aged 85 years and older; n = 260) and a young-old group (aged between 65 and 84 years old; n = 1,139) in Texas with both baseline and post-intervention measures were included. Changes in Falls Efficacy Scale scores and weekly physical activity levels were examined from baseline to post-intervention. Repeated measures analysis of covariance were employed to assess program effects on falls efficacy. Results showed significant changes in falls efficacy from baseline to post-intervention, as well as a significant interaction effect between time (baseline and post-intervention) and physical activity on falls efficacy. Findings from this study imply the effectiveness of evidence-based programs for increasing falls efficacy in oldest-old participants. Future implications for enhancing physical activities and reducing fear of falling for oldest-old adults are discussed.

  20. Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Vitaly I.; Curry, Judith A.

    2005-12-01

    This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.

  1. Quaternary Eruptions of the Mono-Inyo Craters, California

    NASA Astrophysics Data System (ADS)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  2. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  3. Record of El Niño in planktonic foraminiferal assemblages from the Gulf of Tehuantepec, Mexico (Eastern Tropical Pacific)

    NASA Astrophysics Data System (ADS)

    Machain-Castillo, M. L.; Nava-Fernandez, X. A.; Thunell, R.; Tappa, E.

    2013-05-01

    The planktonic foraminiferal assemblages from two sediment traps deployed in the Gulf of Tehuantepec, Mexico (Eastern Tropical Pacific) during a five year period (2006 to 2010) were recorded. The species abundance data were subjected to a Q-mode factor analysis that depicts alternating associations of planktonic foraminifera, generally related to seasonally varying oceanographic conditions. During winter-spring season, the oceanography of the Gulf of Tehuantepec is driven by strong northern winds that cross the Isthmus of Tehuantepec and produce intense upwelling in the gulf. This upwelling of cold, nutrient-rich waters induces high biological productivity and the dominance of the planktonic foraminiferal species Globigerina bulloides. Summer-fall oceanographic conditions are dominated by the northward flow of the Costa Rica Coastal Current and a stratified water column. Chlorophyll-a concentrations are much lower than during the upwelling season and the Globorotalia menardii assemblage is characteristic. The above pattern was recorded for most of the study period, except during ENSO conditions in winter 2007 and summer-fall of 2009. From mid-January to early March 2007, the assemblage was dominated by G. menardii instead of the typical G. bulloides. This period had the highest sea surface temperatures and lowest surface chlorophyll-a values recorded for the entire five year study period. During the similar time period of ENSO 2010, the G. bulloides assemblage shows the highest scores in the factor analysis, although the G. menardii assemblage also has somewhat high scores. Temperature is slightly lower and chlorophyll-a values are slightly higher than during 2007, suggesting the conditions were not strong enough to induce a change in faunal dominance. During ENSO 2009 (July 8th to November 12th), the summer-fall dominant assemblage of Globorotalia menardii was replaced by the Globigerinoides ruber - Globigerinita glutinata assemblage, associated to the summer-fall highest average temperatures and lowest chlorophyll-a concentrations at the studied site.

  4. Excessive daytime sleepiness and falls among older men and women: cross-sectional examination of a population-based sample.

    PubMed

    Hayley, Amie C; Williams, Lana J; Kennedy, Gerard A; Holloway, Kara L; Berk, Michael; Brennan-Olsen, Sharon L; Pasco, Julie A

    2015-07-05

    Excessive daytime sleepiness (EDS) has been associated with an increased risk for falls among clinical samples of older adults. However, there is little detailed information among population-representative samples. The current study aimed to assess the relationship between EDS and falls among a cohort of population-based older adults. This study assessed 367 women aged 60-93 years (median 72, interquartile range 65-79) and 451 men aged 60-92 years (median 73, interquartile range 66-80) who participated in the Geelong Osteoporosis Study between the years 2001 and 2008. Falls during the prior year were documented via self-report, and for men, falls risk score was obtained using an Elderly Fall Screening Test (EFST). Sleepiness was assessed using the Epworth Sleepiness Scale (ESS), and scores of  ≥ 10 indicated EDS. Differences among those with and without EDS in regard to falls were tested using logistic regression models. Among women, 50 (13.6%) individuals reported EDS. Women with EDS were more likely to report a fall, and were more likely to report the fall occurring outside. EDS was similarly associated with an increased risk of a fall following adjustment for use of a walking aid, cases of nocturia and antidepressant medication use (adjusted OR = 2.54, 95% CI 1.24-5.21). Multivariate modelling revealed antidepressant use (current) as an effect modifier (p < .001 for the interaction term). After stratifying the data by antidepressant medication use, the association between EDS and falls was sustained following adjustment for nocturia among antidepressant non-users (adjusted OR = 2.63, 95% CI 1.31-5.30). Among men, 72 (16.0%) individuals reported EDS. No differences were detected for men with and without EDS in regard to reported falls, and a trend towards significance was noted between EDS and a high falls risk as assessed by the EFST (p = 0.06), however, age explained this relationship (age adjusted OR = 2.20, 95% CI 1.03-1.10). For women, EDS is independently associated with at least one fall during the previous year, and this is more likely to occur whilst located outside. Amelioration of EDS may assist in improving functional outcomes among these individuals by reducing the risk for falls.

  5. Occurrence, distribution, and transport of pesticides, trace elements, and selected inorganic constituents into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.

    2004-01-01

    A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the rivers. Seasonal trends in pesticide concentration were similar to those for dissolved concentrations in fall 2001 and spring 2002, but not in fall 2002. Generally, the pesticides detected in the suspended sediments were the same pesticides detected in the bed sediments, and concentrations were similar, especially at the Alamo River outlet site in spring 2002 and fall 2002. Pesticides generally were not detected in sediments from the off-shore sites; however, the samples from these sites also had greater incidences of matrix interference during analysis. Sediment-associated pesticide concentrations were above equilibrium in water, suggesting a bound fraction of sediment-associated pesticides that are resistant to desorption. Concentrations of trace elements and other inorganic constituents in suspended sediments collected during the fall 2001 followed expected trends with dilution of river-derived minerals owing to highly organic autochthonous production within the Salton Sea Basin. However, calculation of enrichment ratios provided evidence for the bioconcentration of several trace elements, notably selenium in the off-shore biota.

  6. Flow Range of Centrifugal Compressor Being Extended

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  7. Leveraging Event Reporting Through Knowledge Support: A Knowledge-Based Approach to Promoting Patient Fall Prevention.

    PubMed

    Yao, Bin; Kang, Hong; Miao, Qi; Zhou, Sicheng; Liang, Chen; Gong, Yang

    2017-01-01

    Patient falls are a common safety event type that impairs the healthcare quality. Strategies including solution tools and reporting systems for preventing patient falls have been developed and implemented in the U.S. However, the current strategies do not include timely knowledge support, which is in great need in bridging the gap between reporting and learning. In this study, we constructed a knowledge base of fall events by combining expert-reviewed fall prevention solutions and then integrating them into a reporting system. The knowledge base enables timely and tailored knowledge support and thus will serve as a prevailing fall prevention tool. This effort holds promise in making knowledge acquisition and management a routine process for enhancing the reporting and understanding of patient safety events.

  8. Impact of explosive eruption scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.

    2008-12-01

    In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2 a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837-845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634-647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15-30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final scenario are highlighted. The results show the high sensitivity of hazard combinations in time and space distribution and address how to mitigate building vulnerability to subsequent eruptive phenomena [Baxter, P., Spence, R., Zuccaro, G., 2008-this issue. Risk mitigation and emergency measures at Vesuvius]. The first part of the work describes the numerical modelling and the methodology adopted to evaluate the resistance of buildings under the combined action of volcanic phenomena. Those considered here for this multi-hazard approach are limited to the following: earthquakes, pyroclastic flows and ash falls. Because of the lack of a systematic and extensive database of building damages observed after eruptions of such intensity of the past, approaches to this work must take a hybrid form of stochastic and deterministic analyses, taking into account written histories of volcanic eruptions and expertise from field geologists to build up a semi-deterministic model of the possible combinations of the above hazards that are situated both in time and space. Once a range of possible scenarios has been determined, a full stochastic method can be applied to find a sub-set of permutations and combinations of possible effects. This preliminary study of identification of the possible combination of the phenomena, subdividing them into those which are discrete and those which are continuous in time and space, enables consideration the vulnerability functions of the combinations to be feasible. In previous works [Spence, R., Brichieri-Colombi, N., Holdsworth, F., Baxter, P., Zuccaro, G., 2004a. Vesuvius: building vulnerability and human casualty estimation for a pyroclastic flow (25 pages). J. Volcanol. Geotherm. Res. 133, 321-343. ISSN 0377-0273; Spence, R., Zuccaro, G., Petrazzuoli, S., Baxter, P.J., 2004b. The resistance of buildings to pyroclastic flows: theoretical and experimental studies in relation to Vesuvius, ASCE Nat. Hazards Rev. 5, 48-50. ISSN 1527-6988; Spence, R., Kelman, I., Petrazzuoli, S., Zuccaro, G., 2005. Residential Buildings and Occupant Vulnerability to Tephra Fall. Nat. Hazards Earth Syst. Sci. vol. 5. European Geosciences Union, pp.1-18; Baxter, P.J., Cole, P.D., Spence, R., Zuccaro, G., Boyd, R., Neri, A., 2005. The impacts of pyroclastic density currents on buildings during the eruption of the Soufrière hills volcano, Montserrat. Bull. Volcanol. vol. 67,292-313] the authors investigated, by means of experimental and analytical methods, the limiting resistance of masonry and reinforced concrete buildings assuming each action separately. In this work the first attempt to estimate the response of the buildings to the volcanic seismic action or to the lateral dynamic pressure due to pyroclastic flow combined with an extra vertical load on the roof due to ash fall is performed. The results show that up to a certain limit of ash fall deposit, the increment of structure weight increases the resistance of a building to pyroclastic flow action while it reduces its seismic resistance. In particular the collapse of the top storey of R.C. buildings having large roofs could occur by accumulation of ash and a strong earthquake. Seismic and pyroclastic flow vulnerability of tall R.C. and masonry buildings with rigid floors is less sensitive to ash fall load combination. The model allows any sequence of events (earthquake, ash fall, pyroclastic flow) to be assumed and evaluates the spatial distribution of the cumulative impact at a given time. Single impact scenarios have been derived and mapped on a suitable grid into which the territory around Vesuvius has been subdivided. The buildings have been classified according to the constructional characteristics that mostly affect their response under the action of the phenomena; hence the vulnerability distribution of the buildings are assigned to each cell of the grid and by taking advantage from the combined vulnerability functions the impact is derived at time t. In the paper the following impact simulations are presented: single cases of selected seismic sequence during the unrest phase (Sub-Plinian I) ash fall damage distribution compatible to a Sub-Plinian I eruption pyroclastic flow cumulative damage scenarios for selected cases (Sub-Plinian I). The model also allows either Monte Carlo simulation to evaluate the most probable final scenario or maximisation of some parameter sensitive to Civil Protection preparedness. The analysis of the results derived for a Sub-Plinian I-like eruption has shown the importance of the seismic intensities released during the unrest phase that could interfere with the evacuation of the area and the huge number of partial collapses (roofs) due to ash fall.

  9. Three-dimensional low Reynolds number flows with a free surface

    NASA Technical Reports Server (NTRS)

    Degani, D.; Gutfinger, C.

    1977-01-01

    The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).

  10. Astrophysical flows near [Formula: see text] gravity black holes.

    PubMed

    Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.

  11. Hydrological Predictability for the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Towner, Jamie; Stephens, Elizabeth; Cloke, Hannah; Bazo, Juan; Coughlan, Erin; Zsoter, Ervin

    2017-04-01

    Population growth in the Peruvian Amazon has prompted the expansion of livelihoods further into the floodplain and thus increasing vulnerability to the annual rise and fall of the river. This growth has coincided with a period of increasing hydrological extremes with more frequent severe flood events. The anticipation and forecasting of these events is crucial for mitigating vulnerability. Forecast-based Financing (FbF) an initiative of the German Red Cross implements risk reducing actions based on threshold exceedance within hydrometeorological forecasts using the Global Flood Awareness System (GloFAS). However, the lead times required to complete certain actions can be long (e.g. several weeks to months ahead to purchase materials and reinforce houses) and are beyond the current capabilities of GloFAS. Therefore, further calibration of the model is required in addition to understanding the climatic drivers and associated hydrological response for specific flood events, such as those observed in 2009, 2012 and 2015. This review sets out to determine the current capabilities of the GloFAS model while exploring the limits of predictability for the Amazon basin. More specifically, how the temporal patterns of flow within the main coinciding tributaries correspond to the overall Amazonian flood wave under various climatic and meteorological influences. Linking the source areas of flow to predictability within the seasonal forecasting system will develop the ability to expand the limit of predictability of the flood wave. This presentation will focus on the Iquitos region of Peru, while providing an overview of the new techniques and current challenges faced within seasonal flood prediction.

  12. Supporting Current Energy Conversion Projects through Numerical Modeling

    NASA Astrophysics Data System (ADS)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  13. Investigating lava-substrate interactions through flow experiments with syrup, wax, and molten basalt

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Lev, E.

    2015-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat transfer and mechanical interactions. Results will be used to improve current lava flow prediction models as well as increase our understanding of the evolution of volcanic regions on the Earth and other planets.

  14. Microgravity

    NASA Image and Video Library

    1998-11-04

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  15. Selective attentional processing to fall-relevant stimuli among older adults who fear falling.

    PubMed

    Brown, Lesley A; White, Patti; Doan, Jonathan B; de Bruin, Natalie

    2011-05-01

    Fear of falling is known to affect more than half of community-dwelling older adults over 60 years of age. This fear is associated with physical and psychological effects that increase the risk of falling. The authors' theory is that attentional processing biases may exist in this population that serve to perpetuate fear of falling and subsequently increase fall risk. As a starting point in testing this proposition, the authors examined selective attentional processing bias to fall-relevant stimuli among older adults. Thirty older adult participants (M(age) = 70.8 ± 5.8), self-categorized to be Fearful of Falling (FF, n = 15) or Non-Fearful of Falling (NF, n = 15) completed a visual dot-probe paradigm to determine detection latencies to fall-threatening and general-threat stimuli. Attentional processing was defined using three index scores: attentional bias, congruency index, and incongruency index. Bias indicates capture of attention, whereas congruency and incongruency imply vigilance and disengagement difficulty, respectively. Both groups showed an attentional bias to fall-threat words but those who were fearful of falling also showed an incongruency effect for fall-threat words. These findings confirm that selective attentional processing profiles for fall-relevant stimuli differ between older adults who exhibit fear of falling and those who do not have this fear. Moreover, in accordance with current interpretations of selective attentional processing, the incongruency effect noted among fall-fearful older adults presents a possibility for a difficulty disengaging from fall-threatening stimuli.

  16. Reducing Falls After Electroconvulsive Therapy: A Quality Improvement Project.

    PubMed

    Brown, Allana Marie

    2017-07-01

    Falls after electroconvulsive therapy (ECT) in patients 60 and older have been long recognized as a major clinical care issue across many mental health care settings. The evidence base for fall prevention strategies after receiving ECT is sparse. The risk factors for falls after ECT are vast and complex in nature, especially considering existing comorbid medical conditions. The dearth of research in guiding practitioners on fall reduction interventions for this patient population illuminates a gap in mental health care quality and safety. The purpose of the current nurse-led quality improvement project was to reduce falls in patients undergoing ECT by enhancing safety measures through education and a post-ECT treatment protocol. The project did not prove to be as efficacious as anticipated as measured by fall rate outcomes. Several factors that may account for the project's findings are discussed. [Journal of Psychosocial Nursing and Mental Health Services, 55(7), 20-29.]. Copyright 2017, SLACK Incorporated.

  17. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  18. Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1983-01-01

    Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)

  19. Small Sized Drone Fall Recover Mechanism Design

    NASA Astrophysics Data System (ADS)

    LIU, Tzu-Heng; CHAO, Fang-Lin; LIOU, Jhen-Yuan

    2017-12-01

    Drones uses four motors to rotate clockwise, counter-clockwise, or change in rotational speed to change its status of motion. The problem of Unmanned Aerial Vehicle turnover causes personal loses and harm local environment. Designs of devices that can let falling drones recover are discussed. The models attempt to change the orientation, so that the drone may be able to improve to the point where it can take off again. The design flow included looking for functional elements, using simplify model to estimate primary functional characteristics, and find the appropriate design parameters. For reducing the complexity, we adopted the simple rotate mechanism with rotating arms to change the fuselage angle and reduce the dependence on the extra-components. A rough model was built to verify structure, and then the concept drawing and prototype were constructed. We made the prototype through the integration of mechanical part and the electronic control circuit. The electronic control module that selected is Arduino-mini pro. Through the Bluetooth modules, user can start the rebound mechanism by the motor control signal. Protections frames are added around each propeller to improve the body rotate problem. Limited by current size of Arduino module, motor and rebound mechanism make the main chassis more massive than the commercial product. However, built-in sensor and circuit miniaturization will improve it in future.

  20. Linear error analysis of slope-area discharge determinations

    USGS Publications Warehouse

    Kirby, W.H.

    1987-01-01

    The slope-area method can be used to calculate peak flood discharges when current-meter measurements are not possible. This calculation depends on several quantities, such as water-surface fall, that are subject to large measurement errors. Other critical quantities, such as Manning's n, are not even amenable to direct measurement but can only be estimated. Finally, scour and fill may cause gross discrepancies between the observed condition of the channel and the hydraulic conditions during the flood peak. The effects of these potential errors on the accuracy of the computed discharge have been estimated by statistical error analysis using a Taylor-series approximation of the discharge formula and the well-known formula for the variance of a sum of correlated random variates. The resultant error variance of the computed discharge is a weighted sum of covariances of the various observational errors. The weights depend on the hydraulic and geometric configuration of the channel. The mathematical analysis confirms the rule of thumb that relative errors in computed discharge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme importance of accurately assessing the presence of scour or fill. ?? 1987.

  1. 21 CFR 520.2640 - Tylosin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... phosphate medicated feed as in § 558.625(f)(1)(vi)(c) of this chapter. (4) Honey bees—(i) Amount. Mix 200... spring or fall and consumed by the bees before the main honey flow begins, to avoid contamination of...

  2. 21 CFR 520.2640 - Tylosin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... phosphate medicated feed as in § 558.625(f)(1)(vi)(c) of this chapter. (4) Honey bees—(i) Amount. Mix 200... spring or fall and consumed by the bees before the main honey flow begins, to avoid contamination of...

  3. Diagnosis & Treatment | Coronary Artery Disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... blockage is. Treatment Latest NIH Research Recent gene-mapping research has found the largest set of genes ... the arteries and improves blood flow to the brain, helping prevent a stroke. Fall 2010 Issue: Volume ...

  4. Analysis of antigen-induced changes in pulmonary mechanics in sensitized inbred rats.

    PubMed

    Holroyde, M C; Smith, S Y; Holme, G

    1982-05-01

    An inbred line of rats was derived which develop marked and consistent dyspnea following sensitization and then exposure to aerosolized antigen. This pulmonary response was investigated in detail by determining forced pulmonary mechanics to derive respiratory rate, peak expiratory flow rate (PEFR), forced vital capacity (FVC), forced expiratory volume in 0.1 s (FEV0.1), and maximal midexpiratory flow rate (MMFR). Challenging anesthetized rats for 5 min with an aerosol of 3% egg albumin produced minimal change in respiratory rate, a 20% fall in PEFR, a 50% fall in FVC, and a 30% decrease in FEV0.1 and MMFR. The response could be inhibited or reversed by salbutamol (0.5 mg/kg, i.v.) and aminophylline (25 mg/kg, i.v.) administered either before or after challenge. The pulmonary changes are consistent with antigen-induced asthma in the rats. The response shows similarities to human asthma and may provide a relevant experimental model.

  5. Timing and patterns of basin infilling as documented in Lake Powell during a drought

    USGS Publications Warehouse

    Pratson, Lincoln F.; Hughes-Clarke, John; Anderson, Mark; Gerber, Thomas; Twitchell, David C.; Ferrari, Ronald; Nittrouer, Charles A.; Beaudoin, Jonathan D.; Granet, Jesse; Crockett, John

    2008-01-01

    Between 1999 and 2005, drought in the western United States led to a >44 m fall in the level of Lake Powell (Arizona-Utah), the nation's second-largest reservoir. River discharges to the reservoir were halved, yet the rivers still incised the tops of deltas left exposed along the rim of the reservoir by the lake-level fall. Erosion of the deltas enriched the rivers in sediment such that upon entering the reservoir they discharged plunging subaqueous gravity flows, one of which was imaged acoustically. Repeat bathymetric surveys of the reservoir show that the gravity flows overtopped rockfalls and formed small subaqueous fans, locally raising sediment accumulation rates 10–100-fold. The timing of deep-basin deposition differed regionally across the reservoir with respect to lake-level change. Total mass of sediment transferred from the lake perimeter to its bottom equates to ~22 yr of river input.

  6. An Annual Cycle Of Currents Around Tsushima Island And Resulting Inflow Conditions In The Sea Of Japan

    NASA Astrophysics Data System (ADS)

    Perkins, H.; Teague, W. J.; Chang, K.-I.; Suk, M.-S.; Lee, J.-C.; Book, J. W.; Jacobs, G. A.

    A ten-month long time series of current measurements has been made on two sections across Korea/Tsushima Strait, thus revealing most of an annual cycle of the Tsushima Current that flows into the Japan/East Sea. One section is southwest, the other north- east, of Tsushima Island, giving respectively conditions upstream and downstream of the Island. Along the bathymetric slope upstream of the Island, the current consists of a single, broad stream concentrated in mid-channel. Downstream, this single core is found to have separated into two branches, one on each of the Strait. Between these two near-coastal streams, in the apparent wake of the Island, currents are variable and lack a well-defined mean. This separation persisted during all seasons despite vari- ation in total transport by a factor of two, from 3.5 Sv in October 1999 to 1.7 Sv in January 2000, and despite changes from maximum to minimum stratification. Both branches of the divided current were stronger during high transport and weaker during low transport, but since each branch was measured by only one or two moorings, trans- port estimates for the separate branches are not available. Strongest currents occurred at the surface close to the Korean coast near Ulsan in early fall with low-pass surface currents reaching 90 cm/s during October and November. Farther downstream, outside the measurement area, the two branches define the inflow to the Japan/East Sea. The branch along the Japanese coast remains close to the coast. It undergoes strong annual variability but is steady on shorter time scales. The Korean branch of the current also undergoes strong annual changes but experiences very strong variability, especially in winter. This branch is thought to switch between two paths. The first parallels the Ko- rean coast; the second follows bathymetric contours that lead it back to the Japanese coast. A mechanism for switching between these paths is provided by vorticity asso- ciated with bottom intrusions of cold water in the area. Seasonal variations of flow into the Japan Sea thus depend on the interplay between seasonal variations around Tsushima Island and intrusions of cold bottom water.

  7. Effects of falls prevention interventions on falls outcomes for hospitalised adults: protocol for a systematic review with meta-analysis.

    PubMed

    Slade, Susan C; Carey, David L; Hill, Anne-Marie; Morris, Meg E

    2017-11-12

    Falls are a major global public health problem and leading cause of accidental or unintentional injury and hospitalisation. Falls in hospital are associated with longer length of stay, readmissions and poor outcomes. Falls prevention is informed by knowledge of reversible falls risk factors and accurate risk identification. The extent to which hospital falls are prevented by evidence-based practice, patient self-management initiatives, environmental modifications and optimisation of falls prevention systems awaits confirmation. Published reviews have mainly evaluated community settings and residential care facilities. A better understanding of hospital falls and the most effective strategies to prevent them is vital to keeping people safe. To evaluate the effectiveness of falls prevention interventions on reducing falls in hospitalised adults (acute and subacute wards, rehabilitation, mental health, operating theatre and emergency departments). We also summarise components of effective falls prevention interventions. This protocol has been registered. The systematic review will be informed by Cochrane guidelines and reported according to the Preferred Reporting Items for Systematic review and Meta-Analysis statement. randomised controlled trials, quasi-randomised trials or controlled clinical trials that evaluate falls prevention interventions for use by hospitalised adults or employees. Electronic databases will be searched using key terms including falls, accidental falls, prevention, hospital, rehabilitation, emergency, mental health, acute and subacute. Pairs of independent reviewers will conduct all review steps. Included studies will be evaluated for risk of bias. Data for variables such as age, participant characteristics, settings and interventions will be extracted and analysed with descriptive statistics and meta-analysis where possible. The results will be presented textually, with flow charts, summary tables, statistical analysis (and meta-analysis where possible) and narrative summaries. Ethical approval is not required. The systematic review will be published in a peer-reviewed journal and disseminated electronically, in print and at conferences. Updates will guide healthcare translation into practice. PROSPERO 2017: CRD 42017058887. Available from https://www.crd.york.ac.uk/prospero. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Environmental Assessment: Construction and Operation of Fire Training Tower and Car Wash at Niagara Falls Air Reserve Station, New York

    DTIC Science & Technology

    2006-02-01

    separated by a switch that is maintained by Niagara Mohawk on the same circuit (NFARS 1998). Transportation Network . Vehicular access to Niagara Falls...from the City of Niagara Falls would be adequate to handle the additional used water ( Nerone 2005). Implementation might have minor, adverse effects...Action. Transportation Network . Potehtial impacts on transportation and circulation are evaluated for disruption or improvement of current

  9. Fall-related injuries among initially 75- and 80-year old people during a 10-year follow-up.

    PubMed

    Saari, Päivi; Heikkinen, Eino; Sakari-Rantala, Ritva; Rantanen, Taina

    2007-01-01

    The aim of this study was to investigate the occurrence, type, scene and seasonal variation of fall related injuries, and the impact of socio-economic factors, mobility limitation, and the most common diseases on the risk of injurious falls over a 10-year follow-up. Elderly residents of Jyväskylä, Finland, aged initially 75 and 80 years, took part in the study in 1989-1990. The health and functional capacity assessments were carried out at the baseline. Injurious falls were monitored over a 10-year period. The rate of injurious falls per thousand person-years was 188 among women and 78 among men. Of all fall-related diagnoses, head injuries comprised 32%, upper limb injuries 27% and hip injuries 19%. Majority of injurious falls took place indoors and no seasonal variation in fall occurrence was observed. Recurring falls were more likely to take place in institutions. Osteoarthritis increased the risk of injurious falls but no effect was observed for coronary heart diseases or mobility limitation. All in all, intrinsic factors, such as chronic diseases and mobility limitation had only minor effect on risk of injurious falls among older people. The current results suggest that preventive interventions for injurious falls among older people should pay attention to the risk factors present indoors.

  10. Development of STEADI: a fall prevention resource for health care providers.

    PubMed

    Stevens, Judy A; Phelan, Elizabeth A

    2013-09-01

    Falls among people aged ≥65 years are the leading cause of both injury deaths and emergency department visits for trauma. Research shows that many falls are preventable. In the clinical setting, an effective fall intervention involves assessing and addressing an individual's fall risk factors. This individualized approach is recommended in the American and British Geriatrics Societies' (AGS/BGS) practice guideline. This article describes the development of STEADI (Stopping Elderly Accidents, Deaths, and Injuries), a fall prevention tool kit that contains an array of health care provider resources for assessing and addressing fall risk in clinical settings. As researchers at the Centers for Disease Control and Prevention's Injury Center, we reviewed relevant literature and conducted in-depth interviews with health care providers to determine current knowledge and practices related to older adult fall prevention. We developed draft resources based on the AGS/BGS guideline, incorporated provider input, and addressed identified knowledge and practice gaps. Draft resources were reviewed by six focus groups of health care providers and revised. The completed STEADI tool kit, Preventing Falls in Older Patients-A Provider Tool Kit, is designed to help health care providers incorporate fall risk assessment and individualized fall interventions into routine clinical practice and to link clinical care with community-based fall prevention programs.

  11. Development of STEADI: A Fall Prevention Resource for Health Care Providers

    PubMed Central

    Stevens, Judy A.; Phelan, Elizabeth A.

    2015-01-01

    Falls among people aged ≥65 years are the leading cause of both injury deaths and emergency department visits for trauma. Research shows that many falls are preventable. In the clinical setting, an effective fall intervention involves assessing and addressing an individual’s fall risk factors. This individualized approach is recommended in the American and British Geriatrics Societies’ (AGS/BGS) practice guideline. This article describes the development of STEADI (Stopping Elderly Accidents, Deaths, and Injuries), a fall prevention tool kit that contains an array of health care provider resources for assessing and addressing fall risk in clinical settings. As researchers at the Centers for Disease Control and Prevention’s Injury Center, we reviewed relevant literature and conducted in-depth interviews with health care providers to determine current knowledge and practices related to older adult fall prevention. We developed draft resources based on the AGS/BGS guideline, incorporated provider input, and addressed identified knowledge and practice gaps. Draft resources were reviewed by six focus groups of health care providers and revised. The completed STEADI tool kit, Preventing Falls in Older Patients—A Provider Tool Kit, is designed to help health care providers incorporate fall risk assessment and individualized fall interventions into routine clinical practice and to link clinical care with community-based fall prevention programs. PMID:23159993

  12. Why do patients in acute care hospitals fall? Can falls be prevented?

    PubMed

    Dykes, Patricia C; Carroll, Diane L; Hurley, Ann C; Benoit, Angela; Middleton, Blackford

    2009-06-01

    Obtain the views of nurses and assistants as to why patients in acute care hospitals fall. Despite a large quantitative evidence base for guiding fall risk assessment and not needing highly technical, scarce, or expensive equipment to prevent falls, falls are serious problems in hospitals. Basic content analysis methods were used to interpret descriptive data from 4 focus groups with nurses (n = 23) and 4 with assistants (n = 19). A 2-person consensus approach was used for analysis. Positive and negative components of 6 concepts-patient report, information access, signage, environment, teamwork, and involving patient/family-formed 2 core categories: knowledge/ communication and capability/actions that are facilitators or barriers, respectively, to preventing falls. Two conditions are required to reduce patient falls. A patient care plan including current and accurate fall risk status with associated tailored and feasible interventions needs to be easily and immediately accessible to all stakeholders (entire healthcare team, patients, and family). Second, stakeholders must use that information plus their own knowledge and skills and patient and hospital resources to carry out the plan.

  13. Describing Older Adults' Awareness of Fall Risk Using Situation Awareness Research Techniques: A Pilot Study.

    PubMed

    Azzarello, Jo; Hall, Beth

    2016-07-01

    The purpose of the current study was to evaluate efficacy of techniques adapted from situation awareness research for describing how older adults perceive and understand fall risk factors in the context of daily routine. Eleven older adults watched a video of an older woman performing daily activities. Thirteen intrinsic, extrinsic, and behavioral fall risks were embedded throughout the scenario. The video was periodically frozen/blanked from view while participants answered questions about their understanding of the situation and associated story elements. Participants perceived a variety of fall risk factors but did not necessarily interpret them as indicating fall risk. Many fall risks held non-fall meaning for participants (e.g., newspapers on the floor meant the woman liked to read). Although four participants readily identified a fall risk situation, seven did not until they were explicitly asked to consider safety. Study techniques were effective for describing situation awareness of fall risk and several suggestions for improvement are described. [Res Gerontol Nurs. 2016; 9(4):161-166.]. Copyright 2016, SLACK Incorporated.

  14. Effect of square stepping exercise for older adults to prevent fall and injury related to fall: systematic review and meta-analysis of current evidences.

    PubMed

    Fisseha, Berihu; Janakiraman, Balamurugan; Yitayeh, Asmare; Ravichandran, Hariharasudhan

    2017-02-01

    Falls and fall related injuries become an emerging health problem among older adults. As a result a review of the recent evidences is needed to design a prevention strategy. The aim of this review was to determine the effect of square stepping exercise (SSE) for fall down injury among older adults compared with walking training or other exercises. An electronic database search for relevant randomized control trials published in English from 2005 to 2016 was conducted. Articles with outcome measures of functional reach, perceived health status, fear of fall were included. Quality of the included articles was rated using Physiotherapy Evidence Database (PEDro) scale and the pooled effect of SSE was obtained by Review Manager (RevMan5) software. Significant effect of SSE was detected over walking or no treatment to improve balance as well to prevent fear of fall and improve perceived health status. The results of this systematic review proposed that SSE significantly better than walking or no treatment to prevent fall, prevent fear of fall and improve perceived health status.

  15. Why Do Patients in Acute Care Hospitals Fall? Can Falls Be Prevented?

    PubMed Central

    Dykes, Patricia C.; Carroll, Diane L.; Hurley, Ann C.; Benoit, Angela; Middleton, Blackford

    2011-01-01

    Objective Obtain the views of nurses and assistants as to why patients in acute care hospitals fall. Background Despite a large quantitative evidence base for guiding fall risk assessment and not needing highly technical, scarce, or expensive equipment to prevent falls, falls are serious problems in hospitals. Methods Basic content analysis methods were used to interpret descriptive data from 4 focus groups with nurses (n = 23) and 4 with assistants (n = 19). A 2-person consensus approach was used for analysis. Results Positive and negative components of 6 concepts—patient report, information access, signage, environment, teamwork, and involving patient/family—formed 2 core categories: knowledge/communication and capability/actions that are facilitators or barriers, respectively, to preventing falls. Conclusion Two conditions are required to reduce patient falls. A patient care plan including current and accurate fall risk status with associated tailored and feasible interventions needs to be easily and immediately accessible to all stakeholders (entire healthcare team, patients, and family). Second, stakeholders must use that information plus their own knowledge and skills and patient and hospital resources to carry out the plan. PMID:19509605

  16. The coupled geochemistry of Au and As in pyrite from ore deposits and geothermal fields: monitoring fluid evolution and external forcing factors in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Reich, M.; Deditius, A.; Tardani, D.; Sanchez-Alfaro, P.

    2014-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat transfer and mechanical interactions. Results will be used to improve current lava flow prediction models as well as increase our understanding of the evolution of volcanic regions on the Earth and other planets.

  17. Reconstructing Tsunami Flow Speed from Sedimentary Deposits

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Gelfenbaum, G. R.

    2014-12-01

    Paleotsunami deposits contain information about the flow that created them that can be used to reconstruct tsunami flow speed and thereby improving assessment of tsunami hazard. We applied an inverse tsunami sediment transport model to sandy deposits near Sendai Airport, Japan, that formed during the 11 March 2011 Tohoku-oki tsunami to test model performance and explore the spatial variations in tsunami flow speed. The inverse model assumes the amount of suspended sediment in the water column is in equilibrium with local flow speed and that sediment transport convergences, primarily from bedload transport, do not contribute significantly to formation of the portion of the deposit we identify as formed by sediment settling out of suspension. We interpret massive or inversely graded intervals as forming from sediment transport convergences and do not model them. Sediment falling out of suspension forms a specific type of normal grading, termed 'suspension' grading, where the entire grain size distribution shifts to finer sizes higher up in a deposit. Suspension grading is often observed in deposits of high-energy flows, including turbidity currents and tsunamis. The inverse model calculates tsunami flow speed from the thickness and bulk grain size of a suspension-graded interval. We identified 24 suspension-graded intervals from 7 trenches located near the Sendai Airport from ~250-1350 m inland from the shoreline. Flow speeds were highest ~500 m from the shoreline, landward of the forested sand dunes where the tsunami encountered lower roughness in a low-lying area as it traveled downslope. Modeled tsunami flow speeds range from 2.2 to 9.0 m/s. Tsunami flow speeds are sensitive to roughness, which is unfortunately poorly constrained. Flow speed calculated by the inverse model was similar to those calculated from video taken from a helicopter about 1-2 km inland. Deposit reconstructions of suspension-graded intervals reproduced observed upward shifts in grain size distributions reasonably well. As approaches to estimating paleo-roughness improve, the flow speed and size of paleotsunamis will be better understood and the ability to assess tsunami hazard from paleotsunami deposits will improve.

  18. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    NASA Astrophysics Data System (ADS)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (< 3.1 ka) is one of the best exposed and widely dispersed pyroclastic deposits, related to both fall and flow activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the arrival of new magma (represented in the deposit by P1 clasts) into a small, outgassed magma body which was accumulated at shallow level (mainly represented by P2 clasts). A new Chaimilla-type eruption could significantly affect the communities that have recently developed around Villarrica volcano and subsist mainly on tourism and forestry. As a result, a better understanding of the dynamics and evolution of the Chaimilla eruption is necessary for the identification of potential hazard scenarios at Villarrica volcano and, ultimately, for the risk mitigation of this populated area of Southern Chile.

  19. Study of 3-D Dynamic Roughness Effects on Flow Over a NACA 0012 Airfoil Using Large Eddy Simulations at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Guda, Venkata Subba Sai Satish

    There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.

  20. Large-scale numerical simulations of polydisperse particle flow in a silo

    NASA Astrophysics Data System (ADS)

    Rubio-Largo, S. M.; Maza, D.; Hidalgo, R. C.

    2017-10-01

    Very recently, we have examined experimentally and numerically the micro-mechanical details of monodisperse particle flows through an orifice placed at the bottom of a silo (Rubio-Largo et al. in Phys Rev Lett 114:238002, 2015). Our findings disentangled the paradoxical ideas associated to the free-fall arch concept, which has historically served to justify the dependence of the flow rate on the outlet size. In this work, we generalize those findings examining large-scale polydisperse particle flows in silos. In the range of studied apertures, both velocity and density profiles at the aperture are self-similar, and the obtained scaling functions confirm that the relevant scale of the problem is the size of the aperture. Moreover, we find that the contact stress monotonically decreases when the particles approach the exit and vanish at the outlet. The behavior of this magnitude is practically independent of the size of the orifice. However, the total and partial kinetic stress profiles suggest that the outlet size controls the propagation of the velocity fluctuations inside the silo. Examining this magnitude, we conclusively argue that indeed there is a well-defined transition region where the particle flow changes its nature. The general trend of the partial kinetic pressure profiles and the location of the transition region results the same for all particle types. We find that the partial kinetic stress is larger for bigger particles. However, the small particles carry a higher fraction of kinetic stress respect to their concentration, which suggest that the small particles have larger velocity fluctuations than the large ones and showing lower strength of correlation with the global flow. Our outcomes explain why the free-fall arch picture has served to describe the polydisperse flow rate in the discharge of silos.

  1. Multiple cenozoic invasions of Africa by penguins (Aves, Sphenisciformes)

    PubMed Central

    Ksepka, Daniel T.; Thomas, Daniel B.

    2012-01-01

    Africa hosts a single breeding species of penguin today, yet the fossil record indicates that a diverse array of now-extinct taxa once inhabited southern African coastlines. Here, we show that the African penguin fauna had a complex history involving multiple dispersals and extinctions. Phylogenetic analyses and biogeographic reconstructions incorporating new fossil material indicate that, contrary to previous hypotheses, the four Early Pliocene African penguin species do not represent an endemic radiation or direct ancestors of the living Spheniscus demersus (blackfooted penguin). A minimum of three dispersals to Africa, probably assisted by the eastward-flowing Antarctic Circumpolar and South Atlantic currents, occurred during the Late Cenozoic. As regional sea-level fall eliminated islands and reduced offshore breeding areas during the Pliocene, all but one penguin lineage ended in extinction, resulting in today's depleted fauna. PMID:21900330

  2. Stratigraphic, Granulometric and Geochemical Studies of a Major Plinian Eruption on Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Daly, G.; Killingsworth, N.; Deuerling, K.; Schneider, S.; Fryxell, J. E.

    2008-12-01

    The island of Dominica, located in the center of the Lesser Antilles island arc has witnessed, probably within the last 100,000 years, three large volume Plinian eruptions. One of these, associated with the Morne Diablotins center, forms the Grande Savane pyroclastic flow fan, that extends off shore as a distinctive submarine feature for a distance of at least 14 km. Stratigraphical studies of road cuts and well-exposed sea cliffs indicate the fan is composed of an older unit composed of reworked deposits at the base followed by at least four sequences, based on the presence of paleosols, of block and ash flow deposits. The upper unit of block and ash flows is overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites and pumiceous surges (representing the Plinian eruption). There is no evidence of an initial Plinian fall deposit, so the lowest bed in the succession is an ignimbrite with a highly irregular base that cuts into the underlying block and ash flow deposits, the upper parts of which are colored red due to thermal effects. This lowest ignimbrite is welded (minimum porosity of 15%) throughout its thickness (maximum thickness of greater than 21 m), although a few outcrops near the margins show a thin (20-30 cm) non-welded but lithified zone beneath the welded zone. The remainder of the sequence is composed of lithified ignimbrite that can be subdivided into three units separated by pumiceous surge layers. The ignimbrite succession is overlain, with no obvious break, by a thin fall deposit containing accretionary lapilli and gas cavities, followed by three pumiceous surge deposits (lower and upper show planar stratification and the middle surge shows massive bedding); towards the north the upper two surge deposits are separated by thin pumiceous lapilli fall and ash fall deposits. This surge sequence extends laterally outside of the main area of ignimbrite deposition. The pumice clasts from the ignimbrites are andesitic in composition and show essentially no variation up stratigraphy. In contrast, the surges are more variable in composition, ranging from andesite to dacite. Modeling of these data will provide information on the dynamics of this major Plinian eruption including the effects of water/magma interaction.

  3. Tailored Prevention of Inpatient Falls

    PubMed Central

    ZUYEV, LYUBOV; BENOIT, ANGELA N.; CHANG, FRANK Y.; DYKES, PATRICIA C.

    2011-01-01

    Patient falls and fall-related injuries are serious problems in hospitals. The Fall TIPS application aims to prevent patient falls by translating routine nursing fall risk assessment into a decision support intervention that communicates fall risk status and creates a tailored evidence-based plan of care that is accessible to the care team, patients, and family members. In our design and implementation of the Fall TIPS toolkit, we used the Spiral Software Development Life Cycle model. Three output tools available to be generated from the toolkit are bed poster, plan of care, and patient education handout. A preliminary design of the application was based on initial requirements defined by project leaders and informed by focus groups with end users. Preliminary design partially simulated the paper version of the Morse Fall Scale currently used in hospitals involved in the research study. Strengths and weaknesses of the first prototype were identified by heuristic evaluation. Usability testing was performed at sites where research study is implemented. Suggestions mentioned by end users participating in usability studies were either directly incorporated into the toolkit and output tools, were slightly modified, or will be addressed during training. The next step is implementation of the fall prevention toolkit on the pilot testing units. PMID:20975543

  4. Ageing vision and falls: a review.

    PubMed

    Saftari, Liana Nafisa; Kwon, Oh-Sang

    2018-04-23

    Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly. While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance. We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control.

  5. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...

  6. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d). i. Measuring...

  7. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...

  8. 40 CFR Table 4 to Subpart Kkkk of... - Operating Limits If Using the Emission Rate With Add-on Controls Option or the Control Efficiency...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...

  9. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.

    PubMed

    Aziz, Omar; Musngi, Magnus; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2017-01-01

    Falls are the leading cause of injury-related morbidity and mortality among older adults. Over 90 % of hip and wrist fractures and 60 % of traumatic brain injuries in older adults are due to falls. Another serious consequence of falls among older adults is the 'long lie' experienced by individuals who are unable to get up and remain on the ground for an extended period of time after a fall. Considerable research has been conducted over the past decade on the design of wearable sensor systems that can automatically detect falls and send an alert to care providers to reduce the frequency and severity of long lies. While most systems described to date incorporate threshold-based algorithms, machine learning algorithms may offer increased accuracy in detecting falls. In the current study, we compared the accuracy of these two approaches in detecting falls by conducting a comprehensive set of falling experiments with 10 young participants. Participants wore waist-mounted tri-axial accelerometers and simulated the most common causes of falls observed in older adults, along with near-falls and activities of daily living. The overall performance of five machine learning algorithms was greater than the performance of five threshold-based algorithms described in the literature, with support vector machines providing the highest combination of sensitivity and specificity.

  10. Fall Hazards Within Senior Independent Living: A Case-Control Study.

    PubMed

    Kim, Daejin; Portillo, Margaret

    2018-01-01

    The main purpose of this research was to identify significant relationships between environmental hazards and older adults' falling. Falls can present a major health risk to older persons. Identifying potential environmental hazards that increase fall risks can be effective for developing fall prevention strategies that can create safer residential environments for older adults. The research included a retrospective analysis of 449 fall incident reports in two case-control buildings. In the homes of 88 older adults residing in independent living, an observational study was conducted to identify environmental hazards using two assessment tools including Westmead Home Safety Assessment (WeHSA) and resident interviews. A fall history analysis indicated that falls occurred in the bathroom were significantly associated with hospitalization. The observational study revealed that the bathroom was the most common place for environmental hazards. The research showed, with increasing age and use of mobility assistive aids, there was a corresponding increase in the total number of environmental hazards. Home hazards were significantly and independently associated with the incidence rate of falls. In other words, the high fall rate building included more environmental hazards compared to the low fall rate building while controlling for residents' age and mobility. The current study provides empirical evidence of the link between environmental hazards and older adults' falling, which is useful for developing effective fall intervention design strategies.

  11. River-aquifer interactions, geologic heterogeneity, and low-flow management

    USGS Publications Warehouse

    Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.

    2006-01-01

    Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).

  12. Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems

    PubMed Central

    2012-01-01

    Background Falls can cause trauma, disability and death among older people. Ambulatory accelerometer devices are currently capable of detecting falls in a controlled environment. However, research suggests that most current approaches can tend to have insufficient sensitivity and specificity in non-laboratory environments, in part because impacts can be experienced as part of ordinary daily living activities. Method We used a waist-worn wireless tri-axial accelerometer combined with digital signal processing, clustering and neural network classifiers. The method includes the application of Discrete Wavelet Transform, Regrouping Particle Swarm Optimization, Gaussian Distribution of Clustered Knowledge and an ensemble of classifiers including a multilayer perceptron and Augmented Radial Basis Function (ARBF) neural networks. Results Preliminary testing with 8 healthy individuals in a home environment yields 98.6% sensitivity to falls and 99.6% specificity for routine Activities of Daily Living (ADL) data. Single ARB and MLP classifiers were compared with a combined classifier. The combined classifier offers the greatest sensitivity, with a slight reduction in specificity for routine ADL and an increased specificity for exercise activities. In preliminary tests, the approach achieves 100% sensitivity on in-group falls, 97.65% on out-group falls, 99.33% specificity on routine ADL, and 96.59% specificity on exercise ADL. Conclusion The pre-processing and feature-extraction steps appear to simplify the signal while successfully extracting the essential features that are required to characterize a fall. The results suggest this combination of classifiers can perform better than MLP alone. Preliminary testing suggests these methods may be useful for researchers who are attempting to improve the performance of ambulatory fall-detection systems. PMID:22336100

  13. Controls of sediment transfers, sedimentary budgets and relief development in cold environments: Results from four catchment systems in Iceland, Swedish Lapland and Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.

    2012-04-01

    By the combined, longer-term and quantitative recording of relevant denudative slope processes and stream work in four selected catchment systems in sub-arctic oceanic Eastern Iceland (Hrafndalur and Austdalur), arctic-oceanic Swedish Lapland (Latnjavagge) and sub-arctic oceanic Finnish Lapland (Kidisjoki), information on the absolute and relative importance of the different denudative processes is collected. Direct comparison of the four catchment geo-systems (the catchment sizes range from 7 km2 to 23 km2) allows conclusions on major controls of sediment transfers, sedimentary budgets and relief development in theses cold climate environments. To allow direct comparison of the different processes, all mass transfers are calculated as tonnes multiplied by meter per year, i.e. as the product of the annually transferred mass and the corresponding transport distance. Ranking the different processes according to their annual mass transfers shows that stream work dominates over slope denudation. For Hrafndalur (Eastern Iceland) the following order of denudative processes is found after nine years of process studies (2001 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Creep processes, (7) Avalanches, (8) Debris flows, (9) Translation slides, (10) Deflation. Compared to that, in Austdalur the following ranking is given after fourten years of process studies (1996 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Mechanical fluvial slope denudation (slope wash), (4) Chemical slope denudation, (5) Avalanches, (6) Rock falls plus boulder falls, (7) Creep processes, (8) Debris flows, (9) Deflation, (10) Translation slides. In the Latnjavagge catchment (Swedish Lapland) the ranking is (eleven-years period of studies, 1999 - 2010): (1) Fluvial solute transport, (2) Fluvial suspended sediment plus bedload transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Avalanches, (7) Creep processes and solifluction, (8) Slush flows, (9) Debris flows, (10) Translation slides, (11) Deflation. In Kidisjoki (Finnish Lapland) the order of processes, as determined after a nine-years period (2001 - 2010) of geomorphic process studies, is: (1) Fluvial solute transport, (2) Chemical slope denudation, (3) Fluvial suspended sediment plus bedload transport, (4) Mechanical fluvial slope denudation, (5) Creep processes, (6) Avalanches and slush flows, (7) Debris flows and slides, (8) Rock and boulder falls, (9) Deflation. As a result, in all four selected cold climate study areas the intensity of contemporary denudative processes and mass transfers is altogether rather low, which is in opposition to the earlier postulated oppinion of a generally high intensity of geomorphic processes in cold climate environments. A direct comparison of the annual mass transfers summarises that there are differences between process intensities and the relative importance of different denudative processes within the four study areas. The major controls of these detected differences are: (i) Climate: The higher annual precipitation along with the larger number of extreme rainfall events and the higher frequency of snowmelt and rainfall generated peak runoff events in Eastern Iceland as compared to Swedish Lapland and Finnish Lapland lead to higher mass transfers, (ii) Lithology: The low resistance of rhyolites in Hrafndalur causes especially high weathering rates and connected mass transfers in this catchment. Due to the lower resistance of the rhyolites as compared to the basalts found in Austdalur Postglacial modification of the glacially formed relief is clearly further advanced in Hrafndalur as compared to Austdalur, (iii) Relief: The greater steepness of the Icelandic catchments leads to higher mass transfers here as compared to Latnjavagge and Kidisjoki, (iv) Vegetation cover: The significant disturbance of the vegetation cover by human impacts in Easter Iceland causes higher mass transfers (slope wash) whereas restricted sediment availability is a main reason for lower mass transfers in Swedish Lapland and Finnish Lapland. The applied catchment-based approach seems to be effective for analysing sediment budgets and trends of Postglacial relief development in selected study areas with given environmental settings. Direct comparison of investigated catchments will improve possibilities to model relief development as well as possible effects of projected climate change in cold climate environments.

  14. Numerical Study of motion of Falling Conical Graupel

    NASA Astrophysics Data System (ADS)

    Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei

    2017-11-01

    Each year, large hailstones falling from a thunderstorm cause massive loss of crops and properties, pose a serious threat to aviation, and, on occasion, some deaths in the world. Graupel particles often serve as hailstone embryos, and are frequently observed forms of convective precipitation almost everywhere. And it is sufficiently evident that the major factor that determines collision efficiency for ice accretion is the flow field. In the present study, the attitudes of freely-falling conical graupel particles with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion, allowing us to determine the position and orientation of the graupel in response to the coupling of the hydrodynamic force and torque of the flow fields, gravitational force, as well as Magnus force due to self-rotation. The results show significant horizontal movements (on the order of 1 km in one hour) and also show that when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. This study is partially supported by the US NSF Grant AGS-1633921 and research fund provided by the Academia Sinica, Taiwan.

  15. Controls on the quality of Miocene reservoirs, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises

    2018-01-01

    An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.

  16. Learn About Science Policy at the 2013 AGU Fall Meeting

    NASA Astrophysics Data System (ADS)

    Gilley, Meg

    2013-11-01

    The 2013 AGU Fall Meeting offers many opportunities to explore current science policy issues. Sequestration and the recent government shutdown showed us the connection between science and policy and the impact that policy can have on researchers' work. This year's Fall Meeting Public Affairs events will give members the tools to communicate with Congress, respond to legal pressure about their science, and work with policy makers in Washington, D. C., as an AGU Congressional Science Fellow.

  17. Tailored prevention of inpatient falls: development and usability testing of the fall TIPS toolkit.

    PubMed

    Zuyev, Lyubov; Benoit, Angela N; Chang, Frank Y; Dykes, Patricia C

    2011-02-01

    Patient falls and fall-related injuries are serious problems in hospitals. The Fall TIPS application aims to prevent patient falls by translating routine nursing fall risk assessment into a decision support intervention that communicates fall risk status and creates a tailored evidence-based plan of care that is accessible to the care team, patients, and family members. In our design and implementation of the Fall TIPS toolkit, we used the Spiral Software Development Life Cycle model. Three output tools available to be generated from the toolkit are bed poster, plan of care, and patient education handout. A preliminary design of the application was based on initial requirements defined by project leaders and informed by focus groups with end users. Preliminary design partially simulated the paper version of the Morse Fall Scale currently used in hospitals involved in the research study. Strengths and weaknesses of the first prototype were identified by heuristic evaluation. Usability testing was performed at sites where research study is implemented. Suggestions mentioned by end users participating in usability studies were either directly incorporated into the toolkit and output tools, were slightly modified, or will be addressed during training. The next step is implementation of the fall prevention toolkit on the pilot testing units.

  18. Risk Factors for Falls in Older Adults with Lower Extremity Arthritis: A Conceptual Framework of Current Knowledge and Future Directions

    PubMed Central

    Gyurcsik, Nancy C.

    2012-01-01

    ABSTRACT Purpose: As the numbers of Canadians aged 65 years and over increases over the next 20 years, the prevalence of chronic conditions, including arthritis, will rise as will the number of falls. Although known fall-risk factors are associated with hip and knee osteoarthritis (OA), minimal research has evaluated fall and fracture risk and/or rates in this population. Thus, the purpose was to summarize research on fall and fracture risk in older adults with hip or knee OA and to develop a conceptual framework of fall-risk screening and assessment. Method: The International Classification of Functioning, Disability and Health, clinical practice guidelines for fall-risk screening, and a selected literature review were used. Results: Gaps exist in our knowledge of fall and fracture risk for this population. Muscle performance, balance, and mobility impairments have been identified, but little is known about whether personal and environmental contextual factors impact fall and fracture risk. Physical activity may help to prevent falls, but non-adherence is a problem. Conclusion: A need exists to assess fall risk in older adults with hip and knee OA. Promoting regular physical activity by focusing on disease- and activity-specific personal contextual factors may help direct treatment planning. PMID:23729967

  19. Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho

    USGS Publications Warehouse

    Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin

    1995-01-01

    This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to channel deactivation, increased island visitation and nest predation by predatory mammals due to loss of a water barrier between some islands and banks, and larger populations of alien plant species in the new riparian vegetation.

  20. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    USGS Publications Warehouse

    Major, Jon J.; Newhall, Christopher G.

    1989-01-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  1. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    NASA Astrophysics Data System (ADS)

    Major, Jon J.; Newhall, Christopher G.

    1989-10-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  2. Sediment transport in Norton Sound, Alaska

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.; Muench, R.D.; Nelson, C.H.

    1980-01-01

    The Yukon River, the largest single source of Bering Sea sediment, delivers >95% of its sediment load at the southwest corner of Norton Sound during the ice-free months of late May through October. During this period, surface winds in the northern Bering Sea area are generally light from the south and southwest, and surface waves are not significant. Although wind stress may cause some transport of low-density turbid surface water into the head of Norton Sound, the most significant transport of Yukon River suspended matter occurs within advective currents flowing north across the outer part of the sound. The thickest accumulations of modern Yukon silt and very fine sand occur beneath this persistent current. We monitored temporal variations in bottom currents, pressure, and suspended-matter concentrations within this major transport pathway for 80 days in the summer of 1977 using a Geological Processes Bottom Environmental (GEOPROBE) tripod system. The record reveals two distinctive periods of bottom flow and sediment transport: an initial 59 days (July 8-September 5) of fair-weather conditions, characterized by tidally dominated currents and relatively low, stable suspended-matter concentrations; and a 21-day period (September 5-September 26) during which several storms traversed the northern Bering Sea, mean suspended-matter concentrations near the bottom increased by a factor of five, and the earlier tidal dominance was overshadowed by wind-driven and oscillatory wave-generated currents. Friction velocities (u*) at the GEOPROBE site were generally subcritical during the initial fair-weather period. In contrast, the 21-day stormy period was characterized by u* values that exceeded the critical level of 1.3 cm/s more than 60% of the time. The GEPROBE data suggest that the very fine sand constituting about 50% of the sediment on the outer part of the Yukon prodelta is transported during a few late-summer and fall storms each year. A conservative estimate shows that suspended-matter transport during the storms in September 1977 was equal to four months of fair-weather transport. ?? 1980.

  3. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study.

    PubMed

    Bhatti, Mehwish Saba; Tang, Tong Boon; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma.

  4. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study

    PubMed Central

    Bhatti, Mehwish Saba; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma. PMID:28742142

  5. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    NASA Astrophysics Data System (ADS)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  6. Tools for assessing fall risk in the elderly: a systematic review and meta-analysis.

    PubMed

    Park, Seong-Hi

    2018-01-01

    The prevention of falls among the elderly is arguably one of the most important public health issues in today's aging society. The aim of this study was to assess which tools best predict the risk of falls in the elderly. Electronic searches were performed using Medline, EMBASE, the Cochrane Library, CINAHL, etc., using the following keywords: "fall risk assessment", "elderly fall screening", and "elderly mobility scale". The QUADAS-2 was applied to assess the internal validity of the diagnostic studies. Selected studies were meta-analyzed with MetaDisc 1.4. A total of 33 studies were eligible out of the 2,321 studies retrieved from selected databases. Twenty-six assessment tools for fall risk were used in the selected articles, and they tended to vary based on the setting. The fall risk assessment tools currently used for the elderly did not show sufficiently high predictive validity for differentiating high and low fall risks. The Berg Balance scale and Mobility Interaction Fall chart showed stable and high specificity, while the Downton Fall Risk Index, Hendrich II Fall Risk Model, St. Thomas's Risk Assessment Tool in Falling elderly inpatients, Timed Up and Go test, and Tinetti Balance scale showed the opposite results. We concluded that rather than a single measure, two assessment tools used together would better evaluate the characteristics of falls by the elderly that can occur due to a multitude of factors and maximize the advantages of each for predicting the occurrence of falls.

  7. An Overview of Rainfall-Runoff Model Types

    EPA Science Inventory

    This report explores rainfall-runoff models, their generation methods, and the categories under which they fall. Runoff plays an important role in the hydrological cycle by returning excess precipitation to the oceans and controlling how much water flows into stream systems. Mode...

  8. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    NASA Astrophysics Data System (ADS)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  9. Superconductivity could occur Na-supersaturated NaCl

    NASA Astrophysics Data System (ADS)

    Hanaki, Koji

    1997-04-01

    A flow-into electron and a flow-out hole mean flow-into of two unit electric c harges. Even if an exciton consisting of an electron and a hole is a neutral q uasi-particle, overlapping of excitons, namely, the bose condensation changes into a superconductor where half the electric current is due to holes moving t oward the reverse direction. The Meisner effect of the bose condensation comes from the precession of the each exciton under the magnetic field^1. Moreo ver, the present mechanism is supported with that superconducting material alw ays has two kinds of carriers. The superconductivity of NaCl comes from the ab ove-mentioned theory. Free stable holes at first and then electrons are produc ed in NaCl when considerable number of Cl^- lattice vacancies are brought in NaCl mainly because some electrons in the Cl-3p filled band fall into the v acancies. The coexistence of two kinds of stable carriers does not always mean the presence of excitons like VO with electrons not paired and localized in e ach V atom though. While, the absorption spectrum of the NaCl has already conf irmed the presence of excitons; the strength of the spectrum seems to indicate the formation of the bose condensation. Thus we could expect a new supercondu ctor. 1) Hanaki B.Am.P.Soc.,40-1(1995)568

  10. Simulation-Based Approach for Site-Specific Optimization of Hydrokinetic Turbine Arrays

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Chawdhary, S.; Yang, X.; Khosronejad, A.; Angelidis, D.

    2014-12-01

    A simulation-based approach has been developed to enable site-specific optimization of tidal and current turbine arrays in real-life waterways. The computational code is based on the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D), which is able to carry out high-fidelity simulations of turbulent flow and sediment transport processes in rivers and streams taking into account the arbitrary geometrical complexity characterizing natural waterways. The computational framework can be used either in turbine-resolving mode, to take into account all geometrical details of the turbine, or with the turbines parameterized as actuator disks or actuator lines. Locally refined grids are employed to dramatically increase the resolution of the simulation and enable efficient simulations of multi-turbine arrays. Turbine/sediment interactions are simulated using the coupled hydro-morphodynamic module of VSL3D. The predictive capabilities of the resulting computational framework will be demonstrated by applying it to simulate turbulent flow past a tri-frame configuration of hydrokinetic turbines in a rigid-bed turbulent open channel flow as well as turbines mounted on mobile bed open channels to investigate turbine/sediment interactions. The utility of the simulation-based approach for guiding the optimal development of turbine arrays in real-life waterways will also be discussed and demonstrated. This work was supported by NSF grant IIP-1318201. Simulations were carried out at the Minnesota Supercomputing Institute.

  11. Signal information available for plume source tracking with and without surface waves and learning by undergraduates assisting with the research

    NASA Astrophysics Data System (ADS)

    Wiley, Megan Beth

    Autonomous vehicles have had limited success in locating point sources of pollutants, chemicals, and other passive scalars. However, animals such as stomatopods, a mantis shrimp, track odor plumes easily for food, mates, and habitat. Laboratory experiments using Planar Laser Induced Fluorescence measured odor concentration downstream of a diffusive source with and without live stomatopods to investigate their source-tracking strategies in unidirectional and "wave-affected" (surface waves with a mean current) flows. Despite the dearth of signal, extreme temporal variation, and meandering plume centerline, the stomatopods were able to locate the source, especially in the wave-affected flow. Differences in the two plumes far from the source (>160 cm) appeared to help the animals in the wave-affected flow position themselves closer to the source (<70 cm) at times with relatively large amounts of odor and plume filaments of high concentration. At the height of the animals' antennules, the site of their primary chemosensors, the time-averaged Reynolds stresses in the two flows were approximately the same. The temporal variation in stresses over the wave cycle may be responsible for differences in the two plumes. The antennule height falls between a region of large peaks in Reynolds stress in phase with peaks in streamwise acceleration, and a lower region with a smaller Reynolds stress peak in phase with maximum shear during flow reversal. Six undergraduate students assisted with the research. We documented their daily activities and ideas on plume dispersion using open-ended interviews. Most of their time was spent on tasks that required no understanding of fluid mechanics, and there was little evidence of learning by participation in the RAship. One RA's conceptions of turbulence did change, but a group workshop seemed to support this learning more than the RAship. The documented conceptions could aid in curriculum design, since situating new information within current knowledge seems to deepen learning outcomes. The RAs' conceptions varied widely with some overlap of ideas. The interviews also showed that most RAs did not discuss molecular diffusion as part of the mixing process and some remembered information from course demonstrations, but applied them inappropriately to the interview questions.

  12. LiDAR-Derived Flood-Inundation Maps for Real-Time Flood-Mapping Applications, Tar River Basin, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2007-01-01

    Flood-inundation maps were created for selected streamgage sites in the North Carolina Tar River basin. Light detection and ranging (LiDAR) data with a vertical accuracy of about 20 centimeters, provided by the Floodplain Mapping Information System of the North Carolina Floodplain Mapping Program, were processed to produce topographic data for the inundation maps. Bare-earth mass point LiDAR data were reprocessed into a digital elevation model with regularly spaced 1.5-meter by 1.5-meter cells. A tool was developed as part of this project to connect flow paths, or streams, that were inappropriately disconnected in the digital elevation model by such features as a bridge or road crossing. The Hydraulic Engineering Center-River Analysis System (HEC-RAS) model, developed by the U.S. Army Corps of Engineers, was used for hydraulic modeling at each of the study sites. Eleven individual hydraulic models were developed for the Tar River basin sites. Seven models were developed for reaches with a single gage, and four models were developed for reaches of the Tar River main stem that receive flow from major gaged tributaries, or reaches in which multiple gages were near one another. Combined, the Tar River hydraulic models included 272 kilometers of streams in the basin, including about 162 kilometers on the Tar River main stem. The hydraulic models were calibrated to the most current stage-discharge relations at 11 long-term streamgages where rating curves were available. Medium- to high-flow discharge measurements were made at some of the sites without rating curves, and high-water marks from Hurricanes Fran and Floyd were available for high-stage calibration. Simulated rating curves matched measured curves over the full range of flows. Differences between measured and simulated water levels for a specified flow were no more than 0.44 meter and typically were less. The calibrated models were used to generate a set of water-surface profiles for each of the 11 modeled reaches at 0.305-meter increments for water levels ranging from bankfull to approximately the highest recorded water level at the downstream-most gage in each modeled reach. Inundated areas were identified by subtracting the water-surface elevation in each 1.5-meter by 1.5-meter grid cell from the land-surface elevation in the cell through an automated routine that was developed to identify all inundated cells hydraulically connected to the cell at the downstream-most gage in the model domain. Inundation maps showing transportation networks and orthoimagery were prepared for display on the Internet. These maps also are linked to the U.S. Geological Survey North Carolina Water Science Center real-time streamflow website. Hence, a user can determine the near real-time stage and water-surface elevation at a U.S. Geological Survey streamgage site in the Tar River basin and link directly to the flood-inundation maps for a depiction of the estimated inundated area at the current water level. Although the flood-inundation maps represent distinct boundaries of inundated areas, some uncertainties are associated with these maps. These are uncertainties in the topographic data for the hydraulic model computational grid and inundation maps, effective friction values (Manning's n), model-validation data, and forecast hydrographs, if used. The Tar River flood-inundation maps were developed by using a steady-flow hydraulic model. This assumption clearly has less of an effect on inundation maps produced for low flows than for high flows when it typically takes more time to inundate areas. A flood in which water levels peak and fall slowly most likely will result in more inundation than a similar flood in which water levels peak and fall quickly. Limitations associated with the steady-flow assumption for hydraulic modeling vary from site to site. The one-dimensional modeling approach used in this study resulted in good agreement between measurements and simulations. T

  13. Design requirements, challenges, and solutions for high-temperature falling particle receivers

    NASA Astrophysics Data System (ADS)

    Christian, Joshua; Ho, Clifford

    2016-05-01

    Falling particle receivers (FPR) utilize small particles as a heat collecting medium within a cavity receiver structure. Previous analysis for FPR systems include computational fluid dynamics (CFD), analytical evaluations, and experiments to determine the feasibility and achievability of this CSP technology. Sandia National Laboratories has fabricated and tested a 1 MWth FPR that consists of a cavity receiver, top hopper, bottom hopper, support structure, particle elevator, flux target, and instrumentation. Design requirements and inherent challenges were addressed to enable continuous operation of flowing particles under high-flux conditions and particle temperatures over 700 °C. Challenges include being able to withstand extremely high temperatures (up to 1200°C on the walls of the cavity), maintaining particle flow and conveyance, measuring temperatures and mass flow rates, filtering out debris, protecting components from direct flux spillage, and measuring irradiance in the cavity. Each of the major components of the system is separated into design requirements, associated challenges and corresponding solutions. The intent is to provide industry and researchers with lessons learned to avoid pitfalls and technical problems encountered during the development of Sandia's prototype particle receiver system at the National Solar Thermal Test Facility (NSTTF).

  14. Virtual obstacle crossing: Reliability and differences in stroke survivors who prospectively experienced falls or no falls.

    PubMed

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van de Port, Ingrid G; Wubbels, Gijs; van Dieën, Jaap H

    2017-10-01

    Stroke survivors often fall during walking. To reduce fall risk, gait testing and training with avoidance of virtual obstacles is gaining popularity. However, it is unknown whether and how virtual obstacle crossing is associated with fall risk. The present study assessed whether obstacle crossing characteristics are reliable and assessed differences in stroke survivors who prospectively experienced falls or no falls. We recruited twenty-nine community dwelling chronic stroke survivors. Participants crossed five virtual obstacles with increasing lengths. After a break, the test was repeated to assess test-retest reliability. For each obstacle length and trial, we determined; success rate, leading limb preference, pre and post obstacle distance, margins of stability, toe clearance, and crossing step length and speed. Subsequently, fall incidence was monitored using a fall calendar and monthly phone calls over a six-month period. Test-retest reliability was poor, but improved with increasing obstacle-length. Twelve participants reported at least one fall. No association of fall incidence with any of the obstacle crossing characteristics was found. Given the absence of height of the virtual obstacles, obstacle avoidance may have been relatively easy, allowing participants to cross obstacles in multiple ways, increasing variability of crossing characteristics and reducing the association with fall risk. These finding cast some doubt on current protocols for testing and training of obstacle avoidance in stroke rehabilitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anode power in quasisteady magnetoplasmadynamic accelerators

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1978-01-01

    Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.

  16. Optical properties of aluminum-doped zinc oxide films deposited by direct-current pulse magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Yong; Chen, Chao; Zhang, Sa

    2014-03-01

    A series of <103>-oriented aluminum-doped zinc oxide (AZO) films were deposited on glass substrates via direct-current pulse magnetron reactive sputtering at different O2-to-Ar gas flow ratios (GFRs). The optical properties of the films were characterized using the fitted optical constants in the general oscillator model (which contains two Psemi-Tri oscillators) through the use of measured ellipsometric parameters. The refractive index dispersion data below the interband absorption edge were analyzed using a single-oscillator model. The fitted optical energy gap obtained using the single-oscillator model clearly shows a blue shift, followed by a red shift, as the GFR increases from 0.9/18 to 2.1/18. This shift can be attributed to the change in the free electron concentration of the film, which is closely related to the film stress. In addition, the fitted β value indicates that the AZO film falls under the ionic class. The photoluminescence spectrum indicates a photoluminescence mechanism of the direct and wide energy gap semiconductor.

  17. Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at √(sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nguyen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-11-01

    This Rapid Communication describes the measurement of elliptic flow for charged particles in Au+Au collisions at √(sNN)=200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The measured azimuthal anisotropy is presented over a wide range of pseudorapidity for three broad collision centrality classes for the first time at this energy. Two distinct methods of extracting the flow signal were used to reduce systematic uncertainties. The elliptic flow falls sharply with increasing |η| at 200 GeV for all the centralities studied, as observed for minimum-bias collisions at √(sNN)=130 GeV.

  18. Design a Learning-Oriented Fall Event Reporting System Based on Kirkpatrick Model.

    PubMed

    Zhou, Sicheng; Kang, Hong; Gong, Yang

    2017-01-01

    Patient fall has been a severe problem in healthcare facilities around the world due to its prevalence and cost. Routine fall prevention training programs are not as effective as expected. Using event reporting systems is the trend for reducing patient safety events such as falls, although some limitations of the systems exist at current stage. We summarized these limitations through literature review, and developed an improved web-based fall event reporting system. The Kirkpatrick model, widely used in the business area for training program evaluation, has been integrated during the design of our system. Different from traditional event reporting systems that only collect and store the reports, our system automatically annotates and analyzes the reported events, and provides users with timely knowledge support specific to the reported event. The paper illustrates the design of our system and how its features are intended to reduce patient falls by learning from previous errors.

  19. Activity Monitoring and Heart Rate Variability as Indicators of Fall Risk: Proof-of-Concept for Application of Wearable Sensors in the Acute Care Setting.

    PubMed

    Razjouyan, Javad; Grewal, Gurtej Singh; Rishel, Cindy; Parthasarathy, Sairam; Mohler, Jane; Najafi, Bijan

    2017-07-01

    Growing concern for falls in acute care settings could be addressed with objective evaluation of fall risk. The current proof-of-concept study evaluated the feasibility of using a chest-worn sensor during hospitalization to determine fall risk. Physical activity and heart rate variability (HRV) of 31 volunteers admitted to a 29-bed adult inpatient unit were recorded using a single chest-worn sensor. Sensor data during the first 24-hour recording were analyzed. Participants were stratified using the Hendrich II fall risk assessment into high and low fall risk groups. Univariate analysis revealed age, daytime activity, nighttime side lying posture, and HRV were significantly different between groups. Results suggest feasibility of wearable technology to consciously monitor physical activity, sleep postures, and HRV as potential markers of fall risk in the acute care setting. Further study is warranted to confirm the results and examine the efficacy of the proposed wearable technology to manage falls in hospitals. [Journal of Gerontological Nursing, 43(7), 53-62.]. Copyright 2017, SLACK Incorporated.

  20. Challenges in defining the role of dietary protein in bone health

    USDA-ARS?s Scientific Manuscript database

    In systematic review of the impact of dietary protein on bone health and falls, dietary protein was positively associated with spinal bone mineral density but not with bone density at other skeletal sites, with fractures or with falls. This editorial highlights some of the limitations of the current...

  1. Hillslope-channel coupling in a steep Hawaiian catchment accelerates erosion rates over 100-fold

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Hanshaw, M. N.; Rosener, M.; Schmidt, K. M.; Brooks, B. A.; Tribble, G.; Jacobi, J.

    2009-12-01

    In tropical watersheds, hillslope changes are producing increasing amounts of fine sediment that can be quickly carried to reefs by channels. Suspended sediment concentrations off the reefs of Molokai, Hawaii, chronically exceed a toxic level of 10 mg/L, threatening reef ecosystems. We hypothesize that historic conversion of watersheds from soil creep to overland flow erosion increased both magnitude and frequency of sediment flooding adjacent reefs. We combined surficial and ecological mapping, hillslope and stream gages, and novel sensors to locate, quantify and model the generation of fine sediments polluting the Molokai reef. Ecological and geomorphic mapping from LiDAR and multi-spectral imagery located a subset of overland flow areas with vegetation cover below a threshold value preventing erosion. Here, feral goat grazing exposed cohesive volcanic soils whose low matrix hydraulic conductivities (1-20 mm/hour) promote Horton overland flow erosion. We instrumented steep, barren hillslopes with soil moisture sensors, overland flow meters, Parshall flumes, ISCO sediment samplers, and a rain gage and conducted repeat Tripod LiDAR and infiltration tests. To characterize soil resistance here and elsewhere to overland flow erosion, we deployed a Cohesive Strength Meter (CSM) to simulate the stresses of flowing water. At the 13.5 km 2 watershed mouth we used a USGS stream gage and ISCO sediment sampler to estimate total load. Over 2 years, storms triggered overland flow during rainfall intensities above 10-15 mm/hr. Overland flow meters indicate such flows can be up to 3 cm deep, with a tendency to deepen downslope. CSM tests indicate that these depths are insufficient to erode soils where vegetation is dense, but far above threshold values of 2-3 mm depth for bare soil erosion. Sediment ratings curves for both hillslope and downstream catchment gages show strong clock-wise hysteresis during the first intense storms in the Fall, becoming linear later in the rainy season. During Fall storms, sediment concentration is often 10X higher at a given stage. During intense Fall storms, we measured erosion rates using erosion pins (1.0 cm/a), suspended sediment flux (1.5 cm/a) and repeat tripod LiDAR (1.7 cm/a). These rates are at least 100-fold greater than the long-term lowering rate of 0.13 mm/a. A sediment budget constructed by extrapolating hillslope lowering rates to the portions of the catchments mapped as overland flow hotspots predicts a total yearly flux of ~ 6500 t, in agreement with the measured total of ~6200 t. A decadal record illustrates that rainfall intensities sufficient to generate overland flow occur for at least 8-10 hours every year, coincident with 1-3 large storm events. We hypothesize that high lowering rates reflect a combination of long-duration overland flow events, and availability of weathered soils that can be entrained by thin flows. It appears that the generation of loose, seasonally weathered silt is a 1st order control on the amount of sediment exported to the reef. If climate change increases storm frequency or duration, or decreases vegetation cover, sediment loading rates to the reef here could increase dramatically.

  2. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.

  3. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ({approx}1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).« less

  4. Reciprocal relationship between fear of falling and depression in elderly Chinese primary care patients.

    PubMed

    Chou, Kee-Lee; Chi, Iris

    2008-09-01

    The objective of the current study is to investigate the link between depression and fear of falling in Hong Kong Chinese older adults in primary are settings. Using longitudinal data collected on 321 Chinese primary care patients 65 years of age and older, the authors investigated the reciprocal relationship between fear of falling and depression and examined whether functional disability and social functioning mediated the link between fear of falling and depression. Participants were recruited from three primary care units in Hong Kong. Subjects were assessed in Cantonese by two trained assessors with Minimum Data Set-Home Care twice over a period of one year. Findings revealed that fear of falling at baseline significantly predicted depression at 12 month follow-up assessment after age, gender, marital status, education and depression at baseline were adjusted, but depression at baseline did not predict fear of falling at 12 months after fear of falling at baseline was adjusted. Moreover, social functioning mediated the impact of fear of falling on depression. The findings presented here indicate that fear of falling potentially increases the risk of depression in Chinese older adults in primary care settings.

  5. Falls exercise interventions and reduced falls rate: always in the patient's interest?

    PubMed

    Laybourne, A H; Biggs, S; Martin, F C

    2008-01-01

    Falls are a leading cause of mortality and morbidity in older adults. Physical, psychological and social consequences include injury, fall-related fear and loss of self-efficacy. In turn, these may result in decreased physical activity, reduced functional capacity, and increased risk of institutionalisation. Falls prevention exercise programmes (FPEP) are now widespread within the National Health Service, often part of multifactorial interventions, and are designed to minimise impairments that impact physical function, such as strength and balance. Assessment of the clinical efficacy of FPEPs has therefore focused on the measurement of physical function and rate of falls. Whilst important, this approach may be too narrow to capture the highly variable and multidimensional responses that individuals make to a fall and to a FPEP. We argue that the current focus may miss a paradoxical lack of or even deleterious impact on quality of life, despite a reduction in physical performance-related falls risk. We draw upon the Selective Optimisation and Compensation (SOC) model, developed by Paul and Margret Baltes, to explore how this paradox may be a result of the coping strategies adopted by individuals in response to a fall.

  6. Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Lutz, D.S.

    2004-01-01

    Excessive nitrate-nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28-year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.

  7. Local to global: a collaborative approach to volcanic risk assessment

    NASA Astrophysics Data System (ADS)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio-economic conditions tending to influence longer term well-being and recovery. The volcanological community includes almost 100 Volcano Observatories worldwide, the official institutions responsible for monitoring volcanoes. They may be dedicated institutions, or operate from national institutions (geological surveys, universities, met agencies). They have a key role in early warning, forecasting and long term hazard assessment (often in the form of volcanic hazards maps). The complexity of volcanic systems means that once unrest begins there are multiple potential eruptive outcomes and short term forecasts can change rapidly. This local knowledge of individual volcanoes underpins hazard and risk assessments developed at national, regional and global scales. Combining this local expertise with the knowledge of the international research community (including interdisciplinary perspectives) creates a powerful partnership. A collaborative approach is therefore needed to develop effective volcanic risk assessments at regional to global scale. The World Organisation of Volcano Observatories is a Commission of IAVCEI, alongside other Commissions such as 'Hazard and Risk' (with an active working group on volcanic hazards maps) and the 'Cities and Volcanoes' Commission. The Global Volcano Model network is a collaborative initiative developing hazards and risk information at national to global scales, underpinned by local expertise. Partners include IAVCEI, Smithsonian Institution, International Volcanic Health Hazard Network, VHub and other initiatives and institutions.

  8. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow

    NASA Astrophysics Data System (ADS)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.

    2017-12-01

    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  9. Climate change impacts on mass movements--case studies from the European Alps.

    PubMed

    Stoffel, M; Tiranti, D; Huggel, C

    2014-09-15

    This paper addresses the current knowledge on climate change impacts on mass movement activity in mountain environments by illustrating characteristic cases of debris flows, rock slope failures and landslides from the French, Italian, and Swiss Alps. It is expected that events are likely to occur less frequently during summer, whereas the anticipated increase of rainfall in spring and fall could likely alter debris-flow activity during the shoulder seasons (March, April, November, and December). The magnitude of debris flows could become larger due to larger amounts of sediment delivered to the channels and as a result of the predicted increase in heavy precipitation events. At the same time, however, debris-flow volumes in high-mountain areas will depend chiefly on the stability and/or movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows without historic precedents in the future. The frequency of rock slope failures is likely to increase, as excessively warm air temperatures, glacier shrinkage, as well as permafrost warming and thawing will affect and reduce rock slope stability in the direction that adversely affects rock slope stability. Changes in landslide activity in the French and Western Italian Alps will likely depend on differences in elevation. Above 1500 m asl, the projected decrease in snow season duration in future winters and springs will likely affect the frequency, number and seasonality of landslide reactivations. In Piemonte, for instance, 21st century landslides have been demonstrated to occur more frequently in early spring and to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences might become more scarce in the Piemonte region. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  11. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  12. Downstream movement of fish in a tributary of southern Lake Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manion, P.J.

    1977-01-01

    The influence of two environmental factors, stream flow and water temperature, on the downstream movement of four fish species in the Big Garlic River over a 12-yr period is described. Brook trout (Salvelinus fontinalis) migrated after floods had subsided in the spring and during rising water in the fall at temperatures of about 10/sup 0/C. Brook sticklebacks (Culaea inconstans) moved downstream chiefly in winter. Mottled sculpins (Cottus bairdi) moved primarily in the winter and during floods. Yellow perch (Perca flavescens) appeared to move generally in the fall as water levels increased and water temperatures decreased.

  13. Sedimentation along the Eastern Chenier Plain Coast: Down Drift Impact of a Delta Complex Shift

    NASA Technical Reports Server (NTRS)

    Huh, Oscar K.; Walker, Nan D.; Moeller, Christopher

    2001-01-01

    The Mississippi River Chenier Plain is a shore parallel landform (down-drift from the Atchafalaya distributary of the Mississippi River) consisting of an alternating series of transgressive sand-shell ridges and regressive, progradational mudflats. The late 1940s shift of 1/3 of the flow of the Mississippi to the newly developing Atchafalaya delta complex to the west has resulted in injection of the river waters and suspended sediment into the westward flowing currents of the coastal current system. This has reactivated the dormant processes of mud accumulation along this coast. These environmental circumstances have provided the opportunity to: (1) investigate the depositional processes of the prograding, fine grained, mud flat facies of the open Chenier main coast and (2) to test the hypothesis that the impacts of the frequent cold front passages of fall, winter and spring exceed those of the occasional and more localized hurricane in shaping the coast and powering the dominant sedimentary processes. We conducted field investigations with the benefit of multi - scale, time series environmental surveillance by remote sensing systems, including airborne and satellite sensors. These systems provided invaluable new information on areal geomorphic patterns and the behavior of the coastal waters. This is a classic case of weather impacting inner shelf waters and sediments and causing the development of a new landform. It is clear that mud flats of the eastern chenier plain are prograding seaward, as well as progressively growing in a westerly direction.

  14. Refugial isolation and divergence in the Narrowheaded Gartersnake species complex (Thamnophis rufipunctatus) as revealed by multilocus DNA sequence data

    USGS Publications Warehouse

    Wood, Dustin A.; Vandergast, A.G.; Espinal, A. Lemos; Fisher, R.N.; Holycross, A.T.

    2011-01-01

    Glacial–interglacial cycles of the Pleistocene are hypothesized as one of the foremost contributors to biological diversification. This is especially true for cold-adapted montane species, where range shifts have had a pronounced effect on population-level divergence. Gartersnakes of the Thamnophis rufipunctatus species complex are restricted to cold headwater streams in the highlands of the Sierra Madre Occidental and southwestern USA. We used coalescent and multilocus phylogenetic approaches to test whether genetic diversification of this montane-restricted species complex is consistent with two prevailing models of range fluctuation for species affected by Pleistocene climate changes. Our concatenated nuDNA and multilocus species analyses recovered evidence for the persistence of multiple lineages that are restricted geographically, despite a mtDNA signature consistent with either more recent connectivity (and introgression) or recent expansion (and incomplete lineage sorting). Divergence times estimated using a relaxed molecular clock and fossil calibrations fall within the Late Pleistocene, and zero gene flow scenarios among current geographically isolated lineages could not be rejected. These results suggest that increased climate shifts in the Late Pleistocene have driven diversification and current range retraction patterns and that the differences between markers reflect the stochasticity of gene lineages (i.e. ancestral polymorphism) rather than gene flow and introgression. These results have important implications for the conservation of T. rufipunctatus (sensu novo), which is restricted to two drainage systems in the southwestern US and has undergone a recent and dramatic decline.

  15. 2 Aspirin and Bedrest Won't Help!

    ERIC Educational Resources Information Center

    Scagliotta, Edward G.

    1983-01-01

    The author contends that falling barometric pressure hampers the flow of blood throughout the nervous system, thus encouraging maladaptive behavior in some neurologically impaired children. Among guidelines offered are to create a calm environment and to check the barometer frequently during the day. (CL)

  16. The RHYTMME system: an operational real-time warning and mapping system for flash floods, debris flows, landslide and rock falls in Southeastern France.

    NASA Astrophysics Data System (ADS)

    Fouchier, Catherine; Mériaux, Patrice; Atger, Frédéric; Ecrepont, Stéphane; Liébault, Frédéric; Bertrand, Mélanie; Bel, Coraline; Batista, Dominique; Azemard, Pierre; Saint-Martin, Clotilde; Javelle, Pierre

    2016-04-01

    Almost all municipalities of Southeastern France are concerned by natural hazards triggered by heavy rainfalls such as floods, debris flows, landslides and rock falls. Although some tools exist to forecast and monitor heavy rains and floods in France, their spatial resolution sometimes does not meet the needs of local risk managers who have to monitor events at a small spatial scale. In order to improve the risk management in the mountainous and Mediterranean areas of Southeastern France, Irstea and Météo-France have led the RHYTMME project. The goal of this project is to improve the ability to forecast and localize high-risk rainfall-induced hazards in the Provence-Alpes-Côte d'Azur administrative area. This goal is currently under achievement thanks to the implementation of a real-time warning and mapping system for rainfall induced natural hazards, fed by radar data and whose outputs are made available via the Internet to operators in charge of risk management (local and regional authorities, emergency and rescue services, road and rail networks managers, ...). This system provides maps which display in real-time: - the radar estimations of rainfall for different rain durations and at the spatial resolution of 1 km² (Westrelin et al., 2013), - the estimation of the scarcity of these rainfall estimations, also at the spatial resolution of 1 km², thanks to a comparison with threshold values provided by a regionalized stochastic hourly point rainfall generator (Arnaud et al., 2007), - an anticipation of the rivers discharges, computed at the outlet of 1700 watersheds of Southeastern France thanks to the AIGA warning system which combines a rainfall runoff model and an estimation of the scarcity of the discharges thanks to a comparison with threshold values (Javelle et al., 2014). Maps of susceptibility to debris flow, landslide and rock falls can also be displayed in the RHYTMME warning system along with the real time maps of rainfall hazard (Batista, 2013a, 2013b; Bertrand, 2014). It enables to identify, during intense events, the reaches the more likely to generate and/or to spread debris flow and the areas the more likely to generate landslide and/or rock falls. The RHYTMME warning and mapping system is now fully operational. It is currently being provided to local authorities (City councils, River boards, …) as well as State authorities in charge of risk managements in the Provence-Alpes-Côte d'Azur administrative area. Training sessions are organized in order to help these end-users to handle the system. References Arnaud P., Fine J.-A. and Lavabre J. (2007). An hourly rainfall generation model applicable to all types of climate. Atmospheric Research 85(2): 230-242. Batista D., Azémard P., Boutry M. (2013). Prévision de l'aléa glissement de terrain et analyse statistique des facteurs de prédisposition par l'outil SIG, sur la région Provence-Alpes-Côte d'Azur. Journées Aléas Gravitaires, 17 et 18/9/2013 - Grenoble, 11 p. Batista D., Azémard P., Rougé A.C., Dumalin M., Rault C. (2013). Prévision de l'aléa chute de blocs, analyse statistique des facteurs de prédisposition et des critères de déclenchement sur la région Provence-Alpes-Côte d'Azur. Journées Aléas Gravitaires, 17 et 18/9/2013 - Grenoble, 11 p. Bertrand M. (2014). Approches régionales de la susceptibilité torrentielle dans les Alpes du Sud. Thèse de Doctorat, École Normale Supérieure de Lyon, 162 pp. Javelle P., Demargne J., Defrance D., Pansu J., Arnaud P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: A case study with the AIGA warning system. Hydrological Sciences Journal 59 (7): 1390-1402. Westrelin S., Mériaux P., Dalle S., Fradon B., Jamet G. (2013). Déploiement d'un réseau de radars pour anticiper les risques hydro-météorologiques, La Météorologie 8 (83): 69-79.

  17. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average uncertainty in discharge measurements at the four Idaho Power Company streamgages in the study reach ranged from 4.3 percent (Snake River below Lower Salmon Falls Dam) to 7.8 percent (Snake River below C J Strike Dam) for discharges less than 7,000 ft3/s in water years 2007–11. This range in uncertainty constituted most of the total quantifiable uncertainty in computed discharge, represented by prediction intervals calculated from the discharge rating of each streamgage. Uncertainty in computed discharge in the Snake River below Swan Falls Dam near Murphy was 10.1 and 6.0 percent at the Adjusted Average Daily Flow thresholds of 3,900 and 5,600 ft3/s, respectively. All discharge measurements and records computed at streamgages have some level of uncertainty that cannot be entirely eliminated. Knowledge of uncertainty at the Adjusted Average Daily Flow thresholds is useful for developing a measurement and reporting protocol for purposes of distributing water to hydropower and minimum flow water rights in the middle Snake River.

  18. Multi-Faceted Geophysical Analysis of a Mountain Watershed in the Snowy Range, WY: from Airborne Electromagnetics to NMR

    NASA Astrophysics Data System (ADS)

    Armstrong, R. S.; Holbrook, W. S.; Flinchum, B. A.; Provart, M.; Carr, B. J.; Auken, E.; Pedersen, J. B.

    2014-12-01

    Surface/groundwater interactions are an important, but poorly understood, facet of mountain hydrology. We utilize ground electrical resistivity data as a key tool for mapping groundwater pathways and aquifers. However, surface resistivity profiling is limited in both spatial extent and depth, especially in mountainous headwater environments because of inaccessibility and terrain. Because this important groundwater recharge environment is poorly understood, WyCEHG has focused efforts to increase knowledge about the dynamics and location of groundwater recharge. Currently, traditional hydrologic measurements estimate that only 10% of annual snowmelt enters the groundwater system while the rest is immediately available to surface flow. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) collected a 40 sq. km survey of helicopter transient electromagnetic (HTEM) and aeromagnetic data during the fall of 2013 as the first step in a "top down" geophysical characterization of a mountainous headwater catchment in the Snowy Range, Wyoming. Furthermore, mountain springs in the Snowy Range suggests that the "groundwatershed" acts as both a sink and source to surface watersheds. HTEM data show horizontal electrical conductors at depth, which are currently interpreted as fluid-filled subsurface fractures. Because these fractures eventually connect to the surface, they could be geophysical evidence of connectivity between the watershed and "groundwatershed." However, current HTEM inversion techniques assume a layered homogenous subsurface model, which directly contradicts two characteristics of the Snowy Range: the subvertical bedding of the Cheyenne Belt and heterogeneous distribution of surface water. Ground electrical resistivity surveys and surface nuclear magnetic resonance (NMR) measurements collected during the summer of 2014 target these anomalies to determine their validity and further understand the complicated dynamic of surface and groundwater flow.

  19. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the source areas and downstream transport of sediment in the canyon. While the HCC has trapped gravel transported from the Snake River immediately upstream, this input has been quite low due to particle attrition across long transport distances and low transport capacity of the reach just upstream of the HCC.

  20. Pulse waveform analysis on temporal changes in ocular blood flow due to caffeine intake: a comparative study between habitual and non-habitual groups.

    PubMed

    Ismail, Aishah; Bhatti, Mehwish S; Faye, Ibrahima; Lu, Cheng Kai; Laude, Augustinus; Tang, Tong Boon

    2018-06-06

    To evaluate and compare the temporal changes in pulse waveform parameters of ocular blood flow (OBF) between non-habitual and habitual groups due to caffeine intake. This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p < 0.05 is considered significant. There were significant differences between the two groups in several ocular pulse waveform parameters, namely MBR (overall, vessel, tissue), BOT (overall), rising rate (overall), and falling rate (vessel), all with p < 0.05. In addition, the ocular pulse waveform parameters, i.e., MBR (overall), skew (tissue), and BOT (tissue) showed significant temporal changes within the non-habitual group, but not within the habitual group. The temporal changes in parameters MBR (vessel, tissue), skew (overall, vessel), BOT (overall, vessel), rising rate (overall), falling rate (overall, vessel), and FAI (tissue) were significant for both groups (habitual and non-habitual) in response to caffeine intake. The experiment results demonstrated caffeine does modulate OBF significantly and response differently in non-habitual and habitual groups. Among all ten parameters, MBR and BOT were identified as the suitable biomarkers to differentiate between the two groups.

  1. Diel activity patterns of juvenile late fall-run Chinook salmon with implications for operation of a gated water diversion in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.

    2016-01-01

    In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.

  2. Comparison of different strategies of referral to a fall clinic: how to achieve an optimal casemix?

    PubMed

    Schoon, Y; Hoogsteen-Ossewaarde, M E; Scheffer, A C; Van Rooij, F J M; Rikkert, M G M Olde; De Rooij, S E

    2011-02-01

    OBJECTIVE To study the potential differences in patient characteristics between two referral methods to a fall clinic, specifically: case-finding of patients admitted to an emergency department because of a fall, compared to direct referral to the fall clinic via the general practitioner. Cross-sectional study. Fall clinics in two university teaching hospitals in the Netherlands. Three hundred community-dwelling older people aged 65 years or over currently attending the fall clinics in Nijmegen (Group 1, n=154) and in Amsterdam (Group 2, n=146). Patients were referred by a general practitioner (Group 1) or were selected using the Carefall Triage Instrument (CTI) after visiting the emergency department (Group 2). In all patients, modifiable risk factors for recurrent falls were assessed. Group 1 had less modifiable risk factors for falling (a mean of 4 (SD 1.6) vs. a mean of 5 (SD 1.5) in Group 2, p < 0.001). Compared to Group 2, Group 1 had more prevalent " recurrent falling (≥ 2 falls)" (p=0.001) and "assisted living in homes for the aged" (p=0.037). "Fear of falling", "mobility and balance problems", "home hazards" and "osteoporosis" were significantly less prevalent in Group 1. This study suggests that patients referred to a multidisciplinary fall prevention clinic by their general practitioner have a different risk profile than those selected by case finding using the CTI. These differences have consequences for the reach of secondary care for fall-preventive interventions and will probably influence the effectiveness and efficiency of a fall prevention program.

  3. Perceptions of fall circumstances, injuries and recovery techniques among power wheelchair users: a qualitative study.

    PubMed

    Rice, Laura A; Sung, JongHun; Peters, Joseph; Bartlo, Wendy D; Sosnoff, Jacob J

    2018-04-01

    To understand the circumstances surrounding the worst fall experienced by power wheelchair users in the past year and to examine injuries sustained and recovery methods. A qualitative study using a semi-structured interview. Community. A self-selected volunteer sample of 19 power wheelchair users who utilize their device for at least 75% of mobility. The most common disability represented was cerebral palsy ( n = 8). The mean (SD) age of participants was 41.9 (7.6) years, who lived with their disability for a mean (SD) of 20.5 (8.62) years and used their current device for a mean (SD) of 3.9 (1.9) years. None. A semi-structured interview examined the circumstances surrounding the worst fall experienced in the past year, injuries sustained and recovery techniques used. Upon examination of the circumstances of the worst fall, four main themes emerged: (1) action-related fall contributors, (2) location of falls, (3) fall attributions and (4) time of fall. Each fall described was found to involve multiple factors. As a result of the fall, participants also reported the occurrence of physical injuries and a fear of falling. Physical injuries ranged from skin abrasion and bruises to fractures and head injuries. Participants also reported that fear of falling diminished their desire to participation in activities they enjoyed doing. Finally, most participants reported the need for physical assistance to recover from a fall. Participant descriptions provide an in-depth description of the circumstances and aftermath of falls experienced by power wheelchair users.

  4. Increased Risk for Falling Associated with Subtle Cognitive Impairment: Secondary Analysis of a Randomized Clinical Trial

    PubMed Central

    Gleason, Carey E.; Gangnon, Ronald E.; Fischer, Barbara L.; Mahoney, Jane E.

    2009-01-01

    Background/Aims Having dementia increases patients’ risk for accidental falls. However, it is unknown if having mild cognitive deficits also elevates a person's risk for falls. This study sought to clarify the relationship between subtle cognitive impairment, measured with a widely-used, clinic-based assessment, the Mini Mental State Exam (MMSE), and risk for falls. Methods In a secondary analysis of the Kenosha County Falls Prevention Study, a randomized controlled trial targeting older adults at risk for falls, we examined the association between baseline MMSE and prospective rate of falls over 12 months in 172 subjects randomized to control group. Results Using univariate analysis, the rate of falls increased with each unit decrease in MMSE score down to at least 22 (rate ratio 1.25, 95% confidence interval (CI) 1.09–1.45, p = 0.0026). Using stepwise multivariate regression, controlling for ability to perform activities of daily living, use of assistive device, current exercise, and arthritis, the association between MMSE score and falls rate persisted (rate ratio 1.20, 95% CI 1.03–1.40, p = 0.021). Conclusion Minimal decrements on the MMSE were associated with elevations in rate of falls, suggesting that subtle cognitive deficits reflected in MMSE scores above a cut-off consistent with a diagnosis of dementia, can influence risk for falls. PMID:19602883

  5. The clinical utility of posturography.

    PubMed

    Visser, Jasper E; Carpenter, Mark G; van der Kooij, Herman; Bloem, Bastiaan R

    2008-11-01

    Postural instability and falls are common and devastating features of ageing and many neurological, visual, vestibular or orthopedic disorders. Current management of these problems is hampered by the subjective and variable nature of the available clinical balance measures. In this narrative review, we discuss the clinical utility of posturography as a more objective and quantitative measure of balance and postural instability, focusing on several areas where clinicians presently experience the greatest difficulties in managing their patients: (a) to make an appropriate differential diagnosis in patients presenting with falls or balance impairment; (b) to reliably identify those subjects who are at risk of falling; (c) to objectively and quantitatively document the outcome of therapeutic interventions; and (d) to gain a better pathophysiological understanding of postural instability and falls, as a basis for the development of improved treatment strategies to prevent falling. In each of these fields, posturography offers several theoretical advantages and, when applied correctly, provides a useful tool to gain a better understanding of pathophysiological mechanisms in patients with balance disorders, at the group level. However, based on the available evidence, none of the existing techniques is currently able to significantly influence the clinical decision making in individual patients. We critically review the shortcomings of posturography as it is presently used, and conclude with several recommendations for future research.

  6. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  7. Investigation into the behaviors of ventilated supercavities in unsteady flow

    NASA Astrophysics Data System (ADS)

    Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong

    2018-05-01

    A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.

  8. Granular slumping on a horizontal surface

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Monnier, J. B.; Homsy, G. M.

    2005-10-01

    We report the results of an experimental investigation of the flow induced by the collapse of a column of granular material (glass beads of diameter d) over a horizontal surface. Two different setups are used, namely, a rectangular channel and a semicircular tube, allowing us to compare two-dimensional and axisymmetric flows, with particular focus on the internal flow structure. In both geometries the flow dynamics and the deposit morphologies are observed to depend primarily on the initial aspect ratio of the granular column a =Hi/Li, where Hi is the height of the initial granular column and Li its length along the flow direction. Two distinct regimes are observed depending on a: an avalanche of the column flanks producing truncated deposits for small a and a column free fall leading to conical deposits for large a. In both geometries the characteristic time scale is the free fall of the granular column τc=√Hi/g . The flow initiated by Coulomb-like failure never involves the whole granular heap but remains localized in a surface layer whose size and shape depend on a and vary in both space and time. Except in the vicinity of the pile foot where the flow is pluglike, velocity profiles measured at the side wall are identical to those commonly observed in steady granular surface flows: the velocity varies linearly with depth in the flowing layer and decreases exponentially with depth in the static layer. Moreover, the shear rate is constant, γ˙=0.3√g /d , independent of the initial aspect ratio, the flow geometry, position along the heap, or time. Despite the rather complex flow dynamics, the scaled deposit height Hf/Li and runout distance ΔL /Li both exhibit simple power laws whose exponents depend on a and on the flow geometry. We show that the physical origin of these power laws can be understood on the basis of a dynamic balance between acceleration, pressure gradient, and friction forces at the foot of the granular pile. Two asymptotic behaviors can be distinguished: the flow is dominated by friction forces at small a and by pressure forces at large a. The effect of the flow geometry is determined primarily by mass conservation and becomes important only for large a.

  9. History of falls, gait, balance, and fall risks in older cancer survivors living in the community.

    PubMed

    Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle

    2015-01-01

    Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A "faller" was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher's exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with P<0.15 were included in a forward logistic regression model to identify factors predictive of falls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was P<0.05. During follow-up, 59% of participants had one or more falls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594-29.074) (P<0.05). Sensitivity and specificity for correctly identifying a faller using the positive history of falls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling.

  10. History of falls, gait, balance, and fall risks in older cancer survivors living in the community

    PubMed Central

    Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle

    2015-01-01

    Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A “faller” was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher’s exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with P<0.15 were included in a forward logistic regression model to identify factors predictive of falls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was P<0.05. During follow-up, 59% of participants had one or more falls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594–29.074) (P<0.05). Sensitivity and specificity for correctly identifying a faller using the positive history of falls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling. PMID:26425079

  11. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.

    2012-01-01

    The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to 2011. Daily natural flows at the dam, as computed by the adjusted drainage-area ratio method and the water-budget method, were used to compute monthly flow-duration values for the period of historical data available for each method. Monthly flow-durations provide a means for evaluating the frequency and range in flows that have been observed for each month over the course of many years. Both methods described the pattern and timing of measured high-flow and low-flow events at the upstream gaging stations. The adjusted drainage-area ratio method generally had smaller residual errors across the full range of observed flows and had smaller monthly biases than the water-budget method. Although it is not possible to evaluate which method may be more "correct" for estimating monthly natural flows at the dam, comparisons between the results of each method indicate that the adjusted drainage-area ratio method may be susceptible to biases at high flows due to isolated storms outside of the Manitowish River watershed. Conversely, it appears that the water-budget method may be susceptible to biases at low flows because of its sensitivity to the accuracy of reported lake stage and outflows, as well as effects of upstream diversions that could not be fully compensated for with this method. Results from both methods are useful for understanding the natural flow patterns at the dam. Flows for both methods have similar patterns, with high median flows in spring and low median flows in late summer. Similarly, the range from monthly high-flow durations to low-flow durations increases during spring, decreases during summer, and increases again during fall. These seasonal patterns illustrate a challenge with interpreting a single value of natural low flow. That is, a natural low flow computed for September is not representative of a natural low flow in April. Moreover, alteration of natural flows caused by storing water in the Chain of Lakes during spring and releasing it in fall causes a change in the timing of high and low flows compared with natural conditions. That is, the lowest reported dam outflows occurred in spring and highest reported outflows occurred in fall, which is opposite the natural patterns.

  12. Prosocial Behavior Moderates the Effects of Aggression on Young Adolescents' Friendships

    ERIC Educational Resources Information Center

    McDonald, Kristina L.; Wang, Jennifer; Menzer, Melissa M.; Rubin, Kenneth H.; Booth-LaForce, Cathryn

    2011-01-01

    The current study explored how prosocial behavior may moderate how aggression is related to the features of adolescents' friendships. Young adolescents (N = 910) completed friendship nominations in the fall and spring of their first year of middle school. Behavioral nominations of aggression and prosocial behavior were also collected in the fall.…

  13. 78 FR 11705 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... losses and reduce the corresponding large wind-falls. However, to maintain the appropriate balance, the... help market participants better manage their risk by addressing the situation where, under current... review. Certain more substantial errors may fall under the category of a catastrophic error, for which a...

  14. Effects of Variability Associated with the Antarctic Circumpolar Current on Sound Propagation in the Ocean

    DTIC Science & Technology

    2008-09-01

    showing shot locations (circles) and IMS hydrophone station locations ( triangles ), superimposed on a map of group velocities derived using average fall...E. McDonald (1991). Perth- Bermuda sound propagation (1960): Adiabatic mode interpretation, J. Acoust. Soc. Am. 90: 2586–2594. Jensen, F. B., W. A

  15. Large Eddy Simulations of sediment entrainment induced by a lock-exchange gravity current

    NASA Astrophysics Data System (ADS)

    Kyrousi, Foteini; Leonardi, A.; Roman, F.; Armenio, V.; Zanello, F.; Zordan, J.; Juez, C.; Falcomer, L.

    2018-04-01

    Large Eddy simulations of lock-exchange gravity currents propagating over a mobile reach are presented. The numerical setting allows to investigate the sediment pick up induced by the currents and to study the underlying mechanisms leading to sediment entrainment for different Grashof numbers and grain sizes. First, the velocity field and the bed shear-stress distribution are investigated, along with turbulent structures formed in the flow, before the current reaches the mobile bed. Then, during the propagation of the current above the erodible section of the bed the contour plots of the entrained material are presented as well as the time evolution of the areas covered by the current and by the sediment at this section. The numerical outcomes are compared with experimental data showing a very good agreement. Overall, the study confirms that sediment pick up is prevalent at the head of the current where the strongest turbulence occurs. Further, above the mobile reach of the bed, settling process seems to be of minor importance, with the entrained material being advected downstream by the current. Additionally, the study shows that, although shear stress is the main mechanism that sets particles in motion, turbulent bursts as well as vertical velocity fluctuations are also necessary to counteract the falling velocity of the particles and maintain them into suspension. Finally, the analysis of the stability conditions of the current shows that, from one side, sediment concentration gives a negligible contribution to the stability of the front of the current and from the other side, the stability conditions provided by the current do not allow sediments to move into the ambient fluid.

  16. Resistivity and phase in localized BIA

    NASA Astrophysics Data System (ADS)

    Shiffman, C. A.; Aaron, R.; Amoss, V.; Therrien, J.; Coomler, K.

    1999-10-01

    We describe a system for highly reproducible non-invasive rf impedance measurements as a function of position along body segments such as the thigh. Results are reported for mainly healthy male and female subjects ranging in age from 19 to 65 and in body-mass index from 15 to 40. A principal conclusion is that the phase of the impedance falls monotonically with increasing distance from the knee, with average values substantially above what is found using standard, whole-body bioelectrical impedance analysis (BIA). To compensate for thigh shape, the data are further analysed using an anatomical model based on reasonable approximations for the distributions of muscle, fat and bone, yielding values of the effective resistivity for current flow parallel to the muscle fibres. The phase and resistivity results are discussed with reference to the whole-body BIA study of maintenance haemodialysis patients by Chertow et al, and in regard to possible physiological correlations observed in this work.

  17. Connecting Shock Parameters to the Radiation Hazard from Energetic Particles

    NASA Technical Reports Server (NTRS)

    Berdichevsky, Daniel B.; Reames, Donald V.; Lepping, Ronald P.; Schwenn, Rainer W.

    2004-01-01

    We use data from Helios, IMP-8, and other spacecraft (e.g. ISEE) to systematically investigate solar energetic particle (SEP) events from different longitudes and distances in the heliosphere. The purpose of the project is to assess empirically the connection between the morphology of the travelling shock and strength with observed enhancements in the flow of energized particles in shock accelerated particle (SEP) events (also often identified as "gradual" solar energetic particle events). Activities during this first year centered on the organization of the SEPs events and their correlation with solar wind observations at multiple spacecraft locations. From an identified list of more than 30 SEPs events at multiple spacecraft locations, currently four single cases for detailed study were selected and are in an advance phase of preparation for publication. Preliminary results of these four cases were presented at AGU Spring and Fall 2003 meetings, and other meetings on SEPs.

  18. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  19. Analysis of solid particles falling down and interacting in a channel with sedimentation using fictitious boundary method

    NASA Astrophysics Data System (ADS)

    Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.

    2018-06-01

    We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.

  20. Modelling riverine habitat for robust redhorse: assessment for reintroduction of an imperilled species

    USGS Publications Warehouse

    Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.

    2014-01-01

    A critical component of a species reintroduction is assessment of contemporary habitat suitability. The robust redhorse, Moxostoma robustum (Cope), is an imperilled catostomid that occupies a restricted range in the south-eastern USA. A remnant population persists downstream of Blewett Falls Dam, the terminal dam in the Pee Dee River, North Carolina. Reintroduction upstream of Blewett Falls Dam may promote long-term survival of this population. Tillery Dam is the next hydroelectric facility upstream, which includes a 30 rkm lotic reach. Habitat suitability indices developed in the Pee Dee River were applied to model suitable habitat for proposed minimum flows downstream of Tillery Dam. Modelling results indicate that the Tillery reach provides suitable robust redhorse habitat, with spawning habitat more abundant than non-spawning habitat. Sensitivity analyses suggested that suitable water depth and substrate were limiting physical habitat variables. These results can inform decisions on flow regulation and guide planning for reintroduction of the robust redhorse and other species.

  1. Fall Frequency among Men and Women with or at Risk for HIV Infection

    PubMed Central

    Erlandson, Kristine M.; Plankey, Michael W.; Springer, Gayle; Cohen, Helen S.; Cox, Christopher; Hoffman, Howard J.; Yin, Michael T.; Brown, Todd T.

    2016-01-01

    Background Falls and fall-related injuries are a major public health concern. HIV-infected adults have been shown to have a high incidence of falls. Identification of major risk factors for falls that are unique to HIV or similar to the general population will inform development of future interventions for fall prevention. Methods HIV-infected and uninfected men and women participating in a Hearing and Balance Sub-study of the Multicenter AIDS Cohort Study and Women’s Interagency HIV Study were asked about balance symptoms and falls during the prior 12 months. Falls were categorized as 0, 1, or ≥ 2; proportional odds logistic regression models were used to investigate relationships between falls and demographic and clinical variables and multivariable models were created. Results 24% of 303 HIV-infected participants reported ≥1 fall compared to 18% of 233 HIV-uninfected participants (p=0.27). HIV-infected participants were demographically different from HIV-uninfected participants, and were more likely to report clinical imbalance symptoms (p≤0.035). In univariate analyses, more falls were associated with hepatitis C, female sex, obesity, smoking, and clinical imbalance symptoms, but not age, HIV serostatus, or other comorbidities. In multivariable analyses, female sex and imbalance symptoms were independently associated with more falls. Among HIV-infected participants, smoking, number of medications, and imbalance symptoms remained independent fall predictors while current protease inhibitor use was protective. Discussion Similar rates of falls among HIV-infected and uninfected participants were largely explained by a high prevalence of imbalance symptoms. Routine assessment of falls and dizziness/imbalance symptoms should be considered, with interventions targeted at reducing symptomatology. PMID:27028463

  2. [Relationships between foot problems, fall experience and fear of falling among Japanese community-dwelling elderly].

    PubMed

    Harada, Kazuhiro; Oka, Koichiro; Shibata, Ai; Kaburagi, Hironobu; Nakamura, Yoshio

    2010-08-01

    Although a foot care program for long-term care prevention has been launched in Japan, few studies have examined its effectiveness. The purpose of the present investigation was to examine the association of foot problems with fall experience and fear of falling among Japanese community-dwelling elderly people. The participants were 10,581 community-dwelling elderly people (75.2 +/- 5.6 years) and the study design was cross-sectional using a questionnaire. Self-reported tinea pedis, skin problems (inflammation, swelling, or discoloration), nail problems (thickening or deformities), impairment (in function or blood flow), regular foot care, and wearing of appropriate shoes were selected as parameters of foot problems and their care. Logistic regression analysis was conducted to examine whether these were related to fall experience (in the past 1 year) and fear of falling adjusted for age, the Tokyo Metropolitan institute of gerontology index of competence, medical conditions, and lower limb functions. Forty-six percents of males and 39.0% of females reported at least one foot problem. After adjusting for covariates, tinea pedis (male: adjusted odds ratio = 1.37[95% confidence interval= 1.15-1.63], female: 1.29[1.08-1.53]), skin problems (male: 1.66[1.32-2.101, female: 1.37[1.13-1.66]), nail problems (male: 1.72[1.45-2.051, female: 1.48[1.26-1.74]), and functional impairment (male: 2.42[1.91-3.05], female: 1.66[1.36-2.04]) were significantly associated with fall experience. Also, each problem was negatively associated with fear of falling (tinea pedis[male: 1.37 [1.15-1.62], female: 1.25[1.07-1.47

  3. The Aerothermodynamics of Aircraft Gas Turbine Engines

    DTIC Science & Technology

    1978-07-01

    engine will deteriorate. 1.6.2 Experimental Testing It is easy to fall int9 the organiza- tional trap of four isolated groups . One group does the... Quasi -Dne-Dimensional Fluid Flows The First Law for a F1mdng System-- The Control Volume • . • The Channel Flow Equations Stagnation Properties...exit to control volume (Eq • 2. 14 . 2) CHAPTER TWO THERMODYNAMICS AND QUASI -ONE-DUlENSIONAL FLUID FLO’’{S 2.0 INTRODUCTION This chapter "ill be

  4. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia

    NASA Astrophysics Data System (ADS)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella

    2018-06-01

    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  5. Australia is ‘free to choose’ economic growth and falling environmental pressures

    NASA Astrophysics Data System (ADS)

    Hatfield-Dodds, Steve; Schandl, Heinz; Adams, Philip D.; Baynes, Timothy M.; Brinsmead, Thomas S.; Bryan, Brett A.; Chiew, Francis H. S.; Graham, Paul W.; Grundy, Mike; Harwood, Tom; McCallum, Rebecca; McCrea, Rod; McKellar, Lisa E.; Newth, David; Nolan, Martin; Prosser, Ian; Wonhas, Alex

    2015-11-01

    Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth’s ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.

  6. Australia is 'free to choose' economic growth and falling environmental pressures.

    PubMed

    Hatfield-Dodds, Steve; Schandl, Heinz; Adams, Philip D; Baynes, Timothy M; Brinsmead, Thomas S; Bryan, Brett A; Chiew, Francis H S; Graham, Paul W; Grundy, Mike; Harwood, Tom; McCallum, Rebecca; McCrea, Rod; McKellar, Lisa E; Newth, David; Nolan, Martin; Prosser, Ian; Wonhas, Alex

    2015-11-05

    Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth's ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.

  7. The role of varying flow on channel morphology: a flume experiment

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.

    2017-12-01

    Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.

  8. Insights about Fall Prevention of Older Adults in the State of Hawai'i.

    PubMed

    Yamazaki, Yuka; Hayashida, Cullen T; Yontz, Valerie

    2017-01-01

    The senior population in Hawai'i is growing at a dramatic pace. In the older population, falls and fall-related injuries are leading causes of morbidity and mortality. Moreover, the health care costs for falls are very high. The State of Hawai'i has taken measures to prevent falls through the promotion of medication reviews, vision checks, home assessments, and exercise. However, current published examinations of fall preventive measures have been insufficient, and more research is needed to confirm risk factors, effectiveness of preventive measures, and to explore future objectives. This paper examined the validity of fall risk factors and fall preventive measures for Hawai'i's seniors by conducting mail questionnaire surveys to a sample of seniors using medical alert services from one company in Hawai'i. The results of chi-square analysis suggest that having reduced ability to perform Activities of Daily Living (ADL) and reduced Instrumental Activities of Daily Living (IADL) were associated with a greater risk of falls ( P < .01). In addition, those who fell were more likely to talk about fall preventions with their family members or friends and health providers compared with those who did not ( P = .048 and .003, respectively). Evidence-based exercise programs for strengthening muscles and controlling physical balance may be needed to improve ADL and IADL. Furthermore, the results suggest that seniors do not accept that they are at risk of falling before they actually fall. Public health providers should consider how they approach seniors, and how they inform them of the importance of fall prevention across the life span.

  9. Western Ross Sea continental slope gravity currents

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (<-1 °C), salty (>34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real, may reflect the influence of the large iceberg C-19 over Drygalski Trough until its departure in mid-May 2003, when there was a marked decrease in the coldest, saltiest gravity current adjacent to Drygalski Trough. Northward transport of cold, saline, recently ventilated Antarctic Bottom Water observed in March 2004 off Cape Adare was ˜1.7 Sv, including ˜0.4 Sv of High Salinity Shelf Water.

  10. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events

    NASA Astrophysics Data System (ADS)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio

    2003-08-01

    A quantitative and qualitative evaluation of the damage caused by the products of explosive eruptions to buildings provides an excellent contribution to the understanding of the various eruptive processes during such dramatic events. To this end, the impact of the products of the two main phases (pumice fallout and pyroclastic density currents) of the Vesuvius AD 79 explosive eruption onto the Pompeii buildings has been evaluated. Based on different sources of data, such as photographs and documents referring to the archaeological excavations of Pompeii, the stratigraphy of the pyroclastic deposits, and in situ inspection of the damage suffered by the buildings, the present study has enabled the reconstruction of the events that occurred inside the city when the eruption was in progress. In particular, we present new data related to the C.J. Polibius' house, a large building located inside Pompeii. From a comparison of all of the above data sets, it has been possible to reconstruct, in considerable detail, the stratigraphy of the pyroclastic deposits accumulated in the city, to understand the direction of collapse of the destroyed walls, and to evaluate the stratigraphic level at which the walls collapsed. Finally, the distribution and style of the damage allow us to discuss how the emplacement mechanisms of the pyroclastic currents are influenced by their interaction with the urban centre. All the data suggest that both structure and shape of the town buildings affected the transport and deposition of the erupted products. For instance, sloping roofs 'drained' a huge amount of fall pumice into the 'impluvia' (a rectangular basin in the centre of the hall with the function to collect the rain water coming from a hole in the centre of the roof), thus producing anomalous deposit thicknesses. On the other hand, flat and low-sloping roofs collapsed under the weight of the pyroclastic material produced during the first phase of the eruption (pumice fall). In addition, it is evident that the walls that happened to be parallel to the direction of the pyroclastic density currents produced during the second eruptive phase were minimally damaged in comparison to those walls oriented perpendicular to the flow direction. We suggest that the lower depositional parts of the pyroclastic currents were partially blocked (locally reflected) and slowed down because of recurring encounters with the closely spaced walls within buildings. Locally, the percentage of demolished walls decreases down-current, which has been interpreted as a loss in kinetic energy within the depositional system of the flow. However, it seems that the upper transport system by-passed these obstacles, then supplied new pyroclasts to the depositional system that restored its physical characteristics and restored enough kinetic energy to demolish the next walls and buildings further along its path.

  11. Pattern of childhood falls in a low-income setting: a cross-sectional study in Dar es Salaam.

    PubMed

    Kamala, Benjamin; Wilson, Michael L; Hasselberg, Marie

    2011-12-01

    The objective was to determine patterns and circumstances of childhood falls in a low-income setting in Dar es Salaam, Tanzania. This cross sectional study is based on a household survey conducted in July 2009. A total of 3927 children up to age 18 from 1928 households in 15 sampled wards were surveyed through a structured questionnaire. The current study includes information regarding fall occurrence, socio-demographic and economic factors. Data were analysed using chi-square, t-test and logistic regression. Male children had 42% higher odds of falls compared to females, and rural residents had more than two times higher odds compared to urban residents. Falls occurred three times more among age group 1-4 and two times more among age group 5-9 compared to those between 15 and 18 years. Most falls occurred outdoors (62%) while playing (51%) with boys being over-represented. Females and children aged 1-4 years fell more from stairs whereas most infants fell from furniture. Male gender, younger age groups and rural residence were significant factors for fall injuries. The circumstances in which these falls occur also differ significantly. Intervention efforts should emphasise these patterns.

  12. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  13. The relationship between depression and regional cerebral blood flow in Parkinson's disease and the effect of selegiline treatment.

    PubMed

    Imamura, K; Okayasu, N; Nagatsu, T

    2011-07-01

    We examined the relationship between severity of depression in Parkinson's disease (PD) and regional cerebral blood flow (rCBF) using single photon emission computed tomography (SPECT) and the reaction to levodopa-selegiline combination therapy. We evaluated 52 patients with PD and nine age-matched controls with SPECT and the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Mini-Mental State Examination (MMSE), and Beck Depression Inventory (BDI) to evaluate depression severity and its connection with rCBF. Furthermore, we examined rCBF in patients with PD treated with levodopa with or without selegiline. A significant fall in rCBF was observed in the bilateral posterior cingulate, hippocampus, and cuneus and the superior parietal and primary visual areas in PD patients with minor depression and in all regions in those with major depression. Elevations in UPDRS part III and BDI scores and falls in MMSE scores were of significantly lower magnitude in the levodopa-selegiline group than in the levodopa group. Whole brain rCBF fell significantly less in the levodopa-selegiline group than in the levodopa group. These results indicate that selegiline controlled not only worsening of motor function and cognitive function in PD but also aggravation of minor depression, and restrained a fall in whole brain rCBF. © 2010 John Wiley & Sons A/S.

  14. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis.

    PubMed

    Bauer, C M; Gröger, I; Rupprecht, R; Marcar, V L; Gaßmann, K G

    2016-04-01

    The role of instrumented balance and gait assessment when screening for prospective fallers is currently a topic of controversial discussion. This study analyzed the association between variables derived from static posturography, instrumented gait analysis and clinical assessments with the occurrence of prospective falls in a sample of community dwelling older people. In this study 84 older people were analyzed. Based on a prospective occurrence of falls, participants were categorized into fallers and non-fallers. Variables derived from clinical assessments, static posturography and instrumented gait analysis were evaluated with respect to the association with the occurrence of prospective falls using a forward stepwise, binary, logistic regression procedure. Fallers displayed a significantly shorter single support time during walking while counting backwards, increased mediolateral to anteroposterior sway amplitude ratio, increased fast mediolateral oscillations and a larger coefficient (Coeff) of sway direction during various static posturography tests. Previous falls were insignificantly associated with the occurrence of prospective falls. Variables derived from posturography and instrumented gait analysis showed significant associations with the occurrence of prospective falls in a sample of community dwelling older adults.

  15. Relationship between the use of benzodiazepines and falls in older adults: A systematic review.

    PubMed

    Díaz-Gutiérrez, Mª José; Martínez-Cengotitabengoa, Mónica; Sáez de Adana, Estíbaliz; Cano, Ana Isabel; Martínez-Cengotitabengoa, Maria Teresa; Besga, Ariadna; Segarra, Rafael; González-Pinto, Ana

    2017-07-01

    Falls in the elderly represent a major health problem. The etiology of falls is usually multifactorial. Special attention should be paid on benzodiazepines (BZDs) since they are widely used by older adults. A literature search of the PUBMED and EMBASE databases from January 2007 to February 2017 was conducted using the MeSH terms "benzodiazepines", "elderly" and "falls" or "accidental falls". The systematic review was performed according to PRISMA criteria. Of the 27 references selected for full reading from 235 found, 15 were eliminated and 12 papers were selected for systematic review. Exposure to BZDs was associated with a higher risk of falls in older adults, which is consistent with the results reported in the literature and previous reviews and meta-analyses. BZDs increase the risk of falling when used either as monotherapy or in combined therapies. It is preferable to use short-acting BZDs, to avoid cumulative effects over time predisposing to falls. A high proportion of falls in older adults are related to the use of BZDs. They should be prescribed to older patients in accordance with current clinical guidelines and reviewed over time. BZDs should be prescribed as a short-term therapy and progressively withdrawn. Short-acting BZDs should be the treatment of choice. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Current costing models: are they suitable for allocating health resources? The example of fall injury prevention in Australia.

    PubMed

    Moller, Jerry

    2005-01-01

    The example of fall injury among older people is used to define and illustrate how current Australian systems for allocation of health resources perform for funding emerging public health issues. While the examples are Australian, the allocation and priority setting methods are common in the health sector in all developed western nations. With an ageing population the number of falls injuries in Australia and the cost of treatment will rise dramatically over the next 20-50 years. Current methods of allocating funds within the health system are not well suited to meeting this coming epidemic. The information requirements for cost-benefit and cost-effectiveness measures cannot be met. Marginal approaches to health funding are likely to continue to fund already well-funded treatment or politically driven prevention processes and to miss the opportunity for new prevention initiatives in areas that do not have a high political profile. Fall injury is one of many emerging areas that struggle to make claims for funding because the critical mass of intervention and evidence of its impact is not available. The beneficiaries of allocation failure may be those who treat the disease burden that could have been easily prevented. Changes to allocation mechanisms, data systems and new initiative funding practices are required to ensure that preventative strategies are able to compete on an equal footing with treatment approaches for mainstream health funding.

  17. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  18. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2013-09-10

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  19. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2010-11-16

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  20. Character, mass, distribution, and origin of tephra-fall deposits of the 1989-1990 eruption of redoubt volcano, south-central Alaska

    USGS Publications Warehouse

    Scott, W.E.; McGimsey, R.G.

    1994-01-01

    The 1989-1990 eruption of Redoubt Volcano spawned about 20 areally significant tephra-fall deposits between December 14, 1989 and April 26, 1990. Tephra plumes rose to altitudes of 7 to more than 10 km and were carried mainly northward and eastward by prevailing winds, where they substantially impacted air travel, commerce, and other activities. In comparison to notable eruptions of the recent past, the Redoubt events produced a modest amount of tephra-fall deposits - 6 ?? 107 to 5 ?? 1010 kg for individual events and a total volume (dense-rock equivalent) of about 3-5 ?? 107 m3 of andesite and dacite. Two contrasting tephra types were generated by these events. Pumiceous tephra-fall deposits of December 14 and 15 were followed on December 16 and all later events by fine-grained lithic-crystal tephra deposits, much of which fell as particle aggregates. The change in the character of the tephra-fall deposits reflects their fundamentally different modes of origin. The pumiceous deposits were produced by magmatically driven explosions. The finegrained lithic-crystal deposits were generated by two processes. Hydrovolcanic vent explosions generated tephrafall deposits of December 16 and 19. Such explosions continued as a tephra source, but apparently with diminishing importance, during events of January and February. Ash clouds of lithic pyroclastic flows generated by collapse of actively growing lava domes probably contributed to tephra-fall deposits of all events from January 2 to April 26, and were the sole source of tephra fall for at least the last 4 deposits. ?? 1994.

  1. A critical appraisal of the reporting quality of published randomized controlled trials in the fall injuries.

    PubMed

    Asghari Jafarabadi, Mohammad; Sadeghi-Bazrgani, Homayoun; Dianat, Iman

    2018-06-01

    To evaluate the quality of reporting in published randomized controlled trials (RTCs) in the field of fall injuries. The 188 RTCs published between 2001 and 2011, indexed in EMBASE and Medline databases were extracted through searching by appropriate keywords and EMTree classification terms. The evaluation trustworthiness was assured through parallel evaluations of two experts in epidemiology and biostatistics. About 40%-75% of papers had problems in reporting random allocation method, allocation concealment, random allocation implementation, blinding and similarity among groups, intention to treat and balancing benefits and harms. Moreover, at least 10% of papers inappropriately/not reported the design, protocol violations, sample size justification, subgroup/adjusted analyses, presenting flow diagram, drop outs, recruitment time, baseline data, suitable effect size on outcome, ancillary analyses, limitations and generalizability. Considering the shortcomings found and due to the importance of the RCTs for fall injury prevention programmes, their reporting quality should be improved.

  2. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  3. Bridging the gap between real-life data and simulated data by providing a highly realistic fall dataset for evaluating camera-based fall detection algorithms.

    PubMed

    Baldewijns, Greet; Debard, Glen; Mertes, Gert; Vanrumste, Bart; Croonenborghs, Tom

    2016-03-01

    Fall incidents are an important health hazard for older adults. Automatic fall detection systems can reduce the consequences of a fall incident by assuring that timely aid is given. The development of these systems is therefore getting a lot of research attention. Real-life data which can help evaluate the results of this research is however sparse. Moreover, research groups that have this type of data are not at liberty to share it. Most research groups thus use simulated datasets. These simulation datasets, however, often do not incorporate the challenges the fall detection system will face when implemented in real-life. In this Letter, a more realistic simulation dataset is presented to fill this gap between real-life data and currently available datasets. It was recorded while re-enacting real-life falls recorded during previous studies. It incorporates the challenges faced by fall detection algorithms in real life. A fall detection algorithm from Debard et al. was evaluated on this dataset. This evaluation showed that the dataset possesses extra challenges compared with other publicly available datasets. In this Letter, the dataset is discussed as well as the results of this preliminary evaluation of the fall detection algorithm. The dataset can be downloaded from www.kuleuven.be/advise/datasets.

  4. Podiatric involvement in multidisciplinary falls-prevention clinics in Australia.

    PubMed

    Menz, Hylton B; Hill, Keith D

    2007-01-01

    Falls in older people are a major public health problem, and there is increasing evidence that foot problems and inappropriate footwear increase the risk of falls. Several multidisciplinary prevention clinics have been established to address the problem of falls; however, the role of podiatry in these clinics has not been clearly defined. The aims of this study were to determine the level of podiatric involvement in multidisciplinary falls clinics in Australia and to describe the assessments undertaken and interventions provided by podiatrists in these settings. A database of falls clinics was developed through consultation with departments of health in each state and territory. Clinic managers were contacted and surveyed as to whether the clinic incorporated podiatry services. If so, the podiatrists were contacted and asked to complete a brief questionnaire regarding their level of involvement and the assessment procedures and interventions offered. Of the 36 clinics contacted, 25 completed the survey. Only four of these clinics reported direct podiatric involvement. Despite the limited involvement of podiatry in these clinics, all of the clinic managers stated that they considered podiatry to have an important role to play in falls prevention. Podiatry service provision in falls clinics varied considerably in relation to eligibility criteria, assessments undertaken, and interventions provided. Despite the recognition that foot problems and inappropriate footwear are risk factors for falls, podiatry currently has a relatively minor and poorly defined role in multidisciplinary falls-prevention clinics in Australia.

  5. Relationship Between Perceived Risk of Falling and Adoption of Precautions to Reduce Fall Risk.

    PubMed

    Blalock, Susan J; Gildner, Paula L; Jones, Jennifer L; Bowling, James M; Casteel, Carri H

    2016-06-01

    To better understand the relationship between perceived risk of falling and awareness and adoption of four specific precautions that older adults have taken to reduce this risk. Cross-sectional. Data were collected in in-person interviews conducted in the homes of study participants. Interviews conducted between March 2011 and September 2013 and lasted an average of 60-90 minutes. A stratified sampling strategy designed to enroll an equal number of homebound and nonhomebound participants was used. All participants (N = 164) were recruited from central North Carolina. Participants were asked about 1-year fall history, perceived risk of falling, restriction of activities because of fear of falling, awareness of four recommended fall prevention behaviors (exercise, annual medication review, bathroom grab bars, safe footwear), and current practice of these behaviors. In bivariate analyses, individuals who were aware of two behaviors recommended to reduce the risk of falling (exercise, use of safe footwear) and had adopted these behaviors perceived their risk of falling as lower than individuals who were aware of the recommended behaviors but had not adopted them. Moreover, in multivariate analyses, individuals who did not know that exercise is recommended to reduce the risk of falling perceived their risk of falling as lower than those who were aware of this recommendation and had adopted it. Individuals were least likely to be aware that medication reviews and exercise are recommended to reduce fall risk. Awareness of behaviors recommended to reduce fall risk appears necessary for adoption of these behaviors to reduce perceived risk. Fall-prevention campaigns should emphasize behaviors where awareness is low. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  6. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  7. Characterizing Mechanical and Flow Properties using Injection Falloff Tests, March 28, 2011

    EPA Pesticide Factsheets

    This presentation asserts that Injection Fall-off Testing is an efficient way to derive in-situ information on most rock types, after-closure analysis can derive rock transmissibility and pore fluid pressure, and this is used to assist in the HF process.

  8. Effect of process parameters on metal transfer of hyperbaric GMAW of duplex stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, J.M.; Dos Santos, J.F.; Richardson, I.M.

    1994-12-31

    This work presents the preliminary results of a comprehensive and systematic evaluation of current rise and fall rates as well as shielding gas composition and their affect on the metal transfer, when duplex stainless steels are GMA welded under hyperbaric conditions using the short circuit metal transfer mode. The evaluation of the test results are based on an examination of the welding process signals recorded on a transient recorder. Over a time period of 500 ms, the signal was measured to assess the process instability, current rise and fall rates and their inter-relationship. The results presented in this study indicatemore » that for a given welding condition, the appropriate selection of current rise and fall rates can minimize the effect of instabilities caused by high ambient pressure. The presence of active gases in the shielding did not significantly affect the metal transfer behavior. All the experiments described in this work have been carried out in the hyperbaric test facilities of the GKSS-Forschungszentrum in Germany.« less

  9. Local Dynamic Stability Associated with Load Carrying

    PubMed Central

    Lockhart, Thurmon E

    2013-01-01

    Objectives Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying. PMID:23515183

  10. The 1913 VEI-4 Plinian Eruption of Volcan de Colima (Mexico): Tephrochronology, Petrology, and Plume Modeling

    NASA Astrophysics Data System (ADS)

    Luhr, J. F.; Navarro, C.; Connor, C. B.; Connor, L.

    2006-12-01

    The 18-20 January 1913 VEI-4 eruption of Volcán de Colima closed out a century-scale eruptive cycle, left the summit a deep jagged crater 100 m shorter than before, sent pyroclastic flows out to 15 km on the S flank, and culminated in a Plinian column that resulted in ashfall as far as 725 km to the NE at Saltillo. Historical accounts allow a rough delineation of where distal ash did and did not fall. Today in the field, the 1913 Plinian fall deposit can be traced across the upper flanks of Nevado de Colima, but only to distances of 13 km from the vent. Beyond that point all evidence of the eruption has been eroded from Earth's surface in the past 93 years. We studied the proximal 1913 fall deposit at 45 locations. At 27 locations the 1913 deposit is a single fall unit, up to 80 cm thick. At the other locations, 2-3 individual scoria-fall layers are separated by charcoal- bearing fine-ash horizons, which we interpret as pyroclastic-surge deposits. At locations with multiple units and complex lower 1913 stratigraphy, bulk compositional data on scoriae provided insight regarding to the base of the 1913 deposit. Particular uncertainty clouds field identification of the scoria-fall deposit from the similar VEI-4 eruption in 1818. Granulometric data for the 1913 deposit were obtained by sieving both scoria- fall and fine-ash layers. The 1913 scoriae are relatively homogeneous hornblende andesites with ~58 wt.% SiO2, more mafic than all of the andesitic lava flows that preceded it starting in 1869 and have followed since 1961 (~60% SiO2). The 1913 scoriae have plagioclase > orthopyroxene > clinopyroxene > hornblende > titanomagnetite. The hornblende phenocrysts are greenish brown in color and have clean rims against the vesiculated glassy matrix, indicating that the hornblende remained stable until eruptive quenching. We used electron and ion microprobes to analyze a series of glass inclusions trapped within orthopyroxene phenocrysts for major, minor, and volatile elements. The 1913 glass inclusions are very homogeneous in composition and contain ~6 wt.% H2O, ~80 ppm CO2, ~1,500 ppm S, ~2,800 ppm Cl, and ~600 ppm F. The H2O and CO2 data indicate a minimum solubility pressure of ~2,250 bars, and a minimum depth of ~8 km for the pre-eruptive 1913 magma reservoir. Field and laboratory data for the 1913 tephra-fall deposit are used with the TEPHRA2 forward model and inversion algorithms to quantify eruption parameters (e.g., volume, column height, and wind structure), together with uncertainties in these parameters.

  11. Magnetic property zonation in a thick lava flow

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  12. Fine structure of acoustic signals caused by a drop falling onto the surface of water

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2015-08-01

    The temporal structure of sound radiation upon a drop falling onto a free liquid surface is investigated experimentally by high-resolution high-speed videorecording synchronized with a broad-band measurement of the acoustic pressure. Groups of short and relatively prolonged sound packets with frequency filling from 2 to 50 kHz and the corresponding flow patterns including the simultaneous formation of resonating bubbles and their interaction processes with an originating cavern are isolated. The temporal dependence of the determining parameter, i.e., the Weber number, which is stably reproduced in a series of experiments by a power function with a fractional index, is constructed.

  13. Systematic Review of Falls in Older Adults with Cancer

    PubMed Central

    Wildes, Tanya M; Dua, Priya; Fowler, Susan A.; Miller, J. Philip; Carpenter, Christopher R.; Avidan, Michael S.; Stark, Susan

    2014-01-01

    Objectives lder adults frequently experience falls, at great cost to themselves and society. Older adults with cancer may be at greater risk for falls and have unique risk factors. Materials and Methods We undertook a systematic review of the available medical literature to examine the current evidence regarding factors associated with falls in older adults with cancer. PubMed, Embase, CINAHL, CENTRAL, DARE, Cochrane Database of Systematic Reviews and clinical trials.gov were searched using standardized terms for concepts of oncology/cancer, people 60 and older, screening, falls and diagnosis. Eligible studies included cohort or case-control studies or clinical trials in which all patients, or a subgroup of patients, had a diagnosis of cancer and in which falls were either the primary or secondary outcome. Results We identified 31 studies that met our inclusion criteria. Several studies suggest that falls are more common in older adults with a diagnosis of cancer than those without. Among the 11 studies that explored factors associated with outpatient falls, some risk factors for falls established in the general population were also associated with falls in older adults with cancer, including dependence in activities of daily living and prior falls. Other factors associated with falls in a general population, such as age, polypharmacy and opioid use, were not predictive of falls among oncology populations. Falls among older adults with cancer in the inpatient setting were associated with established risk factors for falls in people without cancer, but also with factors unique to an oncology population, such as brain metastases. Conclusions Falls in older adults with cancer are more common than in the general population, and are associated with risk factors unique to people with cancer. Further study is needed to establish methods of screening older adults with cancer for fall risk and ultimately implement interventions to reduce their risk of falls. Identifying which older adults with cancer are at greater risk for falls is a requisite step to ultimately intervene and prevent falls in this vulnerable population. PMID:25454770

  14. Prevention of fall incidents in patients with a high risk of falling: design of a randomised controlled trial with an economic evaluation of the effect of multidisciplinary transmural care

    PubMed Central

    Peeters, Geeske MEE; de Vries, Oscar J; Elders, Petra JM; Pluijm, Saskia MF; Bouter, Lex M; Lips, Paul

    2007-01-01

    Background Annually, about 30% of the persons of 65 years and older falls at least once and 15% falls at least twice. Falls often result in serious injuries, such as fractures. Therefore, the prevention of accidental falls is necessary. The aim is to describe the design of a study that evaluates the efficacy and cost-effectiveness of a multidisciplinary assessment and treatment of multiple fall risk factors in independently living older persons with a high risk of falling. Methods/Design The study is designed as a randomised controlled trial (RCT) with an economic evaluation. Independently living persons of 65 years and older who recently experienced a fall are interviewed in their homes and screened for risk of recurrent falling using a validated fall risk profile. Persons at low risk of recurrent falling are excluded from the RCT. Persons who have a high risk of recurrent falling are blindly randomised into an intervention (n = 100) or usual care (n = 100) group. The intervention consists of a multidisciplinary assessment and treatment of multifactorial fall risk factors. The transmural multidisciplinary appraoch entails close cooperation between geriatrician, primary care physician, physical therapist and occupational therapist and can be extended with other specialists if relevant. A fall calendar is used to record falls during one year of follow-up. Primary outcomes are time to first and second falls. Three, six and twelve months after the home visit, questionnaires for economic evaluation are completed. After one year, during a second home visit, the secondary outcome measures are reassessed and the adherence to the interventions is evaluated. Data will be analysed according to the intention-to-treat principle and also an on-treatment analysis will be performed. Discussion Strengths of this study are the selection of persons at high risk of recurrent falling followed by a multidisciplinary intervention, its transmural character and the evaluation of adherence. If proven effective, implementation of our multidisciplinary assessment followed by treatment of fall risk factors will reduce the incidence of falls. Trial registration Current Controlled Trials ISRCTN11546541. PMID:17605771

  15. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.

    PubMed

    Aziz, Omar; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2014-01-01

    Falls are the number one cause of injury in older adults. Lack of objective evidence on the cause and circumstances of falls is often a barrier to effective prevention strategies. Previous studies have established the ability of wearable miniature inertial sensors (accelerometers and gyroscopes) to automatically detect falls, for the purpose of delivering medical assistance. In the current study, we extend the applications of this technology, by developing and evaluating the accuracy of wearable sensor systems for determining the cause of falls. Twelve young adults participated in experimental trials involving falls due to seven causes: slips, trips, fainting, and incorrect shifting/transfer of body weight while sitting down, standing up from sitting, reaching and turning. Features (means and variances) of acceleration data acquired from four tri-axial accelerometers during the falling trials were input to a linear discriminant analysis technique. Data from an array of three sensors (left ankle+right ankle+sternum) provided at least 83% sensitivity and 89% specificity in classifying falls due to slips, trips, and incorrect shift of body weight during sitting, reaching and turning. Classification of falls due to fainting and incorrect shift during rising was less successful across all sensor combinations. Furthermore, similar classification accuracy was observed with data from wearable sensors and a video-based motion analysis system. These results establish a basis for the development of sensor-based fall monitoring systems that provide information on the cause and circumstances of falls, to direct fall prevention strategies at a patient or population level. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    NASA Astrophysics Data System (ADS)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics. Results provide the foundation for investigating advanced turbine control strategies for optimal power production in non-stationary environments, while also providing a robust data-set for computational model validation for further investigating the interactions between energy conversion devices and the physical environment.

  17. Occurrence of organic wastewater compounds in drinking water, wastewater effluent, and the Big Sioux River in or near Sioux Falls, South Dakota, 2001-2004

    USGS Publications Warehouse

    Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.

    2006-01-01

    The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one OWC was detected at a concentration greater than the study reporting level (metolachlor; 0.0040 ug/L). During base-flow conditions, Big Sioux River sites upstream from the WWTP discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for upstream sites than downstream sites during both base-flow and runoff conditions.discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for

  18. Summary of Temperature Data Collected to Improve Emergence Timing Estimates for Chum and Fall Chinook Salmon in the Lower Columbia River, 1998-2004 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, E.; Geist, D.; Hanrahan, T.

    2005-10-01

    From 1999 through 2004, Pacific Northwest National Laboratory collected temperature data from within chum and fall Chinook salmon spawning gravels and the overlying river at 21 locations in the Ives Island area approximately 5 km downstream from Bonneville Dam. Sample locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. The study objectives were to (1) collect riverbed and river temperature data each year from the onset of spawning (October) to the end of emergence (June) and (2) provide those data in-season to fisheries management agencies to assist with fall Chinook and chum salmon emergencemore » timing estimates. Three systems were used over the life of the study. The first consisted of temperature sensors deployed inside piezometers that were screened to the riverbed or the river within chum and fall Chinook salmon spawning areas. These sensors required direct access by staff to download data and were difficult to recover during high river discharge. The second system consisted of a similar arrangement but with a wire connecting the thermistor to a data logger attached to a buoy at the water surface. This system allowed for data retrieval at high river discharge but proved relatively unreliable. The third system consisted of temperature sensors installed in piezometers such that real-time data could be downloaded remotely via radio telemetry. After being downloaded, data were posted hourly on the Internet. Several times during the emergence season of each year, temperature data were downloaded manually and provided to management agencies. During 2003 and 2004, the real-time data were made available on the Internet to assist with emergence timing estimates. Examination of temperature data reveals several important patterns. Piezometer sites differ in the direction of vertical flow between surface and subsurface water. Bed temperatures in upwelling areas are more stable during salmon spawning and incubation than they are in downwelling areas. Bed temperatures in downwelling areas generally reflect river temperatures. Chum and fall Chinook salmon spawning is spatially segregated, with chum salmon in upwelling areas and fall Chinook salmon in downwelling areas. Although these general patterns remain similar among the years during which data were collected, differences also exist that are dependent on interannual flow characteristics.« less

  19. FootFall: A Ground Based Operations Toolset Enabling Walking for the ATHLETE Rover

    NASA Technical Reports Server (NTRS)

    SunSpiral, Vytas; Chavez-Clemente, Daniel; Broxton, Michael; Keely, Leslie; Mihelich, Patrick; Mittman, David; Collins, Curtis

    2008-01-01

    The ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) vehicle consists of six identical, six degree of freedom limbs. FootFall is a ground tool for ATHLETE intended to provide an operator with integrated situational awareness, terrain reconstruction, stability and safety analysis, motion planning, and decision support capabilities to enable the efficient generation of flight software command sequences for walking. FootFall has been under development at NASA Ames for the last year, and having accomplished the initial integration, it is being used to generate command sequences for single footfalls. In this paper, the architecture of FootFall in its current state will be presented, results from the recent Human Robotic Systems Project?s Integrated Field Test (Moses Lake, Washington, June, 2008) will be discussed, and future plans for extending the capabilities of FootFall to enable ATHLETE to walk across a boulder field in real time will be described.

  20. The inescapable smart impact detection system (ISIS): An ubiquitous and personalized fall detector based on a distributed 'divide and conquer strategy'.

    PubMed

    Prado-Velasco, Manuel; del Rio-Cidoncha, Maria Gloria; Ortiz-Marin, Rafael

    2008-01-01

    Despite the intense research in the last decade with the aim of developing a reliable solution for fall detection in the elderly and other risk populations, it can be asserted that the diffusion of fall detectors in the geriatric practice is near null. This scenario is similar to the very scarce use of telemedicine in healthcare. The present work begins analyzing why fall detectors have not achieved to permeate the industry. That road is used to know the drawbacks of current devices and systems, besides to allow studying several important concepts underlying the principles of fall detection. A novel smart detection system based on that survey is finally briefly presented. The design of this device is founded on the experience and results obtained by an earlier device that was designed in the framework of the thesis of one of the authors.

  1. Imagery and Fear Influence Height Perception

    PubMed Central

    Clerkin, Elise M.; Cody, Meghan W.; Stefanucci, Jeanine K.; Proffitt, Dennis R.; Teachman, Bethany A.

    2008-01-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n = 65) versus low (n = 64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony’s height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling). PMID:19162437

  2. Imagery and fear influence height perception.

    PubMed

    Clerkin, Elise M; Cody, Meghan W; Stefanucci, Jeanine K; Proffitt, Dennis R; Teachman, Bethany A

    2009-04-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n=65) versus low (n=64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony's height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling).

  3. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  4. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  5. Fall and winter survival of brook trout and brown trout in a north-central Pennsylvania watershed

    USGS Publications Warehouse

    Sweka, John A.; Davis, Lori A.; Wagner, Tyler

    2017-01-01

    Stream-dwelling salmonids that spawn in the fall generally experience their lowest survival during the fall and winter due to behavioral changes associated with spawning and energetic deficiencies during this time of year. We used data from Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta implanted with radio transmitters in tributaries of the Hunts Run watershed of north-central Pennsylvania to estimate survival from the fall into the winter seasons (September 2012–February 2013). We examined the effects that individual-level covariates (trout species, size, and movement rates) and stream-level covariates (individual stream and cumulative drainage area of a stream) have on survival. Brook Trout experienced significantly lower survival than Brown Trout, especially in the early fall during their peak spawning period. Besides a significant species effect, none of the other covariates examined influenced survival for either species. A difference in life history between these species, with Brook Trout having a shorter life expectancy than Brown Trout, is likely the primary reason for the lower survival of Brook Trout. However, Brook Trout also spawn earlier in the fall than Brown Trout and low flows during Brook Trout spawning may have resulted in a greater risk of predation for Brook Trout compared with Brown Trout, thereby also contributing to the observed differences in survival between these species. Our estimates of survival can aid parameterization of future population models for Brook Trout and Brown Trout through the spawning season and into winter.

  6. Statistical Report: Academic Year 2014-15. Student Exchange Program

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2015

    2015-01-01

    This report covers fall 2014 enrollments for WUE [Western Undergraduate Exchange], WRGP [Western Regional Graduate Program], and PSEP [Professional Student Exchange Program]. It details the funds that flow between students' home states and the enrolling PSEP institutions that receive them. This newly expanded format gives detailed enrollment for…

  7. Federal Aid Adds Twist to Election

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2010-01-01

    The massive flow of federal funding into schools has created a new and unfamiliar political dynamic in state elections this fall, with many candidates voicing concerns about the government involvement while acknowledging its role in saving jobs, propping up budgets, and supporting innovations in education. State elected officials have a long…

  8. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observedmore » that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.« less

  9. The REFORM study protocol: a cohort randomised controlled trial of a multifaceted podiatry intervention for the prevention of falls in older people

    PubMed Central

    Cockayne, Sarah; Adamson, Joy; Corbacho Martin, Belen; Fairhurst, Caroline; Hewitt, Catherine; Hicks, Kate; Hull, Robin; Keenan, Anne Maree; Lamb, Sarah E; Loughrey, Lorraine; McIntosh, Caroline; Menz, Hylton B; Redmond, Anthony C; Rodgers, Sara; Vernon, Wesley; Watson, Judith; Torgerson, David

    2014-01-01

    Introduction Falls and fall-related injuries are a serious cause of morbidity and cost to society. Foot problems and inappropriate footwear may increase the risk of falls; therefore podiatric interventions may play a role in reducing falls. Two Cochrane systematic reviews identified only one study of a podiatry intervention aimed to reduce falls, which was undertaken in Australia. The REFORM trial aims to evaluate the clinical and cost-effectiveness of a multifaceted podiatry intervention in reducing falls in people aged 65 years and over in a UK and Irish setting. Methods and analysis This multicentre, cohort randomised controlled trial will recruit 2600 participants from routine podiatry clinics in the UK and Ireland to the REFORM cohort. In order to detect a 10% point reduction in falls from 50% to 40%, with 80% power 890 participants will be randomised to receive routine podiatry care and a falls prevention leaflet or routine podiatry care, a falls prevention leaflet and a multifaceted podiatry intervention. The primary outcome is rate of falls (falls/person/time) over 12 months assessed by patient self-report falls diary. Secondary self-report outcome measures include: the proportion of single and multiple fallers and time to first fall over a 12-month period; Short Falls Efficacy Scale—International; fear of falling in the past 4 weeks; Frenchay Activities Index; fracture rate; Geriatric Depression Scale; EuroQoL-five dimensional scale 3-L; health service utilisation at 6 and 12 months. A qualitative study will examine the acceptability of the package of care to participants and podiatrists. Ethics and dissemination The trial has received a favourable opinion from the East of England—Cambridge East Research Ethics Committee and Galway Research Ethics Committee. The trial results will be published in peer-reviewed journals and at conference presentations. Trial registration number Current Controlled Trials ISRCTN68240461assigned 01/07/2011. PMID:25518875

  10. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less

  11. Fall Risk Assessment Tools for Elderly Living in the Community: Can We Do Better?

    PubMed

    Palumbo, Pierpaolo; Palmerini, Luca; Bandinelli, Stefania; Chiari, Lorenzo

    2015-01-01

    Falls are a common, serious threat to the health and self-confidence of the elderly. Assessment of fall risk is an important aspect of effective fall prevention programs. In order to test whether it is possible to outperform current prognostic tools for falls, we analyzed 1010 variables pertaining to mobility collected from 976 elderly subjects (InCHIANTI study). We trained and validated a data-driven model that issues probabilistic predictions about future falls. We benchmarked the model against other fall risk indicators: history of falls, gait speed, Short Physical Performance Battery (Guralnik et al. 1994), and the literature-based fall risk assessment tool FRAT-up (Cattelani et al. 2015). Parsimony in the number of variables included in a tool is often considered a proxy for ease of administration. We studied how constraints on the number of variables affect predictive accuracy. The proposed model and FRAT-up both attained the same discriminative ability; the area under the Receiver Operating Characteristic (ROC) curve (AUC) for multiple falls was 0.71. They outperformed the other risk scores, which reported AUCs for multiple falls between 0.64 and 0.65. Thus, it appears that both data-driven and literature-based approaches are better at estimating fall risk than commonly used fall risk indicators. The accuracy-parsimony analysis revealed that tools with a small number of predictors (~1-5) were suboptimal. Increasing the number of variables improved the predictive accuracy, reaching a plateau at ~20-30, which we can consider as the best trade-off between accuracy and parsimony. Obtaining the values of these ~20-30 variables does not compromise usability, since they are usually available in comprehensive geriatric assessments.

  12. Stiffness control of balance during dual task and prospective falls in older adults: the MOBILIZE Boston Study.

    PubMed

    Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A

    2013-09-01

    Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30s per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. What factors influence community-dwelling older people’s intent to undertake multifactorial fall prevention programs?

    PubMed Central

    Hill, Keith D; Day, Lesley; Haines, Terry P

    2014-01-01

    Purpose To investigate previous, current, or planned participation in, and perceptions toward, multifactorial fall prevention programs such as those delivered through a falls clinic in the community setting, and to identify factors influencing older people’s intent to undertake these interventions. Design and methods Community-dwelling people aged >70 years completed a telephone survey. Participants were randomly selected from an electronic residential telephone listing, but purposeful sampling was used to include equal numbers with and without common chronic health conditions associated with fall-related hospitalization. The survey included scenarios for fall prevention interventions, including assessment/multifactorial interventions, such as those delivered through a falls clinic. Participants were asked about previous exposure to, or intent to participate in, the interventions. A path model analysis was used to identify factors associated with intent to participate in assessment/multifactorial interventions. Results Thirty of 376 participants (8.0%) reported exposure to a multifactorial falls clinic-type intervention in the past 5 years, and 16.0% expressed intention to undertake this intervention. Of the 132 participants who reported one or more falls in the past 12 months, over one-third were undecided or disagreed that a falls clinic type of intervention would be of benefit to them. Four elements from the theoretical model positively influenced intention to participate in the intervention: personal perception of intervention effectiveness, self-perceived risk of falls, self-perceived risk of injury, and inability to walk up/down steps without a handrail (P<0.05). Conclusion Multifactorial falls clinic-type interventions are not commonly accessed or considered as intended fall prevention approaches among community-dwelling older people, even among those with falls in the past 12 months. Factors identified as influencing intention to undertake these interventions may be useful in promoting or targeting these interventions. PMID:25473276

  14. Stiffness Control of Balance during Dual Task and Prospective Falls in Older Adults: The MOBILIZE Boston Study

    PubMed Central

    Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A.

    2013-01-01

    Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30 seconds per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. PMID:23623606

  15. Investigation of the effects of shear on arc-electrode erosion using a modified arc-electrode mass loss model

    NASA Astrophysics Data System (ADS)

    Webb, Bryan T.

    The electrodes are the attachment points for an electric arc where electrons and positive ions enter and leave the gas, creating a flow of current. Electrons enter the gas at the cathode and are removed at the anode. Electrons then flow out through the leads on the anode and are replenished from the power supply through the leads on the cathode. Electric arc attachment to the electrode surface causes intensive heating and subsequent melting and vaporization. At that point a multitude of factors can contribute to mass loss, to include vaporization (boiling), material removal via shear forces, chemical reactions, evaporation, and ejection of material in jets due to pressure effects. If these factors were more thoroughly understood and could be modeled, this knowledge would guide the development of an electrode design with minimal erosion. An analytic model was developed by a previous researcher that models mass loss by melting, evaporation and boiling with a moving arc attachment point. This pseudo one-dimensional model includes surface heat flux in periodic cycles of heating and cooling to model motion of a spinning arc in an annular electrode where the arc periodically returns to the same spot. This model, however, does not account for removal of material due to shear or pressure induced effects, or the effects of chemical reactions. As a result of this, the model under-predicts material removal by about 50%. High velocity air flowing over an electrode will result in a shear force which has the potential to remove molten material as the arc melts the surface on its path around the electrode. In order to study the effects of shear on mass loss rate, the model from this previous investigator has been altered to include this mass loss mechanism. The results of this study have shown that shear is a viable mechanism for mass loss in electrodes and can account for the mismatch between theoretical and experimental rates determined by previous investigators. The results of a parametric study of arc attachment factors - including spot size, fall voltage, arc spot rotation rate, ambient bore heat rate, and air mass flow rate - are presented. The parametric study resulted in improving estimates of both the arc spot size and electrode fall voltage, two critical factors affecting electrode heating. Little sensitivity of electrode erosion rate to ambient bore heat rate and rotation rate was found. The erosion rate is found to be sensitive to the mass flow rate of air injected in the arc heater and validation of the model by comparison with more run condition data should be carried out as the data become available.

  16. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  17. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  18. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  19. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  20. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

Top