Science.gov

Sample records for flow cytofluorometric analysis

  1. Flow cytofluorometric monitoring of leukocyte apoptosis in experimental cholera

    NASA Astrophysics Data System (ADS)

    Lotsmanova, Ekaterina Y.; Kravtsov, Alexander L.; Livanova, Ludmila F.; Kobkova, Irina M.; Kuznetsov, Oleg S.; Shchukovskaya, Tatyana N.; Smirnova, Nina I.; Kutyrev, Vladimir V.

    2003-10-01

    Flow cytofluorometric DNA analysis was applied to determine of the relative contents of proliferative (more then 2C DNA per cell) and apoptotic (less then 2C DNA per cell) leukocytes in blood of adult rabbits, challenged with 10,000 times the 50 % effective dose of Vibrio cholerae virulent strain by the RITARD technique. It has been shown that irreversible increase the percentage of cells carrying DNA in the degradation stage brings to disbalance between the genetically controlled cell proliferation and apoptosis that leads to animal death from the cholera infection. Such fatal changes were not observed in challenging of immunized animals that were not died. Thus received data show that the flow cytofluorometric measurements may be used for detection of transgressions in homeostasis during acute infection diseases, for outlet prognosis of the cholera infection.

  2. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability.

    PubMed

    Idziorek, T; Estaquier, J; De Bels, F; Ameisen, J C

    1995-09-25

    In the absence of cell permeabilization, the impermeant nuclear dye YOPRO-1 permits accurate analysis of apoptosis using cytofluorometry or fluorescent microscopy. Several immune cell populations were studied including dexamethasone-treated thymocytes, irradiated peripheral blood mononuclear cells and a growth factor-depleted tumor B cell line. Excellent correlation values were found with acridine orange using cytofluorometry and with eosin-hematoxylin using optical microscopy. Under fluorescent microscopy, YOPRO-1-fluorescent cells demonstrate the morphological features of cells undergoing apoptosis such as nuclear shrinkage and fragmentation. An important characteristic of the dye that differs from all other nuclear dyes previously used for the detection of apoptosis is that it does not label living cells. Cell sorting after flow cytofluorometry analysis confirmed that only the apoptotic cell population was labelled with YOPRO-1. Further studies showed that while incubation of living cells with Hoechst 33342 almost completely abrogated the capacity of T cells to proliferate in response to several stimuli, YOPRO-1 had no inhibitory effect. This new simple, rapid and reproducible use of the YOPRO-1 dye should prove useful in the analysis of apoptotic cells as well as for investigations of the functional properties of living cells in a culture containing apoptotic cells.

  3. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  4. [Flow-cytofluorometric study of bactericidal granules in blood phagocytes of animals with various species sensitivity to experimental plague infection].

    PubMed

    Kravtsov, A L

    2015-01-01

    Compare the content of bactericidal granules (BG) in blood phagocytes of animals, that differ by species sensitivity to plague infection, under the conditions of measuring, that ensure automatic differentiating by this parameter of monocytes and granulocytes of human blood. Human whole blood leukocytes were studied, as well as from 7 animal species: mice, guinea pigs, golden hamsters, white rats, rabbits, dogs and horses. Acridine orange (AO) was used for supra-vital staining in primary (bactericidal) granule cells. Relative BG content was measured in separate cells in conventional units of red fluorescence intensity by flow cytofluorometry. Deficiency of AO molecules in BG, that correlates with deficiency of leukocyte elastase in cells, that is most pronounced in mice and lest pronounced in rabbits, was established to be characteristic for all the blood phagocytes of all the laboratory animal species sensitive to plague. Blood phagocytes of dogs and horses, that were non-sensitive to plague, differed by high heterogeneity by the studied parameter, and in horse blood innate immunity cells were detected, that contained 2.5 times higher amount of BG, than blood granulocytes of humans. Leukocyte BG, that have enzyme cationic proteins: elastase, cathepsin G, protease 3 and myeloperoxidase, play and important role in protection of organism from plague infection.

  5. Cytofluorometric assessment of cell cycle progression.

    PubMed

    Vitale, Ilio; Jemaà, Mohamed; Galluzzi, Lorenzo; Metivier, Didier; Castedo, Maria; Kroemer, Guido

    2013-01-01

    One of the most prominent features of cellular senescence, a stress response that prevents the propagation of cells that have accumulated potentially oncogenic alterations, is a permanent loss of proliferative potential. Thus, at odds with quiescent cells, which resume proliferation when stimulated to do so, senescent cells cannot proceed through the cell cycle even in the presence of mitogenic factors. Here, we describe a set of cytofluorometric techniques for studying how chemical and/or physical stimuli alter the cell cycle in vitro, in both qualitative and quantitative terms. Taken together, these methods allow for the identification of bona fide cytostatic effects as well as for a refined characterization of cell cycle distributions, providing information on proliferation, DNA content as well as on the presence of cell cycle phase-specific markers. At the end of the chapter, a set of guidelines is offered to assist researchers that approach the study of the cell cycle with the interpretation of results.

  6. Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins.

    PubMed

    Sica, Valentina; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2016-01-01

    Nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, also known as NOD-like receptors, are critical components of the molecular machinery that senses intracellular danger signals to initiate an innate immune response against invading pathogens or endogenous sources of hazard. The best characterized effect of NLR signaling is the secretion of various cytokines with immunostimulatory effects, including interleukin (IL)-1β and IL-18. Moreover, at least under specific circumstances, NLRs can promote regulated variants of cell death. Here, we detail two protocols for the cytofluorometric quantification of cell death-associated parameters that can be conveniently employed to assess the lethal activity of specific NLRs or their ligands.

  7. Cytofluorometric determination of nuclear DNA in living and preserved algae.

    PubMed

    Hull, H M; Hoshaw, R W; Wang, J C

    1982-09-01

    Three DNA-localizing fluorochromes used in conjunction with epi (incident) UV illumination were examined for sensitivity and selectivity for the cytofluorometric determination of nuclear DNA in ten species of six algal genera: Mougeotia, Oedogonium, Sirogonium, Spirogyra and Zygnema among the green algae, and the marine red alga Polysiphonia boldii. In comparison with absorption photometry for the determination of nuclear DNA, the cytofluorometric procedure proved to be simpler and considerably more sensitive. Following staining with 4',6-diamidino-2-phenylindole (DAPI), nuclei fluoresce blue-white, the fluorescence intensity of the DNA-DAPI complex being considerably greater than that of the unbound dye molecule. Algal strains stained with 2,5-bis[4'-aminophenyl(1')]-1,3,4-oxadiazole (BAO) also showed brilliant blue-white nuclear fluorescence. Although the BAO schedule requires the use of freshly prepared dye and sulfite water, and careful control of hydrolysis, nuclear fluorescence of the stained specimens does not fade under irradiation of the UV beam as rapidly as it does with certain other fluorochrome procedures. A more useful fluorochrome was the fungal antibiotic mithramycin. Its staining schedule is simple and the bright orange-yellow fluorescence of the nuclei is associated with an exceptional degree of sensitivity and specificity for DNA. Forty-eight-year-old preserved filaments of Spirogyra jatobae, stained with either BAO or mithramycin, exhibited a fluorescence brilliance of nuclear and chloroplast DNA equal to that of fresh specimens of this species. The three schedules, but particularly the one with mithramycin, have proven useful in providing indirect evidence for variation in ploidy level in several of the above algal genera, and in verifying the assumed ploidy level of the gametophyte (haploid) and tetrasporophyte (diploid) of Polysiphonia boldii.

  8. Relationship between histologic grade and cytofluorometric cellular DNA and RNA content in primary bone tumors.

    PubMed

    Takeshita, H; Kusuzaki, K; Kuzuhara, A; Tsuji, Y; Ashihara, T; Gebhardt, M C; Mankin, H J; Springfield, D S; Hirasawa, Y

    2001-01-01

    The diagnosis and grading of bone tumors remains a challenging problem. We studied the relationship between histologic grade and cytofluorometric cellular DNA and RNA content in 108 primary bone tumors. The data included DNA ploidy, mean DNA content (MDC), S-phase fraction (SPF), mean RNA content (MRC) and RNA/DNA ratio (RDR; MRC/MDC) which represents the RNA content normalized for the DNA content. Benign tumors had a diploid stem line with low MDC (mean; 1.04), low SPF (0.9), high MRC (2.41) and high RDR (2.31). Giant cell tumors of bone, which are locally aggressive benign tumors, showed diploidy with relatively higher MDC (1.07, p < 0.01) and SPF (2.6, p < 0.01) and lower MRC (1.81, p < 0.01) and RDR (1.69, p < 0.01). Similar results were obtained in low-grade sarcomas. In high-grade sarcomas, the data depended on the histologic findings. Pleomorphic sarcomas such as osteosarcomas revealed aneuploidy with remarkably higher MDC (1.70 in osteosarcomas, p < 0.01) and SPF (6.5, p < 0.01), but lower RDR (1.70, p < 0.01). In contrast, small cell sarcomas, such as Ewing's sarcomas, showed diploidy with low MDC (1.11 in Ewing's sarcomas, N.S.) and SPF (2.5, p < 0.01) and extremely low RDR (1.34, p < 0.01). The RDR value was higher in well-differentiated tumors than in primitive tumors, rendering it useful in grading bone tumors with a diploid stem line. By combining the RDR value with the MDC value, 96% of diploid sarcomas could be distinguished from benign tumors. These results indicate that cellular DNA and RNA content analysis may be of value in assessing the malignant potential of diploid as well as aneuploid bone sarcomas.

  9. Flow Analysis Software Toolkit

    NASA Technical Reports Server (NTRS)

    Watson, Velvin; Castagnera, Karen; Plessel, Todd; Merritt, Fergus; Kelaita, Paul; West, John; Sandstrom, Tim; Clucas, Jean; Globus, AL; Bancroft, Gordon; hide

    1993-01-01

    Flow Analysis Software Toolkit (FAST) computer program provides software environment facilitating visualization of data. Collection of separate programs (modules) running simultaneously and helps user to examine results of numerical and experimental simulations. Intended for graphical depiction of computed flows, also assists in analysis of other types of data. Combines capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one software environment with modules sharing data. All modules have consistent, highly interactive graphical user interface. Modular construction makes it flexible and extensible. Environment custom-configured, and new modules developed and added as needed. Written in ANSI compliant FORTRAN 77 and C language.

  10. Postlarval muscle growth in fish: a DNA flow cytometric and morphometric analysis.

    PubMed

    Alfei, L; Maggi, F; Parvopassu, F; Bertoncello, G; De Vita, R

    1989-01-01

    The mechanism of postlarval fish myotomal growth was investigated in trout (Salmo gairdneri) by means of morphometric and cytofluorometric analysis. The mechanism by which new fibres are added during postlarval growth (hyperplasia) is not fully understood. In histological cross sections these new fibres have a small diameter which give the muscle a "mosaic" appearance. One hypothesis suggested that they could be derived from the proliferative activity of satellite cells. DNA cytofluorometric analysis of nuclei suspensions obtained from trout white myotomal muscle during different developmental stages (eleutherembyronic; alevin; yearling and adult) showed a consistently low S-cytometric phase during all stage in which myofibres of small diameters were present. The percentage of such small fibres, determined by morphometric analysis, suggested that satellite cells are the proliferative population. In fact, their percentages, as determined by morphometric analysis in histological section, bear a linear relationship with the S-cytometric phase percent nuclei (R = 0.927). Only in adults (67 cm in size) there was a significant decrease in the S-cytometric phase. At this stage, in histological sections, the myotomal muscle no longer had a "mosaic" appearance because of the disappearance of the small fibres. It may, therefore, be supposed that in the cm 67 adult specimens, the proliferative population is entering the G0 phase. It is known, in fact, that muscle growth proceeds only by fibre hypertrophy in trout longer than 70 cm in length (Stickland, 1983).

  11. Projectile Base Flow Analysis

    DTIC Science & Technology

    2007-11-02

    S) AND ADDRESS(ES) DCW Industries, Inc. 5354 Palm Drive La Canada, CA 91011 8. PERFORMING ORGANIZATION...REPORT NUMBER DCW -38-R-05 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office...Turbulence Modeling for CFD, Second Edition, DCW Industries, Inc., La Cañada, CA. Wilcox, D. C. (2001), “Projectile Base Flow Analysis,” DCW

  12. Cytofluorometric detection of rodent malaria parasites using red-excited fluorescent dyes.

    PubMed

    Gerena, Y; Gonzalez-Pons, M; Serrano, A E

    2011-11-01

    Flow cytometry is a potentially efficient approach for the quantification of parasitemias in experimental malaria infections and drug susceptibility assays using rodent malaria models such as Plasmodium berghei. In this study, we used two red DNA-binding fluorochromes, rhodamine 800 (R800) and LD700, to measure parasitemia levels in whole blood samples from mice infected with P. berghei. Blood samples were treated with RNAse A to eliminate RNA-derived signals. Propidium iodide, which stains both DNA and RNA, was used as a positive control. The parasitemia levels determined by R800 and LD700 were comparable to those calculated by microscopic analysis of blood smears and flow cytometry using Hoechst 33258. RNAse treatment did not affect these measurements. We also used R800 or LD700 to quantify parasitemias in mice infected with a GFP-expressing P. berghei line to correlate the parasitemia levels determined by DNA staining versus parasite numbers using GFP fluorescence as a surrogate measurement. A positive correlation was found between levels determined by flow cytometry using these dyes and those measured by GFP expression. Similar results were obtained when parasitemias determined by flow cytometry were compared to those determined by conventional microscopy. The limit of detection of infected red blood cells using R800 or LD700 staining was 0.1% and 0.15%, respectively. This study demonstrates that red laser-based flow cytometry using R800 or LD700 can be used for effective quantification of parasitemia levels in Plasmodium infected red blood cells. Furthermore, this method has the advantage that it does not require RNAse pretreatment and allows for a greater amount of cells to be analyzed for parasite burden than otherwise measured by conventional microscopy. © 2011 International Society for Advancement of Cytometry. Copyright © 2011 International Society for Advancement of Cytometry.

  13. Numerical flow analysis for axial flow turbine

    NASA Astrophysics Data System (ADS)

    Sato, T.; Aoki, S.

    Some numerical flow analysis methods adopted in the gas turbine interactive design system, TDSYS, are described. In the TDSYS, a streamline curvature program for axisymmetric flows, quasi 3-D and fully 3-D time marching programs are used respectively for blade to blade flows and annular cascade flows. The streamline curvature method has some advantages in that it can include the effect of coolant mixing and choking flow conditions. Comparison of the experimental results with calculated results shows that the overall accuracy is determined more by the empirical correlations used for loss and deviation than by the numerical scheme. The time marching methods are the best choice for the analysis of turbine cascade flows because they can handle mixed subsonic-supersonic flows with automatic inclusion of shock waves in a single calculation. Some experimental results show that a time marching method can predict the airfoil surface Mach number distribution more accurately than a finite difference method. One weakpoint of the time marching methods is a long computer time; they usually require several times as much CPU time as other methods. But reductions in computer costs and improvements in numerical methods have made the quasi 3-D and fully 3-D time marching methods usable as design tools, and they are now used in TDSYS.

  14. Laminar Flow Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  15. Analysis of axial flow turbines

    NASA Astrophysics Data System (ADS)

    Garg, V. K.

    A variety of steady and time-dependent, two and three dimensional numerical techniques for axial-flow turbulent design and analysis is reviewed. Meridional flow solutions are discussed, including the streamline curvature method, the matrix method, and finite element methods. Blade-to-blade flow solutions are considered, including singularity methods, field methods, and transonic blade-to-blade calculations. Three-dimensional flow solutions are briefly examined.

  16. Cytofluorometric detection of wine lactic acid bacteria: application of malolactic fermentation to the monitoring.

    PubMed

    Salma, Mohammad; Rousseaux, Sandrine; Sequeira-Le Grand, Anabelle; Alexandre, Hervé

    2013-01-01

    In this study we report for the first time a rapid, efficient and cost-effective method for the enumeration of lactic acid bacteria (LAB) in wine. Indeed, up to now, detection of LAB in wine, especially red wine, was not possible. Wines contain debris that cannot be separated from bacteria using flow cytometry (FCM). Furthermore, the dyes tested in previous reports did not allow an efficient staining of bacteria. Using FCM and a combination of BOX/PI dyes, we were able to count bacteria in wines. The study was performed in wine inoculated with Oenococcus oeni (10(6) CFU ml(-1)) stained with either FDA or BOX/PI and analyzed by FCM during the malolactic fermentation (MLF). The analysis show a strong correlation between the numbers of BOX/PI-stained cells determined by FCM and the cell numbers determined by plate counts (red wine: R (2) ≥ 0.97, white wine R (2) ≥ 0.965). On the other hand, we found that the enumeration of O. oeni labeled with FDA was only possible in white wine (R (2) ≥ 0.97). Viable yeast and LAB populations can be rapidly discriminated and quantified in simultaneous malolactic-alcoholic wine fermentations using BOX/PI and scatter parameters in a one single measurement. This rapid procedure is therefore a suitable method for monitoring O. oeni populations during winemaking, offers a detection limit of <10(4) CFU ml(-1) and can be considered a useful method for investigating the dynamics of microbial growth in wine and applied for microbiological quality control in wineries.

  17. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  18. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  19. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  20. NASA flow fields analysis

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1996-01-01

    The objectives of the present research are to improve design capabilities for low thrust rocket engines through understanding the detailed mixing and combustion processes in a representative combustor. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an on-going experimental program at NASA LERC. Detailed computational modeling involves the solution of both the two- and three-dimensional Navier Stokes equations, coupled with chemical reactions and the species diffusion equations. Computations of interest include both steady state and time-accurate flowfields and are obtained by means of LU approximate factorization in time and flux split upwinding differencing in space. The emphasis in the research is focused on using numerical analysis to understand detailed combustor flowfields, including the shear layer dynamics created between fuel film cooling and the core gas in the vicinity on the nearby combustor wall; the integrity and effectiveness of the coolant film; and three-dimensional fuel and oxidizer jet injection/mixing/combustion characteristics in the primary combustor along with their joint impacts on global engine performance.

  1. Dual thermostating in flow analysis.

    PubMed

    Dias, Tuanne R; Sasaki, Milton K; Zagatto, Elias A G

    2017-06-01

    An advanced strategy involving concentric tubes is proposed for fast and controlled heating (or cooling) of the reaction medium in flow analysis. Different temperatures are set by sequentially circulating two thermostated water streams through the outer larged bore (2.0mm i.d.) silicone tube, which acted as a water-jacket of the inner (0.8mm i.d.) PTFE tube, and directing the sample zone to flow through it. Each end of the outer tube is connected to a three-way valve that selects the stream to flow inside it. For 25-85cm tube lengths and a 12.0mLmin(-1) flow rate, the time interval required for temperature attainment, and the uniformity of temperature along the tube were evaluated. For the 85-cm tube, low differences in temperatures along the coil (1.1-8.7°C) and between programmed and attained values (2.3-13.4°C) were noted within a wide range of pre-set temperatures (15-75°C). The feasibility of the innovation in flow analysis was demonstrated in a model system relying on the iodide-nitrite reaction. The strategy allows fast (15-120s) thermostating of the reaction medium in a versatile and simple way, and is especially attractive when two controlled temperatures are set during the analytical course. Potentialities and limitations of the innovation are discussed.

  2. Flow Analysis Tool White Paper

    NASA Technical Reports Server (NTRS)

    Boscia, Nichole K.

    2012-01-01

    Faster networks are continually being built to accommodate larger data transfers. While it is intuitive to think that implementing faster networks will result in higher throughput rates, this is often not the case. There are many elements involved in data transfer, many of which are beyond the scope of the network itself. Although networks may get bigger and support faster technologies, the presence of other legacy components, such as older application software or kernel parameters, can often cause bottlenecks. Engineers must be able to identify when data flows are reaching a bottleneck that is not imposed by the network and then troubleshoot it using the tools available to them. The current best practice is to collect as much information as possible on the network traffic flows so that analysis is quick and easy. Unfortunately, no single method of collecting this information can sufficiently capture the whole endto- end picture. This becomes even more of a hurdle when large, multi-user systems are involved. In order to capture all the necessary information, multiple data sources are required. This paper presents a method for developing a flow analysis tool to effectively collect network flow data from multiple sources and provide that information to engineers in a clear, concise way for analysis. The purpose of this method is to collect enough information to quickly (and automatically) identify poorly performing flows along with the cause of the problem. The method involves the development of a set of database tables that can be populated with flow data from multiple sources, along with an easyto- use, web-based front-end interface to help network engineers access, organize, analyze, and manage all the information.

  3. Numerical Analysis for the Air Flow of Cross Flow Fan

    NASA Astrophysics Data System (ADS)

    Sakai, Hirokazu; Tokushge, Satoshi; Ishikawa, Masatoshi; Ishihara, Takuya

    There are many factors for designing the cross flow fan. Therefore, the performance of cross flow fan is not clear yet. We can analyze the transient flow of a cross flow fan using sliding mesh approach. One of the tasks using Computational Fluid Dynamics (CFD) is a way of modeling for analysis heat exchangers with cross flow fan. These tasks are very important for design. The paper has a modeling of heat exchangers and meshing the fan blades. The next tasks, we focus the ability of cross flow fan when we change the geometry of fan blades.

  4. Flow methods in chiral analysis.

    PubMed

    Trojanowicz, Marek; Kaniewska, Marzena

    2013-11-01

    The methods used for the separation and analytical determination of individual isomers are based on interactions with substances exhibiting optical activity. The currently used methods for the analysis of optically active compounds are primarily high-performance separation methods, such as gas and liquid chromatography using chiral stationary phases or chiral selectors in the mobile phase, and highly efficient electromigration techniques, such as capillary electrophoresis using chiral selectors. Chemical sensors and biosensors may also be designed for the analysis of optically active compounds. As enantiomers of the same compound are characterised by almost identical physico-chemical properties, their differentiation/separation in one-step unit operation in steady-state or dynamic flow systems requires the use of highly effective chiral selectors. Examples of such determinations are reviewed in this paper, based on 105 references. The greatest successes for isomer determination involve immunochemical interactions, enantioselectivity of the enzymatic biocatalytic processes, and interactions with ion-channel receptors or molecularly imprinted polymers. Conducting such processes under dynamic flow conditions may significantly enhance the differences in the kinetics of such processes, leading to greater differences in the signals recorded for enantiomers. Such determinations in flow conditions are effectively performed using surface-plasmon resonance and piezoelectric detections, as well as using common spectroscopic and electrochemical detections.

  5. Maximum entropy analysis of flow networks

    NASA Astrophysics Data System (ADS)

    Niven, Robert K.; Abel, Markus; Schlegel, Michael; Waldrip, Steven H.

    2014-12-01

    This study examines a generalised maximum entropy (MaxEnt) analysis of a flow network, involving flow rates and potential differences on the network, connected by resistance functions. The analysis gives a generic derivation based on an explicit form of the resistance functions. Accounting for the constraints also leads to an extended form of Gibbs' phase rule, applicable to flow networks.

  6. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    NASA Technical Reports Server (NTRS)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  7. Content analysis in information flows

    SciTech Connect

    Grusho, Alexander A.; Grusho, Nick A.; Timonina, Elena E.

    2016-06-08

    The paper deals with architecture of content recognition system. To analyze the problem the stochastic model of content recognition in information flows was built. We proved that under certain conditions it is possible to solve correctly a part of the problem with probability 1, viewing a finite section of the information flow. That means that good architecture consists of two steps. The first step determines correctly certain subsets of contents, while the second step may demand much more time for true decision.

  8. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    SciTech Connect

    Lucas, Dan Kerswell, Rich R.

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2π]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, “Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow,” J. Fluid Mech. 722, 554–595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [“Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst,” J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  9. Robust-mode analysis of hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  10. Analysis Pipeline: Streaming Flow Analysis with Alerting

    DTIC Science & Technology

    2011-01-01

    NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT , TRADEMARK, OR COPYRIGHT INFRINGEMENT. This presentation may be reproduced in...Implementors of products exporting or collecting network flow data with IPFIX will meet at the event to test the interoperability of their products against...Capabilities Finite State Beacon Detection Sensor Outage Detection IPv6 Tunnel Detection Passive FTP Detection Watchlists Flow counts Flow field based

  11. Stream flow and analysis study

    SciTech Connect

    Jackson, D.G.

    1983-11-04

    Lockwood Greene Engineers, Inc. (LGE) was retained by E.I. duPont de Nemours and Co., Inc., Savannah River Plant, Aiken, South Carolina, to conduct on-site flow measurements and sampling of tributaries and outfalls flowing into a portion of Tim`s Branch Creek. Water samples were analyzed for chemical characteristics. This report presents the results of the flow and analytical data collected during the 24 hour monitoring period, October 5 and 6, 1983. Tim`s Branch Creek is a tributary of the Upper Three Runs Creek which in turn is a tributary of the Savannah River. A map outlining the drainage area within the Savannah River Plant is included in this report.

  12. Analysis of Cortical Flow Models In Vivo

    PubMed Central

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  13. Flow analysis of nozzle installations with strong airplane flow interactions

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1982-01-01

    A numerical procedure has been developed to calculate the flow fields resulting from the viscous-inviscid interactions that occur when a strong jet exhaust and aircraft flow field coupling exists. The approach used in the current procedure is to divide the interaction region into zones which are either predominantly viscous or inviscid. The flow in the inviscid zone, which surrounds most of the aircraft, is calculated using an existing linearized potential flow code. The viscous flow zone, which encompasses the jet plume, is modeled using a parabolized Navier-Stokes code. The key feature of the present procedure is the coupling of the zonal solutions such that sufficient information is transferred between the zones to preserve the effects of the interactions. The zonal boundaries overlap with the boundary conditions being the information link between zones. An iteraction scheme iterates the coupled analysis until convergence has been obtained. The procedure has been successfully used for several test cases for which the computed results are presented.

  14. Work Flow Analysis Report Action Tracking

    SciTech Connect

    PETERMANN, M.L.

    1999-12-14

    The Work Flow Analysis Report will be used to facilitate the requirements for implementing the further deployment of the Action Tracking module of Passport. The report consists of workflow integration processes for Action Tracking.

  15. Dimensional analysis of natural debris flows

    NASA Astrophysics Data System (ADS)

    Zhou, Gordon; Ouyang, Chaojun

    2015-04-01

    Debris flows occur when masses of poorly sorted sediment, agitated and saturated with water, surge down slopes in response to gravitational attraction. They are of great concern because they often cause catastrophic disasters due to the long run-out distance and large impact forc-es. Different from rock avalanches and sediment-laden water floods, both solid and fluid phases affected by multiple parameters can influence the motion of debris flows and govern their rheological properties. A dimensional analysis for a systematic study of the governing parameters is presented in this manuscript. Multiple dimensionless numbers with clear physical meanings are critically reviewed. Field data on natural debris flows are available here based on the fifty years' observation and measurement in the Jiangjia Gully, which is located in the Dongchuan City, Yunnan Province of China. The applications of field data with the dimensional analysis for studying natural debris flows are demonstrated. Specific values of dimensionless numbers (e.g., modified Savage Number, Reynolds number, Friction number) for classifying flowing regimes of natural debris flows on the large scales are obtained. Compared to previous physical model tests conducted mostly on small scales, this study shows that the contact friction between particles dominates in natural debris flows. In addition, the solid inertial stress due to particle collisions and the pore fluid viscous shear stress play key roles in governing the dynamic properties of debris flows and the total normal stress acting on the slope surfaces. The channel width as a confinement to the flows can affect the solids discharge per unit width significantly. Furthermore, a dimensionless number related to pore fluid pressure dissipation is found for distinguishing surge flows and continuous flows in field satisfactorily. It indicates that for surge debris flows, the high pore fluid pressures generated in granular body dissipate quite slowly and may

  16. Whole cell quenched flow analysis.

    PubMed

    Chiang, Ya-Yu; Haeri, Sina; Gizewski, Carsten; Stewart, Joanna D; Ehrhard, Peter; Shrimpton, John; Janasek, Dirk; West, Jonathan

    2013-12-03

    This paper describes a microfluidic quenched flow platform for the investigation of ligand-mediated cell surface processes with unprecedented temporal resolution. A roll-slip behavior caused by cell-wall-fluid coupling was documented and acts to minimize the compression and shear stresses experienced by the cell. This feature enables high-velocity (100-400 mm/s) operation without impacting the integrity of the cell membrane. In addition, rotation generates localized convection paths. This cell-driven micromixing effect causes the cell to become rapidly enveloped with ligands to saturate the surface receptors. High-speed imaging of the transport of a Janus particle and fictitious domain numerical simulations were used to predict millisecond-scale biochemical switching times. Dispersion in the incubation channel was characterized by microparticle image velocimetry and minimized by using a horizontal Hele-Shaw velocity profile in combination with vertical hydrodynamic focusing to achieve highly reproducible incubation times (CV = 3.6%). Microfluidic quenched flow was used to investigate the pY1131 autophosphorylation transition in the type I insulin-like growth factor receptor (IGF-1R). This predimerized receptor undergoes autophosphorylation within 100 ms of stimulation. Beyond this demonstration, the extreme temporal resolution can be used to gain new insights into the mechanisms underpinning a tremendous variety of important cell surface events.

  17. LFSTAT - Low-Flow Analysis in R

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor

    2013-04-01

    The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This

  18. SRMAFTE facility checkout model flow field analysis

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.

  19. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  20. Rapid Flow Analysis Studies with Spectroscopic Detectors.

    NASA Astrophysics Data System (ADS)

    Thalib, Amlius

    A rapid flow analysis study based on segmented flow and flow injection principles is described in this thesis. The main objective of this study was to establish the response characteristics in continuous flow analysis systems in order to improve sampling rates with several types of spectroscopic detectors. It was found from flame photometric studies that non-segmented flowing streams are applicable to rapid flow analysis with automatic sample aspiration. Calcium was used as a typical example and determined at sampling rates up to 360 h('-1) with a detection limit of 0.05 mg L(' -1). A rapid flow system is reported using direct aspiration for AAS analysis with both manual injection and automatic aspiration techniques, and found to give sampling rates of up to 600-720 samples h('-1). Speed of analysis was reduced by about 50% when using an external peristaltic pump in the flow system design, due to increased sample dispersion. A novel aspect of a rapid flow injection approach reported with ICPAES detection includes the method of injecting samples via a peristaltic pump with simultaneous computer data processing. Determination of serum cations (Na, K, Ca, Mg and Fe) was demonstrated as an example of an application of the technique at sampling rates of 240 h('-1). Precision and detection limits for 13 elements in a single standard solution are reported. The use of automated aspiration sampling is also reported in this method for comparison. Further studies on flow characteristics were carried out by a combination of the rapid flow system with very short sampling times as low as 2 seconds using UV-visible spectrophotometric detection. Analysis of human blood serum samples was used as an example where total protein and inorganic phosphate were determined at sampling rates of 240 h('-1) and 360 h('-1) respectively. The novel aspects of the results from these studies include the very rapid sample throughput developed with simple and inexpensive experimental approaches in

  1. Imaging flow cytometry for phytoplankton analysis.

    PubMed

    Dashkova, Veronika; Malashenkov, Dmitry; Poulton, Nicole; Vorobjev, Ivan; Barteneva, Natasha S

    2017-01-01

    This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments.

  2. Flow Cytometric Analysis of Extracellular Vesicles.

    PubMed

    Morales-Kastresana, Aizea; Jones, Jennifer C

    2017-01-01

    To analyze EVs with conventional flow cytometers, most researchers will find it necessary to bind EVs to beads that are large enough to be individually resolved on the flow cytometer available in their lab or facility. Although high-resolution flow cytometers are available and are being used for EV analysis, the use of these instruments for studying EVs requires careful use and validation by experienced small-particle flow cytometrists, beyond the scope of this chapter. Shown here is a method for using streptavidin-coated beads to capture biotinylated antibodies, and stain the bead-bound EVs with directly conjugated antibodies. We find that this method is a useful tool not only on its own, without further high resolution flow cytometric analysis, but also as a means for optimizing staining methods and testing new labels for later use in high resolution, single EV flow cytometric studies. The end of the chapter includes sphere-packing calculations to quantify aspects of EV- and bead-surface geometry, as a reference for use as readers of this chapter optimize their own flow cytometry assays with EVs.

  3. Numerical Analysis Of Flows With FIDAP

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.

    1990-01-01

    Report presents an evaluation of accuracy of Fluid Dynamics Package (FIDAP) computer program. Finite-element code for analysis of flows of incompressible fluids and transfers of heat in multidimensional domains. Includes both available methods for treatment of spurious numerical coupling between simulated velocity and simulated pressure; namely, penalty method and mixed-interpolation method with variable choices of interpolation polynomials for velocity and pressure. Streamwise upwind (STU) method included as option for flows dominated by convection.

  4. Recent advances in flow injection analysis.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila

    2016-04-07

    A dynamic development of methodologies of analytical flow injection measurements during four decades since their invention has reinforced the solid position of flow analysis in the arsenal of techniques and instrumentation of contemporary chemical analysis. With the number of published scientific papers exceeding 20,000, and advanced instrumentation available for environmental, food, and pharmaceutical analysis, flow analysis is well established as an extremely vital field of modern flow chemistry, which is developed simultaneously with methods of chemical synthesis carried out under flow conditions. This review work is based on almost 300 original papers published mostly in the last decade, with special emphasis put on presenting novel achievements from the most recent 2-3 years in order to indicate current development trends of this methodology. Besides the evolution of the design of whole measuring systems, and including especially new applications of various detections methods, several aspects of implications of progress in nanotechnology, and miniaturization of measuring systems for application in different field of modern chemical analysis are also discussed.

  5. LV software for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The NASA Lewis Research Center (LeRC) maintains a leadership position in research into advanced aerospace propulsion systems. For the next generation of aircraft, engine designs continue to involve complex, high-speed flows. Performing the detailed flow diagnostics to properly evaluate these designs requires advanced instrumentation to probe these highly turbulent flows. The hostile flow environment often requires nonintrusive measurement techniques such as the laser velocimeter (LV). Since the LV is a proven instrument for nonintrusive flow measurement, it can provide quantitative velocity data with minimal interference to the flow. Based on anticipated flow conditions, laser velocimeter systems were procured from TSI, Inc. The initial system utilized counter processor technology, but later procurements this past year include a more advanced, correlator-based processor, which significantly improves the overall LV performance. To meet the needs of advanced research into propulsion, this instrument must be integrated into an existing VAX/VMS computer system for data acquisition, processing, and presentation. The work done under this grant before this period concentrated on developing the software required to setup and acquire data from the TSI MI-990 multichannel interface, and the RMR 1989 rotating machinery resolver. With the basis established for controlling the operation of the LV system, software development this past year shifted in emphasis from instrumentation control and data acquisition to data analysis and presentation. The progress of the program is reported.

  6. Solenoid pumps for flow injection analysis.

    PubMed

    Weeks, D A; Johnson, K S

    1996-08-01

    Methods employing flow injection analysis (FIA), particularly for in situ seawater techniques, would benefit from reduction in pump size and power requirement, longer maintenance intervals, and the ability to incorporate microprocessor control of each reagent and sample flow stream. In this work, the peristaltic pump of a conventional FIA system was replaced by three solenoid-driven diaphragm pumps with integral Viton check valves, and the system was tested by performing the simple nitrite analysis, which has well-defined FIA performance characteristics. Sixty injections per hour were possible with flow rates of 0.5 mL/min for reagents and sample. The coefficient of variation was 1% for 10 μM NO(2)(-) concentrations, and the detection limit was less than 0.1 μM NO(2)(-). These values match the reported performance for this method using peristaltic pumps.

  7. Flow Analysis and Sorting of Plant Chromosomes.

    PubMed

    Vrána, Jan; Cápal, Petr; Šimková, Hana; Karafiátová, Miroslava; Čížková, Jana; Doležel, Jaroslav

    2016-10-10

    Analysis and sorting of plant chromosomes (plant flow cytogenetics) is a special application of flow cytometry in plant genomics and its success depends critically on sample quality. This unit describes the methodology in a stepwise manner, starting with the induction of cell cycle synchrony and accumulation of dividing cells in mitotic metaphase, and continues with the preparation of suspensions of intact mitotic chromosomes, flow analysis and sorting of chromosomes, and finally processing of the sorted chromosomes. Each step of the protocol is described in detail as some procedures have not been used widely. Supporting histograms are presented as well as hints on dealing with plant material; the utility of sorted chromosomes for plant genomics is also discussed. © 2016 by John Wiley & Sons, Inc.

  8. Equilibria with incompressible flows from symmetry analysis

    SciTech Connect

    Kuiroukidis, Ap E-mail: gthroum@cc.uoi.gr; Throumoulopoulos, G. N. E-mail: gthroum@cc.uoi.gr

    2015-08-15

    We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.

  9. Statistical analysis of extreme river flows

    NASA Astrophysics Data System (ADS)

    Mateus, Ayana; Caeiro, Frederico; Gomes, Dora Prata; Sequeira, Inês J.

    2016-12-01

    Floods are recurrent events that can have a catastrophic impact. In this work we are interested in the analysis of a data set of gauged daily flows from the Whiteadder Water river, Scotland. Using statistic techniques based on extreme value theory, we estimate several extreme value parameters, including extreme quantiles and return periods of high levels.

  10. Flood Hydrograph and Peak Flow Frequency Analysis.

    DTIC Science & Technology

    1979-03-01

    such as length and elevation change of main channel, soil characteristics, and land cover. The x -mlnute rainfall intensity for the desired frequency is...have developed their own rainfall frequency analysis techniques (22) and link these techniques directly with their watershed models. These techniques as...study tools ranging front water quality simulation to unsteady flow dam break flood routings. The technical analysis tools all link together with a

  11. Information flow analysis of interactome networks.

    PubMed

    Missiuro, Patrycja Vasilyev; Liu, Kesheng; Zou, Lihua; Ross, Brian C; Zhao, Guoyan; Liu, Jun S; Ge, Hui

    2009-04-01

    Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we combine gene expression

  12. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    NASA Astrophysics Data System (ADS)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  13. Automated Protein Assay Using Flow Injection Analysis

    NASA Astrophysics Data System (ADS)

    Wolfe, Carrie A. C.; Oates, Matthew R.; Hage, David S.

    1998-08-01

    The technique of flow injection analysis (FIA) is a common instrumental method used in detecting a variety of chemical and biological agents. This paper describes an undergraduate laboratory that uses FIA to perform a bicinchoninic acid (BCA) colorimetric assay for quantitating protein samples. The method requires less than 2 min per sample injection and gives a response over a broad range of protein concentrations. This method can be used in instrumental analysis labs to illustrate the principles and use of FIA, or as a means for introducing students to common methods employed in the analysis of biological agents.

  14. The SRB nozzle erosion related flow analysis

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1983-01-01

    A study was performed to define the solid rocket booster (SRB) nozzle throat flow field, and to investigate one possible mechanism for the severe erosion which occurred on a recent flight. The flow field in the vicinity of the eroded area was not found to be exceptional, and the presence of a notch or scored area near the imbedded region nose did not appear to produce sufficient flow fluctuations to exacerbate the erosion characteristics of the throat liner. An interesting fluctuating mechanism was found in the imbedded cavity, but that mechanism (while of possible importance for erosion of the seal region) did not seem to adversely affect the region of concern. On the basis of this analysis, the conclusion can be drawn that the anomalous erosion did not result from a single mechanical defect (pit, or gouge) since the flow fluctuations which result seem insufficient to induce a repetitive pattern downstream. It further appears that the emission pattern exhibited did not result from a steady flow phenomena in the throat region. This does not rule out acoustic phenomena or severe start-up transients.

  15. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  16. Dual throat thruster cold flow analysis

    NASA Technical Reports Server (NTRS)

    Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.

    1978-01-01

    The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.

  17. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    NASA Astrophysics Data System (ADS)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  18. Residual ozone determination by flow injection analysis

    SciTech Connect

    Straka, M.R.; Pacey, G.E.; Gordon, G.

    1984-09-01

    It has been proposed that ozone be used to replace free chlorine for the disinfection of drinking water and waste water. For the use of ozone in this capacity, it would be necessary to have a fast accurate and precise method to analyze for the presence of residuals. An automated method for ozone determination based on the indigo reagent method is presented. This method is based on the advantages of flow injection analysis (FIA) techniques. 19 references, 3 tables, 2 figures.

  19. Structural power flow analysis using finite element

    NASA Astrophysics Data System (ADS)

    Buchmann, Patrick; Cuschieri, Joseph M.; Yong, Yan

    In summary, this paper presents power flow results for a T-shaped beam structure using either FEA or MPF analysis. The FEA and the MPF results show good agreement. Using either of the two models (FE or MPF), structural intensity maps at given frequencies can be generated. The type of results that would be obtained in this case would be similar to those that were generated by Nefske for a simply supported beam or by Hambric for a cantilevered plate.

  20. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  1. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  2. Dynamic feature analysis in bidirectional pedestrian flows

    NASA Astrophysics Data System (ADS)

    Xiao-Xia, Yang; Winnie, Daamen; Serge, Paul Hoogendoorn; Hai-Rong, Dong; Xiu-Ming, Yao

    2016-02-01

    Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do. Project supported jointly by the National Natural Science Foundation of China (Grant No. 61233001) and the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007).

  3. Flow simulation and analysis of high-power flow batteries

    NASA Astrophysics Data System (ADS)

    Knudsen, E.; Albertus, P.; Cho, K. T.; Weber, A. Z.; Kojic, A.

    2015-12-01

    The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm2 to 400 cm2, are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation.

  4. Numerical flow analysis of hydro power stations

    NASA Astrophysics Data System (ADS)

    Ostermann, Lars; Seidel, Christian

    2017-07-01

    For the hydraulic engineering and design of hydro power stations and their hydraulic optimisation, mainly experimental studies of the physical submodel or of the full model at the hydraulics laboratory are carried out. Partially, the flow analysis is done by means of computational fluid dynamics based on 2D and 3D methods and is a useful supplement to experimental studies. For the optimisation of hydro power stations, fast numerical methods would be appropriate to study the influence of a wide field of optimisation parameters and flow states. Among the 2D methods, especially the methods based on the shallow water equations are suitable for this field of application, since a lot of experience verified by in-situ measurements exists because of the widely used application of this method for the problems in hydraulic engineering. As necessary, a 3D model may supplement subsequently the optimisation of the hydro power station. The quality of the results of the 2D method for the optimisation of hydro power plants is investigated by means of the results of the optimisation of the hydraulic dividing pier compared to the results of the 3D flow analysis.

  5. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  6. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The software for configuring a Laser Velocimeter (LV) counter processor system was developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system was developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  7. Stability Analysis of Flow Past a Wingtip

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2015-11-01

    Trailing vortices are commonly associated with diminished aircraft performance by increasing induced drag and producing a wake hazard on following aircraft. Previously, stability analyses have been performed on the Batchelor vortex (Heaton et al., 2009), which models a far field axisymmetric vortex, and airfoil wakes (Woodley & Peake, 1997). Both analyses have shown various instabilities present in these far field vortex-wake flows. This complicates the design of control devices by excluding consideration of near field interactions between the wake and vortex shed from the wing. In this study, we perform temporal and spatial bi-global stability analyses on the near field wake of the flow field behind a NACA0012 wing computed from direct numerical simulation at a chord Reynolds number of 1000. The results identify multiple instabilities including a vortex instability, wake instability, and mixed instability that includes interaction between the wake and vortex. As these modes exhibit wave packets, we perform a wave packet analysis (Obrist & Schmid, 2010), which enables the prediction of spatial mode structures at low computational cost. Furthermore, a bi-global parabolized stability analysis is performed, highlighting disparities between the parallel and parabolized analysis. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.

  8. Numerical Flow Analysis of Planing Boats

    NASA Astrophysics Data System (ADS)

    Brucker, Kyle; O'Shea, Thomas; Dommermuth, Douglas; Fu, Thomas

    2012-11-01

    The focus of this presentation is to describe the recent effort to validate the computer code Numerical Flow Analysis (NFA) for the prediction of hydrodynamic forces and moments associated with deep-V planing craft. This detailed validation effort was composed of two parts. The first part focuses on assessing NFA's ability to predict pressures on the surface of a 10 degree deadrise wedge during impact with an undisturbed free surface. Detailed comparisons to pressure gauges are presented for two different drop heights, 6 inches and 10 inches. Results show NFA accurately predicted pressures during the slamming event. The second part of the validation study focused on assessing how well NFA was able to accurately model the complex multiphase flow associated with high Froude number flows, specifically the formation of the spray sheet. NFA simulations of a planing hull fixed at various angles of roll (0 degrees, 10 degrees, 20 degrees, and 30 degrees) were compared to experiments from Judge (2012). Comparisons to underwater photographs illustrate NFA's ability to model the formation of the spray sheet and the free surface turbulence associated with planing boat hydrodynamics.

  9. Wave-Plan Analysis of Unsteady Flow

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Lightner, Charlene; Wood, Don J.

    1965-01-01

    An analytical method for computing unsteady flow conditions in liquid-filled flow systems is developed. The method which is called the wave plan incorporates distributed parameter and nonlinear effects including the effects of viscous resistance. The wave plan is essentially a solution synthesized from the effects of incremental step pressure pulses. The pressure pulses are generated because of incremental flow-rate changes that originate in a hydraulic system from a variety of sources, including the mechanical motion of the system structure. The pressure pulses propagate throughout the system at sonic velocity and are partially transmitted and reflected at each discontinuity. The velocity change caused by each pressure pulse is obtained from the Joukowski relation. Pressure and velocity time histories at any point in the system are obtained by a timewise summation of the contributions of the incremental pressure pulses passing that point. The analysis is presented in a form general enough to be applied to a variety of hydraulic systems. To illustrate the application of the method to a specific system, the response of a straight hydraulic line to a sinusoidal orifice-area variation of an upstream valve is computed. Both a constant-cross- section line and a tapered line are analyzed in the examples, and various nonlinear effects evaluated. Comparisons are carried out with experimental data obtained for the constant-diameter line and good agreement is shown to exist.

  10. A study of grout flow pattern analysis

    SciTech Connect

    Lee, S. Y.; Hyun, S.

    2013-01-10

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

  11. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  12. Bulk-Flow Analysis, part A

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1993-01-01

    The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.

  13. Unsaturated Zone Flow Patterns and Analysis

    SciTech Connect

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be reduced and

  14. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  15. Computer program for compressible flow network analysis

    NASA Technical Reports Server (NTRS)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  16. Energy Flow Analysis of Coupled Beams

    NASA Astrophysics Data System (ADS)

    Cho, P. E.; Bernhard, R. J.

    1998-04-01

    Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged vibrational response of built-up structures at high audible frequencies. The procedure is based on two developments; first, the derivation of the partial differential equations that govern the propagation of energy-related quantities in simple structural elements such as rods, beams, plates, and acoustic cavities; and second, the derivation of coupling relationships in terms of energy-related quantities that describe the transfer of energy for various joints (e.g., beam-to-beam, rod-to-beam, plate-to-plate, structure-to-acoustic field coupling). In this investigation, the energy flow coupling relationships at these joints for rods and beams are derived. EFA is used to predict the frequency-averaged vibrational response of a frame structure with a three-dimensional joint, where four wave types propagate in the structure. The predicted results of EFA are shown to be a good approximation of the frequency-averaged “exact” energetics, which are computed from classical displacement solutions.

  17. Flow structure and stability analysis for back-step flow

    NASA Astrophysics Data System (ADS)

    Mihaiescu, Adrian; Wesfreid, Jose Eduardo

    2005-11-01

    The structure and stability of the flow over a backward-facing step are studied using direct numerical simulation. Two-dimensional and three-dimensional simulations are conducted at a Reynolds number between 50 and 600. The reattachment length and velocity profiles are in agreement with the experimental and numerical results reported by J.-F. Beaudoin et al.(2003). The Rayleigh discriminant and the Gortler number are calculated for the stability study. Present results identify the same regions of instability as previously found by the two-dimensional simulations of Beaudoin et al., but the values of both Rayleigh discriminant and Gortler number are significantly different. Two Eckman structures close to the lateral walls, followed inside the flow domain by two Gortler structures, located downstream the step are identified. It is shown that other Gortler structures appear when a spanwise periodic perturbation of the inflow velocity is imposed. However, these longitudinal structures depend on the inflow conditions.

  18. Methodologies and techniques for analysis of network flow data

    SciTech Connect

    Bobyshev, A.; Grigoriev, M.; /Fermilab

    2004-12-01

    Network flow data gathered at the border routers and core switches is used at Fermilab for statistical analysis of traffic patterns, passive network monitoring, and estimation of network performance characteristics. Flow data is also a critical tool in the investigation of computer security incidents. Development and enhancement of flow based tools is an on-going effort. This paper describes the most recent developments in flow analysis at Fermilab.

  19. Quantitative transverse flow assessment using OCT speckle decorrelation analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Huang, Yong; Ramella-Roman, Jessica C.; Kang, Jin U.

    2013-03-01

    In this study, we demonstrate the use of inter-Ascan speckle decorrelation analysis of optical coherence tomography (OCT) to assess fluid flow. This method allows quantitative measurement of fluid flow in a plane normal to the scanning beam. To validate this method, OCT images were obtained from a micro fluid channel with bovine milk flowing at different speeds. We also imaged a blood vessel from in vivo animal models and performed speckle analysis to asses blood flow.

  20. Data-Flow Based Model Analysis

    NASA Technical Reports Server (NTRS)

    Saad, Christian; Bauer, Bernhard

    2010-01-01

    The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application domain with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become an integral part of many areas in computer science. While the definition of modeling languages through the use of meta models, e.g. in Unified Modeling Language (UML), is a well-understood process, their validation and the extraction of behavioral information is still a challenge. In this paper we present a novel approach for dynamic model analysis along with several fields of application. Examining the propagation of information along the edges and nodes of the model graph allows to extend and simplify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an "abstract interpretation"-like analysis method for the modeling domain.

  1. Green chemistry and the evolution of flow analysis. A review.

    PubMed

    Melchert, Wanessa R; Reis, Boaventura F; Rocha, Fábio R P

    2012-02-10

    Flow analysis has achieved its majority as a well-established tool to solve analytical problems. Evolution of flow-based approaches has been analyzed by diverse points of view, including historical aspects, the commutation concept and the impact on analytical methodologies. In this overview, the evolution of flow analysis towards green analytical chemistry is demonstrated by comparing classical procedures implemented with different flow approaches. The potential to minimize reagent consumption and waste generation and the ability to implement processes unreliable in batch to replace toxic chemicals are also emphasized. Successful applications of greener approaches in flow analysis are also discussed, focusing on the last 10 years.

  2. Numerical Analysis of Granular Flows in a Silo Bed on Flow Regime Characterization

    PubMed Central

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  3. Theoretical analysis of tsunami generation by pyroclastic flows

    USGS Publications Warehouse

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  4. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  5. Energy flow analysis of coupled structures

    NASA Astrophysics Data System (ADS)

    Cho, Phillip Eung-Ho

    1993-01-01

    Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged vibrational response of built-up structures at high audible frequencies. The procedure is based on two developments; firstly, the derivation of the partial differential equations that govern the propagation of energy-related quantities in simple structural elements such as rods, beams, plates, and acoustic cavities; secondly, the derivation of coupling relationships in terms of energy-related quantities that describe the transfer of energy for various joints (e.g., beam-to-beam, plate-to-plate, and structure-to acoustic field couplings). In this investigation, EFA is used to predict the vibrational response of various coupled structures. In the process of predicting the vibrational response of the coupled structures, the energy flow coupling relationships at the joints of these structures are derived. In addition, the finite element formulation of the governing energy equations are developed. Because the energy density is discontinuous at the joint, a special global assembly procedure is developed to assemble the finite element matrix equations into global matrix equations. The global matrix assembly procedure is predicated on the development of joint element matrix equations using energy flow coupling relationships for various structural joints. The results predicted by EFA for a frame structure with a three-dimensional joint, where four wave types propagate in the structure, are shown to be a reasonable approximation of the frequency-averaged 'exact' energetics, which are computed from classical displacement solutions. The accuracy of the results predicted by EFA increased with high mode count and modal overlap factor or high non-dimensional wavenumber band and non-dimensional damped wavenumber band in the frequency band of interest. An experimental investigation of vibrational response of a light truck frame structure was performed to verify the results of EFA when applied

  6. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    DTIC Science & Technology

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  7. Analysis of Pulsed Flow Modification Alternatives, Lower Missouri River, 2005

    USGS Publications Warehouse

    Jacobson, Robert B.

    2008-01-01

    The graphical, tabular, and statistical data presented in this report resulted from analysis of alternative flow regime designs considered by a group of Missouri River managers, stakeholders, and scientists during the summer of 2005. This plenary group was charged with designing a flow regime with increased spring flow pulses to support reproduction and survival of the endangered pallid sturgeon. Environmental flow components extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes. The analysis is based on modeled flow releases from Gavins Point Dam (near Yankton, South Dakota) for nine design alternatives and two reference scenarios; the reference scenarios are the run-of-the-river and the water-control plan implemented in 2004. The alternative designs were developed by the plenary group with the goal of providing pulsed spring flows, while retaining traditional social and economic uses of the river.

  8. CFD analysis of laminar oscillating flows

    SciTech Connect

    Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.

    2001-01-01

    This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

  9. Gas flow analysis in melting furnaces

    SciTech Connect

    Kiss, L.I.; Bui, R.T.; Charette, A.; Bourgeois, T.

    1998-12-01

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects of the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.

  10. Effects of momentum conservation on the analysis of anisotropic flow

    SciTech Connect

    Borghini, N.; Dinh, P.M.; Ollitrault, J.-Y.; Poskanzer, A.M.; Voloshin, S.A.

    2002-02-05

    We present a general method for taking into account correlations due to momentum conservation in the analysis of anisotropic flow. Momentum conservation mostly affects the first harmonic in azimuthal distributions, i.e., directed flow. It also modifies higher harmonics, for instance elliptic flow, when they are measured with respect to a first harmonic event plane such as one determined with the standard transverse momentum method. Our method is illustrated by application to NA49 data on pion directed flow.

  11. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.

  12. Analysis of seawater flow through optical fiber

    NASA Astrophysics Data System (ADS)

    Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia

    2015-04-01

    The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem

  13. Effective methods for cash flow analysis.

    PubMed

    Sylvestre, J; Urbancic, F R

    1994-07-01

    This article discusses techniques that healthcare financial managers can use to interpret and evaluate information from the statement of cash flows for more effective financial decision-making. The use of these techniques as a basis for systematically planning and controlling cash flows has the potential to benefit all healthcare organizations.

  14. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  15. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  16. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies.

    PubMed

    Ruzicka, Jaromir Jarda

    2016-09-01

    Automation of reagent based assays, also known as Flow Analysis, is based on sample processing, in which a sample flows towards and through a detector for monitoring of its components. The Achilles heel of this methodology is that the majority of FA techniques use constant continuous forward flow to transport the sample - an approach which continually consumes reagents and generates chemical waste. Therefore the purpose of this report is to highlight recent developments of flow programming that not only save reagents, but also lead by means of advanced sample processing to selective and sensitive assays based on stop flow measurement. Flow programming combined with a novel approach to data harvesting yields a novel approach to single standard calibration, and avoids interference caused by refractive index. Finally, flow programming is useful for sample preparation, such as rapid, extensive sample dilution. The principles are illustrated by selected references to an available online tutorial http://www.flowinjectiontutorial,com/.

  17. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  18. Interval arithmetic in power flow analysis

    SciTech Connect

    Wang, Z.; Alvarado, F.L. )

    1992-08-01

    The power flow is the fundamental tool for the study of power systems. The data for this problem are subject to uncertainty. This paper uses interval arithmetic to solve the power flow problem. Interval arithmetic takes into consideration the uncertainty of the nodal information, and is able to provide strict bounds for the solution to the problem: all possible solutions are included within the bounds given by interval arithmetic. Results are compared with those obtainable by Monte Carlo simulations and by the use of stochastic power flows.

  19. A linearized Euler analysis of unsteady transonic flows in turbomachinery

    SciTech Connect

    Hall, K.C.; Clark, W.S.; Lorence, C.B. . Dept. of Mechanical Engineering and Materials Science)

    1994-07-01

    A computational method for efficiently predicting unsteady transonic flows in two- and three-dimensional cascades is presented. The unsteady flow is modeled using a linearized Euler analysis whereby the unsteady flow field is decomposed into a nonlinear mean flow plus a linear harmonically varying unsteady flow. The equations that govern the perturbation flow, the linearized Euler equations, are linear variable coefficient equations. For transonic flows containing shocks, shock capturing is used to model the shock impulse (the unsteady load due to the harmonic motion of the shock). A conservative Lax-Wendroff scheme is used to obtain a set of linearized finite volume equations that describe the harmonic small disturbance behavior of the flow. Conditions under which such a discretization will correctly predict the shock impulse are investigated. Computational results are presented that demonstrate the accuracy and efficiency of the present method as well as the essential role of unsteady shock impulse loads on the flutter stability of fans.

  20. Model Reduction for Flow Analysis and Control

    NASA Astrophysics Data System (ADS)

    Rowley, Clarence W.; Dawson, Scott T. M.

    2017-01-01

    Advances in experimental techniques and the ever-increasing fidelity of numerical simulations have led to an abundance of data describing fluid flows. This review discusses a range of techniques for analyzing such data, with the aim of extracting simplified models that capture the essential features of these flows, in order to gain insight into the flow physics, and potentially identify mechanisms for controlling these flows. We review well-developed techniques, such as proper orthogonal decomposition and Galerkin projection, and discuss more recent techniques developed for linear systems, such as balanced truncation and dynamic mode decomposition (DMD). We then discuss some of the methods available for nonlinear systems, with particular attention to the Koopman operator, an infinite-dimensional linear operator that completely characterizes the dynamics of a nonlinear system and provides an extension of DMD to nonlinear systems.

  1. Multimodel Simulation of Water Flow: Uncertainty Analysis

    USDA-ARS?s Scientific Manuscript database

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at the field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic pr...

  2. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  3. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  4. Three-dimensional analysis of partially open butterfly valve flows

    SciTech Connect

    Huang, C.; Kim, R.H.

    1996-09-01

    A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.

  5. Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis.

    PubMed

    Boyajian, R A; Schwend, R B; Wolfe, M M; Bickerton, R E; Otis, S M

    1995-01-01

    Ultrasound-derived volumetric flow analysis may be useful in answering questions of basic physiological interest in the cerebrovascular circulation. Using this technique, the authors have sought to describe quantitatively the complete concurrent flow relations among all four arteries supplying the brain. The aim of this study of normal subjects was to determine the relative flow contributions of the anterior (internal carotid arteries) and posterior (vertebral arteries) cerebral circulation. Comparisons between the observed and theoretically expected anterior and posterior flow distribution would provide an opportunity to assess traditional rheological conceptions in vivo. Pulsed color Doppler ultrasonography was used to measure mean flow rates in the internal carotid and vertebral arteries in 21 normal adults. The anterior circulation (internal carotid arteries bilaterally) carried 82% of the brain's blood supply and comprised 67% of the total vascular cross-sectional area. These values demonstrate precise concordance between observations in vivo and the theoretically derived (Hagen-Poiseuille) expected flow distribution. These cerebrovascular findings support the traditional conception of macroscopic blood flow. Further studies using ultrasound-derived volumetric analysis of the brain's arterial flow relations may illuminate the vascular pathophysiology underlying aging, cerebral ischemia, and dementias.

  6. Statistical Distribution of Inflation on Lava Flows: Analysis of Flow Surfaces on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Glazel, L. S.; Anderson, S. W.; Stofan, E. R.; Baloga, S.

    2003-01-01

    The surface morphology of a lava flow results from processes that take place during the emplacement of the flow. Certain types of features, such as tumuli, lava rises and lava rise pits, are indicators of flow inflation or endogenous growth of a lava flow. Tumuli in particular have been identified as possible indicators of tube location, indicating that their distribution on the surface of a lava flow is a junction of the internal pathways of lava present during flow emplacement. However, the distribution of tumuli on lava flows has not been examined in a statistically thorough manner. In order to more rigorously examine the distribution of tumuli on a lava flow, we examined a discrete flow lobe with numerous lava rises and tumuli on the 1969 - 1974 Mauna Ulu flow at Kilauea, Hawaii. The lobe is located in the distal portion of the flow below Holei Pali, which is characterized by hummocky pahoehoe flows emplaced from tubes. We chose this flow due to its discrete nature allowing complete mapping of surface morphologies, well-defined boundaries, well-constrained emplacement parameters, and known flow thicknesses. In addition, tube locations for this Mauna Ulu flow were mapped by Holcomb (1976) during flow emplacement. We also examine the distribution of tumuli on the distal portion of the hummocky Thrainsskjoldur flow field provided by Rossi and Gudmundsson (1996). Analysis of the Mauna Ulu and Thrainsskjoldur flow lobes and the availability of high-resolution MOC images motivated us to look for possible tumuli-dominated flow lobes on the surface of Mars. We identified a MOC image of a lava flow south of Elysium Mons with features morphologically similar to tumuli. The flow is characterized by raised elliptical to circular mounds, some with axial cracks, that are similar in size to the tumuli measured on Earth. One potential avenue of determining whether they are tumuli is to look at the spatial distribution to see if any patterns similar to those of tumuli

  7. Mechanical analysis of a cross flow filter

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Attaar, M.H.; McNerney, K.R.

    1992-12-01

    Material properties have also been generated at the Argonne National Laboratories which detail the fracture toughness, Weibull modulus, and critical flaw size for a specifically fabricated lot of P-100A alumina/mullite cross flow filters.(Singh, 1990) The critical flaw size within the P-100A matrix was estimated to be {approximately}500 {mu},m which includes both large interconnected pores, as well as potentially debonded areas along the mid-rib or gas channel seams. Critical flaws are generally considered as potential failure initiation sites within the ceramic matrix. In addition maximum filter element stress levels induced by the process system have been estimated at ANL through the use of finite element computer analyses. These efforts project that the highest stresses result within the flange region of the cross flow filter. As a result of these projections, efforts at Coors Ceramics were directed to improving the overall strength of the alumina/mullite material which is used for cross flow filter fabrication. The results of the efforts at Coors Ceramics provide a significant improvement in the hot strength of the P-100A alumina/mullite filter matrix. Westinghouse assessed the existing nondestructive evaluation (NDE) techniques in terms of identifying methods for detecting critical flaws within the cross flow filter body. To date viable, cost effective methods for detecting critical flaws within the P-100A alumina/mullite matrix, or along the mid-rib bonds or gas channel seams in the full-scale, porous ceramic cross flow filter element are not readily available. As an alternate approach, Westinghouse focused its attention on developing NDE techniques as inspection methods for evaluating the extent of bonding along the mid-rib bonds and gas channel seams which results during the various fabrication stages of the cross flow filter element.

  8. Mechanical analysis of a cross flow filter

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Attaar, M.H.; McNerney, K.R.

    1992-01-01

    Material properties have also been generated at the Argonne National Laboratories which detail the fracture toughness, Weibull modulus, and critical flaw size for a specifically fabricated lot of P-100A alumina/mullite cross flow filters.(Singh, 1990) The critical flaw size within the P-100A matrix was estimated to be [approximately]500 [mu],m which includes both large interconnected pores, as well as potentially debonded areas along the mid-rib or gas channel seams. Critical flaws are generally considered as potential failure initiation sites within the ceramic matrix. In addition maximum filter element stress levels induced by the process system have been estimated at ANL through the use of finite element computer analyses. These efforts project that the highest stresses result within the flange region of the cross flow filter. As a result of these projections, efforts at Coors Ceramics were directed to improving the overall strength of the alumina/mullite material which is used for cross flow filter fabrication. The results of the efforts at Coors Ceramics provide a significant improvement in the hot strength of the P-100A alumina/mullite filter matrix. Westinghouse assessed the existing nondestructive evaluation (NDE) techniques in terms of identifying methods for detecting critical flaws within the cross flow filter body. To date viable, cost effective methods for detecting critical flaws within the P-100A alumina/mullite matrix, or along the mid-rib bonds or gas channel seams in the full-scale, porous ceramic cross flow filter element are not readily available. As an alternate approach, Westinghouse focused its attention on developing NDE techniques as inspection methods for evaluating the extent of bonding along the mid-rib bonds and gas channel seams which results during the various fabrication stages of the cross flow filter element.

  9. Through flow analysis of pumps and fans

    NASA Astrophysics Data System (ADS)

    Neal, A. N.

    1980-08-01

    Incompressible through flow calculations in axial, mixed and centrifugal flow pumps and fans are described. An iterative scheme is used. A simple blade to blade model is applied on the surfaces of revolution defined by the meridional streamlines. This defines the fluid properties and the mean stream surface (S2 surface) for the next meridional solution. A computer program is available allowing the method to be applied for design purposes. APL is used for input and output and FORTRAN IV for computation. A typical calculation requires 30 sec of Univac 1100 time.

  10. Chromosomes in the flow to simplify genome analysis.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Safář, Jan; Bartoš, Jan; Kubaláková, Marie; Simková, Hana

    2012-08-01

    Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.

  11. Multifractal Analysis for the Teichmüller Flow

    NASA Astrophysics Data System (ADS)

    Mesón, Alejandro M.; Vericat, Fernando

    2012-03-01

    We present a multifractal description for Teichmüller flows. A key ingredient to do this is the Rauzy-Veech-Zorich reduction theory, which allows to treat the problem in the setting of suspension flows over subshifts. To perform the multifractal analysis we implement a thermodynamic formalism for suspension flows over countable alphabet subshifts a bit different from that developed by Barreira and Iommi.

  12. Micro fibre optic flow checker for the medical analysis application.

    PubMed

    Wang, Danping

    2007-01-01

    Two micro fibre optic flow checkers are presented in this paper. They are used for a medical analysis to control a solvent flow up to 1microl/min resolution. A fibre optic sensor as well as a hydraulic system are the principle components of these flow checkers. This paper describes the principle and the experiment setup. It gives the linearity, the repeatability and the stability results.

  13. Partially Ventilated Transom Flow Elevations-Unsteady Analysis

    DTIC Science & Technology

    2016-06-30

    wave elevations were measured at 24 different positions within the towing tank.. High definition video was used to capture the flow elevations for a...Transom flow wave elevations between the fully wetted and fully separated regimes are measured in waves and compared with the steady case for two different...reports for ONR Grant N00014-14-1-0606 entitled "Partially Ventilated Transom Flow Elevations -Unsteady Analysis." Please contact me with any

  14. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  15. An Aerodynamic Analysis of a Mixed Flow Turbine

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Civinskas, Kestutis C.

    1994-01-01

    The aerodynamic performance of a high-work Mixed Flow Turbine (MFT) is computed and compared with experimental data. A three dimensional (3-D) viscous analysis is applied to the single stage MFT geometry with a relatively long upstream transition duct. Predicted vane surface static pressures and circumferentially averaged spanwise quantities at stator and rotor exits agree favorably with data. Compared to the results of axisymmetric flow analysis from design intent, the 3-D computation agrees much better especially in the endwall regions where throughflow prediction fails to assess the loss mechanism properly. Potential sources of performance loss such as tip leakage and secondary flows are also properly captured by the analysis.

  16. A theoretical analysis of vertical flow equilibrium

    SciTech Connect

    Yortsos, Y.C.

    1992-01-01

    The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.

  17. A theoretical analysis of vertical flow equilibrium

    SciTech Connect

    Yortsos, Y.C.

    1992-01-01

    The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.

  18. Atlas-based analysis of 4D flow CMR: automated vessel segmentation and flow quantification.

    PubMed

    Bustamante, Mariana; Petersson, Sven; Eriksson, Jonatan; Alehagen, Urban; Dyverfeldt, Petter; Carlhäll, Carl-Johan; Ebbers, Tino

    2015-10-05

    Flow volume quantification in the great thoracic vessels is used in the assessment of several cardiovascular diseases. Clinically, it is often based on semi-automatic segmentation of a vessel throughout the cardiac cycle in 2D cine phase-contrast Cardiovascular Magnetic Resonance (CMR) images. Three-dimensional (3D), time-resolved phase-contrast CMR with three-directional velocity encoding (4D flow CMR) permits assessment of net flow volumes and flow patterns retrospectively at any location in a time-resolved 3D volume. However, analysis of these datasets can be demanding. The aim of this study is to develop and evaluate a fully automatic method for segmentation and analysis of 4D flow CMR data of the great thoracic vessels. The proposed method utilizes atlas-based segmentation to segment the great thoracic vessels in systole, and registration between different time frames of the cardiac cycle in order to segment these vessels over time. Additionally, net flow volumes are calculated automatically at locations of interest. The method was applied on 4D flow CMR datasets obtained from 11 healthy volunteers and 10 patients with heart failure. Evaluation of the method was performed visually, and by comparison of net flow volumes in the ascending aorta obtained automatically (using the proposed method), and semi-automatically. Further evaluation was done by comparison of net flow volumes obtained automatically at different locations in the aorta, pulmonary artery, and caval veins. Visual evaluation of the generated segmentations resulted in good outcomes for all the major vessels in all but one dataset. The comparison between automatically and semi-automatically obtained net flow volumes in the ascending aorta resulted in very high correlation (r (2)=0.926). Moreover, comparison of the net flow volumes obtained automatically in other vessel locations also produced high correlations where expected: pulmonary trunk vs. proximal ascending aorta (r (2)=0.955), pulmonary

  19. Substance Flow Analysis of Mercury in China

    NASA Astrophysics Data System (ADS)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding

  20. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  1. Analysis of Fluid Flow over a Surface

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L. (Inventor)

    2013-01-01

    A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.

  2. Analysis and visualization of complex unsteady three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.

    1989-01-01

    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  3. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.

  4. State space analysis of minimal channel flow

    NASA Astrophysics Data System (ADS)

    Acharya Neelavara, Shreyas; Duguet, Yohann; Lusseyran, François

    2017-06-01

    Turbulence and edge states are investigated numerically in a plane Poiseuille flow driven by a fixed pressure gradient. Simulations are carried out within the minimal flow unit, a concept introduced by Jiménez and Moin (1991 J. Fluid Mech. 225 213-40) to unravel the dynamics of near-wall structures in the absence of outer large-scale motions. For both turbulent and edge regimes the activity appears to be localised near only one wall at a time, and the long term dynamics features abrupt reversals. The dynamics along one reversal is structured around the transient visit to a subspace of symmetric flow fields. An exact travelling wave solution is found to exist very close to this subspace. Additionally the self-similarity of the asymmetric states is addressed. Contrary to most studies focusing on symmetric solutions, the present study suggests that edge states, when localised near one wall, do not scale in outer units. The current study suggests a composite scaling.

  5. Interactive visualization and analysis of transitional flow.

    PubMed

    Johnson, Gregory P; Calo, Victor M; Gaither, Kelly P

    2008-01-01

    A stand-alone visualization application has been developed by a multi-disciplinary, collaborative team with the sole purpose of creating an interactive exploration environment allowing turbulent flow researchers to experiment and validate hypotheses using visualization. This system has specific optimizations made in data management, caching computations, and visualization allowing for the interactive exploration of datasets on the order of 1TB in size. Using this application, the user (co-author Calo) is able to interactively visualize and analyze all regions of a transitional flow volume, including the laminar, transitional and fully turbulent regions. The underlying goal of the visualizations produced from these transitional flow simulations is to localize turbulent spots in the laminar region of the boundary layer, determine under which conditions they form, and follow their evolution. The initiation of turbulent spots, which ultimately lead to full turbulence, was located via a proposed feature detection condition and verified by experimental results. The conditions under which these turbulent spots form and coalesce are validated and presented.

  6. Nitrogen Flow Analysis in Huizhou, South China

    NASA Astrophysics Data System (ADS)

    Ma, Xiaobo; Wang, Zhaoyin; Yin, Zegao; Koenig, Albert

    2008-03-01

    Eutrophication due to uncontrolled discharges of nitrogen and phosphorus has become a serious pollution problem in many Chinese rivers. This article analyzes the nitrogen flow in Huizhou City in the East River watershed in south China. The material accounting method was applied to investigate the nitrogen flows related to human activities, which consist of the natural and anthropogenic systems. In Huizhou City, the nonpoint source pollution was quantified by the export coefficient method and the domestic discharge was estimated as the product of per capita nitrogen contribution and population. This research was conducted based on statistical information and field data from 1998 in the Huizhou City. The results indicated that the major nitrogen flows in this area were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal manure volatilization, and processes related to burning and other emissions. In 1998, about 40% of the nitrogen was retained in the system and could result in potential environmental problems. Nitrogen export was mainly by rivers, which account for about 57% of the total nitrogen exported. Comparisons made between the East River and the Danube and Yangtze Rivers show that the unit area nitrogen export was of the same magnitude and the per capita nitrogen export was comparable.

  7. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    NASA Astrophysics Data System (ADS)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  8. Asymptotic and numerical analysis of electrohydrodynamic flows of dielectric liquid

    NASA Astrophysics Data System (ADS)

    Suh, Y. K.; Baek, K. H.; Cho, D. S.

    2013-08-01

    We perform an asymptotic analysis of electrohydrodynamic (EHD) flow of nonpolar liquid subjected to an external, nonuniform electric field. The domain of interest covers the bulk as well as the thin dissociation layers (DSLs) near the electrodes. Outer (i.e., bulk) equations for the ion transport in hierarchical order of perturbation parameters can be expressed in linear form, whereas the inner (i.e., DSL) equations take a nonlinear form. We derive a simple formula in terms of various parameters which can be used to estimate the relative importance of the DSL-driven flow compared with the bulk-driven flow. EHD flow over a pair of cylindrical electrodes is then solved asymptotically and numerically. It is found that in large geometric scale and high ion concentration the EHD flow is dominated by the bulk-charge-induced flow. As the scale and concentration are decreased, the DSL-driven slip velocity increases and the resultant flow tends to dominate the domain and finally leads to flow reversal. We also conduct a flow-visualization experiment to verify the analysis and attain good agreement between the two results with parameter tuning. We finally show, based on the comparison of experimental and numerical solutions, that the rate of free-ion generation (dissociation) should be less than the one predicted from the existing formula.

  9. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  10. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  11. Navier-Stokes Flow Field Analysis of Compressible Flow in a Pressure Relief Valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K.

    1993-01-01

    The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface.

  12. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  13. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  14. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.

  15. Spherical harmonic analysis of steady photospheric flows

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1987-01-01

    A technique is presented in which full disk Doppler velocity measurements are analyzed using spherical harmonic functions to determine the characteristics of the spectrum of spherical harmonic modes and the nature of steady photospheric flows. Synthetic data are constructed in order to test the technique. In spite of the mode mixing due to the lack of information about the motions on the backside of the sun, solar rotation and differential rotation can be accurately measured and monitored for secular changes, and meridional circulations with small amplitudes can be measured. Furthermore, limb shift measurements can be accurately obtained, and supergranules can be fully resolved and separated from giant cells by their spatial characteristics.

  16. A geometric approach to the analysis of physiological flow data.

    PubMed

    Shih, W J

    1994-02-15

    Physiological flow data are common in various medical fields. Examples include urinary, blood and expiratory flows. They are widely used in assessing functions in the urinary, circulatory, or pulmonary systems, respectively. Current statistical methods for analysing these flow data in clinical trials are either univariate analyses, which do not utilize all the information together, or some conventional multivariate methods (such as regression analyses) which yield results that do not render clear medical interpretations. This paper presents a new approach to analysing the flow data, using urinary flow as the primary focus. The basic idea and technical steps are applicable to other flow data as well. The proposed method aims to transform the flow measurements back to the shape of the flow graphs. Since the whole geometric pattern of the flow graph provides more information about the patient's flow condition than any individual flow parameter alone, the method is a meaningful way of combining and analysing the flow data in both statistical and clinical senses. The method is a three-stage procedure. Patients are classified into three classes in the first stage and then ranked in sequence in the second stage, according to the geometry of the shape pattern and some clinical criteria. The classification procedure is shown to be very reliable when compared with the clinician's visual evaluation, and hence can be implemented by computer programming to aid clinical trials involving many patients. The whole ranking score is then readily analysed at the third stage for comparing treatment effects by the analysis of covariance method based on ranks, with the post-treatment score as the response variable and the baseline score as the covariate. An example of a urinary flow data set is provided to illustrate the use of the procedure.

  17. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    NASA Astrophysics Data System (ADS)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  18. Sustainability, substance flow management and time. Part I Temporal analysis of substance flows.

    PubMed

    Kümmerer, Klaus; Hofmeister, Sabine

    2008-09-01

    Flows of chemical substances need to be managed in a sustainable way. Sustainable development as a whole and the sustainable management of substance flows in particular are both time issues. These include the importance of the dynamics of substance flows and the way these interconnect with the use of resources, the avoidance of environmental pollution, and their effects on health and food production. Another prerequisite for the proper management of substance flows is justice within and between generations. This requires a systematic approach and a systematic analysis of the issues as well as of the actions to be taken. One tool for such a systematic approach is temporal analysis. It brings the temporal aspects of the substances themselves and of their intended use, as well as factors affecting the stakeholders, such as decision makers, producers and consumers, into focus. In the past, timing factors were rarely taken into account. Knowledge of the temporal dynamics of substance flows and their resultant outcomes, as well as of their interaction with ecological, economic and social systems, is a basic requirement for successful substance flow management. The need to include temporal aspects into substance flow management and how to do so is outlined here. Included are not only politicians but also practitioners and scientists who must explicitly take into account adequate time scales, points in time, breaks and other forms of time in planning and acting.

  19. LFSTAT - An R-Package for Low-Flow Analysis

    NASA Astrophysics Data System (ADS)

    Koffler, D.; Laaha, G.

    2012-04-01

    When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.

  20. Gradient Flow Analysis on MILC HISQ Ensembles

    SciTech Connect

    Brown, Nathan; Bazavov, Alexei; Bernard, Claude; DeTar, Carleton; Foley, Justin; Gottlieb, Steven; Heller, Urs M.; Hetrick, J. E.; Komijani, Javad; Laiho, Jack; Levkova, Ludmila; Oktay, M. B.; Sugar, Robert; Toussaint, Doug; Van de Water, Ruth S.; Zhou, Ran

    2014-11-14

    We report on a preliminary scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ are computed using Symanzik flow and the cloverleaf definition of $\\langle E \\rangle$ on each ensemble. Then both scales and the meson masses $aM_\\pi$ and $aM_K$ are adjusted for mistunings in the charm mass. Using a combination of continuum chiral perturbation theory and a Taylor series ansatz in the lattice spacing, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. Our preliminary results are $\\sqrt{t_0} = 0.1422(7)$fm and $w_0 = 0.1732(10)$fm. We also find the continuum mass-dependence of $w_0$.

  1. Stochastic uncertainty analysis for unconfined flow systems

    USGS Publications Warehouse

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  2. Potential Flow Analysis of Dynamic Ground Effect

    NASA Technical Reports Server (NTRS)

    Feifel, W. M.

    1999-01-01

    Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length. Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley 14x22 ft wind tunnel. Northup-Grumman is conducting time accurate CFD (Computational Fluid Dynamics) Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow methodology which are thought to provide much needed insight in, physics of this very complex problem. The present report summarizes the results of these potential flow studies.

  3. Critical assessment of automated flow cytometry data analysis techniques.

    PubMed

    Aghaeepour, Nima; Finak, Greg; Hoos, Holger; Mosmann, Tim R; Brinkman, Ryan; Gottardo, Raphael; Scheuermann, Richard H

    2013-03-01

    Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks: (i) mammalian cell population identification, to determine whether automated algorithms can reproduce expert manual gating and (ii) sample classification, to determine whether analysis pipelines can identify characteristics that correlate with external variables (such as clinical outcome). This analysis presents the results of the first FlowCAP challenges. Several methods performed well as compared to manual gating or external variables using statistical performance measures, which suggests that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis.

  4. Numerical Flow Analysis of a Hydraulic Gear Pump

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra M.; Kim, Hyun W.; Pierson, Hazel M.

    2007-11-01

    The pressure that exists at the outlet port of a gear pump is a result of system load that was created by a resistance to the fluid flow. However, the flow pattern created inside an external gear pump by the motion of two oppositely rotating gears is deceptively complex, despite the simple geometry of the gear pump. The flow cannot be analyzed, based on a steady-state assumption that is usually employed to analyze turbo-machinery although the flow is essentially steady. Only the time-dependent, transient analysis with moving dynamic meshing technique can predict the motion of the fluid flow against the very high adverse pressure distribution. Although the complexity of analysis is inherent in all positive displacement pumps, gear pumps pose an exceptional challenge in modeling due to the fact that there are two rotating components that are housed within a stationary casing and the gears must be in contact with each other all the time. Fluent, commercially available computational fluid dynamics (CFD) software was used to analyze the flow of the gear pump. The investigation done by CFD produced significant information on flow patterns, velocity and pressure fields, and flow rates.

  5. Application of flow analysis in determination of selected radionuclides.

    PubMed

    Kołacińska, Kamila; Trojanowicz, Marek

    2014-07-01

    The subject of this article is the review of developed applications of flow analysis methods for determination of radionuclides hard-to-detect in reactor cooling waters ((90)Sr, (239,240)Pu, and (241)Am), and also (99)Tc, which are released to the environment primarily through nuclear fuel processing. Flow analysis, which developed for decades parallel to flow methods of chemical synthesis, is widely employed in modern chemical analysis, mainly for environmental, food analysis and pharmaceutical applications. It allows the simplification of design of analytical instruments and procedures, the shortening of analysis time, improvement of precision, and often the automation of whole analytical procedure. All those factors can be also advantageous for determination of critical radionuclides for process needs and protection of environment. The review is based on 84 references, published mainly in leading analytical journals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Web-Based Analysis and Publication of Flow Cytometry Experiments

    PubMed Central

    Kotecha, Nikesh; Krutzik, Peter O.; Irish, Jonathan M.

    2014-01-01

    Cytobank is a web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permissions from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at www.cytobank.org PMID:20578106

  7. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  8. Power flow analysis of an L-shaped plate structure

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  9. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  10. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  11. Intershot Analysis of Flows in DIII-D

    NASA Astrophysics Data System (ADS)

    Meyer, W. H.; Allen, S. L.; Samuell, C. M.; Howard, J.

    2016-10-01

    Analysis of the DIII-D flow diagnostic data require demodulation of interference images, and inversion of the resultant line integrated emissivity and flow (phase) images. Four response matrices are pre-calculated: the emissivity line integral and the line integral of the scalar product of the lines-of-site with the orthogonal unit vectors of parallel flow. Equilibrium data determines the relative weight of the component matrices used in the final flow inversion matrix. Serial processing has been used for the lower divertor viewing flow camera 800x600 pixel image. The full cross section viewing camera will require parallel processing of the 2160x2560 pixel image. We will discuss using a Posix thread pool and a Tesla K40c GPU in the processing of this data. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Fusion Energy Sciences.

  12. Development of a three-dimensional turbulent duct flow analysis

    NASA Technical Reports Server (NTRS)

    Eiseman, P. R.; Levy, R.; Mcdonald, H.; Briley, W. R.

    1978-01-01

    A method for computing three-dimensional turbulent subsonic flow in curved ducts is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The derivation is coordinate invariant, and the resulting equations are expressed in terms of tensors. General tube-like coordinates were developed for a general class of geometries applicable to many internal flow problems. The coordinates are then particularized to pipes having superelliptic cross sections whose shape can vary continuously between a circle and a near rectangle. The analysis is applied to a series of relevant aerodynamic problems including transition from nearly square to round pipes and flow through a pipe with an S-shaped bend.

  13. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  14. Enhanced sensitivity in flow injection analysis using a long pathlength liquid waveguide capillary flow cell for spectrophotometric detection.

    PubMed

    Zhang, Jia-Zhong

    2006-01-01

    Incorporation of a liquid waveguide capillary flow cell into a flow injection instrument enhances the sensitivity of flow injection analysis with spectrophotometric detection by two orders of magnitude. Nitrite determination at nM levels has been used to demonstrate the feasibility of this novel technique for trace analysis. Combining the long pathlength spectrophotometry with flow injection analysis, this technique has advantages of low detection limit, good precision and high sample throughput.

  15. Multimodel simulation of water flow: uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Guber, A. K.; Pachepsky, Y. A.; van Genuchten, T. M.; Rowland, R. A.; Nicholson, T. J.; Cady, R. E.

    2009-04-01

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic properties at larger scales. One way of downscaling large-scale data is to use several PTFs to generate hydraulic properties with each of the PTFs and to obtain the multimodel prediction of soil water flow by using weighted averages of the simulations results obtained with individual PTFs. Since its introduction, the multimodel prediction has been subject to much debates: whether a multimodel prediction is better than the single best forecast and what is the best method to weigh predictions obtained with the different models. The objective of this work was to evaluate errors and uncertainty of different weighting methods in multimodel prediction of soil water content. Data on soil water contents were collected at four locations at the USDA-ARS Beltsville OPE3 field site from January to November 2007. The locations were instrumented with Multisensor Capacitance Probes (SENTEK) to measure soil water content at depths from 10 to 100 cm with 10 cm increment. Standard meteorological data were measured in the vicinity of the site. Undisturbed soil samples were taken from the same depths to measure soil bulk density (BD), organic carbon content (OC) and soil texture in all locations. Fourteen PTFs, that had been developed from relatively large datasets (>200), were used to calculate soil hydraulic properties for each individual depth from measured BD, OC and soil texture. Thus, 14 sets of hydraulic parameters were obtained for each location. Then we solved the Richards equation with each set of hydraulic parameters for each location. The following multimodel prediction methods were compared in our study: (i) using only the best model; (ii) assigning equal weights to all models; (iii

  16. Streak Imaging Flow Cytometer for Rare Cell Analysis.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham

    2017-01-01

    There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.

  17. Computational analysis of flow in 3D propulsive transition ducts

    NASA Technical Reports Server (NTRS)

    Sepri, Paavo

    1990-01-01

    A numerical analysis of fully three dimensional, statistically steady flows in propulsive transition ducts being considered for use in future aircraft of higher maneuverability is investigated. The purpose of the transition duct is to convert axisymmetric flow from conventional propulsion systems to that of a rectangular geometry of high aspect ratio. In an optimal design, the transition duct would be of minimal length in order to reduce the weight penalty, while the geometrical change would be gradual enough to avoid detrimental flow perturbations. Recent experiments conducted at the Propulsion Aerodynamics Branch have indicated that thrust losses in ducts of superelliptic cross-section can be surprisingly low, even if flow separation occurs near the divergent walls. In order to address the objective of developing a rational design procedure for optimal transition ducts, it is necessary to have available a reliable computational tool for the analysis of flows achieved in a sequence of configurations. Current CFD efforts involving complicated geometries usually must contend with two separate but interactive aspects: namely, grid generation and flow solution. The first two avenues of the present investigation were comprised of suitable grid generation for a class of transition ducts of superelliptic cross-section, and the subsequent application of the flow solver PAB3D to this geometry. The code, PAB3D, was developed as a comprehensive tool for the solution of both internal and external high speed flows. The third avenue of investigation has involved analytical formulations to aid in the understanding of the nature of duct flows, and also to provide a basis of comparison for subsequent numerical solutions. Numerical results to date include the generation of two preliminary grid systems for duct flows, and the initial application of PAB3D to the corresponding geometries, which are of the class tested experimentally.

  18. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  19. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  20. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  1. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  2. Analysis of Flow From Arc-Jet Spectra

    NASA Technical Reports Server (NTRS)

    Blackwell, H. E.; Scott, Carl D.

    1997-01-01

    Materials testing is carried out at the JSC Atmospheric Reentry Materials and Structures Facility. A flow diagnostics program is under development to characterize the energy distribution in arc-jet flows used to simulate atmospheric entry. Heat transfer to materials depends on flow properties which includes the composition of and energy distribution among the atoms, ions, molecules, and molecular ions which make up the flow. This project involves analysis of shock layer characteristics from the radiation emitted and experimentally collected from near the front of the shock to near the surface of the material. The analysis has yielded information on relative populations of neutral molecules and molecular ions within the layer. In determining non-equilibrium temperatures within the layer, some insight into the spectral constants used to compute radiative emission has been gained.

  3. Blood flow analysis with considering nanofluid effects in vertical channel

    NASA Astrophysics Data System (ADS)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  4. AutoGate: automating analysis of flow cytometry data

    PubMed Central

    Meehan, Stephen; Walther, Guenther; Moore, Wayne; Orlova, Darya; Meehan, Connor; Parks, David; Ghosn, Eliver; Philips, Megan; Mitsunaga, Erin; Waters, Jeffrey; Kantor, Aaron; Okamura, Ross; Owumi, Solomon; Yang, Yang; Herzenberg, Leonard A.

    2015-01-01

    Nowadays, one can hardly imagine biology and medicine without flow cytometry to measure CD4 T cell counts in HIV, follow bone marrow transplant patients, characterize leukemias, etc. Similarly, without flow cytometry, there would be a bleak future for stem cell deployment, HIV drug development and full characterization of the cells and cell interactions in the immune system. But while flow instruments have improved markedly, the development of automated tools for processing and analyzing flow data has lagged sorely behind. To address this deficit, we have developed automated flow analysis software technology, provisionally named AutoComp and AutoGate. AutoComp acquires sample and reagent labels from users or flow data files, and uses this information to complete the flow data compensation task. AutoGate replaces the manual subsetting capabilities provided by current analysis packages with newly defined statistical algorithms that automatically and accurately detect, display and delineate subsets in well-labeled and well-recognized formats (histograms, contour and dot plots). Users guide analyses by successively specifying axes (flow parameters) for data subset displays and selecting statistically defined subsets to be used for the next analysis round. Ultimately, this process generates analysis “trees” that can be applied to automatically guide analyses for similar samples. The first AutoComp/AutoGate version is currently in the hands of a small group of users at Stanford, Emory and NIH. When this “early adopter” phase is complete, the authors expect to distribute the software free of charge to .edu, .org and .gov users. PMID:24825775

  5. Automated High-Dimensional Flow Cytometric Data Analysis

    NASA Astrophysics Data System (ADS)

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I.; Maier, Lisa; Baecher-Allan, Clare; McLachlan, Geoffrey; Tamayo, Pablo; Hafler, David; de Jager, Philip; Mesirov, Jill

    Flow cytometry is widely used for single cell interrogation of surface and intracellular protein expression by measuring fluorescence intensity of fluorophore-conjugated reagents. We focus on the recently developed procedure of Pyne et al. (2009, Proceedings of the National Academy of Sciences USA 106, 8519-8524) for automated high- dimensional flow cytometric analysis called FLAME (FLow analysis with Automated Multivariate Estimation). It introduced novel finite mixture models of heavy-tailed and asymmetric distributions to identify and model cell populations in a flow cytometric sample. This approach robustly addresses the complexities of flow data without the need for transformation or projection to lower dimensions. It also addresses the critical task of matching cell populations across samples that enables downstream analysis. It thus facilitates application of flow cytometry to new biological and clinical problems. To facilitate pipelining with standard bioinformatic applications such as high-dimensional visualization, subject classification or outcome prediction, FLAME has been incorporated with the GenePattern package of the Broad Institute. Thereby analysis of flow data can be approached similarly as other genomic platforms. We also consider some new work that proposes a rigorous and robust solution to the registration problem by a multi-level approach that allows us to model and register cell populations simultaneously across a cohort of high-dimensional flow samples. This new approach is called JCM (Joint Clustering and Matching). It enables direct and rigorous comparisons across different time points or phenotypes in a complex biological study as well as for classification of new patient samples in a more clinical setting.

  6. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  7. Geometrical analysis of suspension flows near jamming

    NASA Astrophysics Data System (ADS)

    Wyart, Matthieu

    2012-02-01

    The viscosity of suspensions was computed early on by Einstein and Batchelor in the dilute regime. At high density however, their rheology remains mystifying. As the packing fraction increases, steric hindrance becomes dominant and particles move under stress in a more and more coordinated way. Eventually, the viscosity diverges as the suspension jams into an amorphous solid. Such a jamming transition is reminiscent of critical points: the rheology displays scaling and a diverging length scale. Jamming bear similarities with the glass transition where steric hindrance is enhanced under cooling, and where the dynamics is also observed to become more and more collective as it slows down. In all these examples, understanding the nature of the collective dynamics and the associated rheology remains a challenge. Recent progress has been made however on a related problem, the unjamming transition where a solid made of repulsive soft particles is isotropically decompressed toward vanishing pressure. In this situation various properties of the amorphous solid, such as elasticity, transport or force propagation, display scaling with the distance to threshold. Theoretically these observations can be shown to stem from the presence of soft modes in the vibrational spectrum, a result that can be extended to thermal colloidal glasses as well. Here we focus on particles driven by shear at zero temperature. We show that if hydrodynamical interactions are neglected an analogy can be made between the rheology of such a suspension and the elasticity of simple networks, building a link between the jamming and the unjamming transition. This analogy enables us to unify in a common framework key aspects of the elasticity of amorphous solids with the rheology of dense suspensions, and to relate features of the latter to the geometry of configurations visited under flow.

  8. Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.

    2016-01-01

    The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.

  9. Dial-in flow cytometry data analysis.

    PubMed

    Battye, Francis L

    2002-02-01

    As listmode data files continue to grow larger, access via any kind of network connections becomes more and more trouble because of the enormous traffic generated. The limited speed of transmission via modem makes analysis almost impossible. This unit presents a solution to these problems, one that involves installation at the central storage facility of a small computer program called a Web servlet. Operating in concert with a Web server, the servlet assists the analysis by extracting the display array from the data file and organizing its transmission over the network to a remote client program that creates the data display. The author discusses a recent implementation of this solution and the results for model transmission of two typical data files. The system greatly speeds access to remotely stored data yet retains the flexibility of manipulation expected with local access.

  10. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.

    definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the

  11. CRITICAL ASSESSMENT OF AUTOMATED FLOW CYTOMETRY DATA ANALYSIS TECHNIQUES

    PubMed Central

    Aghaeepour, Nima; Finak, Greg; Hoos, Holger; Mosmann, Tim R.; Gottardo, Raphael; Brinkman, Ryan; Scheuermann, Richard H.

    2013-01-01

    Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks – mammalian cell population identification to determine if automated algorithms can reproduce expert manual gating, and sample classification to determine if analysis pipelines can identify characteristics that correlate with external variables (e.g., clinical outcome). This analysis presents the results of the first of these challenges. Several methods performed well compared to manual gating or external variables using statistical performance measures, suggesting that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis. PMID:23396282

  12. Quantitative three-dimensional holographic interferometry for flow field analysis

    NASA Astrophysics Data System (ADS)

    Holden, C. M. E.; Parker, S. C. J.; Bryanston-Cross, P. J.

    Holographic interferometry offers the potential for quantitative, wholefield analysis of three-dimensional compressible flows. The technique is non-intrusive, does not require the introduction of seeding particles, and records the entire flow information within the pulse duration of a Q-switched ruby laser (~30ns). At present, however, holographic interferometry is mainly used qualitatively due to the practical restrictions of data recording, acquisition and processing. To address the potential of holographic flow analysis a prototype multi-channel interferometer has been designed and preliminary wind tunnel results have been obtained. The proposed configuration uses specular illumination which, unlike comparable diffuse systems, does not suffer from fringe localisation and speckle noise. Beam collimation and steering through the flow field is achieved in a single operation by the use of holographic optical elements (HOEs). The resulting design is compact, light efficient, has aberration compensation, and the recorded data are conducive to both tomographic analysis and direct comparison to computational fluid dynamics (CFD) predictions. Holograms have been recorded of simple two-dimensional and axisymmetric compressible flows, to compare the accuracy of holographic density measurements with data from conventional pressure sensors and CFD codes. Data extraction from the holograms, and the elimination of rigid body motion, was achieved using digital Fourier transform fringe analysis. The introduction of phase errors by image processing has been investigated by analysing simulated fringe patterns generated from a combination of experimental amplitude information and computer generated phase data.

  13. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.

  14. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  15. Typing Local Control and State Using Flow Analysis

    NASA Astrophysics Data System (ADS)

    Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram

    Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.

  16. Predicting Rediated Noise With Power Flow Finite Element Analysis

    DTIC Science & Technology

    2007-02-01

    Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated

  17. Analysis of the stochastic excitability in the flow chemical reactor

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  18. Analysis of the stochastic excitability in the flow chemical reactor

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina

    2015-11-01

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  19. Initial Experiments and Analysis of Blunt-Edge Vortex Flows

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2008-01-01

    A review is presented of the initial experimental results and analysis that formed the basis the Vortex Flow Experiment 2 (VFE-2). The focus of this work was to distinguish the basic effects of Reynolds number, Mach number, angle of attack, and leading edge bluntness on separation-induced leading-edge vortex flows that are common to slender wings. Primary analysis is focused on detailed static surface pressure distributions, and the results demonstrate significant effects regarding the onset and progression of leading-edge vortex separation.

  20. Quantitative flow cytometric analysis of membrane antigen expression.

    PubMed

    D'hautcourt, Jean-Luc

    2002-11-01

    Immunological analysis for cell antigens has been performed by flow cytometry in a qualitative fashion for over thirty years. During that time it has become increasingly apparent that quantitative measurements such as number of antigens per cell provide unique and useful information. This unit on quantitative flow cytometry (QFCM) describes the most commonly used protocols, both direct and indirect, and the major methods of analysis for the number of antibody binding sites on a cell or particle. Practical applications include detection of antigen under- or overexpression in hematological malignancies, distinguishing between B cell lymphoproliferative disorders, and precise diagnosis of certain rare diseases.

  1. Analysis of homogeneous turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Leonard, A. D.; Hill, J. C.; Mahalingam, S.; Ferziger, J. H.

    1988-01-01

    Full turbulence simulations at low Reynolds numbers were made for the single-step, irreversible, bimolecular reaction between non-premixed reactants in isochoric, decaying homogeneous turbulence. Various initial conditions for the scalar field were used in the simulations to control the initial scalar dissipation length scale, and simulations were also made for temperature-dependent reaction rates and for non-stoichiometric and unequal diffusivity conditions. Joint probability density functions (pdf's), conditional pdf's, and various statistical quantities appearing in the moment equations were computed. Preliminary analysis of the results indicates that compressive strain-rate correlates better than other dynamical quantities with local reaction rate, and the locations of peak reaction rates seem to be insensitive to the scalar field initial conditions.

  2. Asymmetric flow field flow fractionation with light scattering detection - an orthogonal sensitivity analysis.

    PubMed

    Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S

    2016-11-18

    Asymmetric flow field flow fractionation (AF(4)) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF(4) primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2((5-1)) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF(4) instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2((5-2)) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF(4) instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis.

  3. Advances in the analysis and prediction of turbulent viscoelastic flows

    NASA Astrophysics Data System (ADS)

    Gatski, T. B.; Thais, L.; Mompean, G.

    2014-08-01

    It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.

  4. Mathematical modeling of dispersion in single interface flow analysis.

    PubMed

    Rodrigues, S Sofia M; Marques, Karine L; Lopes, João A; Santos, João L M; Lima, José L F C

    2010-03-24

    This work describes the optimization of the recently proposed fluid management methodology single interface flow analysis (SIFA) using chemometrics modelling. The influence of the most important physical and hydrodynamic flow parameters of SIFA systems on the axial dispersion coefficients estimated with the axially dispersed plug-flow model, was evaluated with chemometrics linear (multivariate linear regression) and non-linear (simple multiplicative and feed-forward neural networks) models. A D-optimal experimental design built with three reaction coil properties (length, configuration and internal diameter), flow-cell volume and flow rate, was adopted to generate the experimental data. Bromocresol green was used as the dye solution and the analytical signals were monitored by spectrophotometric detection at 614 nm. Results demonstrate that, independent of the model type, the statistically relevant parameters were the reactor coil length and internal diameter and the flow rate. The linear and non-linear multiplicative models were able to estimate the axial dispersion coefficient with validation r(2)=0.86. Artificial neural networks estimated the same parameter with an increased accuracy (r(2)=0.93), demonstrating that relations between the physical parameters and the dispersion phenomena are highly non-linear. The analysis of the response surface control charts simulated with the developed models allowed the interpretation of the relationships between the physical parameters and the dispersion processes.

  5. River flow fluctuation analysis: Effect of watershed area

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Gebremichael, Mekonnen; Over, Thomas M.

    2010-12-01

    This study presents the results of a detailed river flow fluctuation analysis on daily records from 14 stations in the Flint River Basin in Georgia in the southeastern United States with special focus on the effect of watershed area on long memory of river flow fluctuations. The areas of the watersheds draining to the stations range from 23 to 19,606 km2. The climatic and seasonal trends are removed using the detrended fluctuation analysis technique. Results show that (1) river flow fluctuations have two distinct scaling regimes, and the scaling break is delayed for large watershed areas; (2) large watersheds have more persistent river flow fluctuations and stronger long memory (i.e., for lag times beyond the scale break) than small watersheds do; (3) the long memory of river flow fluctuations does not come from the long memory of precipitation; (4) a linear reservoir unit hydrograph transfer function approach does not capture correctly the basin processes that convert short-memory precipitation to long-memory streamflow; and (5) the degree of multifractality of river flow fluctuations decreases with increasing watershed area. The results clearly indicate that watershed area is an important factor in the long-memory studies of streamflow such as streamflow prediction.

  6. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  7. A guide to human in vivo microcirculatory flow image analysis.

    PubMed

    Massey, Michael J; Shapiro, Nathan I

    2016-02-10

    Various noninvasive microscopic camera technologies have been used to visualize the sublingual microcirculation in patients. We describe a comprehensive approach to bedside in vivo sublingual microcirculation video image capture and analysis techniques in the human clinical setting. We present a user perspective and guide suitable for clinical researchers and developers interested in the capture and analysis of sublingual microcirculatory flow videos. We review basic differences in the cameras, optics, light sources, operation, and digital image capture. We describe common techniques for image acquisition and discuss aspects of video data management, including data transfer, metadata, and database design and utilization to facilitate the image analysis pipeline. We outline image analysis techniques and reporting including video preprocessing and image quality evaluation. Finally, we propose a framework for future directions in the field of microcirculatory flow videomicroscopy acquisition and analysis. Although automated scoring systems have not been sufficiently robust for widespread clinical or research use to date, we discuss promising innovations that are driving new development.

  8. A study of turbulent flow with sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Dwyer, H. A.; Peterson, T.

    1980-07-01

    In this paper a new type of analysis is introduced that can be used in numerical fluid mechanics. The method is known as sensitivity analysis and it has been widely used in the field of automatic control theory. Sensitivity analysis addresses in a systematic way to the question of 'how' the solution to an equation will change due to variations in the equation's parameters and boundary conditions. An important application is turbulent flow where there exists a large uncertainty in the models used for closure. In the present work the analysis is applied to the three-dimensional planetary boundary layer equations, and sensitivity equations are generated for various parameters in turbulence model. The solution of these equations with the proper techniques leads to considerable insight into the flow field and its dependence on turbulence parameters. Also, the analysis allows for unique decompositions of the parameter dependence and is efficient.

  9. Production flow analysis: a tool for designing a lean hospital.

    PubMed

    Karvonen, Sauli; Korvenranta, Heikki; Paatela, Mikael; Seppälä, Timo

    2007-01-01

    Production flow analysis (PFA) was used in the planning process for a new acute care hospital. The PFA demonstrated that functional organisation--for example, with centralised medical imaging-- generates a lot of back and forth patient transfers between functional units. This to-and-fro patient flow increases lead times of care processes and also exposes the patients to unnecessary complications. PFA produced an ideal patient flow model and layout model for the acute care hospital. Thus, PFA revealed information for use in proximity ranking of different units of the hospital; the planning team then decided which units should be placed next to each other. Medical imaging should be essentially ubiquitous, to achieve simple, high-velocity patient flow. Thus, a modern decentralized layout model for medical imaging was planned. Furthermore, PFA enables optimizing transfer routes for patients and also, e.g., lift capacity in the hospital.

  10. Analysis of high-incidence separated flow past airfoils

    NASA Technical Reports Server (NTRS)

    Chia, K. N.; Osswald, G. A.; Chia, U.

    1989-01-01

    An unsteady Navier-Stokes (NS) analysis is developed and used to carefully examine high-incidence aerodynamic separated flows past airfoils. Clustered conformal C-grids are employed for the 12 percent thick symmetric Joukowski airfoil as well as for the NACA 0012 airfoil with a sharp trailing edge. The clustering is controlled by appropriate one-dimensional stretching transformations. An attempt is made to resolve many of the dominant scales of an unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. A fully implicit time-marching alternating-direction implicit-block Gaussian elimination (ADI-BGE) method is employed, in which no use is made of any explicit artificial dissipation. Detailed results are obtained for massively separated, unsteady flow past symmetric Joukowski and NACA 0012 airfoils.

  11. Flow Analysis of X-34 Main Propulsion System Feedlines

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Garcia, Robert

    2000-01-01

    The X-34 Main Propulsion System (MPS) configuration includes the liquid oxygen (LOX) and rocket propellant #1 (RP-1) feedlines. The flow analyses of these feedlines were performed and documented in previous studies. These analyses predicted a relatively low inlet distortion and nearly even flow split at the engine interface. The new design for these MPS feedlines has been recommended recently. The new configuration includes a tighter radius in the RP-1 feedline and a neck-down section between the gimbals. Conversely, the LOX feedline is very similar to the previous design. There were concerns that this new RP-1 configuration might generate a greater flow distortion at the engine interface than the original design. To resolve this issue, a Computation Fluid Dynamics (CFD) analysis was conducted to determine the flow Field in the new RP-1 feedlines.

  12. Traking of Laboratory Debris Flow Fronts with Image Analysis

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Fischer, Jan-Thomas; Scheidl, Christian; Pudasaini, Shiva P.

    2015-04-01

    Image analysis technique is applied to track the time evolution of rapid debris flow fronts and their velocities in laboratory experiments. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural slopes. The laboratory model consists of a large rectangular channel 1.4m wide and 10m long, with adjustable inclination and other flow configurations. The setup allows investigate different two phase material compositions including large fluid fractions. The large size enables to transfer the results to large-scale natural events providing increased measurement accuracy. The images are captured by a high speed camera, a standard digital camera. The fronts are tracked by the camera to obtain data in debris flow experiments. The reflectance analysis detects the debris front in every image frame; its presence changes the reflectance at a certain pixel location during the flow. The accuracy of the measurements was improved with a camera calibration procedure. As one of the great problems in imaging and analysis, the systematic distortions of the camera lens are contained in terms of radial and tangential parameters. The calibration procedure estimates the optimal values for these parameters. This allows us to obtain physically correct and undistorted image pixels. Then, we map the images onto a physical model geometry, which is the projective photogrammetry, in which the image coordinates are connected with the object space coordinates of the flow. Finally, the physical model geometry is rewritten in the direct linear transformation form, which allows for the conversion from one to another coordinate system. With our approach, the debris front position can then be estimated by combining the reflectance, calibration and the linear transformation. The consecutive debris front

  13. A multicommutated tester of bioreactors for flow analysis.

    PubMed

    Pokrzywnicka, Marta; Kamiński, Jacek; Michalec, Michał; Koncki, Robert; Tymecki, Łukasz

    2016-11-01

    Enzymes are often used in the modern analytical procedures allowing selective recognition and conversion of target analytes into easily detected products. In flow analysis systems, enzymes are predominantly applied in the immobilized forms as flow-through bioreactors. In this research the multicommutated flow analysis (MCFA) system for evaluation and comparison of analytical parameters of bioreactors has been developed. The MCFA manifold allows simultaneous testing up to four bioreactors, but if necessary their number can be easily increased. The system allows comparison of several parameters of tested bioreactors including activity, repeatability, reproducibility, operational and storage stability. The performance of developed bioreactor tester is presented using urea-urease model system based on plastic open-tubular bioreactor with covalently immobilized enzyme. Product of enzymatic reaction is detected using two different chemical methods and by dedicated optoelectronic ammonium detectors. Moreover, the utility of developed MCFA manifold for evaluation of other enzyme bioreactors is demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Flow quantitation by radio frequency analysis of contrast echocardiography.

    PubMed

    Rovai, D; Lombardi, M; Mazzarisi, A; Landini, L; Taddei, L; Distante, A; Benassi, A; L'Abbate, A

    1993-03-01

    Contrast echocardiography has the potential for measuring cardiac output and regional blood flow. However, accurate quantitation is limited both by the use of non-standard contrast agents and by the electronic signal distortion inherent to the echocardiographic instruments. Thus, the aim of this study is to quantify flow by combining a stable contrast agent and a modified echo equipment, able to sample the radio frequency (RF) signal from a region of interest (ROI) in the echo image. The contrast agent SHU-454 (0.8 ml) was bolus injected into an in vitro calf vein, at 23 flow rates (ranging from 376 to 3620 ml/min) but constant volume and pressure. The ROI was placed in the centre of the vein, the RF signal was processed in real time and transferred to a personal computer to generate time-intensity curves. In the absence of recirculation, contrast washout slope and mean transit time (MTT) of curves (1.11-8.52 seconds) yielded excellent correlations with flow: r = 0.93 and 0.95, respectively. To compare the accuracy of RF analysis with that of conventional image processing as to flow quantitation, conventional images were collected in the same flow model by two different scanners: a) the mechanical sector scanner used for RF analysis, and b) a conventional electronic sector scanner. These images were digitized off-line, mean videodensity inside an identical ROI was measured and time-intensity curves were built. MTT by RF was shorter than by videodensitometric analysis of the images generated by the same scanner (p < 0.001). In contrast, MTT by RF was longer than by the conventional scanner (p < 0.001). Significant differences in MTT were also found with changes in the gain setting controls of the conventional scanner. To study the stability of the contrast effect, 6 contrast injections (20 ml) were performed at a constant flow rate during recirculation: the spontaneous decay in RF signal intensity (t1/2 = 64 +/- 8 seconds) was too long to affect MTT significantly

  15. Tularosa Basin Play Fairway Analysis: Methodology Flow Charts

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    These images show the comprehensive methodology used for creation of a Play Fairway Analysis to explore the geothermal resource potential of the Tularosa Basin, New Mexico. The deterministic methodology was originated by the petroleum industry, but was custom-modified to function as a knowledge-based geothermal exploration tool. The stochastic PFA flow chart uses weights of evidence, and is data-driven.

  16. Immobilized enzymes in flow-injection analysis: present and trends.

    PubMed

    Ruz, J; Lázaro, F; de Castro, M D

    1988-01-01

    An overview of the use of immobilized enzymes in flow-injection analysis (FIA) is presented. The joint use of FIA and immobilized enzymes means that analytical procedures are easily automated, analytical costs are reduced and methods are faster. The future possibilities for this combination are discussed.

  17. Immobilized enzymes in flow-injection analysis: present and trends

    PubMed Central

    Ruz, J.; Lázaro, F.; de Castro, M. D. Luque

    1988-01-01

    An overview of the use of immobilized enzymes in flow-injection analysis (FIA) is presented. The joint use of FIA and immobilized enzymes means that analytical procedures are easily automated, analytical costs are reduced and methods are faster. The future possibilities for this combination are discussed. PMID:18925183

  18. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  19. Flow Analysis on a Limited Volume Chilled Water System

    SciTech Connect

    Zheng, Lin

    2012-07-31

    LANL Currently has a limited volume chilled water system for use in a glove box, but the system needs to be updated. Before we start building our new system, a flow analysis is needed to ensure that there are no high flow rates, extreme pressures, or any other hazards involved in the system. In this project the piping system is extremely important to us because it directly affects the overall design of the entire system. The primary components necessary for the chilled water piping system are shown in the design. They include the pipes themselves (perhaps of more than one diameter), the various fitting used to connect the individual pipes to form the desired system, the flow rate control devices (valves), and the pumps that add energy to the fluid. Even the most simple pipe systems are actually quite complex when they are viewed in terms of rigorous analytical considerations. I used an 'exact' analysis and dimensional analysis considerations combined with experimental results for this project. When 'real-world' effects are important (such as viscous effects in pipe flows), it is often difficult or impossible to use only theoretical methods to obtain the desired results. A judicious combination of experimental data with theoretical considerations and dimensional analysis are needed in order to reduce risks to an acceptable level.

  20. A CLIPS expert system for clinical flow cytometry data analysis

    NASA Technical Reports Server (NTRS)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  1. A CLIPS expert system for clinical flow cytometry data analysis

    NASA Technical Reports Server (NTRS)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  2. Analysis of Urine Flow in Three Different Ureter Models

    PubMed Central

    Kim, Kyung-Wuk; Lee, Seung Bae; Baba, Yasutaka; Kim, Hyoung-Ho; Suh, Sang-Ho

    2017-01-01

    The ureter provides a way for urine to flow from the kidney to the bladder. Peristalsis in the ureter partially forces the urine flow, along with hydrostatic pressure. Ureteral diseases and a double J stent, which is commonly inserted in a ureteral stenosis or occlusion, disturb normal peristalsis. Ineffective or no peristalsis could make the contour of the ureter a tube, a funnel, or a combination of the two. In this study, we investigated urine flow in the abnormal situation. We made three different, curved tubular, funnel-shaped, and undulated ureter models that were based on human anatomy. A numerical analysis of the urine flow rate and pattern in the ureter was performed for a combination of the three different ureters, with and without a ureteral stenosis and with four different types of double J stents. The three ureters showed a difference in urine flow rate and pattern. Luminal flow rate was affected by ureter shape. The side holes of a double J stent played a different role in detour, which depended on ureter geometry. PMID:28659992

  3. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions.

  4. Sensitivity analysis of a ground-water-flow model

    USGS Publications Warehouse

    Torak, Lynn J.; ,

    1991-01-01

    A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.

  5. Photometric detection in flow analysis systems using integrated PEDDs.

    PubMed

    O' Toole, Martina; Lau, King Tong; Diamond, Dermot

    2005-06-15

    A novel inexpensive optical-sensing technique has been developed for colorimetric flow analysis. This sensing system employs two LEDs whereby one is used as the light source and the other as a light detector. The LED used as light detector is reverse biased with a 5-V supply so that the photocurrent generated by the incident light discharges the capacitance. Direct digital output is provided by a simple timer circuit that measures the time taken for this discharge process from 5V (logic 1) to 1.7V (logic 0). This sensing concept has been applied in flow analysis by constructing an optical flow cell with a pair of LEDs. Calibration of the integrated optical flow cell using a dye resulted in a linear response that obeys the Beer-Lambert law. The flow rate, dynamic range, sensitivity and limits of detection were investigated. The system was also used for pH determination in the range of pH 2.5-6.8 using bromocresol green (BCG). The pK(a) of BCG was successfully determined by this technique.

  6. Computational Flow Analysis of a Left Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Benkowski, Robert

    1995-01-01

    Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.

  7. Computational Flow Analysis of a Left Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Benkowski, Robert

    1995-01-01

    Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.

  8. Computational analysis of swirling flows in a pipe

    NASA Astrophysics Data System (ADS)

    Ochoa, Obdulio

    The vortex breakdown of a swirling jet flow entering a finite-length pipe is studied in this thesis. The theories of Rusak and co-authors which provide fundamental tools to predict the first occurrence of breakdown and simulate the flow behavior are applied. To demonstrate the ideas, the detailed experimental data of Novak and Sarpkaya (2000) are used, specifically, the upstream (inlet) axial and circumferential velocity profiles ahead of the breakdown (stagnation) point. The critical swirl ratios, o0 and o1, that respectively form the necessary and sufficient conditions for the occurrence of breakdown in a swirling jet flow, are computed from the ordinary differential equations of the problem. It is found that for the upstream velocity profiles o0 = 0.5607 and o 1 = 1.35196. The swirl level in the experiment of Novak and Sarpkaya (2000) was o = 1, and it shows that vortex breakdown may occur downstream of the inlet in the vortex flow field, as indeed is found in the experiments. Moreover, the experiments provide flow profiles along the whole pipe which are compared with simulation results based on Granata (2014) for a swirling flow in a pipe that has the same inlet conditions. An agreement is found between the simulated results and the experimental data all along the pipe from the upstream inlet state up to the breakdown point. Behind the breakdown point, no concise agreement is found which may be due to the high turbulence in the high-Re experimental flow or a result of non-full convergence of simulated results. The present theoretical analysis and simulations shed light on the breakdown process of swirling jet flows in pipes.

  9. Low-flow analysis with a conditional Weilbull tail model

    NASA Astrophysics Data System (ADS)

    Durrans, S. Rocky

    Estimates of low-flow quantiles, such as the 7-day, 10-year low flow, which are usually obtained by statistical modeling of observed data series, are widely used in water quality management. This paper presents a conditional modeling approach to low-flow analysis that employs only those data values which are less than or equal to a ceiling value. Modeling in this fashion has been motivated by the observation that annual low flows may derive from mixed processes and by the subjective nature of graphical methods, such as those employed by the U.S. Geological Survey, which are often employed in such cases. Results of Monte Carlo experiments demonstrate that the conditional modeling approach yields a low-flow quantile estimator whose bias and RMSE are comparable to more conventional modeling approaches of fitting a classical textbook probability distribution on the basis of all observed data values, even when the underlying population is of a ``well-behaved'' form. Since the complex forms of mixed low-flow data distributions are not capable of being represented by classical textbook distributions and since the conditional modeling approach performs comparably to those models even when the data derive from well-behaved probability distributions, these results imply that the conditional modeling approach is worthy of consideration for use by hydrologists. The conditional modeling approach also leads rather naturally to a scheme, much like that used in index flood methods, whereby a regional low-flow estimator might be devised. An application of the conditional modeling approach to 48 low-flow data series in Alabama is presented.

  10. Tailings dam-break flow - Analysis of sediment transport

    NASA Astrophysics Data System (ADS)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  11. Flow Field Analysis of a Future Launcher Configuration during Start

    NASA Astrophysics Data System (ADS)

    Bozic, O.; Otto, H.

    2005-02-01

    Within the German Future Space Launcher Technology Research Program ASTRA several reusable concepts have been investigated. Particularly one dedicated for near-term application consists of an Ariane 5-type expendable core stage and two liquid fly back boosters (LFBB). The present investigation focused on the interaction between the booster and the core stage during ascent phase. The analysis is carried out numerically by means of the DLR unstructured code TAU. The numerical results allow a compressive study of the complicate flow pattern between the boosters and the central core and address the changes on aerodynamic drag between the three configurations considered. Key words: launcher, ASTRA, LFBB, flow simulation, CFD simulation, unstructured grid

  12. Sample EP Flow Analysis of Severely Damaged Networks

    SciTech Connect

    Werley, Kenneth Alan; McCown, Andrew William

    2016-10-12

    These are slides for a presentation at the working group meeting of the WESC SREMP Software Product Integration Team on sample EP flow analysis of severely damaged networks. The following topics are covered: ERCOT EP Transmission Model; Zoomed in to Houston and Overlaying StreetAtlas; EMPACT Solve/Dispatch/Shedding Options; QACS BaseCase Power Flow Solution; 3 Substation Contingency; Gen. & Load/100 Optimal Dispatch; Dispatch Results; Shed Load for Low V; Network Damage Summary; Estimated Service Areas (Potential); Estimated Outage Areas (potential).

  13. Maximum entropy analysis of flow and reaction networks

    NASA Astrophysics Data System (ADS)

    Niven, Robert K.; Abel, Markus; Schlegel, Michael; Waldrip, Steven H.

    2015-01-01

    We present a generalised MaxEnt method to infer the stationary state of a flow network, subject to "observable" constraints on expectations of various parameters, as well as "physical" constraints arising from frictional properties (resistance functions) and conservation laws (Kirchhoff laws). The method invokes an entropy defined over all uncertainties in the system, in this case the internal and external flow rates and potential differences. The proposed MaxEnt framework is readily extendable to the analysis of networks with uncertainty in the network structure itself.

  14. Large perturbation flow field analysis and simulation for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.

    1984-01-01

    An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.

  15. First analysis of anisotropic flow with Lee-Yang zeros

    SciTech Connect

    Bastid, N.; Barret, V.; Crochet, P.; Dupieux, P.; Lopez, X.; Basrak, Z.; Caplar, R.; Delalija, M.; Gaspariae, I.; Korolija, M.

    2005-07-01

    We report on the first analysis of directed and elliptic flow with the new method of Lee-Yang zeros. Experimental data are presented for Ru+Ru reactions at 1.69A GeV measured with the FOPI detector at SIS/GSI. The results obtained with several methods, based on the event-plane reconstruction, on Lee-Yang zeros, and on multiparticle cumulants (up to fifth order) applied for the first time at SIS energies, are compared. They show conclusive evidence that azimuthal correlations between nucleons and composite particles at this energy are largely dominated by anisotropic flow.

  16. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    SciTech Connect

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-07-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  17. Nuclear DNA content analysis of plant seeds by flow cytometry.

    PubMed

    Sliwinska, Elwira

    2006-02-01

    Procedures describing the utilization of seeds or their parts for flow cytometric determination of plant ploidy and endopolyploidy, genome size, and cell cycle activity are presented. The methods have been developed for a single-fluorescence-parameter flow cytometer, equipped with light sources for 488-nm and UV-light illumination. The procedures presented in this unit utilize the two most widely used fluorochromes for plant DNA content analysis, propidium iodide (PI) and 4',6-diamidino-2-phenylindole (DAPI). These methods provide an alternative to estimation of DNA content based on the fluorescence of DNA in cell nuclei isolated from plant leaves. In some instances seeds are more suitable for analysis than leaves, e.g., when plant material must be transported for a long distances or stored for prolonged periods before flow cytometric analysis, or when leaves contain fluorochrome-staining inhibitors. In addition, flow cytometric determination of nuclear replication stages in seeds gives information about their physiological status (e.g., maturity, advancement of germination), which is valuable to seed producers and technologists.

  18. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    PubMed Central

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for

  19. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer.

    PubMed

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80-200 nm, microvesicles: ~200-1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for routine

  20. Combination of material flow analysis and substance flow analysis: a powerful approach for decision support in waste management.

    PubMed

    Stanisavljevic, Nemanja; Brunner, Paul H

    2014-08-01

    The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management.

  1. Event-plane flow analysis without nonflow effects

    SciTech Connect

    Bilandzic, Ante; Kolk, Naomi van der; Ollitrault, Jean-Yves; Snellings, Raimond

    2011-01-15

    The event-plane method, which is widely used to analyze anisotropic flow in nucleus-nucleus collisions, is known to be biased by nonflow effects, especially at high p{sub t}. Various methods (cumulants, Lee-Yang zeros) have been proposed to eliminate nonflow effects, but their implementation is tedious, which has limited their application so far. In this article, we show that the Lee-Yang-zeroes method can be recast in a form similar to the standard event-plane analysis. Nonflow correlations are strongly suppressed by using the information from the length of the flow vector, in addition to the event-plane angle. This opens the way to improved analyses of elliptic flow and azimuthally sensitive observables at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  2. Dissipation Element Analysis of Reacting- and Non-Reacting Flows

    NASA Astrophysics Data System (ADS)

    Denker, Dominik; Boschung, Jonas; Hennig, Fabian; Pitsch, Heinz

    2016-11-01

    Dissipation element analysis is a tried and tested method for analyzing scalar field in turbulent flows. Dissipation elements are defined as an ensemble of grid point whose gradient trajectories reach the same extremal points. Therefore, the scalar field can be compartmentalized in monotonous space filling regions. Dissipation elements can be described by two parameters, namely the Euclidean distance between their extremal points and their scalar difference in these points. The joint probability density function of these two parameters is expected to suffice for a statistical reconstruction of the scalar field. In addition, normalized dissipation element statistics show a remarkable invariance towards changes in Reynolds numbers. Dissipation element statistics of the passive scalar and the turbulent kinetic energy are compared for different flow configurations including reacting and non-reacting turbulent flows. Furthermore, the Reynolds number scaling of the dissipation element parameters is investigated.

  3. Impact of standardization on clinical cell analysis by flow cytometry.

    PubMed

    Keeney, M; Barnett, D; Gratama, J W

    2004-01-01

    The evolution of flow cytometry from a research tool to a pivotal technology for clinical diagnostic purposes has required significant efforts to standardize methods. The great advantage of flow cytometry is that it's applications are highly amenable to standardization. Here, we review the efforts that have been made for flow cytometric applications in four major fields of clinical cell analysis: CD4+ T-cell enumeration, CD34+ hematopoietic stem and progenitor cell enumeration, screening for the HLA-B27 antigen and leukemia/lymphoma immunophenotyping. These standardization efforts have been parallelled by the establishment of external quality assessment (EQA) schemes in many countries worldwide. The goal of these EQA exercises has been primarily educa-tional, but their results will increasingly serve as a basis for laboratory accreditation. This important development requires that the EQA schemes, in particular the quality of the distributed samples and the procedures for evaluating the results, meet the highest standards.

  4. Bifurcation analysis of a speed gradient continuum traffic flow model

    NASA Astrophysics Data System (ADS)

    Ai, Wen-Huan; Shi, Zhong-Ke; Liu, Da-Wei

    2015-11-01

    A bifurcation analysis approach is presented based on the macroscopic traffic flow model. This method can be used to describe and predict the nonlinear traffic phenomena on the highway from a system global stability perspective. Based on a recently proposed speed gradient continuum traffic flow model, the types and stabilities of the equilibrium solutions are discussed and the existence of Hopf bifurcation and saddle-node bifurcation is proved. Then various bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles, Cusp bifurcation and Bogdanov-Takens bifurcation are found and the traffic flow behaviors at some of them are analyzed. When the Hopf bifurcation is selected as the starting point of density temporal evolution, it may help to explain the stop-and-go traffic phenomena.

  5. Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Lockhard, David P.; Brentner, Kenneth S.; Khorrami, Mehdi R.; Berkman, Mert E.; Choudhari, Meelan

    2000-01-01

    An acoustic analysis based on the Ffowcs Williams and Hawkings equation was performed for a high-lift system. As input, the acoustic analysis used un- steady flow data obtained from a highly resolved, time-dependent, Reynolds-averaged Navier-Stokes calculation. The analysis strongly suggests that vor- tex shedding from the trailing edge of the slat results in a high-amplitude, high-frequency acoustic signal, similar to that which was observed in a correspond- ing experimental study of the high-lift system.

  6. Visualization tools for vorticity transport analysis in incompressible flow.

    PubMed

    Sadlo, Filip; Peikert, Ronald; Sick, Mirjam

    2006-01-01

    Vortices are undesirable in many applications while indispensable in others. It is therefore of common interest to understand their mechanisms of creation. This paper aims at analyzing the transport of vorticity inside incompressible flow. The analysis is based on the vorticity equation and is performed along pathlines which are typically started in upstream direction from vortex regions. Different methods for the quantitative and explorative analysis of vorticity transport are presented and applied to CFD simulations of water turbines. Simulation quality is accounted for by including the errors of meshing and convergence into analysis and visualization. The obtained results are discussed and interpretations with respect to engineering questions are given.

  7. Microcomputer analysis of regenerative heat exchangers for oscillating flow

    NASA Astrophysics Data System (ADS)

    Hutchinson, R. A.; Lyke, S. E.

    1987-03-01

    Regenerative heat exchangers for use in oscillating flows such as those occurring in Stirling engines present considerable analytical problems to the thermal engineer. A simplified finite element analysis has been implemented in a spreadsheet, providing improved access to analytical assumptions and allowing parametric analysis of current heat transfer data. In addition, an irreversibility analysis has been implemented using the thermal and friction results in the spreadsheet. It is suited for evaluation and insights into loss tradeoffs inside operating regenerators, to suggest new regenerator design concepts, and to focus experimental work.

  8. Kootenai River Instream Flow Analysis, 2004 Technical Report.

    SciTech Connect

    Miller, William J.; Geise, Doran; Montana Department of Fish, Wildlife and Parks Staff

    2004-10-01

    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Kootenai River from Libby Dam downstream to Bonners Ferry, Idaho. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and rainbow trout (Oncorhynchus mykiss), as a function of discharge in the river. This study used physical data and habitat use information from previous studies in the 1990s. The present study adapted the one-dimensional physical data into a georeferenced data set for each study site. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that the quantity of suitable habitat is greater at lower discharges than higher discharges and that the more stable flow regime from 1993 through 2002 provided more stable habitat conditions when compared to the highly variable flow regime from 1983 through 1992. The daily and weekly variability under 1983-1992 conditions forces subadult bull trout to use less productive habitat during the night by repetitively wetting and drying stream channel margin area. Subadult bull trout exhibit a distinct difference between daytime and nighttime habitat use (Muhlfeld 2002). These fish utilize deeper main channel habitats during the day and move to shallow channel margin areas at night. The productivity of lower trophic levels is low within the consistently watered and dewatered marginal areas and thus these areas provide little foraging value to subadult bull trout that utilize those areas as flows increase. The more stable flow regime (for weekly or daily timesteps) from 1993-2002 should be more productive than flow regimes with high weekly or daily variability. The highly variable flows likely stress subadult bull trout and rainbow trout due to the additional movement required to find suitable habitat or through the utilization of

  9. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  10. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  11. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  12. SSME LOX post flow analysis/fluid structure interaction. Volume 1: Flow analysis

    NASA Technical Reports Server (NTRS)

    Burke, Roger W.

    1989-01-01

    The realization of measures to improve the performance of the Space Shuttle is, to a large extent, dependent on an improved understanding of the fluid flow phenomena occurring in the main engine. The overall arrangement of the primary components of the Space Shuttle Main Engine (SSME) are presented. The impingement of the hot gases from the transfer ducts onto the LOX posts causes them to be subjected to severe thermal and gas dynamic loads, which in the past have resulted in the occasional breakage of some elements of the outer row of posts during test firings of the engine, particularly at higher power levels. Large velocities in the gap between the LOX posts may also be a contributing factor in causing dynamic stability problems. The deforming structural response of the posts to the pressure loading may likely affect the gas flowfield by producing a moving flowfield boundary, thereby creating a dynamically coupled unsteady fluid-structure system. The objective was to investigate the three-dimensional, turbulent flow around a simplified SSME LOX post array using an existing Reynolds averaged Navier-Stokes flow solver and a suitable turbulence model to parameterize the turbulent shear stresses. Numerical computations were performed to analyze the effect on the flowfield of varying the spacing between the LOX posts, which were modeled as rigid, three-dimensional circular cylinders. The methodology used in the computations is described. Results are presented.

  13. Flow Cytometric Analysis and Sorting of Heterodera glycines Eggs

    PubMed Central

    Tylka, G. L.; Niblack, T. L.; Walk, T. C.; Harkins, K. R.; Barnett, L.; Baker, N. K.

    1993-01-01

    A nondestructive technique was developed to characterize and separate eggs of soybean cyst nematode, Heterodera glycines, by developmental stage using flow cytometry. Eggs from cysts cultured on susceptible soybean roots were suspended in 0.1% xanthan gum or 59% sucrose and loaded into either a Coulter EPICS 752 or EPICS 753 flow cytometer. Eggs were analyzed and sorted according to forward angle and 90° light scatter, flow cytometric parameters that are relative measures of object size and granularity, respectively. Mature eggs containing vermiform juveniles were less granular and slightly larger than eggs in earlier stages of embryogeny, allowing for separation of mature eggs from immature eggs. The effectiveness of flow cytometric sorting was evaluated by comparing the developmental stages of subpopulations of unsorted and sorted eggs. Of a subpopulation of unsorted eggs, 62% contained vermiform juveniles, whereas 85 to 95% of sorted subpopulations of larger, less granular eggs contained vermiform juveniles. Suspending H. glycines eggs in 0.1% xanthan gum or 59% sucrose for flow cytometric analysis had no effect on subsequent egg hatch in vitro. This technique is an efficient and effective means to collect large, relatively homogeneous quantities of H. glycines eggs in early or late embryogeny, and would likely be useful for analyzing and sorting eggs of other nematode species for use in developmental, genetic, or physiological research, or for identification and collection of parasitized eggs. PMID:19279815

  14. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  15. Numerical Analysis of Turbulent Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Hassanipour, Fatemeh; Catoe, James K.; Lage, Jose

    2008-11-01

    Modeling techniques and simulation of laminar flow through porous media have been applied for a number of years for designing particulate filters, catalytic reactors, thermal and sound insulators, combustors, and more recently fuel cells. Essential for further analysis, and in support of new synthesis, is the modeling necessary for simulating turbulent flows in porous media. This has been studied in the present work, in principle, through modeling that is an alternative to Direct Numerical Simulation. A natural approach to build a turbulence model for flow in porous media is to simply apply the time averaging (for handling turbulence) and the space averaging (for handling the morphology) to the microscopic equations valid at the pore level. When pursuing a combined time and space averaging approach, the averaging order (i.e. space-time or time-space) matters. The difference in pursuing a time-space or a space-time averaging order is now known to essentially impact the way in which the resulting model treats the interaction of a large flow structure. In the current study, these two different approaches have been investigated in parallel to the experiments for their validity range. The comparisons are based on flow structure visualization and on values of turbulence characteristics obtained from direct measurements of fluid velocity via digital particle image velocimetry.

  16. Solid rocket motor aft field joint flow field analysis

    NASA Technical Reports Server (NTRS)

    Sabnis, Jayant S.; Gibeling, Edward J.; Mcdonald, Henry

    1987-01-01

    An efficient Navier-Stokes analysis was successfully applied to simulate the complex flow field in the vicinity of a slot in a solid rocket motor with segment joints. The capability of the computer code to resolve the flow near solid surfaces without using a wall function assumption was demonstrated. In view of the complex nature of the flow field in the vicinity of the slot, this approach is considered essential. The results obtained from these calculations provide valuable design information, which would otherwise be extremely difficult to obtain. The results of the axisymmetric calculations indicate the presence of a region of reversed axial flow at the aft-edge of the slot and show the over-pressure in the slot to be only about 10 psi. The results of the asymmetric calculations indicate that a pressure asymmetry more than two diameters downstream of the slot has no noticeable effect on the flow field in the slot. They also indicate that the circumferential pressure differential caused in the slot due to failure of a 15 deg section of the castable inhibitor will be approximately 1 psi.

  17. Analysis and representation of complex structures in separated flows

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1991-01-01

    We discuss our recent work on extraction and visualization of topological information in separated fluid flow data sets. As with scene analysis, an abstract representation of a large data set can greatly facilitate the understanding of complex, high-level structures. When studying flow topology, such a representation can be produced by locating and characterizing critical points in the velocity field and generating the associated stream surfaces. In 3D flows, the surface topology serves as the starting point. The 2D tangential velocity field near the surface of the body is examined for critical points. The tangential velocity field is integrated out along the principal directions of certain classes of critical points to produce curves depicting the topology of the flow near the body. The points and curves are linked to form a skeleton representing the 2D vector field topology. This skeleton provides a basis for analyzing the 3D structures associated with the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations. Integration origins are successively refined to produce stream surfaces. The map of the global topology is completed by generating those stream surfaces associated with 3D critical points.

  18. Modeling metal stocks and flows: a review of dynamic material flow analysis methods.

    PubMed

    Müller, Esther; Hilty, Lorenz M; Widmer, Rolf; Schluep, Mathias; Faulstich, Martin

    2014-02-18

    Dynamic material flow analysis (MFA) is a frequently used method to assess past, present, and future stocks and flows of metals in the anthroposphere. Over the past fifteen years, dynamic MFA has contributed to increased knowledge about the quantities, qualities, and locations of metal-containing goods. This article presents a literature review of the methodologies applied in 60 dynamic MFAs of metals. The review is based on a standardized model description format, the ODD (overview, design concepts, details) protocol. We focus on giving a comprehensive overview of modeling approaches and structure them according to essential aspects, such as their treatment of material dissipation, spatial dimension of flows, or data uncertainty. The reviewed literature features similar basic modeling principles but very diverse extrapolation methods. Basic principles include the calculation of outflows of the in-use stock based on inflow or stock data and a lifetime distribution function. For extrapolating stocks and flows, authors apply constant, linear, exponential, and logistic models or approaches based on socioeconomic variables, such as regression models or the intensity-of-use hypothesis. The consideration and treatment of further aspects, such as dissipation, spatial distribution, and data uncertainty, vary significantly and highly depends on the objectives of each study.

  19. Progress Toward Efficient Laminar Flow Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas

    2011-01-01

    A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.

  20. Dual Solutions for Nonlinear Flow Using Lie Group Analysis

    PubMed Central

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996

  1. Dual Solutions for Nonlinear Flow Using Lie Group Analysis.

    PubMed

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

  2. RseqFlow: workflows for RNA-Seq data analysis

    PubMed Central

    Wang, Ying; Mehta, Gaurang; Mayani, Rajiv; Lu, Jingxi; Souaiaia, Tade; Chen, Yangho; Clark, Andrew; Yoon, Hee Jae; Wan, Lin; Evgrafov, Oleg V.; Knowles, James A.; Deelman, Ewa; Chen, Ting

    2011-01-01

    Summary: We have developed an RNA-Seq analysis workflow for single-ended Illumina reads, termed RseqFlow. This workflow includes a set of analytic functions, such as quality control for sequencing data, signal tracks of mapped reads, calculation of expression levels, identification of differentially expressed genes and coding SNPs calling. This workflow is formalized and managed by the Pegasus Workflow Management System, which maps the analysis modules onto available computational resources, automatically executes the steps in the appropriate order and supervises the whole running process. RseqFlow is available as a Virtual Machine with all the necessary software, which eliminates any complex configuration and installation steps. Availability and implementation: http://genomics.isi.edu/rnaseq Contact: wangying@xmu.edu.cn; knowles@med.usc.edu; deelman@isi.edu; tingchen@usc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21795323

  3. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  4. Data Analysis in Flow Cytometry: The Future Just Started

    PubMed Central

    Lugli, Enrico; Roederer, Mario; Cossarizza, Andrea

    2010-01-01

    In the last 10 years, a tremendous progress characterized flow cytometry in its different aspects. In particular, major advances have been conducted regarding the hardware/instrumentation and reagent development, thus allowing fine cell analysis up to 20 parameters. As a result, this technology generates very complex data sets that demand for the development of optimal tools of analysis. Recently, many independent research groups approached the problem by using both supervised and unsupervised methods. In this paper, we will review the new developments concerning the use of bioinformatics for polychromatic flow cytometry and propose what should be done in order to unravel the enormous heterogeneity of the cells we interrogate each day. PMID:20583274

  5. Energy flow: image correspondence approximation for motion analysis

    NASA Astrophysics Data System (ADS)

    Wang, Liangliang; Li, Ruifeng; Fang, Yajun

    2016-04-01

    We propose a correspondence approximation approach between temporally adjacent frames for motion analysis. First, energy map is established to represent image spatial features on multiple scales using Gaussian convolution. On this basis, energy flow at each layer is estimated using Gauss-Seidel iteration according to the energy invariance constraint. More specifically, at the core of energy invariance constraint is "energy conservation law" assuming that the spatial energy distribution of an image does not change significantly with time. Finally, energy flow field at different layers is reconstructed by considering different smoothness degrees. Due to the multiresolution origin and energy-based implementation, our algorithm is able to quickly address correspondence searching issues in spite of background noise or illumination variation. We apply our correspondence approximation method to motion analysis, and experimental results demonstrate its applicability.

  6. Cross-flow versus counter-current flow packed-bed scrubbers: a mathematical analysis

    SciTech Connect

    Fthenakis, V.M.

    1996-02-01

    Little is known about the mass transfer properties of packing media exposed to a crossflow of gas and liquid, whereas there is abundant information related to counter-current scrubbers. This paper presents a theoretical analysis of mass transfer and hydrodynamics in cross- flow packed bed scrubbers and compares those with information available for counter current towers, so that the first can be evaluated and/or designed based on data derived for the second. Mathematical models of mass transfer in cross-flow and counter- current packed bed scrubbers are presented. From those, one can predict the removal effectiveness of a crossflow scrubber from the number of transfer units (NTU) calculated for a similar counterflow operation; alternatively, when the removal effectiveness in counterflow is known, one can predict the corresponding NTU in crossflow.

  7. Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry

    PubMed Central

    Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.

    2010-01-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively

  8. Analysis of transient storage subject to unsteady flow: Diel flow variation in an Antarctic stream

    USGS Publications Warehouse

    Runkel, R.L.; McKnight, Diane M.; Andrews, E.D.

    1998-01-01

    Transport of dissolved material in streams and small rivers may be characterized using tracer-dilution methods and solute transport models. Recent studies have quantified stream/substream interactions using models of transient storage. These studies are based on tracer-dilution data obtained during periods of steady flow. We present a modeling framework for the analysis of transient storage in stream systems with unsteady flows. The framework couples a kinematic wave routing model with a solute transport model that includes transient storage. The routing model provides time-varying flows and cross-sectional areas that are used as input to the solute transport model. The modeling framework was used to quantify stream/substream interaction in Huey Creek, an Antarctic stream fed exclusively by glacial meltwater. Analysis of tracer-dilution data indicates that there was substantial interaction between the flowing surface water and the hyporheic (substream) zone. The ratio of storage zone area to stream cross-sectional area (A(s)/A) was >1 in all stream reaches, indicating that the substream area contributing to hyporheic exchange was large relative to stream cross-sectional area. The rate of exchange, as governed by the transient storage exchange coefficient (??), was rapid because of a high stream gradient and porous alluvial materials. Estimates of ?? generally exceed those determined for other small streams. The high degree of hyporheic exchange supports the hypothesis that weathering reactions within the hyporheos account for observed increases in solute concentration with stream length, as noted in other studies of Antarctic streams.

  9. Instream-Flow Analysis for the Luquillo Experimental Forest, Puerto Rico: Methods and Analysis

    Treesearch

    F.N. Scatena; S.L. Johnson

    2001-01-01

    This study develops two habitat-based approaches for evaluating instream-flow requirements within the Luquillo Experimental Forest in northeastern Puerto Rico. The analysis is restricted to instream-flow requirements in upland streams dominated by the common communities of freshwater decapods. In headwater streams, pool volume was the most consistent factor...

  10. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming

    NASA Astrophysics Data System (ADS)

    Voutchkova, D. D.; Miller, S. N.

    2016-12-01

    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  11. Instability analysis on drainage flow over a complex terrain

    NASA Astrophysics Data System (ADS)

    Yi, C.

    2007-12-01

    The turbulent transport processes that occur within canopies are extremely complex and have not been accurately represented in past models, especially for ecosystems with hilly or mountainous terrain. The stability analysis on the terrain-induced canopy flows is the key to understanding the introduction of pollutants into the atmosphere and the transfer of water from soil and vegetation to the atmosphere. We applied the Computational Fluid Dynamics (CFD) approach to forest environments to simulate airflows within and above canopy. The results of the CFD experiments show three different dynamic regimes of topographic drainage flow that were simulated under different thermal-dynamic conditions: (1) Cold inflow induces drainage flow in the lower part of canopy and strong stratification of airflows within entire canopy; additionally, the model predicts that there is a super stable layer around the maximum LAD level, which is consistent with our canopy flow theory. This super stable layer minimizes vertical land-atmosphere exchange around the middle level of canopy. (2) Warm inflow causes the rapid flushing of land-atmosphere exchange at the location where two opposite air motions meet, this is called the 'chimney phenomenon'. (3) The oscillation of canopy flow occurs as the inflow temperature is close to the environmental temperature. These CFD simulations are based on fully derived thermal and fluid dynamic equations. In order to clearly understand the physical mechanisms for the transfer between the different dynamic regimes, I utilized the nonlinear dynamics approach to derive the analytical instability conditions of terrain-induced flows from the simplified thermal-hydro-mechanical equations. The analytical derivations are tested against the CFD simulations. These analytical conditions provide a better understanding of transport problem in ecosystem- atmosphere exchanges of water, carbon dioxide, and energy over complex terrain.

  12. Sensitivity Analysis of Chaotic Flow around Two-Dimensional Airfoil

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Wang, Qiqi; Nielsen, Eric; Diskin, Boris

    2015-11-01

    Computational methods for sensitivity analysis are invaluable tools for fluid dynamics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods, including the adjoint method, break down when applied to long-time averaged quantities in chaotic fluid flow fields, such as high-fidelity turbulence simulations. This break down is due to the ``Butterfly Effect'' the high sensitivity of chaotic dynamical systems to the initial condition. A new sensitivity analysis method developed by the authors, Least Squares Shadowing (LSS), can compute useful and accurate gradients for quantities of interest in chaotic dynamical systems. LSS computes gradients using the ``shadow trajectory'', a phase space trajectory (or solution) for which perturbations to the flow field do not grow exponentially in time. To efficiently compute many gradients for one objective function, we use an adjoint version of LSS. This talk will briefly outline Least Squares Shadowing and demonstrate it on chaotic flow around a Two-Dimensional airfoil.

  13. Reticulocyte quantification by flow cytometry, image analysis, and manual counting.

    PubMed

    Schimenti, K J; Lacerna, K; Wamble, A; Maston, L; Iaffaldano, C; Straight, M; Rabinovitch, A; Lazarus, H M; Jacobberger, J W

    1992-01-01

    Reticulocyte counting by flow cytometry with thiazole orange was compared to manual or automated counting of new methylene blue stained blood smears. Forty-nine samples were compared for manual counting from randomly chosen clinical samples. Two hundred and eighty-nine samples from bone marrow transplant patients were compared during the period before and through chemo-irradiation and engraftment. The slopes of correlation plots were less than 1 when flow cytometric data were the dependent variable, suggesting that thiazole orange is less sensitive than new methylene blue. In a third study, 407 samples from bone marrow transplant patients were compared after increasing the thiazole orange concentration. The reticulocyte fluorescence distribution was divided into four groups of the brightest (youngest) 40, 60, 80, and 100% of reticulocytes. The slopes from regression analysis were 0.25, 0.49, 0.78, and 1.14, respectively. This demonstrates that thiazole orange is more sensitive than new methylene blue because the window of analysis includes an increased fraction of mature reticulocytes. In addition, the precision of each assay as measured. The rank order of precision from high to low was flow cytometry > image analysis > manual counting.

  14. Analysis of flow dynamics in right ventricular outflow tract.

    PubMed

    Berdajs, Denis A; Mosbahi, Selim; Charbonnier, Dominique; Hullin, Roger; von Segesser, Ludwig K

    2015-07-01

    The mechanism behind early graft failure after right ventricular outflow tract (RVOT) reconstruction is not fully understood. Our aim was to establish a three-dimensional computational fluid dynamics (CFD) model of RVOT to investigate the hemodynamic conditions that may trigger the development of intimal hyperplasia and arteriosclerosis. Pressure, flow, and diameter at the RVOT, pulmonary artery (PA), bifurcation of the PA, and left and right PAs were measured in 10 normal pigs with a mean weight of 24.8 ± 0.78 kg. Data obtained from the experimental scenario were used for CFD simulation of pressure, flow, and shear stress profile from the RVOT to the left and right PAs. Using experimental data, a CFD model was obtained for 2.0 and 2.5-L/min pulsatile inflow profiles. In both velocity profiles, time and space averaged in the low-shear stress profile range from 0-6.0 Pa at the pulmonary trunk, its bifurcation, and at the openings of both PAs. These low-shear stress areas were accompanied to high-pressure regions 14.0-20.0 mm Hg (1866.2-2666 Pa). Flow analysis revealed a turbulent flow at the PA bifurcation and ostia of both PAs. Identified local low-shear stress, high pressure, and turbulent flow correspond to a well-defined trigger pattern for the development of intimal hyperplasia and arteriosclerosis. As such, this real-time three-dimensional CFD model may in the future serve as a tool for the planning of RVOT reconstruction, its analysis, and prediction of outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    PubMed

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  16. Analysis of Oxygen, Anaesthesia Agent and Flows in Anaesthesia Machine

    PubMed Central

    Garg, Rakesh; Gupta, Ramesh Chand

    2013-01-01

    The technical advancement in the anaesthesia workstations has made the peri-operative anaesthesia more safer. Apart from other monitoring options, respiratory gas analysis has become an integral part of the modern anaesthesia workstations. Monitoring devices, such as an oxygen analyser with an audible alarm, carbon dioxide analyser, a vapour analyser, whenever a volatile anaesthetic is delivered have also been recommended by various anaesthesia societies. This review article discusses various techniques for analysis of flow, volumes and concentration of various anaesthetic agents including oxygen, nitrous oxide and volatile anaesthetic agents. PMID:24249881

  17. Analysis of multiple jets in a cross-flow

    NASA Astrophysics Data System (ADS)

    Isaac, K. M.; Schetz, J. A.

    1982-12-01

    The analysis of Campbell and Schetz (1973) is extended to the study of multiple jets in a cross flow, where the interaction of two jets is taken into account by a modification of the drag coefficient that is sensed by each jet. Results show that the rear jet trajectory is significantly modified by the presence of the front one even when the jets are spaced far apart. The analysis is applicable to such phenomena as the exhaust of chimney stack smoke into a wind and the lift jets of a V/STOL aircraft during takeoff or landing in strong winds.

  18. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  19. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.

    PubMed

    Glöser, Simon; Soulier, Marcel; Tercero Espinoza, Luis A

    2013-06-18

    We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910-2010) enhanced by a unique data set of recent global semifinished goods production and copper end-use sectors provided by the copper industry. To enable the consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper recycling from end-of-life (EoL) scrap--the EoL recycling rate--was estimated to be 45% on average, ± 5% (one standard deviation) due to uncertainty and variability over time in the period 2000-2010. As uncertainties of specific input data--mainly concerning assumptions on end-use lifetimes and their distribution--are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 10(5) simulation runs.

  20. Computational heat transfer analysis for oscillatory channel flows

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mounir; Kannapareddy, Mohan

    An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

  1. Flow analysis of the low Reynolds number swimmer C. elegans

    NASA Astrophysics Data System (ADS)

    Montenegro-Johnson, Thomas D.; Gagnon, David A.; Arratia, Paulo E.; Lauga, Eric

    2016-09-01

    Swimming cells and microorganisms are a critical component of many biological processes. In order to better interpret experimental studies of low Reynolds number swimming, we combine experimental and numerical methods to perform an analysis of the flow field around the swimming nematode Caenorhabditis elegans. We first use image processing and particle tracking velocimetry to extract the body shape, kinematics, and flow fields around the nematode. We then construct a three-dimensional model using the experimental swimming kinematics and employ a boundary element method to simulate flow fields, obtaining very good quantitative agreement with experiment. We use this numerical model to show that calculation of flow shear rates using purely planar data results in significant underestimates of the true three-dimensional value. Applying symmetry arguments, validated against numerics, we demonstrate that the out-of-plane contribution can be accounted for via incompressibility and therefore simply calculated from particle tracking velocimetry. Our results show how fundamental fluid mechanics considerations may be used to improve the accuracy of measurements in biofluiddynamics.

  2. Computational heat transfer analysis for oscillatory channel flows

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kannapareddy, Mohan

    1993-01-01

    An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

  3. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    PubMed

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  4. Modeling and analysis of electrorheological suspensions in shear flow.

    PubMed

    Seo, Youngwook P; Seo, Yongsok

    2012-02-14

    A model capable of describing the flow behavior of electrorheological (ER) suspensions under different electric field strengths and over the full range of shear rates is proposed. Structural reformation in the low shear rate region is investigated where parts of a material are in an undeformed state, while aligned structures reform under the shear force. The model's predictions were compared with the experimental data of some ER fluids as well as the CCJ (Cho-Choi-Jhon) model. This simple model's predictions of suspension flow behavior with subsequent aligned structure reformation agreed well with the experimental data, both quantitatively and qualitatively. The proposed model plausibly predicted the static yield stress, whereas the CCJ model and the Bingham model predicted only the dynamic yield stress. The master curve describing the apparent viscosity was obtained by appropriate scaling both axes, which showed that a combination of dimensional analysis and flow curve analysis using the proposed model yielded a quantitatively and qualitatively precise description of ER fluid rheological behavior based on relatively few experimental measurements.

  5. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    PubMed Central

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  6. POD- Mapping and analysis of hydroturbine exit flow dynamics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Morten; Finstad, Pal Henrik

    2012-11-01

    Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.

  7. Adaptive computational methods for SSME internal flow analysis

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1986-01-01

    Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.

  8. The use of flow cytometry in assessing malignancy in bone and soft tissue tumors.

    PubMed

    Mankin, Henry J; Fondren, Gertrud; Hornicek, Francis J; Gebhardt, Mark C; Rosenberg, Andrew E

    2002-04-01

    Since 1982, the orthopaedic research laboratories at the authors' hospital has done flow cytometric and more recently cytofluorometric deoxyribonucleic ploidic analyses of samples of bone and soft tissue tumors. The current authors attempt to define the value of such studies in distinguishing benign from malignant tumors, in conforming to stage of the tumors, and in helping to predict metastasis and death. The series consists of 1134 patients in whom the disease was verified and the survival data were available as a result of a questionnaire study. Statistically, the ploidic analyses were of remarkable value in defining malignancy and in correlating with the stage of the lesion. They were of less value in predicting survival, particularly for patients with osteosarcoma and chondrosarcoma, but seemed to predict survival effectively for patients with soft tissue sarcomas.

  9. Structural analysis of flow-related textures in lavas

    NASA Astrophysics Data System (ADS)

    Smith, John V.

    2002-05-01

    The textures of coherent volcanic rocks, including lavas and volcanic intrusives, commonly contain features that are attributed to flowage. Previous applications of structural analysis to volcanic rocks are expanded here to provide a framework for analysis. Textures, defined as the crystallinity, granularity and shapes and arrangements of the components (crystals, glass and voids) of a rock, together with structures, defined as individual features composed of the disposition, attitude, arrangement or relative positions of the components of a rock, are first described. Second, the spatial fabrics (shapes and arrangements of the components of a rock and the orientation of textures and structures) are identified. Third, textures, structures and fabrics are placed in the spatial and temporal geological context. Finally, detailed interpretations of the kinematics and rheology of structures and fabrics is made, leading to an integrated flow history of the rock. Illustrative case studies include rhyolite from the basal part of the Tertiary Minyon Falls dome, northeastern New South Wales, Australia, which has a texture comprising planar domains of differing crystal abundance (flow bands), multiple folds of these domains, relatively homogeneous crystal alignment parallel to the fold axes and microfolding of these domains in the zone of interaction between phenocrysts and matrix, including retrorotation of phenocrysts on short limbs of inequant folds. Trachyte dykes on Fraser Island, Queensland, Australia have a texture comprising crystal alignment, planar concentration domains (banding), two planar domains of crystal alignment interpreted to be conjugate shear zones. Phenocrysts influence the spacing and distribution of the domains and interacted with shear zones by undergoing small amounts of rotation. The shear zones overprinted a homogeneous crystal alignment during the last stage of flow before solidification as a result of dilatant granular interactions. Lava from

  10. Multiscale analysis and computation for flows in heterogeneous media

    SciTech Connect

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.; Tchelepi, H.

    2016-08-04

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.

  11. New Methods for Sensitivity Analysis in Chaotic, Turbulent Fluid Flows

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Wang, Qiqi

    2012-11-01

    Computational methods for sensitivity analysis are invaluable tools for fluid mechanics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in chaotic fluid flowfields, such as those obtained using high-fidelity turbulence simulations. Also, a number of dynamical properties of chaotic fluid flows, most notably the ``Butterfly Effect,'' make the formulation of new sensitivity analysis methods difficult. This talk will outline two chaotic sensitivity analysis methods. The first method, the Fokker-Planck adjoint method, forms a probability density function on the strange attractor associated with the system and uses its adjoint to find gradients. The second method, the Least Squares Sensitivity method, finds some ``shadow trajectory'' in phase space for which perturbations do not grow exponentially. This method is formulated as a quadratic programing problem with linear constraints. This talk is concluded with demonstrations of these new methods on some example problems, including the Lorenz attractor and flow around an airfoil at a high angle of attack.

  12. Analysis and control of supersonic vortex breakdown flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  13. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  14. Computational analysis of the SSME fuel preburner flow

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Farmer, R. C.

    1986-01-01

    A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures.

  15. CFD Analysis in Advance of the NASA Juncture Flow Experiment

    NASA Technical Reports Server (NTRS)

    Lee, H. C.; Pulliam, T. H.; Neuhart, D. H.; Kegerise, M. A.

    2017-01-01

    NASA through its Transformational Tools and Technologies Project (TTT) under the Advanced Air Vehicle Program, is supporting a substantial effort to investigate the formation and origin of separation bubbles found on wing-body juncture zones. The flow behavior in these regions is highly complex, difficult to measure experimentally, and challenging to model numerically. Multiple wing configurations were designed and evaluated using Computational Fluid Dynamics (CFD), and a series of wind tunnel risk reduction tests were performed to further down-select the candidates for the final experiment. This paper documents the CFD analysis done in conjunction with the 6 percent scale risk reduction experiment performed in NASA Langley's 14- by 22-Foot Subsonic Tunnel. The combined CFD and wind tunnel results ultimately helped the Juncture Flow committee select the wing configurations for the final experiment.

  16. Loop flow analysis of dissolved reactive phosphorus in aqueous samples.

    PubMed

    Ma, Jian; Li, Quanlong; Yuan, Dongxing

    2014-06-01

    The current flow based method for the determination of dissolved reactive phosphorus (DRP) suffers interference from salinity (e.g. index refractive difference) and the incidentally formed bubbles, which can be a problem for optical detection. Here we reported a simple and robust loop flow analysis (LFA) method for accurate measurement of DRP in different aqueous samples. The chemistry is based on the classic phosphomolybdenum blue (PMB) reaction and the PMB formed in a novel cross-shaped flow cell was detected at 700 nm using a miniature spectrophotometer. The effects of reagents on the kinetic formation of PMB were evaluated. The detection limit was 32 nM with an optical pathlength of 1cm and the relative standard deviations for repetitive determinations of 1, 2 and 8 µM phosphate solutions were 1.8% (n=113, without any stoppage during repeating analysis for >7h), 1.0% (n=49) and 0.39% (n=9), respectively. The analysis time was 4 min sample(-1). The effects of salinity and interfering ions (silicate and arsenate) were evaluated and showed no interference under the proposed protocol for DRP analysis. Using the LFA method, different aqueous samples with a salinity range of 0-34 were analyzed and the results showed excellent agreement with the reference method (slope 0.9982±0.0063, R(2)=0.9987, n=34). Recoveries for spiked samples varied from 95.4% to 103.7%. The proposed method showed insignificant interference from salinity, silicate and arsenate, higher reproducibility, easier operation and was free of the bubble problem.

  17. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  18. Multimodal Pressure Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

    PubMed Central

    Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera

    2008-01-01

    Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique “Multi-Modal Pressure Flow method (MMPF)” that utilizes Hilbert-Huang transformation to quantify dynamic cerebral autoregulation (CA) by studying interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The influence of CA is traditionally assessed from the relationship between the well-pronounced systemic BP and BFV oscillations induced by clinical tests. Reliable noninvasive assessment of dynamic CA, however, remains a challenge in clinical and diagnostic medicine. In this brief review we: 1) present an overview of transfer function analysis (TFA) that is traditionally used to quantify CA; 2) describe the a MMPF method and its modifications; 3) introduce a newly developed automatic algorithm and engineering aspects of the improved MMPF method; and 4) review clinical applications of MMPF and its sensitivity for detection of CA abnormalities in clinical studies. The MMPF analysis decomposes complex nonstationary BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we recently showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA

  19. Flow cytometric analysis of inflammatory cells in ischemic rat brain.

    PubMed

    Campanella, Marilena; Sciorati, Clara; Tarozzo, Glauco; Beltramo, Massimiliano

    2002-02-01

    Inflammation plays a key role in cerebral ischemia through activation of microglia and infiltration by leukocytes. Flow cytometry is a well-established method for quantitative and qualitative analysis of inflammatory cells. However, this technique has not been applied to the study of cerebral ischemia inflammation. The aim of this study was to establish a flow cytometric method to measure inflammatory cells in ischemic brain. To perform flow cytometry on brain tissue, we developed 2 cell-isolation methods based on different mechanical dissociation and Percoll gradient separation techniques. The methods were tested on a rat model of permanent middle cerebral artery occlusion. Morphological and immunophenotypic analyses, with the use of anti-CD11b, anti-CD45, and alphabeta T-cell receptor antibodies, were employed to identify and quantify inflammatory cells. Both methods gave consistent results in terms of yield and reproducibility. The cell suspension contained granulocytes, macrophages, lymphocytes, and neural cells. Morphological and immunophenotypic analyses enabled the identification of a cell-scatter gate (R1a) enriched in inflammatory cells. With both methods, a higher number of events in R1a were recorded in the ischemic hemisphere than in the nonischemic hemisphere (P< or =0.001). CD11b, CD45, and alphabeta T-cell receptor staining confirmed that this augmentation was a reflection of the increase in the number of granulocytes, cells of the monocytic lineage, and lymphocytes. Quantitative flow cytometric analysis of ischemic rat brain is feasible and provides a reliable and rapid assay to assess neuroinflammation in experimental models of brain ischemia.

  20. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  1. Flow blockage analysis for the advanced neutron source reactor

    SciTech Connect

    Stovall, T.K.; Crabtree, J.A.; Felde, D.K.; Park, J.E.

    1996-01-01

    The Advanced Neutron Source (ANS) reactor was designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design required high-speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris disrupts the fluid flow to the plate surfaces and can prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate so that any flow disruption would recover, thus providing adequate heat removal from the downstream, heated portions of the fuel plates. As part of the safety analysis, the adequacy of this unheated entrance length was assessed using both analytical models and experimental measurements. The Flow Blockage Test Facility (FBTF) was designed and built to conduct experiments in an environment closely matching the ANS channel geometry. The FBTF permitted careful measurements of both heat transfer and hydraulic parameters. In addition to these experimental efforts, a thin, rectangular channel was modeled using the Fluent computational fluid dynamics computer code. The numerical results were compared with the experimental data to benchmark the hydrodynamics of the model. After this comparison, the model was extended to include those elements of the safety analysis that were difficult to measure experimentally. These elements included the high wall heat flux pattern and variable fluid properties. The results were used to determine the relationship between potential blockage sizes and the unheated entrance length required.

  2. Analysis of a cryolava flow-like feature on Titan

    USGS Publications Warehouse

    Le, Corre L.; Le, Mouelic S.; Sotin, Christophe; Combe, J.-P.; Rodriguez, S.; Barnes, J.W.; Brown, R.H.; Buratti, B.J.; Jaumann, R.; Soderblom, J.; Soderblom, L.A.; Clark, R.; Baines, K.H.; Nicholson, P.D.

    2009-01-01

    This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 ??m). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.. ?? 2009 Elsevier Ltd.

  3. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  4. Gravity flow of powder in a lunar environment. Part 2: Analysis of flow initiation

    NASA Technical Reports Server (NTRS)

    Pariseau, W. G.

    1971-01-01

    A small displacement-small strain finite element technique utilizing the constant strain triangle and incremental constitutive equations for elasticplastic (media nonhardening and obeying a Coulomb yield condition) was applied to the analysis of gravity flow initiation. This was done in a V-shaped hopper containing a powder under lunar environmental conditions. Three methods of loading were examined. Of the three, the method of computing the initial state of stress in a filled hopper prior to drawdown, by adding material to the hopper layer by layer, was the best. Results of the analysis of a typical hopper problem show that the initial state of stress, the elastic moduli, and the strength parameters have an important influence on material response subsequent to the opening of the hopper outlet.

  5. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-01-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  6. Analysis of plant ribosomes with asymmetric flow field-flow fractionation.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Eskelin, Katri

    2014-02-01

    Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA-protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.

  7. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  8. Bootstrap position analysis for forecasting low flow frequency

    USGS Publications Warehouse

    Tasker, Gary D.; Dunne, P.

    1997-01-01

    A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.

  9. Flow cytometry-based DNA hybridization and polymorphism analysis

    SciTech Connect

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  10. Flow-cytometry-based DNA hybidization and polymorphism analysis

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Kommander, Kristina; White, P. S.; Nolan, John P.

    1998-05-01

    Functional analysis of the human genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well- suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. We are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. Our approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advantages of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  11. Image analysis techniques for the study of turbulent flows

    NASA Astrophysics Data System (ADS)

    Ferrari, Simone

    In this paper, a brief review of Digital Image Analysis techniques employed in Fluid Mechanics for the study of turbulent flows is given. Particularly the focus is on the techniques developed by the research teams the Author worked in, that can be considered relatively "low cost" techniques. Digital Image Analysis techniques have the advantage, when compared to the traditional techniques employing physical point probes, to be non-intrusive and quasi-continuous in space, as every pixel on the camera sensor works as a single probe: consequently, they allow to obtain two-dimensional or three-dimensional fields of the measured quantity in less time. Traditionally, the disadvantages are related to the frequency of acquisition, but modern high-speed cameras are typically able to acquire at frequencies from the order of 1 KHz to the order of 1 MHz. Digital Image Analysis techniques can be employed to measure concentration, temperature, position, displacement, velocity, acceleration and pressure fields with similar equipment and setups, and can be consequently considered as a flexible and powerful tool for measurements on turbulent flows.

  12. Continuous flow analysis of labile iron in ice-cores.

    PubMed

    Hiscock, William T; Fischer, Hubertus; Bigler, Matthias; Gfeller, Gideon; Leuenberger, Daiana; Mini, Olivia

    2013-05-07

    The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N'-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ~1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.

  13. Mathematical model for analysis of recirculating vertical flow constructed wetlands.

    PubMed

    Sklarz, Menachem Y; Gross, Amit; Soares, M Ines M; Yakirevich, Alexander

    2010-03-01

    The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed. In this study, a compartmental model was developed to simulate the RVFCW. The model, which addresses transport and removal kinetics of total suspended solids, 5-day biological oxygen demand and nitrogen, was fitted to kinetical results obtained from pilot field setups and a local sensitivity analysis was performed on the model parameters and operational conditions. This analysis showed that after 5h of treatment water quality is affected more by stochastic events than by the model parameter values, emphasizing the stability of the RVFCW system to large variations in operational conditions. Effluent quality after 1h of treatment, when the sensitivity analysis showed the parameter impacts to be largest, was compared to model predictions. The removal rate was found to be dependent on the recirculation rate. The predictions correlated well with experimental observations, leading to the conclusion that the proposed model is a satisfactory tool for studying RVFCWs. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Entropy analysis of pressure driven flow in a curved duct

    NASA Astrophysics Data System (ADS)

    Narla, V. K.; Jaliparthi, Vijayasekhar

    2017-07-01

    This paper aims to present a theoretical model describing entropy generation analysis using second law of thermodynamics. A two-dimensional, incompressible, viscous MHD fluid flow in a curved duct undergoing peristalsis with prescribed wall motions in the presence of heat transfer is applied and demonstrated. In this problem, It is assumed that the inertial effect is very small and the wall wave length is comparatively large with duct width. The velocity and temperature fields are obtained analytically by solving momentum and energy equations. The entropy generation number is calculated by utilizing velocity and temperature profiles. The influence of various physical parameters on entropy generation are discussed numerically with the help of graphs.

  15. Cell cycle analysis by flow cytometry: principles and applications.

    PubMed

    Jayat, C; Ratinaud, M H

    1993-01-01

    Numerous flow cytometric analyses are based on DNA content studies. We have considered firstly monoparametric cell cycle analyses, which only take DNA content into account, but are sometimes of limited interest. Then, we have presented multiparametric analyses, which can be used to improve cycle phase identification by taking simultaneously into account DNA and other cellular components, or by considering some events occurring during cell cycle. Finally, we have discussed monoparametric and multiparametric cell cycle analysis interest in various application fields, particularly in pharmacology, toxicology, tumoral pathology and higher plant system studies.

  16. An analysis method for two-dimensional transonic viscous flow

    NASA Technical Reports Server (NTRS)

    Bavitz, P. C.

    1975-01-01

    A method for the approximate calculation of transonic flow over airfoils, including shock waves and viscous effects, is described. Numerical solutions are obtained by use of a computer program which is discussed in the appendix. The importance of including the boundary layer in the analysis is clearly demonstrated, as well as the need to improve on existing procedures near the trailing edge. Comparisons between calculations and experimental data are presented for both conventional and supercritical airfoils, emphasis being on the surface pressure distribution, and good agreement is indicated.

  17. Digital analysis and sorting of fluorescence lifetime by flow cytometry.

    PubMed

    Houston, Jessica P; Naivar, Mark A; Freyer, James P

    2010-09-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 micros, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 micros and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to approximately 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to

  18. Analysis of traffic flow models in phase space

    NASA Astrophysics Data System (ADS)

    Velasco, R. M.; Saavedra, P.

    2008-11-01

    Traffic flow can be studied by means of hydrodynamic concepts, through an analogy with Navier-Stokes compressible flow or with models coming from kinetic equations. In this work we will consider two models for which the density and the average velocity are the relevant variables. The Kerner-Konhäuser [1] is a phenomenological model proposed in complete analogy with a viscous flow, whereas the so called kinetic model [2] comes from the Paveri-Fontana kinetic equation [3]. Both models are seen from a moving reference frame and a phase space is defined where all the analysis is done, some orbits exemplify and contrast the behavior in these models [4]. [1] B.S. Kerner, P. Konhäuser; Phys. Rev. E 48, R2335 (1993). [2] R.M. Velasco, W. Marques Jr.; Phys. Rev. E 72, 046102 (2005). [3] S.L. Paveri-Fontana; Transp.. Res. 9, 225 (1975). [4] H.K. Lee, H.W. Lee, D. Kim; Phys. Rev. E 69, 016118 (2004).

  19. Anthropogenic phosphorus flow analysis of Hefei City, China.

    PubMed

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns.

  20. Spherical harmonic analysis of steady photospheric flows. II

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1992-01-01

    The use of the spherical harmonic functions to analyze the nearly steady flows in the solar photosphere is extended to situations in which B(0) the latitude at disk center, is nonzero and spurious velocities are present. The procedures for extracting the rotation profile and meridional circulation are altered to account for the seasonal tilt of the sun's rotation axis toward and away from the observer. A more robust and accurate method for separating the limb shift and meridional circulation signals is described. The analysis procedures include the ability to mask out areas containing spurious velocities (velocity-like signals that do not represent true flow velocities in the photosphere). The procedures are shown to work well in extracting the various flow components from realistic artificial data with a broad, continuous spectrum for the supergranulation. The presence of this supergranulation signal introduces errors of a few m/s in the measurements of the rotation profile, meridional circulation, and limb shift from a single Doppler image.

  1. Flow cytometric analysis of glyoxalase-1 expression in human leukocytes.

    PubMed

    Skapare, Elina; Riekstina, Una; Liepinsh, Edgars; Konrade, Ilze; Makrecka, Marina; Maurina, Baiba; Dambrova, Maija

    2011-03-01

    Altered glyoxalase-1 (GLO-1) activity and expression is associated with the development of late diabetic complications, malignancy and oxidative stress- and aging-related diseases. In the present study, we developed a flow cytometry method for GLO-1 detection in human leukocytes isolated from peripheral blood samples to investigate GLO-1 expression in leukocyte subsets from type 1 and 2 diabetes mellitus patients (n = 11) and healthy subjects (n = 8). The flow cytometry analysis of GLO-1 in leukocytes showed that expression index of GLO-1-positive cells was slightly increased in mononuclear leukocytes from diabetic patients. This result correlated with the increase in GLO-1 activity in the whole blood samples of type 2 diabetes patients. In conclusion, the present study demonstrates that flow cytometry is suitable for the detection of the GLO-1 enzyme in human leukocytes and that this method could be used to investigate the fast adaptation of the glyoxalase system related to the pathogenesis of late complications of diabetes mellitus and other glycation stress-related disorders. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Thermohydraulic analysis of the cooling air flow in a rack

    NASA Astrophysics Data System (ADS)

    Natusch, Andreas; Huchler, Markus

    Manned space laboratories like the US Space Station Freedom or the European COLUMBUS APM are equipped with so-called racks for subsystem and payload accommodation. An important resource is air for cooling the unit internal heat sources, the avionics air. Each unit inside the rack must be supplied with sufficient amount of air to cool down the unit to the allowable maximum temperature. In the course of the COLUMBUS Environmental Control and Life Support Subsystem (ECLSS) project, a thermohydraulic mathematical model (THMM) of a representative COLUMBUS rack was developed to analyze and optimize the distribution of avionic air inside this rack. A sensitivity and accuracy study was performed to determine the accuracy range of the calculated avionics flow rate distribution to the units. These calculations were then compared to measurement results gained in a rack airflow distribution test, which was performed with an equipped COLUMBUS subsystem rack to show the pressure distribution inside the rack. In addition to that cold flow study, the influence of the avionics air heating due to the unit dissipations on the airflow distribution and the cooling tenmperature was investigated in a detailed warm flow analysis.

  3. Mean Flow Perturbation Analysis of an Underexpanded Jet

    NASA Astrophysics Data System (ADS)

    Bhaumik, Swagata; Gaitonde, Datta; Shen, Hao; Acoustics Technology, Boeing Research; Technology, Boeing Company Collaboration

    2015-11-01

    Here, we illustrate a novel method to predict sound generated by imperfectly expanded jets where the resulting shock-cells can yield significant broadband noise in the far-field. We describe continued development of mean flow perturbation method to analyze the response of an underexpanded jet to small perturbations. This method originates from the work of Touber & Sandham (Theor. Comput. Fluid. Dyn., 2009) for nominally 2D shock-wave turbulent-boundary layer interactions. This method is an initial boundary value problem and is equally applicable to flows with sharp gradients. It degenerates into the LST, global and PSE analysis under suitable conditions. We use this method to study finer details of the noise generation mechanisms of an under-expanded round jet at M = 1 . 0 . Preliminary results on time-averaged mean turbulent flow-field perturbed by an annular multi-periodic excitation close to the nozzle-exit plane show interaction of downstream propagating disturbances with the feet of the shock-cells. This causes significant amplification of disturbances resulting in the formation of toroidal vortical structures. This further destabilize the shock-cells, finally resulting in acoustic wave propagation in two distinct downstream and upstream directions.

  4. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

    NASA Astrophysics Data System (ADS)

    Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

    2015-12-01

    This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

  5. Analysis of electric current flow through the HTc multilayered superconductors

    NASA Astrophysics Data System (ADS)

    Sosnowski, J.

    2016-02-01

    Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.

  6. An integrated internal flow analysis for ramjet propulsion system

    NASA Astrophysics Data System (ADS)

    Hsieh, Shih-Yang

    An integrated numerical analysis has been conducted to study the ramjet internal flowfield. Emphasis is placed on the establishment of a unified numerical scheme and accurate representation of the internal flow development. The theoretical model is based on the complete conservation equations of mass, momentum, energy, and species concentration, with consideration of finite-rate chemical reactions and variable properties. Turbulence closure is achieved using a low-Reynolds number k-epsilon two-equation model. A new computation procedure capable of treating time-accurate, chemically reacting flows over a wide range of Mach number was developed. This numerical scheme allows for a unified treatment of the entire flowfield in a ramjet engine, including both the supersonic inlet and the combustion chamber. The algorithm is based on scaling the pressure terms in the momentum equations and preconditioning the conservation equations to circumvent numerical difficulties at low Mach numbers. The resulting equations are solved using the lower-upper (LU) factorization method in a fully-coupled manner, with the incorporation of a flux-differencing upwind TVD scheme to achieve high-order spatial accuracy. The transient behavior of the modeled system is preserved through implementation of the dual time-stepping integration technique. Calculations have been carried out for the flowfield in a typical ramjet engine consisting of an axisymmetric mixed-compression supersonic inlet and a coaxial dump combustor. Distinguished shock structures in the forward section of the inlet were clearly captured. The boundary layer thickening and flow separation behind the terminal shock due to shock/boundary-layer interactions and inlet configuration were observed. The mutual coupling between the inlet and combustor was carefully examined. In particular, strong vortices arising from the inlet shock/acoustic and shock/boundary-layer interactions may convect downstream and affect the combustion

  7. Current Flow Analysis In The Inlets of The Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Gacic, M.; Mancero, I.; Mazzoldi, A.; Kovacevic, V.; Arena, F.; Gelsi, G.; Arcari, G.

    The first long-term monitoring of current flow in the inlets of the Venice lagoon has started in summer 2001. Current measurements have been carried out with the bottom-mounted Acoustic Doppler Current Profiler (ADCP) so that in each inlet one ADCP has been installed. The measurements initiated 17 June, 2001 at selected locations, namely Lido and Malamocco. The vertical resolution is set to 1 meter and the three-components current is sampled and recorded every 10 minutes. From these measurements is apparent that the currents can reach to almost 2 m/s with the corresponding flow rate about 10000 m3/s (for a comparison Po, the biggest Adriatic river has an average discharge rate of 1500 m3/s reaching only exceptionally a value of 11.000 m3/s). The preliminary results have shown a highly- dominant tidal signal with the polarization of the oscillations mainly along the channel axes. Harmonic analysis is applied for determining the main tidal constituents in the flow. The more energetic ones are M2 and K1. The whole set of constituents explains between 94 and 97% of the total variance, i.e. the flow is almost entirely driven by the tidal signal. The phase differences between both inlets shows that the inflowing current at Malamocco leads for about 20 minutes the one at Lido. These results were compared with sea surface elevation data at the same locations and for the same period of current measurement. In the case of the strongest diurnal constituent (K1), the maximum inflowing current leads the maximum sea-level for about 4 hours in both inlets; in the same way, at the most energetic semi-diurnal frecuency (M2) the maximum inflowing current leads the maximum sea-level for about 2 hours.

  8. Comparison of turbine annulus mass flow computed by one- and two-dimensional analysis

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.; Glassman, A. J.

    1972-01-01

    Variations in specific heat ratio, flow angle, critical velocity ratio, swirl distribution exponent, and radius ratio were considered in computing the mass flow. Variations in specific heat ratio had no significant effect and variations in critical velocity ratio had only small effect on computed mass flow between a one- and two-dimensional analysis. All non-free-vortex cases considered showed larger differences in computed mass flow between one- and two-dimensional analysis than for free vortex flow. For the non-free-vortex cases, decreasing radius ratio and increasing flow angle resulted in larger differences in mass flow as computed by the two methods.

  9. [Research of potassium flow and circulation based on substance flow analysis].

    PubMed

    Bai, Hua; Zeng, Si-Yu; Dong, Xin; Chen, Ji-Ning

    2013-06-01

    Mass of potassium is consumed in the process of crop production, which is the dominating section of potassium flow and circulation in China. However, the degree of self-sufficiency is relatively low due to the deficient domestic resource of potassium. This study analyzed the key links of potassium issues in crop production and consumptive use in 2009 based on substance flow analysis. The results indicated that the farmland nutrient balance of input/output couldn't make even, with a heavy deficit of 50.4 kg x hm(-2) at the national level. Meanwhile, about 2.31 million ton of potash fertilizer was washed away into the hydrologic cycle, which accounts for 40.97% of chemical fertilizer applied in the whole year. Domestic wastewater in urban and rural areas was identified as another primary source for the transformation of potassium from terrestrial ecosystem to water environment system, annually contributing 671 and 547 thousand tons, which takes up 19.00% and 15.50%, respectively. And the amount of potassium in effluent of wastewater treatment plants was 505 thousand tons per year, accounting for 75.25% of the total emission in urban areas.

  10. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  11. MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs

    NASA Astrophysics Data System (ADS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2016-12-01

    Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)

  12. Geomorphic Signatures on Brutsaert Base Flow Recession Analysis

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Mutzner, Raphael; Bertuzzo, Enrico; Tarolli, Paolo; Weijs, Steven; Ceola, Serena; Tomasic, Nevena; Rodríguez-Iturbe, Ignacio; Parlange, Marc

    2013-04-01

    This paper addresses the signatures of catchment geomorphology on base flow recession curves. Its relevance relates to the implied predictability of base flow features, which are central to catchment-scale transport phenomena and to ecohydrological function. Moving from the classical recession curve analysis method, originally applied to the Finger Lakes Region, a large set of recession curves has been analyzed from Swiss streamflow data relatively unaffected by snowmelt. For these catchments, digital terrain models have been accurately analyzed. Recent results aimed at the geomorphic origins of recession curves have been then applied to the Swiss dataset. The method links river network morphology, epitomized by time-varying geometry of saturated channel sites, with the classic parametrization of recession events, in particular by assimilating two scaling exponents, β and bG (i.e. |dQ/dt|?Qβwhere Q is at-a-station gauged flow rate; N(l) ?G(l)bG where l is the downstream distance from the channel heads receding in time, N(l) is the number of draining channel reaches located at distance l from their heads, and G(l) is the total drainage network length at a distance greater or equal to l, the active drainage network). Here, we confirm that the method provides good results, yet only in catchments where drainage density can be regarded as spatially constant. A correction to the method is proposed, which accounts for arbitrary local drainage densities affecting the local drainage inflow per unit channel length. Such corrections properly vanish should drainage density become spatially constant. A comparative analysis on the Swiss streamflow and Digital Elevation Model data shows that the proposed correction proves indeed statistically significant. Overall, definite geomorphic signatures are recognized for recession curves, with notable theoretical and practical implications.

  13. Low intensity blood flow restriction training: a meta-analysis.

    PubMed

    Loenneke, Jeremy P; Wilson, Jacob M; Marín, Pedro J; Zourdos, Michael C; Bemben, Michael G

    2012-05-01

    The primary objective of this investigation was to quantitatively identify which training variables result in the greatest strength and hypertrophy outcomes with lower body low intensity training with blood flow restriction (LI-BFR). Searches were performed for published studies with certain criteria. First, the primary focus of the study must have compared the effects of low intensity endurance or resistance training alone to low intensity exercise with some form of blood flow restriction. Second, subject populations had to have similar baseline characteristics so that valid outcome measures could be made. Finally, outcome measures had to include at least one measure of muscle hypertrophy. All studies included in the analysis utilized MRI except for two which reported changes via ultrasound. The mean overall effect size (ES) for muscle strength for LI-BFR was 0.58 [95% CI: 0.40, 0.76], and 0.00 [95% CI: -0.18, 0.17] for low intensity training. The mean overall ES for muscle hypertrophy for LI-BFR training was 0.39 [95% CI: 0.35, 0.43], and -0.01 [95% CI: -0.05, 0.03] for low intensity training. Blood flow restriction resulted in significantly greater gains in strength and hypertrophy when performed with resistance training than with walking. In addition, performing LI-BFR 2-3 days per week resulted in the greatest ES compared to 4-5 days per week. Significant correlations were found between ES for strength development and weeks of duration, but not for muscle hypertrophy. This meta-analysis provides insight into the impact of different variables on muscular strength and hypertrophy to LI-BFR training.

  14. Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Ta'asan, Shlomo

    1996-01-01

    In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.

  15. Value flow mapping: Using networks to inform stakeholder analysis

    NASA Astrophysics Data System (ADS)

    Cameron, Bruce G.; Crawley, Edward F.; Loureiro, Geilson; Rebentisch, Eric S.

    2008-02-01

    Stakeholder theory has garnered significant interest from the corporate community, but has proved difficult to apply to large government programs. A detailed value flow exercise was conducted to identify the value delivery mechanisms among stakeholders for the current Vision for Space Exploration. We propose a method for capturing stakeholder needs that explicitly recognizes the outcomes required of the value creating organization. The captured stakeholder needs are then translated into input-output models for each stakeholder, which are then aggregated into a network model. Analysis of this network suggests that benefits are infrequently linked to the root provider of value. Furthermore, it is noted that requirements should not only be written to influence the organization's outputs, but also to influence the propagation of benefit further along the value chain. A number of future applications of this model to systems architecture and requirement analysis are discussed.

  16. Analysis of steady viscous flow in slender tubes

    NASA Astrophysics Data System (ADS)

    Bujurke, N. M.; Katagi, N. N.; Awati, V. B.

    2005-09-01

    The computer extended perturbation series method is used to analyze the problem of steady viscous flow in slender tubes. The objective is to obtain an expansion in a power series of λ (= ɛ R, ɛ is a small parameter and R = M/{Lν } is a streamwise Reynolds number) and look for its analytic continuation. Such an expansion was usually terminated at the second or third order term and consequently they have a very limited utility. Sufficiently large number of terms in the series, representing physical quantities are, generated for the detail analysis which enables to get converging Pade’ sums for large λ. Domb-Sykes plot enables in finding singularity restricting the convergence of the series. Useful results valid up to λ = 15 are obtained for different derived quantities whereas in earlier findings [6], analysis could be done only up to λ = 10 resulting into a substantial improvement in the present study.

  17. Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion

    NASA Astrophysics Data System (ADS)

    Mikel-Stites, Maxwell; Staples, Anne

    2014-11-01

    While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).

  18. Flow injection analysis of MWC fly ash leaching characteristics

    SciTech Connect

    Willemin, J.A.; Nesbitt, C.C.; Dewey, G.R.; Sandall, J.F.; Sutter, L.L.

    1995-11-01

    A completely mixed batch reactor leaching method utilizing flow injection analysis (the CMBR-FIA method) was developed to study the lead leaching characteristics of municipal waste combustor fly ash. Flow injection analysis (FIA) coupled with atomic absorption spectrophotometry enabled the determination of lead concentrations at one minute intervals. The pH and oxidation-reduction potential of the solution were continuously monitored to characterize the leaching conditions. Automatic titration was used to alter the solution pH to defined endpoints. The CMBR-FIA method offers the ability to immediately observe alterations to the leaching solution, and grants the freedom to study a number of parameters concurrently. The CMBR-FIA method is a rapid and reliable means to investigate leaching characteristics. This paper describes the method and demonstrates its use to monitor the leaching of lead from municipal solid waste combustor fly ash as a function of pH. Soluble lead concentrations are shown to increase quickly with decreasing pH. A maximum of 50% of the total lead concentration was available in solution at pH 2. This value gradually decreased with time to over 35% of the total. 16 refs., 6 figs.

  19. High-order Finite Element Analysis of Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Alvin; Sahni, Onkar

    2014-11-01

    Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.

  20. Flow virometric sorting and analysis of HIV quasispecies from plasma

    PubMed Central

    Jones, Jennifer C.; Keele, Brandon F.; Jenkins, Lisa M. Miller; Demberg, Thorsten

    2017-01-01

    Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens. PMID:28239654

  1. Center-to-center analysis of flow lineation and flow direction in Eocene welded ignimbrites, Twin Peaks, Idaho

    SciTech Connect

    Olsen, H.J. . Geology Dept.)

    1993-04-01

    Ignimbrites of the Eocene Twin Peaks caldera (Hardyman, 1982) in central Idaho's Challis Volcanic Field comprise both caldera-fill and outflow facies. The vents and mode of emplacement of these ignimbrites are problematic, because the Twin Peaks caldera has been strongly structurally disrupted, and lineations are sparse in the ignimbrites. Six oriented samples from three separate cooling units were studied using the Fry center-to-center method (Seaman and Williams, 1992) in order to determine flow lineation and flow direction of the ignimbrites inside the caldera. Flow lineation is defined in the plane parallel to flattened pumice and assumes that phenocryst are at maximum spacing in this plane. The flow lineation then coincides with the long axis of a center-to-center ellipse. Flow direction is defined in the plane perpendicular to flattening, which is inclined with respect to the flow plane and dips towards the source of flow. Four of five samples from the upper two cooling units near the thickest part of the caldera fill have well developed center-to-center strain ellipsoids producing flow lineations oriented N35W ([+-]7[degree]). The samples from the bottom cooling unit also has a well developed strain ellipsoid, but with a lineation oriented N80E. The difference in flow lineation suggests that the lowest cooling unit had a separate vent. Strain analysis of perpendicular sections are underway to establish the flow direction of the ignimbrites.

  2. Development and Application of a Rubric for Analysis of Novice Students' Laboratory Flow Diagrams

    ERIC Educational Resources Information Center

    Davidowitz, Bette; Rollnick, Marissa; Fakudze, Cynthia

    2005-01-01

    The purpose of this study was to develop and apply a scheme for the analysis of flow diagrams. The flow diagrams in question are a schematic representation of written instructions that require students to process the text of their practical manual. It was hoped that an analysis of the flow diagrams would provide insight into students'…

  3. Correlation and analysis of oil flow data for an air-breathing missile model

    NASA Technical Reports Server (NTRS)

    Stoy, S. L.; Dillon, J. L.; Roman, A. P.

    1985-01-01

    This paper will present the results of an oil flow investigation on an airbreathing missile model. This oil flow study examined the flow around the model, which can be configured with both axisymmetric and two-dimensional inlets. Flow visualization analyses were conducted for both types of geometries by examining the surface flow patterns made visible by the oil flows for Mach numbers of 2.5 and 3.95. The analysis has shown the extent of flow spillage around the inlet which has helped explain the force and moment data collected during previous testing of the model. The oil flow data has also been used to develop guidelines for modeling the location of the crossflow separation line along inlet fairings. Finally, the oil flow analysis has been used to identify unique features of the boattail flow. These boattail flow characteristics have been correlated with previous oil flow analysis of noncircular body models. This paper demonstrates the use of this type of oil flow analysis in developing missile flow field analysis and aerodynamic predictions ranging from impact angle methods through Navier-Stokes methods.

  4. Correlation and analysis of oil flow data for an air-breathing missile model

    NASA Technical Reports Server (NTRS)

    Stoy, S. L.; Dillon, J. L.; Roman, A. P.

    1985-01-01

    This paper will present the results of an oil flow investigation on an airbreathing missile model. This oil flow study examined the flow around the model, which can be configured with both axisymmetric and two-dimensional inlets. Flow visualization analyses were conducted for both types of geometries by examining the surface flow patterns made visible by the oil flows for Mach numbers of 2.5 and 3.95. The analysis has shown the extent of flow spillage around the inlet which has helped explain the force and moment data collected during previous testing of the model. The oil flow data has also been used to develop guidelines for modeling the location of the crossflow separation line along inlet fairings. Finally, the oil flow analysis has been used to identify unique features of the boattail flow. These boattail flow characteristics have been correlated with previous oil flow analysis of noncircular body models. This paper demonstrates the use of this type of oil flow analysis in developing missile flow field analysis and aerodynamic predictions ranging from impact angle methods through Navier-Stokes methods.

  5. Quantitative analysis of cell migration using optical flow.

    PubMed

    Boric, Katica; Orio, Patricio; Viéville, Thierry; Whitlock, Kathleen

    2013-01-01

    Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations.

  6. Distribution system power flow analysis; A rigid approach

    SciTech Connect

    Chen, T.H.; Chen, M.S.; Hwang, K.J. . Energy Systems Research Center); Kotas, P.; Chebli, E.A. )

    1991-07-01

    This paper introduces a rigid approach to three-phase distribution power flow analysis for large-scale distribution systems. This approach is oriented toward applications in distribution system operational analysis rather than planning analysis. This difference should be properly emphasized, otherwise, the misuse of the planning-type method to analyze the operational behavior of the system will distort the explanation of the calculated results and lead to incorrect conclusions. The solution method is the optimally ordered triangular factorization Y{sub Bus} Method (implicit Z{sub Bus} Gauss Method) which not only takes advantage of the sparsity of system equations but also has very good convergence characteristics on distribution problems. Detailed component models and suitable solution techniques are the essence of an accurate simulation. Detailed component models, therefore, are needed for all system components in the simulation. Utilizing the phase frame representation for all network elements, a program, entitled Generalized Distribution Analysis Systems - GDAS, with a number of features and capabilities not found in existing packages has been developed for large-scale distribution system simulations. The system being analyzed can be balanced or unbalanced and can be a radial, network, or mixed type distribution system. Furthermore, because the individual phase representation is employed for both system and component models, the system can comprise single, double, and three-phase systems simultaneously. Additionally, with detailed component models, the program can also perform system loss and contingency analyses.

  7. Flow cytometric life cycle analysis in cellular radiation biology

    SciTech Connect

    Wood, J.C.S.

    1982-01-01

    Three approaches to flow cytometric histogram analysis were developed: (1) differential histogram analysis, (2) DNA histogram analysis, and (3) multiparameter data analysis. These techniques were applied to an important unresolved problem in radiation biology. The initial responses to irradiation of a mammalian cell which occur during the first two cell cycles following the irradiation are of considerable interest to the radiation biologist. During the first two post-irradiation cell cycles, cells which ultimately will survive repair radiation-induced damage, while some cells begin to express some of the radiation-induced nuclear and chomatin damage. Caffeine- and thymidine-treated, and untreated gamma-irradiated cell populations were studied with respect to the radiation-induced G2 delay, deficient DNA synthesis, and the appearance of cells with abnormal DNA contents. It is hypothesized that the measured deficiency in DNA synthesis observed in the first post-irradiation cell cycle may be a result of daughter cells from abnormal first post-irradiation mitoses.

  8. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    PubMed

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  9. Geomorphic signatures on Brutsaert base flow recession analysis

    NASA Astrophysics Data System (ADS)

    Mutzner, Raphaël.; Bertuzzo, Enrico; Tarolli, Paolo; Weijs, Steven V.; Nicotina, Ludovico; Ceola, Serena; Tomasic, Nevena; Rodriguez-Iturbe, Ignacio; Parlange, Marc B.; Rinaldo, Andrea

    2013-09-01

    This paper addresses the signatures of catchment geomorphology on base flow recession curves. Its relevance relates to the implied predictability of base flow features, which are central to catchment-scale transport processes and to ecohydrological function. Moving from the classical recession curve analysis method, originally applied in the Finger Lakes Region of New York, a large set of recession curves has been analyzed from Swiss streamflow data. For these catchments, digital elevation models have been precisely analyzed and a method aimed at the geomorphic origins of recession curves has been applied to the Swiss data set. The method links river network morphology, epitomized by time-varying distribution of contributing channel sites, with the classic parameterization of recession events. This is done by assimilating two scaling exponents, β and bG, with |dQ/dt| ∝ Qβ where Q is at-a-station gauged flow rate and N(l) ∝ N>(l>)∝G>(l>)bG where l is the downstream distance from the channel heads receding in time, N(l) is the number of draining channel reaches located at distance l from their heads, and G(l) is the total drainage network length at a distance greater or equal to l, the active drainage network. We find that the method provides good results in catchments where drainage density can be regarded as spatially constant. A correction to the method is proposed which accounts for arbitrary local drainage densities affecting the local drainage inflow per unit channel length. Such corrections properly vanish when the drainage density become spatially constant. Overall, definite geomorphic signatures are recognizable for recession curves, with notable theoretical and practical implications.

  10. Interactive retinal blood flow analysis of the macular region.

    PubMed

    Tian, Jing; Somfai, Gábor Márk; Campagnoli, Thalmon R; Smiddy, William E; Debuc, Delia Cabrera

    2016-03-01

    The study of retinal hemodynamics plays an important role to understand the onset and progression of diabetic retinopathy. In this work, we developed an interactive retinal analysis tool to quantitatively measure the blood flow velocity (BFV) and blood flow rate (BFR) in the macular region using the Retinal Function Imager (RFI). By employing a high definition stroboscopic fundus camera, the RFI device is able to assess retinal blood flow characteristics in vivo. However, the measurements of BFV using a user-guided vessel segmentation tool may induce significant inter-observer differences and BFR is not provided in the built-in software. In this work, we have developed an interactive tool to assess the retinal BFV and BFR in the macular region. Optical coherence tomography data was registered with the RFI image to locate the fovea accurately. The boundaries of the vessels were delineated on a motion contrast enhanced image and BFV was computed by maximizing the cross-correlation of pixel intensities in a ratio video. Furthermore, we were able to calculate the BFR in absolute values (μl/s). Experiments were conducted on 122 vessels from 5 healthy and 5 mild non-proliferative diabetic retinopathy (NPDR) subjects. The Pearson's correlation of the vessel diameter measurements between our method and manual labeling on 40 vessels was 0.984. The intraclass correlation (ICC) of BFV between our proposed method and built-in software was 0.924 and 0.830 for vessels from healthy and NPDR subjects, respectively. The coefficient of variation between repeated sessions was reduced significantly from 22.5% to 15.9% in our proposed method (p<0.001). Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Interactive Retinal Blood Flow Analysis of the Macular Region

    PubMed Central

    Tian, Jing; Somfai, Gábor Márk; Campagnoli, Thalmon R.; Smiddy, William E.; Debuc, Delia Cabrera

    2015-01-01

    The study of retinal hemodynamics plays an important role to understand the onset and progression of diabetic retinopathy which is a leading cause of blindness in American adults. In this work, we developed an interactive retinal analysis tool to quantitatively measure the blood flow velocity (BFV) and blood flow rate (BFR) in the macular region using the Retinal Function Imager (RFI-3005, Optical Imaging, Rehovot, Israel). By employing a high definition stroboscopic fundus camera, the RFI device is able to assess retinal blood flow characteristics in vivo even in the capillaries. However, the measurements of BFV using a user-guided vessel segmentation tool may induce significant inter-observer differences and BFR is not provided in the built-in software. In this work, we have developed an interactive tool to assess the retinal BFV as well as BFR in the macular region. Optical coherence tomography (OCT) data from commercially available devices were registered with the RFI image to locate the fovea accurately. The boundaries of the vessels were delineated on a motion contrast enhanced image and BFV was computed by maximizing the cross-correlation of pixel intensities in a ratio video. Furthermore, we were able to calculate the BFR in absolute values (μl/s) which other currently available devices targeting the retinal microcirculation are not yet capable of. Experiments were conducted on 122 vessels from 5 healthy and 5 mild non-proliferative diabetic retinopathy (NPDR) subjects. The Pearson's correlation of the vessel diameter measurements between our method and manual labeling on 40 vessels was 0.984. The intraclass correlation (ICC) of BFV between our proposed method and built-in software were 0.924 and 0.830 for vessels from healthy and NPDR subjects, respectively. The coefficient of variation between repeated sessions was reduced significantly from 22.5% in the RFI built-in software to 15.9% in our proposed method (p<0.001). PMID:26569349

  12. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    SciTech Connect

    Crissman, Harry A.; Cui, H. H.; Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  13. The experimental verification of a streamline curvature numerical analysis method applied to the flow through an axial flow fan

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.

    1981-01-01

    The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.

  14. The experimental verification of a streamline curvature numerical analysis method applied to the flow through an axial flow fan

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.

    1981-01-01

    The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.

  15. Analysis of flow behavior in fractured lithophysal reservoirs.

    PubMed

    Liu, Jianchun; Bodvarsson, G S; Wu, Yu-Shu

    2003-01-01

    This study develops a mathematical model for the analysis of pressure behavior in fractured lithophysal reservoirs. The lithophysal rock is described as a tri-continuum medium, consisting of fractures, rock matrices, and cavities. In the conceptual model, fractures have homogeneous properties throughout and interact with rock matrices and cavities that have different permeabilities and porosities. Global flow occurs through the fracture network only, while rock matrices and cavities contain the majority of fluid storage and provide fluid drainage to the fractures. Interporosity flows between the triple media are described using a pseudosteady-state concept and the system is characterized by interporosity transmissivity ratios and storativity ratio of each continuum. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots, and the effects of the characteristic parameters. Typical pressure responses from fractures, matrices, and cavities are represented by three semilog straight lines; the transitions by two troughs below the stabilization lines in the derivative plots. The analytical solution to the proposed model is further verified using a numerical simulation. The analytical model has also been applied to a published field-buildup well test and is able to match the pressure buildup data.

  16. Numerical analysis of three-dimensional viscous internal flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Yokota, Jeffrey W.

    1988-01-01

    A 3-D Navier-Stokes code has been developed for analysis of turbomachinery blade rows and other internal flows. The Navier-Stokes equations are written in a Cartesian coordinate system rotating about the x-axis, and then mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected using the thin-layer assumption, and turbulence effects are modeled using the Baldwin-Lomax turbulence model. The equations are discretized using finite differences on stacked C-type grids and are solved using a multistage Runge-Kutta algorithm with a spatially-varying time step and implicit residual smoothing. Calculations have been made of a horseshoe vortex formed in front of a flat plate with a round leading edge standing in a turbulent endwall boundary layer. Comparisons are made with experimental data taken by Eckerle and Langston for a circular cylinder under similar conditions. Computer and measured results are compared in terms of endwall flow visualization pictures and total pressure loss contours and vector plots on the symmetry plane. Calculated details of the primary vortex show excellent agreement with the experimental data. The calculations also show a small secondary vortex not seen experimentally.

  17. Analysis of flow behavior in fractured lithophysal reservoirs

    SciTech Connect

    Liu, Jianchun; Bodvarsson, G.S.; Wu, Yu-Shu

    2002-09-01

    This study develops a mathematical model for the analysis of pressure behavior in fractured lithophysal reservoirs. The lithophysal rock is described as a tri-continuum medium, consisting of fractures, rock matrices, and cavities. In the conceptual model, fractures have homogeneous properties throughout and interact with rock matrices and cavities that have different permeabilities and porosities. Global flow occurs through the fracture network only, while rock matrices and cavities contain the majority of fluid storage and provide fluid drainage to the fractures. Interporosity flows between the triple media are described using a pseudosteady-state concept and the system is characterized by interporosity transmissivity ratios and storativity ratio of each continuum. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots, and the effects of the characteristic parameters. Typical pressure responses from fractures, matrices, and cavities are represented by three semilog straight lines; the transitions by two troughs below the stabilization lines in the derivative plots. The analytical solution to the proposed model is further verified using a numerical simulation. The analytical model has also been applied to a published field-buildup well test and is able to match the pressure buildup data.

  18. Neural networks for BEM analysis of steady viscous flows

    NASA Astrophysics Data System (ADS)

    Mai-Duy, Nam; Tran-Cong, Thanh

    2003-03-01

    This paper presents a new neural network-boundary integral approach for analysis of steady viscous fluid flows. Indirect radial basis function networks (IRBFNs) which perform better than element-based methods for function interpolation, are introduced into the BEM scheme to represent the variations of velocity and traction along the boundary from the nodal values. In order to assess the effect of IRBFNs, the other features used in the present work remain the same as those used in the standard BEM. For example, Picard-type scheme is utilized in the iterative procedure to deal with the non-linear convective terms while the calculation of volume integrals and velocity gradients are based on the linear finite element-based method. The proposed IRBFN-BEM is verified on the driven cavity viscous flow problem and can achieve a moderate Reynolds number of 1400 using a relatively coarse uniform mesh. The results obtained such as the velocity profiles along the horizontal and vertical centrelines as well as the properties of the primary vortex are in very good agreement with the benchmark solution. Furthermore, the secondary vortices are also captured by the present method. Thus, it appears that an ability to represent the boundary solution accurately can significantly improve the overall solution accuracy of the BEM.

  19. Tracking flow of leukocytes in blood for drug analysis

    NASA Astrophysics Data System (ADS)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  20. Simple and clean determination of tetracyclines by flow injection analysis

    NASA Astrophysics Data System (ADS)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-01

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL- 1, and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL- 1, respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  1. Stability analysis of an impacting T-junction pipe flow

    NASA Astrophysics Data System (ADS)

    Chen, Kevin; Rowley, Clarence; Stone, Howard

    2013-11-01

    The flow through a T-shaped pipe bifurcation (with the inlet at the bottom of the ``T'') is a common occurrence in both natural and man-made systems, including blood vessels, industrial pipe networks, and microfluidic channels. Despite the ubiquitous nature of the geometry, many questions about the flow physics remain. We analyze the stability of Navier-Stokes equilibria by executing numerical continuation on the Reynolds number (based on the average inlet velocity), using a combination of linear extrapolation and the Newton-GMRES algorithm. We find that the qualitative nature of the equilibria's local bifurcations is highly sensitive to the grid resolution. On a sufficiently resolved grid, a rapid succession of supercritical Hopf bifurcations begins at Re ~ 550 . Visualizations of the neutrally stable eigenmodes reveal the physical nature of the instabilities. We also compare equilibria computed with different radii of curvature at the square corners of the ``T.'' Next, a wavemaker analysis reveals the locations in the T-junction where the stability is most sensitive to localized changes in the dynamics, e.g., via a change in geometry. This work was supported by the NSF GRFP.

  2. Flow-injection enzymatic analysis for glycerol and triacylglycerol.

    PubMed

    Wu, Li-Chen; Cheng, Chien-Ming

    2005-11-15

    A flow-injection enzymatic analytical system was developed for determination of glycerol and triacylglycerol based on enzymatic reactions in capillary followed by electrochemical detection. The hydrogen peroxide produced from the enzyme reaction was monitored by a platinum-based electrochemical probe. Different immobilization strategies on silica support were studied. The best and most effective configuration found for the measurement of glycerol and triacylglycerols in this system was the tandem connection of a lipase column and a silica-fused capillary column coimmobilized with glycerokinase (GK) and glycerol-3-phosphate oxidase (GPO). Lipase helps the breakdown of triacylglycerol to yield free fatty acids and glycerol, while glycerokinase catalyzes the adenosine-5-triphosphate-dependent phosphorylation of glycerol to yield alpha-glycerol phosphate, which can subsequently be oxidized by 3-glycerol phosphate oxidase to produce hydrogen peroxide. Response-surface methodology (RSM) was applied to optimize the proposed system for glycerol. Experiment settings were designed by central composite design to investigate the combined effects of pH, flow rate, reaction temperature, and ATP concentration on collected signals. The fitted model, per RSM, showed that the optimum conditions of the system are 2 mM ATP in 0.1 M carbonate buffer (pH 11.0), flow rate of 0.18 mL/min, temperature of 35 degrees C, 20 microL of sample injection, and applied voltage of 0.650 V. The proposed biosensing system using lipase, GK, and GPO exhibited a flow-injection analysis peak response of 2.5 min and a detection limit of 5 x 10(-5) M glycerol (S/N = 3) with acceptable reproducibility (CV < 4.30%). It also had linear working ranges from 10(-4) to 10(-2) M for glycerol and from 10(-3) to 10(-2) M for triacylglycerol. The capillary enzyme reactor was stable up to 2 months in continuous operation, and it was possible to analyze up to 15 samples per hour. The present biosensing system holds

  3. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    SciTech Connect

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  4. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  5. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  6. Transonic airfoil analysis and design in nonuniform flow

    NASA Technical Reports Server (NTRS)

    Chang, J. F.; Lan, C. E.

    1986-01-01

    A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.

  7. Quantitative Analysis of Flow through Free-swimming Appendicularians

    NASA Astrophysics Data System (ADS)

    Sutherland, K.; Conley, K. R.; Gemmell, B. J.; Thompson, E.; Bouquet, J. M.

    2016-02-01

    Appendicularians are pelagic tunicates (Phylum: Chordata, Subphylum: Tunicata) that frequently dominate the mesozooplankton community and are key grazers in both coastal shallow seas and oligotrophic environments. Understanding of their feeding mechanisms, specifically selective feeding, has important ramifications for predicting their impact on particle distributions in the upper ocean. The goal of the current study was to determine the role of flow morphology in regulating particle capture within the houses of free-swimming appendicularians (Oikopleura dioica). We used two methods— standard Particle Image Velocimetry (PIV) with laser sheet illumination and bright field micro-PIV— to gain unprecedented spatial and temporal resolution of body kinematics and fluid motion through the mucous-mesh house. Analysis of small-scale fluid interactions at various parts of the house provided insight into factors that influence particle capture and selection in these important grazers.

  8. Stock flow diagram analysis on solid waste management in Malaysia

    NASA Astrophysics Data System (ADS)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  9. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  10. 3D Reacting Flow Analysis of LANTR Nozzles

    NASA Astrophysics Data System (ADS)

    Stewart, Mark E. M.; Krivanek, Thomas M.; Hemminger, Joseph A.; Bulman, M. J.

    2006-01-01

    This paper presents performance predictions for LANTR nozzles and the system implications for their use in a manned Mars mission. The LANTR concept is rocket thrust augmentation by injecting Oxygen into the nozzle to combust the Hydrogen exhaust of a Nuclear Thermal Rocket. The performance predictions are based on three-dimensional reacting flow simulations using VULCAN. These simulations explore a range of O2/H2 mixture ratios, injector configurations, and concepts. These performance predictions are used for a trade analysis within a system study for a manned Mars mission. Results indicate that the greatest benefit of LANTR will occur with In-Situ Resource Utilization (ISRU). However, Hydrogen propellant volume reductions may allow greater margins for fitting tanks within the launch vehicle where packaging issues occur.

  11. Thermal hydraulic analysis of the annular flow helium heater design

    SciTech Connect

    Chen, N.C.; Sanders, J.P.

    1982-05-01

    Oak Ridge National Laboratory has conducted Core Support Performance Test (CSPT) by use of an existing facility, Component Flow Test Loop (CFTL), as part of the High Temperature Gas-Cooled Reactor (HTGR) application program. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6-month test represents the 30-year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, among other things, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000/sup 0/C (1832/sup 0/F) in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. This report presents performance characteristics of the heater that were determined from an analysis based on this design.

  12. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  13. Integral analysis of boundary layer flows with pressure gradient

    NASA Astrophysics Data System (ADS)

    Wei, Tie; Maciel, Yvan; Klewicki, Joseph

    2017-09-01

    This Rapid Communication investigates boundary layer flows with a pressure gradient using a similarity/integral analysis of the continuity equation and momentum equation in the streamwise direction. The analysis yields useful analytical relations for Ve, the mean wall-normal velocity at the edge of the boundary layer, and for the skin friction coefficient Cf in terms of the boundary layer parameters and in particular βRC, the Rotta-Clauser pressure gradient parameter. The analytical results are compared with experimental and numerical data and are found to be valid. One of the main findings is that for large positive βRC (an important effect of an adverse pressure gradient), the friction coefficient is closely related to βRC as Cf∝1 /βRC , because δ /δ1,δ1/δ2=H , and d δ /d x become approximately constant. Here, δ is the boundary layer thickness, δ1 is the displacement thickness, δ2 is the momentum thickness, and H is the shape factor. Another finding is that the mean wall-normal velocity at the edge of the boundary layer is related to other flow variables as UeVe/uτ2=H +(1 +δ /δ1+H ) βRC , where Ue is the streamwise velocity at the edge of the boundary layer. At zero pressure gradient, this relation reduces to U∞V∞/uτ2=H , as recently derived by Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016), 10.1103/PhysRevFluids.1.082401].

  14. Remote calorimetric detection of urea via flow injection analysis

    PubMed Central

    Gaddes, David E.; Demirel, Melik C.; Reeves, W. Brian; Tadigadapa, Srinivas

    2017-01-01

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (~20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1–200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0–50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time. PMID:26479269

  15. Remote calorimetric detection of urea via flow injection analysis.

    PubMed

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-07

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.

  16. Analysis of chromosome damage for biodosimetry using imaging flow cytometry.

    PubMed

    Beaton, L A; Ferrarotto, C; Kutzner, B C; McNamee, J P; Bellier, P V; Wilkins, R C

    2013-08-30

    The dicentric chromosome assay (DCA), which involves counting the frequency of dicentric chromosomes in mitotic lymphocytes and converting it to a dose-estimation for ionizing radiation exposure, is considered to be the gold standard for radiation biodosimetry. Furthermore, for emergency response, the DCA has been adapted for triage by simplifying the scoring method [1]. With the development of new technologies such as the imaging flow cytometer, it may now be possible to adapt this microscope-based method to an automated cytometry method. This technology allows the sensitivity of microscopy to be maintained while adding the increased throughput of flow cytometry. A new protocol is being developed to adapt the DCA to the imaging cytometer in order to further increase the rapid determination of a biological dose. Peripheral blood mononuclear cells (PBMC) were isolated from ex vivo irradiated whole blood samples using a density gradient separation method and cultured with PHA and Colcemid. After 48h incubation, the chromosomes were isolated, stained for DNA content with propidium iodide (PI) and labelled with a centromere marker. Stained chromosomes were then analyzed on the ImageStream(×) (EMD-Millipore, Billerica, MA). Preliminary results indicate that individual chromosomes can be identified and mono- and dicentric chromosomes can be differentiated by imaging cytometry. A dose response curve was generated using this technology. The details of the method and the dose response curve are presented and compared to traditional microscope scoring. Imaging cytometry is a new technology which enables the rapid, automated analysis of fluorescently labelled chromosomes. Adapting the dicentric assay to this technology has the potential for high throughput analysis for mass casualty events.

  17. Task 7: Endwall treatment inlet flow distortion analysis

    NASA Technical Reports Server (NTRS)

    Hall, E. J.; Topp, D. A.; Heidegger, N. J.; McNulty, G. S.; Weber, K. F.; Delaney, R. A.

    1996-01-01

    The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields, and to perform a series of detailed numerical predictions to assess the effectiveness of various endwall treatments for enhancing the efficiency and stall margin of modern high speed fan rotors. Particular attention was given to examining the effectiveness of endwall treatments to counter the undesirable effects of inflow distortion. Calculations were performed using three different gridding techniques based on the type of casing treatment being tested and the level of complexity desired in the analysis. In each case, the casing treatment itself is modeled as a discrete object in the overall analysis, and the flow through the casing treatment is determined as part of the solution. A series of calculations were performed for both treated and untreated modern fan rotors both with and without inflow distortion. The effectiveness of the various treatments were quantified, and several physical mechanisms by which the effectiveness of endwall treatments is achieved are discussed.

  18. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis

    PubMed Central

    Lambalk, Joep; Ottiger, Marcel

    2016-01-01

    Introduction An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade. The aim of this study is to demonstrate the potential of IFC in plant cell analysis with the focus on pollen. Method Developing and mature pollen grains were analysed during their passage through a microfluidic chip to which radio frequencies of 0.5 to 12 MHz were applied. The acquired data provided information about the developmental stage, viability, and germination capacity. The biological relevance of the acquired IFC data was confirmed by classical staining methods, inactivation controls, as well as pollen germination assays. Results Different stages of developing pollen, dead, viable and germinating pollen populations could be detected and quantified by IFC. Pollen viability analysis by classical FDA staining showed a high correlation with IFC data. In parallel, pollen with active germination potential could be discriminated from the dead and the viable but non-germinating population. Conclusion The presented data demonstrate that IFC is an efficient, label-free, reliable and non-destructive technique to analyse pollen quality in a species-independent manner. PMID:27832091

  19. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis.

    PubMed

    Heidmann, Iris; Schade-Kampmann, Grit; Lambalk, Joep; Ottiger, Marcel; Di Berardino, Marco

    2016-01-01

    An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade. The aim of this study is to demonstrate the potential of IFC in plant cell analysis with the focus on pollen. Developing and mature pollen grains were analysed during their passage through a microfluidic chip to which radio frequencies of 0.5 to 12 MHz were applied. The acquired data provided information about the developmental stage, viability, and germination capacity. The biological relevance of the acquired IFC data was confirmed by classical staining methods, inactivation controls, as well as pollen germination assays. Different stages of developing pollen, dead, viable and germinating pollen populations could be detected and quantified by IFC. Pollen viability analysis by classical FDA staining showed a high correlation with IFC data. In parallel, pollen with active germination potential could be discriminated from the dead and the viable but non-germinating population. The presented data demonstrate that IFC is an efficient, label-free, reliable and non-destructive technique to analyse pollen quality in a species-independent manner.

  20. Numerical Analysis of Turbulent Flows in Channels of Complex Geometry

    NASA Astrophysics Data System (ADS)

    Farbos De Luzan, Charles

    The current study proposes to follow a systematic validated approach to applied fluid mechanics problems in order to evaluate the ability of different computational fluid dynamics (CFD) to be a relevant design tool. This systematic approach involves different operations such as grid sensitivity analyses, turbulence models comparison and appropriate wall treatments, in order to define case-specific optimal parameters for industrial applications. A validation effort is performed on each study, with particle image velocimetry (PIV) experimental results as the validating metric. The first part of the dissertation lays down the principles of validation, and presents the details of a grid sensitivity analysis, as well as a turbulence models benchmark. The models are available in commercial solvers, and in most cases the default values of the equations constants are retained. The validation experimental data is taken with a hot wire, and has served as a reference to validate multiple turbulence models for turbulent flows in channels. In a second part, the study of a coaxial piping system will compare a set of different steady Reynolds-Averaged Navier Stokes (RANS) turbulence models, namely the one equation model Spalart-Almaras, and two-equation-models standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST. The geometry of interest involves a transition from an annulus into a larger one, where highly turbulent phenomena occur, such as recirculation and jet impingement. Based on a set of constraints that are defined in the analysis, a chosen model will be tested on new designs in order to evaluate their performance. The third part of this dissertation will address the steady-state flow patterns in a Viscosity-Sensitive Fluidic Diode (VSFD). This device is used in a fluidics application, and its originality lies in the fact that it does not require a control fluid in order to operate. This section will discuss the

  1. Generalized primary/secondary flow analysis of viscous flow around bodies at incidence

    NASA Astrophysics Data System (ADS)

    Govindan, T. R.; Briley, W. R.; Chang, Ming-Shun

    1991-01-01

    Generalized primary/secondary flow equations, which are an approximation to the Navier-Stokes equations, have been utilized to compute the three-dimensional viscous flow around bodies at incidence. Two features central to the approximations in the primary/secondary flow equations are a locally specified primary flow direction and a decomposition of the secondary velocity field. For the flow around a body at incidence, the local primary flow direction is aligned with streamlines for the potential flow around the body at zero degrees incidence. A sequentially decoupled implicit algorithm exploits the form of the primary/secondary flow equations for fast run times. Computed solutions for flow around an ogive cylinder at incidence and an unappended submarine hull in drift have been presented. These solutions show the generation of strong lee-side vortices which are a source of propulsor inlet distortion and a side-force on the body. Computed solutions agree well with available experimental data. The combined efficiency and accuracy of the approximate equations and solution algorithm make this approach attractive for computing viscous flow around bodies at incidence.

  2. Flow interaction based propagation model and bursty influence behavior analysis of Internet flows

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Gu, Ren-Tao; Ji, Yue-Feng

    2016-11-01

    QoS (quality of service) fluctuations caused by Internet bursty flows influence the user experience in the Internet, such as the increment of packet loss and transmission time. In this paper, we establish a mathematical model to study the influence propagation behavior of the bursty flow, which is helpful for developing a deep understanding of the network dynamics in the Internet complex system. To intuitively reflect the propagation process, a data flow interaction network with a hierarchical structure is constructed, where the neighbor order is proposed to indicate the neighborhood relationship between the bursty flow and other flows. The influence spreads from the bursty flow to each order of neighbors through flow interactions. As the influence spreads, the bursty flow has negative effects on the odd order neighbors and positive effects on the even order neighbors. The influence intensity of bursty flow decreases sharply between two adjacent orders and the decreasing degree can reach up to dozens of times in the experimental simulation. Moreover, the influence intensity increases significantly when network congestion situation becomes serious, especially for the 1st order neighbors. Network structural factors are considered to make a further study. Simulation results show that the physical network scale expansion can reduce the influence intensity of bursty flow by decreasing the flow distribution density. Furthermore, with the same network scale, the influence intensity in WS small-world networks is 38.18% and 18.40% lower than that in ER random networks and BA scale-free networks, respectively, due to a lower interaction probability between flows. These results indicate that the macro-structural changes such as network scales and styles will affect the inner propagation behaviors of the bursty flow.

  3. Analysis of the clustering of inertial particles in turbulent flows

    NASA Astrophysics Data System (ADS)

    Esmaily-Moghadam, Mahdi; Mani, Ali

    2016-12-01

    An asymptotic solution is derived for the motion of inertial particles exposed to Stokes drag in an unsteady random flow. This solution provides an estimate for the sum of Lyapunov exponents as a function of the Stokes number and Lagrangian strain- and rotation-rate autocovariance functions. The sum of exponents in a Lagrangian framework is the rate of contraction of clouds of particles, and in an Eulerian framework, it is the concentration-weighted divergence of the particle velocity field. Previous literature offers an estimate of the divergence of the particle velocity field, which is applicable only in the limit of small Stokes numbers [Robinson, Comm. Pure Appl. Math. 9, 69 (1956), 10.1002/cpa.3160090105 and Maxey, J. Fluid Mech. 174, 441 (1987), 10.1017/S0022112087000193] (R-M). In addition to reproducing R-M at this limit, our analysis provides a first-order correction to R-M at larger Stokes numbers. Our analysis is validated by a directly computed rate of contraction of clouds of particles from simulations of particles in homogeneous isotropic turbulence over a broad range of Stokes numbers. Our analysis and R-M predictions agree well with the direct computations at the limit of small Stokes numbers. At large Stokes numbers, in contrast to R-M, our model predictions remain bounded. In spite of an improvement over R-M, our analysis fails to predict the expansion of high Stokes clouds observed in the direct computations. Consistent with the general trend of particle segregation versus Stokes number, our analysis shows a maximum rate of contraction at an intermediate Stokes number of O (1 ) and minimal rates of contraction at small and large Stokes numbers.

  4. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition

    NASA Astrophysics Data System (ADS)

    Yu, Kwonkyu; Kim, Seojun; Kim, Dongsu

    2015-10-01

    Flow velocity estimation in actual rivers using image processing technique has been highlighted for hydrometric communities in the last decades, and this technique is called Large Scale Particle Image Velocimetry (LSPIV). Although LSPIV has been successfully tested in many flow conditions, it has addressed several limitations estimating mean flow field because of difficult flow conditions such as rotating, lack of light and seeds, and noisy flow conditions. Recently, an alternative technique named STIV to use spatio-temporal images based on successively recorded images has been introduced to overcome the limitations of LSPIV. The STIV was successfully applied to obtain one-dimensional flow component in the river for estimating streamflow discharge, where the main flow direction is known. Using the 5th order of central difference scheme, the STIV directly calculated the mean angle of slopes which appeared as strips in the spatio-temporal images and has been proved to be more reliable and efficient for the discharge estimation as compared with the conventional LSPIV. However, yet it has not been sufficiently qualified to derive two-dimensional flow field in the complex flow, such as rotating or locally unsteady flow conditions. We deemed that it was because the strips in the given spatio-temporal images from not properly oriented for main flow direction are not narrow enough or clearly visible, thus the direct estimating strip slope could give erroneous results. Thereby, the STIV has been mainly applied for obtaining one-dimensional flow component. In this regard, we proposed an alternative algorithm to estimate the mean slope angle for enhancing the capability of the STIV, which used correlation coefficient between odd and even image splits from the given spatio-temporal image. This method was named CASTI (Correlation Analysis of Spatio-Temporal Image). This paper described the step-by-step procedure of the CASTI and validated its capability for estimating two

  5. Current Clinical Application of Intracardiac Flow Analysis Using Echocardiography

    PubMed Central

    Kim, Minji; Pedrizzetti, Gianni; Vannan, Mani A

    2013-01-01

    In evaluating the cardiac function, it is important to have a comprehensive assessment of structural factors, such as the myocardial or valvular function and intracardiac flow dynamics that pass the heart. Vortex flow that form during left ventricular filling have specific geometry and anatomical location that are critical determinants of directed blood flow during ejection. The formation of abnormal vortices relates to the abnormal cardiac function. Therefore, vortex flow may offer a novel index of cardiac dysfunction. Intracardiac flow visualization using ultrasound technique has definite advantages with a higher temporal resolution and availability in real time clinical setting. Vector flow mapping based on color-Doppler and contrast echocardiography using particle image velocimetry is currently being used for visualizing the intracardiac flow. The purpose of this review is to provide readers with an update on the current method for analyzing intracardiac flow using echocardiography and its clinical applications. PMID:24459561

  6. Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui

    2016-03-01

    Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.

  7. A review of various flow-solid interaction analysis methods with emphasis on recent advances in turbulence models and flow analysis methods

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    A review on various experimental, analytical, and numerical methods for the flow-solid interaction of a nest of cylinders subjected to cross flow is presented in this paper. In order to assess the possibility of initiating a development of major numerical analysis method for flow-solid interaction of a nest of cylinders in cross flows, a review on various turbulence models, numerical methods such as the finite element method and the finite difference method, and the available numerical methods for flow-solid interactions have been included in this paper. A multiple-time-scale turbulence model for complex turbulent flows and a finite element method for high Reynolds number flows have been introduced herein for the same reason.

  8. A review of models for the analysis of the injection of densely loaded flows into entrained flow gasifiers

    SciTech Connect

    Edelman, R.; Rizk, M. A.

    1989-11-01

    An analysis of turbulent gas-particle flow has been conducted for which dilute and dense flows were considered. This study showed that, although, there are a variety of models postulated for the analysis of dilute-phase particulate transport, there exists limited information on dense-phase flow. Several derivations of multi-phase flow equations have appeared in the literature. The differences between these equations are in the momentum source terms, the pressure gradient terms and in the convection terms of the dispersed phase momentum equation. In most of the studies on dilute two-phase flow, the effects of the dispersed phase on fluid turbulence have not been considered at all or considered only in an ad hoc fashion. In the few studies where such effects have been incorporated properly, many simplifying assumptions and various empirical constants were introduced. Evaluation of the constants was made via a comparison between model predictions and experimental data. Among these studies the work of Elghobashi and his co-workers, in general, and of Rizk (1985), in particular, provides a foundation for the extension to densely loaded gas/solid flows. Based on this approach, a new mathematical model has been formulated to analyze densely loaded gas/solid flows taking into account particle-particle interactions and gas-particle interactions. 136 refs., 2 figs., 2 tabs.

  9. A review of models for the analysis of the injection of densely loaded flows into entrained flow gasifiers

    NASA Astrophysics Data System (ADS)

    Edelman, R.; Rizk, M. A.

    1989-11-01

    An analysis of turbulent gas-particle flow has been conducted for which dilute and dense flows were considered. This study showed that, although, there are a variety of models postulated for the analysis of dilute-phase particulate transport, there exists limited information on dense-phase flow. Several derivations of multi-phase flow equations have appeared in the literature. The differences between these equations are in the momentum source terms, the pressure gradient terms and in the convection terms of the dispersed phase momentum equation. In most of the studies on dilute two-phase flow, the effects of the dispersed phase on fluid turbulence have not been considered at all or considered only in an ad hoc fashion. In the few studies where such effects have been incorporated properly, many simplifying assumptions and various empirical constants were introduced. Evaluation of the constants was made via a comparison between model predictions and experimental data. Among these studies the work of Elghobashi and his co-workers, in general, and of Rizk (1985), in particular, provides a foundation for the extension to densely loaded gas/solid flows. Based on this approach, a new mathematical model has been formulated to analyze densely loaded gas/solid flows taking into account particle-particle interactions and gas-particle interactions.

  10. A novel substance flow analysis model for analysing multi-year phosphorus flow at the regional scale.

    PubMed

    Chowdhury, Rubel Biswas; Moore, Graham A; Weatherley, Anthony J; Arora, Meenakshi

    2016-12-01

    Achieving sustainable management of phosphorus (P) is crucial for both global food security and global environmental protection. In order to formulate informed policy measures to overcome existing barriers of achieving sustainable P management, there is need for a sound understanding of the nature and magnitude of P flow through various systems at different geographical and temporal scales. So far, there is a limited understanding on the nature and magnitude of P flow over multiple years at the regional scale. In this study, we have developed a novel substance flow analysis (SFA) model in the MATLAB/Simulink® software platform that can be effectively utilized to analyse the nature and magnitude of multi-year P flow at the regional scale. The model is inclusive of all P flows and storage relating to all key systems, subsystems, processes or components, and the associated interactions of P flow required to represent a typical P flow system at the regional scale. In an annual time step, this model can analyse P flow and storage over as many as years required at a time, and therefore, can indicate the trends and changes in P flow and storage over many years, which is not offered by the existing regional scale SFA models of P. The model is flexible enough to allow any modification or the inclusion of any degree of complexity, and therefore, can be utilized for analysing P flow in any region around the world. The application of the model in the case of Gippsland region, Australia has revealed that the model generates essential information about the nature and magnitude of P flow at the regional scale which can be utilized for making improved management decisions towards attaining P sustainability. A systematic reliability check on the findings of model application also indicates that the model produces reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  12. Coupled flow, thermal and structural analysis of aerodynamically heated panels

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Dechaumphai, Pramote

    1986-01-01

    A finite element approach to coupling flow, thermal and structural analyses of aerodynamically heated panels is presented. The Navier-Stokes equations for laminar compressible flow are solved together with the energy equation and quasi-static structural equations of the panel. Interactions between the flow, panel heat transfer and deformations are studied for thin stainless steel panels aerodynamically heated by Mach 6.6 flow.

  13. Perceptual analysis of vibrotactile flows on a mobile device.

    PubMed

    Seo, Jongman; Choi, Seungmoon

    2013-01-01

    "Vibrotactile flow" refers to a continuously moving sensation of vibrotactile stimulation applied by a few actuators directly onto the skin or through a rigid medium. Research demonstrated the effectiveness of vibrotactile flow for conveying intuitive directional information on a mobile device. In this paper, we extend previous research by investigating the perceptual characteristics of vibrotactile flows rendered on a mobile device and proposing a synthesis framework for vibrotactile flows with desired perceptual properties.

  14. A stability analysis on unsteady mixed convection stagnation-point flow over a moving plate along the flow impingement direction

    NASA Astrophysics Data System (ADS)

    Bakar, S. A.; Arifin, N. M.; Ali, F. M.; Bachok, N.; Nazar, R.

    2017-09-01

    The unsteady mixed convection stagnation-point flow over a moving plate along the flow impingement direction is numerically studied. The governing partial differentiation equations are transformed into ordinary differential equations using a similarity transformation, and then solved numerically by a shooting technique method. Dual solutions are observed in a certain range of opposing flow and regarding on these numerical solutions, we prepared a stability analysis to identify which solution is stable between non-unique solutions by bvp4c solver in Matlab. Further we obtain numerical results which enable us to discuss the features of the respective solutions.

  15. Miniature liquid flow sensor and feedback control of electroosmotic and pneumatic flows for a micro gas analysis system.

    PubMed

    Ohira, Shin-Ichi; Toda, Kei

    2006-01-01

    Accurate liquid flow control is important in most chemical analyses. In this work, the measurement of liquid flow in microliters per minute was performed, and feedback control of the flow rate was examined. The flow sensor was arranged on a channel made in a polydimethylsiloxane (PDMS) block. The center of the channel was cooled by a miniature Peltier device, and the change in temperature balance along the channel formed by the flow was measured by two temperature sensors. Using this flow sensor, feedback flow control was examined with two pumping methods. One was the electroosmotic flow method, made by applying a high voltage (HV) between the reagent and waste reservoirs; the other was the piezo valve method, in which a micro-valve-seat was fabricated in a PDMS cavity with a silicone diaphragm. The latter was adopted for a micro gas analysis system (microGAS) for measuring atmospheric H2S and SO2. The obtained baselines were stable, and better limits of detection were obtained.

  16. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    PubMed

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  17. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  18. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis

    PubMed Central

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries’ roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading “trophic levels” have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows. PMID:26569618

  19. The Use of Flow Charts in Sediment Routing Analysis

    Treesearch

    Leslie M. Reid

    1982-01-01

    Flow charts are a widely used means of diagramming relationships among transport processes and storage sites during analyses of sediment routing. Because they have taken so many different forms, however, it is very difficult to use published flow charts to compare geomorphic systems. Though they generally are constructed to achieve the same purpose, flow charts...

  20. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 4; Cold Flow Analyses and CFD Analysis Capability Development

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.

  1. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H

    2013-03-01

    Recently, continuous-flow ventricular assist devices (CF-VADs) have supplanted older, pulsatile-flow pumps, for treating patients with advanced heart failure. Despite the excellent results of the newer generation devices, the effects of long-term loss of pulsatility remain unknown. The aim of this study is to compare the ability of both axial and centrifugal continuous-flow pumps to intrinsically modify pulsatility when placed under physiologically diverse conditions. Four VADs, two axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. Each VAD was operated at a constant impeller speed over three hypothetical cardiac conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was compared for each device under each condition. Centrifugal-flow devices had a higher PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial and centrifugal groups, respectively (p < 0.01). Under hypertension, flow PI was 1.90 ± 0.16 and 4.21 ± 0.29 for the axial and centrifugal pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs were capable of maintaining some pulsatile-flow when connected in parallel with our mock ventricle. We conclude that centrifugal-flow devices outperform the axial pumps from the basis of PI under tested conditions.

  2. Lava Flow Interactions with Topographic Obstacles: Morphologic Analysis, Analogue Modeling, and Molten Basalt Experiments

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Cashman, K. V.; Rust, A.; Lev, E.; Dietrich, J. T.

    2014-12-01

    Underlying topography controls lava flow emplacement by influencing flow paths, lengths, and advance rates. The morphology of the pre-eruptive surface provides input into lava flow models and the design of artificial diversion barriers, although the dynamics of interactions between topographic obstacles and lava flows are not well known. We investigate these factors by combining morphologic analysis of Hawaiian lava flows with scaling derived from analogue and molten basalt experiments. A comparison of pre- and post-eruptive topographic data shows that flows thicken on the upslope side of topographic barriers, a feature that has been employed to calculate flow velocities from simple energy conversion. Observations also document effects of flow branching and confinement on flow advance rate, with confined flows in Hawai'i traveling further and faster than those that branch. To explain these observations we perform laboratory experiments using Newtonian and Bingham analogue fluids, as well as molten basalt. Conditions of flow splitting and subsequent advance are defined using experiments with both V-shaped and cylindrical obstacles that divide an unconfined flow. Oblique linear obstacles are used to explore flow confinement and diversion. We find that the degree of thickening, which determines the height of an obstacle capable of holding back the flow, is controlled by both initial flow velocity and obstacle geometry. Key is the ability of the flow to pass around the obstacle, such that larger and wider obstacles cause greater thickening than smaller and narrower obstacles. Flow advance rate is largely unaffected by branching in the Newtonian analogue experiments, but decreases after splitting in the molten basalt experiments because of surface cooling. Interestingly, flows into oblique obstacles are diverted but travel faster. Together these data provide the basis for a theoretical description of the interaction dynamics of viscous (and cooling) lava flows with

  3. Micropollutants in urban watersheds : substance flow analysis as management tool

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.

    2009-04-01

    Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment

  4. Upgraded viscous flow analysis of multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Brune, G. W.; Manke, J. W.

    1979-01-01

    A description of an improved version of the NASA/Lockheed multi-element airfoil analysis computer program is presented. The improvements include several major modifications of the aerodynamic model as well as substantial changes of the computer code. The modifications of the aerodynamic model comprise the representation of the boundary layer and wake displacement effects with an equivalent source distribution, the prediction of wake parameters with Green's lag-entrainment method, the calculation of turbulent boundary layer separation with the method of Nash and Hicks, the estimation of the onset of confluent boundary layer separation with a modified form of Goradia's method, and the prediction of profile drag with the formula of Squire and Young. The modifications of the computer program for which the structured approach to computer software development was employed are also described. Important aspects of the structured program development such as the functional decomposition of the aerodynamic theory and its numerical implementation, the analysis of the data flow within the code, and the application of a pseudo code are discussed.

  5. Aerothermal Analysis of the Project Fire II Afterbody Flow

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Loomis, Mark; Papadopoulos, Periklis; Arnold, James O. (Technical Monitor)

    2001-01-01

    Computational fluid dynamics (CFD) is used to simulate the wake flow and afterbody heating of the Project Fire II ballistic reentry to Earth at 11.4 km/sec. Laminar results are obtained over a portion of the trajectory between the initial heat pulse and peak afterbody heating. Although non-catalytic forebody convective heating results are in excellent agreement with previous computations, initial predictions of afterbody heating were about a factor of two below the experimental values. Further analysis suggests that significant catalysis may be occurring on the afterbody heat shield. Computations including finite-rate catalysis on the afterbody surface are in good agreement with the data over the early portion of the trajectory, but are conservative near the peak afterbody heating point, especially on the rear portion of the conical frustum. Further analysis of the flight data from Fire II shows that peak afterbody heating occurs before peak forebody heating, a result that contradicts computations and flight data from other entry vehicles. This result suggests that another mechanism, possibly pyrolysis, may be occurring during the later portion of the trajectory, resulting in less total heat transfer than the current predictions.

  6. Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Kelaita, Paul G.; Mccabe, R. Kevin; Merritt, Fergus J.; Plessel, Todd C.; Sandstrom, Timothy A.; West, John T.

    1993-01-01

    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described.

  7. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  8. Statistical Power Flow Analysis of an Imperfect Ribbed Cylinder

    NASA Astrophysics Data System (ADS)

    Blakemore, M.; Woodhouse, J.; Hardie, D. J. W.

    1999-05-01

    Prediction of the noise transmitted from machinery and flow sources on a submarine to the sonar arrays poses a complex problem. Vibrations in the pressure hull provide the main transmission mechanism. The pressure hull is characterised by a very large number of modes over the frequency range of interest (at least 100,000) and by high modal overlap, both of which place its analysis beyond the scope of finite element or boundary element methods. A method for calculating the transmission is presented, which is broadly based on Statistical Energy Analysis, but extended in two important ways: (1) a novel subsystem breakdown which exploits the particular geometry of a submarine pressure hull; (2) explicit modelling of energy density variation within a subsystem due to damping. The method takes account of fluid-structure interaction, the underlying pass/stop band characteristics resulting from the near-periodicity of the pressure hull construction, the effect of vibration isolators such as bulkheads, and the cumulative effect of irregularities (e.g., attachments and penetrations).

  9. Flow cytometric analysis of the cell cycle in chronic gastritis.

    PubMed

    Guerci, A; Chambre, J F; Franck, P; Floquet, J; Gaucher, P; Guerci, O

    1992-09-01

    Flow cytometric cell cycle analysis was recorded in gastric biopsy specimens from patients with normal gastric mucosa (GM), superficial gastritis (SG) and chronic atrophic gastritis (CAG). Cell-cycle analysis showed significantly higher percentages of cells in S- and S+G2/M-phase in CAG than in SG and normal GM (P < 0.0001). Moreover, CAG with severe or moderate atrophy showed significantly higher percentages of cells in S-phase (P < 0.05) and S+G2/M-phase (P < 0.02) than CAG with mild atrophy in antrum. In fundus, even if this increase was observed, it did not reach statistical significance. Consideration of concomitant pathologic findings such as oesophagite, gastric or duodenal ulcer, duodenite or benign polyp allowed a better differentiation of CAG both in antrum and in fundus. Significantly higher S-phase was observed in CAG with severe or moderate atrophy than in CAG with mild atrophy (P < 0.05). No statistically significant results were observed in patients with normal gastric mucosa or chronic gastritis and a concomitant pathologic finding.

  10. Fluorescence intensity analysis through simplex optimization in flow cytometry.

    PubMed

    Takase, K; Iwaki, K; Gunji, T; Yata, J

    1989-03-10

    Fluorescence intensity analysis in flow cytometric surface immunophenotyping has recently been appreciated in clinical applications. A curve fitting method to estimate the mean and SD values of fluorescence intensity is described in this report. A Gaussian distribution is aimed to be adapted for a specified distribution in logarithmically scaled histogram data through the simplex optimization, one of the non-linear least squares methods. In comparison with the conventional methods which include the detection of peak point and the direct calculation, this fitting method has demonstrated exceeding precisions in the estimation of both parameters with limited involved cell counts in typical lymphocytic phenotyping. The actual estimation for a precise SD value will develop the quality control approaches based on the fluorescence intensity analysis. While this method is not suitable for distributions that involve extremely small cell counts or that deviate markedly from a symmetric Gaussian, it has additional advantages of loose requirements, namely, narrow fitting regions, ordinarily small cell counts, practical computational periods and a simple programming.

  11. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  12. DNA flow cytometric analysis in variable types of hydropic placentas

    PubMed Central

    Atabaki pasdar, Fatemeh; Khooei, Alireza; Fazel, Alireza; Rastin, Maryam; Tabasi, Nafise; Peirouvi, Tahmineh; Mahmoudi, Mahmoud

    2015-01-01

    Background: Differential diagnosis between complete hydatidiform mole, partial hydatidiform mole and hydropic abortion, known as hydropic placentas is still a challenge for pathologists but it is very important for patient management. Objective: We analyzed the nuclear DNA content of various types of hydropic placentas by flowcytometry. Materials and Methods: DNA ploidy analysis was performed in 20 non-molar (hydropic and non-hydropic spontaneous abortions) and 20 molar (complete and partial moles), formalin-fixed, paraffin-embedded tissue samples by flow cytometry. The criteria for selection were based on the histopathologic diagnosis. Results: Of 10 cases histologically diagnosed as complete hydatiform mole, 9 cases yielded diploid histograms, and 1 case was tetraploid. Of 10 partial hydatidiform moles, 8 were triploid and 2 were diploid. All of 20 cases diagnosed as spontaneous abortions (hydropic and non-hydropic) yielded diploid histograms. Conclusion: These findings signify the importance of the combined use of conventional histology and ploidy analysis in the differential diagnosis of complete hydatidiform mole, partial hydatidiform mole and hydropic abortion. PMID:26221125

  13. Techniques for the Analysis of Extracellular Vesicles Using Flow Cytometry

    PubMed Central

    Inglis, Heather; Norris, Philip; Danesh, Ali

    2015-01-01

    Extracellular Vesicles (EVs) are small, membrane-derived vesicles found in bodily fluids that are highly involved in cell-cell communication and help regulate a diverse range of biological processes. Analysis of EVs using flow cytometry (FCM) has been notoriously difficult due to their small size and lack of discrete populations positive for markers of interest. Methods for EV analysis, while considerably improved over the last decade, are still a work in progress. Unfortunately, there is no one-size-fits-all protocol, and several aspects must be considered when determining the most appropriate method to use. Presented here are several different techniques for processing EVs and two protocols for analyzing EVs using either individual detection or a bead-based approach. The methods described here will assist with eliminating the antibody aggregates commonly found in commercial preparations, increasing signal–to-noise ratio, and setting gates in a rational fashion that minimizes detection of background fluorescence. The first protocol uses an individual detection method that is especially well suited for analyzing a high volume of clinical samples, while the second protocol uses a bead-based approach to capture and detect smaller EVs and exosomes. PMID:25867010

  14. Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides

    USGS Publications Warehouse

    Cardenas, W.; Dankert, J.R.; Jenkins, J.A.

    2004-01-01

    Lipopolysaccharides (LPS) from Gram-negative bacteria are strong stimulators of white river crayfish, Procambarus zonangulus, haemocytes in vitro. Following haemocyte treatment with LPS and with LPS from rough mutant R5 (LPS Rc) from Salmonella minnesota, flow cytometric analysis revealed a conspicuous and reproducible decrease in cell size as compared to control haemocytes. These LPS molecules also caused a reduction in haemocyte viability as assessed by flow cytometry with the fluorescent dyes calcein-AM and ethidium homodimer. The onset of cell size reduction was gradual and occurred prior to cell death. Haemocytes treated with LPS from S. minnesota without the Lipid A moiety (detoxified LPS) decreased in size without a reduction of viability. The action of LPS on crayfish haemocytes appeared to be related to the activation of the prophenoloxidase system because phenoloxidase (PO)-specific activity in the supernatants from control and detoxified LPS-treated cells was significantly lower than that from LPS and LPS-Rc treated cells (P < 0.05). Furthermore, addition of trypsin inhibitor to the LPS treatments caused noticeable delays in cell size and viability changes. These patterns of cellular activation by LPS formulations indicated that crayfish haemocytes react differently to the polysaccharide and lipid A moieties of LPS, where lipid A is cytotoxic and the polysaccharide portion is stimulatory. These effects concur with the general pattern of mammalian cell activation by LPS, thereby indicting commone innate immune recognition mechanisms to bacterial antigens between cells from mammals and invertebrates. These definitive molecular approaches used to verify and identify mechanisms of invertbrate haemocyte responses to LPS could be applied with other glycoconjugates, soluble mediators, or xenobiotic compounds.

  15. Assessing computer waste generation in Chile using material flow analysis.

    PubMed

    Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian

    2010-03-01

    The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Analysis of the transient compressible vapor flow in heat pipe

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  17. Method and apparatus for coal analysis and flow measurement

    SciTech Connect

    Rollwitz, W.L.; King, J.D.

    1985-07-23

    A flow meter apparatus and method for measuring the flow, composition and heat content of coal is set forth. In the preferred and illustrated embodiment, the free or unpaired electron population of flowing coal is measured by electron magnetic resonance (EMR); the hydrogen nucleii population is measured by nuclear magnetic resonance (NMR). By calibration utilizing a standard specimen for a given type of coal, a profile for various types of coal can be obtained wherein measurement data is converted into an indication of the heat content typically measured in BTU per pound. This enables provision of a volumetric flow meter, a flow meter indicating flow in calorie content. This device enables integration to provide total heat content flow. Other variables describing the coal can be obtained.

  18. Analysis of the transient compressible vapor flow in heat pipes

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  19. Formal Analysis and Run-time Monitoring of Information Flows in Chromium: Technical Appendix

    DTIC Science & Technology

    2015-02-01

    Formal Analysis and Run-time Monitoring of Information Flows in Chromium : Technical Appendix Lujo Bauer, Shaoying Cai, Limin Jia...Mellon University Pittsburgh, PA 15213 Formal Analysis and Run-time Monitoring of Information Flows in Chromium : Technical Appendix∗ Lujo Bauer...Passaro, M. Stroucken, and Y. Tian. Run-time monitoring and formal analysis of informa- tion flows in Chromium . In Proceedings of the 22nd Annual Network

  20. Global in Time Analysis and Sensitivity Analysis for the Reduced NS- α Model of Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Rebholz, Leo; Zerfas, Camille; Zhao, Kun

    2017-09-01

    We provide a detailed global in time analysis, and sensitivity analysis and testing, for the recently proposed (by the authors) reduced NS- α model. We extend the known analysis of the model to the global in time case by proving it is globally well-posed, and also prove some new results for its long time treatment of energy. We also derive PDE system that describes the sensitivity of the model with respect to the filtering radius parameter, and prove it is well-posed. An efficient numerical scheme for the sensitivity system is then proposed and analyzed, and proven to be stable and optimally accurate. Finally, two physically meaningful test problems are simulated: channel flow past a cylinder (including lift and drag calculations) and turbulent channel flow with {Re_{τ}=590}. The numerical results reveal that sensitivity is created near boundaries, and thus this is where the choice of the filtering radius is most critical.

  1. Power flow as a complement to statistical energy analysis and finite element analysis

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.

  2. Analysis of debris-flow velocities due to superelevation

    NASA Astrophysics Data System (ADS)

    Scheidl, C.; Rickenmann, D.; McArdell, B. W.

    2012-12-01

    For debris flows the estimation of the maximum flow-velocity is considered to be essential. Often the runout or the degree of exposure of a debris-flow event can only be predicted, based on the assessment of the maximum velocity. In practice, geomorphologic traces like flood marks on banks provide important information about the flowing process of a debris flow. A possible approach to estimate maximum flow velocities is based on the vortex equation by using superelevation marks. Superelevation can be observed in bending channels, where the flow-height of the inner-curvature is lower than the flow-height of the outer-curvature, caused by the centrifugal acceleration of the flow. For the estimation of debris-flow velocities with the vortex equation, a correction factor (>1) is often introduced, accounting for the viscosity and vertical sorting of the bulk mixture. Several studies show that the correction factor may be as high as 10 and may depend on bend geometry and debris flow material properties. The objective of this work is therefore to analyze the influence of channel geometry and material properties on the vortex equation when applying to debris flows. In particular, the project aims to compare observed flow velocities from physical modeling in flume experiments with observations from debris-flow field sites. In a first step experimental investigations are done at the laboratory of the Swiss Federal Institute WSL, Birmensdorf. The flume consists of a flexible plastic half-pipe and is mounted on a wooden plane construction. At the moment two different bend radii (1.0 m and 3.0 m) with a bend angle of 60° are implemented. The total length of the flume is further covered with 40 grit silicon carbide sandpaper reflecting a constant basal friction layer. To apply for the complexity of a debris-flow process, three different material mixtures based on three different grain size distributions, were defined. Superelevation is measured by using high speed cameras

  3. "Just Clicks": An Interpretive Phenomenological Analysis of Professional Dancers' Experience of Flow

    ERIC Educational Resources Information Center

    Hefferon, Kate M.; Ollis, Stewart

    2006-01-01

    The subjective experience of flow in professional dancers was analyzed using interpretive phenomenological analysis (IPA). Flow is believed to be a psychological state in which the mind and body "just click", creating optimal performance. Unfortunately, sport and performance research have severely neglected reviewing the flow experience in…

  4. "Just Clicks": An Interpretive Phenomenological Analysis of Professional Dancers' Experience of Flow

    ERIC Educational Resources Information Center

    Hefferon, Kate M.; Ollis, Stewart

    2006-01-01

    The subjective experience of flow in professional dancers was analyzed using interpretive phenomenological analysis (IPA). Flow is believed to be a psychological state in which the mind and body "just click", creating optimal performance. Unfortunately, sport and performance research have severely neglected reviewing the flow experience in…

  5. Analysis of Employment Flow of Landscape Architecture Graduates in Agricultural Universities

    ERIC Educational Resources Information Center

    Yao, Xia; He, Linchun

    2012-01-01

    A statistical analysis of employment flow of landscape architecture graduates was conducted on the employment data of graduates major in landscape architecture in 2008 to 2011. The employment flow of graduates was to be admitted to graduate students, industrial direction and regional distribution, etc. Then, the features of talent flow and factors…

  6. The Flow of International Students from a Macro Perspective: A Network Analysis

    ERIC Educational Resources Information Center

    Barnett, George A.; Lee, Moosung; Jiang, Ke; Park, Han Woo

    2016-01-01

    This paper provides a network analysis of the international flow of students among 210 countries and the factors determining the structure of this flow. Among these factors, bilateral hyperlink connections between countries and the number of telephone minutes (communication variables) are the most important predictors of the flow's structure,…

  7. Assessment of climate change and its impact on forest stream flow using wavelet analysis

    USDA-ARS?s Scientific Manuscript database

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to asse...

  8. The Flow of International Students from a Macro Perspective: A Network Analysis

    ERIC Educational Resources Information Center

    Barnett, George A.; Lee, Moosung; Jiang, Ke; Park, Han Woo

    2016-01-01

    This paper provides a network analysis of the international flow of students among 210 countries and the factors determining the structure of this flow. Among these factors, bilateral hyperlink connections between countries and the number of telephone minutes (communication variables) are the most important predictors of the flow's structure,…

  9. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis.

    PubMed

    Wu, Jen-Kuei; Chen, Peng-Chun; Lin, Yu-Nan; Wang, Chia-Woei; Pan, Li-Chern; Tseng, Fan-Gang

    2017-03-13

    In this paper, we propose a microfluidic device capable of generating a retarding flow field for the sorting and separation of human motile sperm in a high-throughput manner. The proposed sorting/separation process begins with a rapid flow field in a straight-flow zone to carry sperm into a sorting zone to maintain the sperm's mobility. The sorting zone consists of a diffuser-type sperm sorter to differentiate sperm with different motilities based on the flowing upstream nature of human sperm in a retarding flow field. The dead sperm will then be separated from the live ones by passing through a dumbbell flow field to the outlet for disposal. The proposed flowing upstream sperm sorter (FUSS) is designed to imitate the selection mechanism found in the female body when sperm swim into the uterus. The experimental results demonstrate the utility of this device with regard to throughput (approximately 200 000 sperm per minute and a maximum of 200 million cells per mL), efficiency (90% of selected sperm are mobile), and the ability to select sperm with high motility (∼20% of sperm with a velocity exceeding 120 μm s(-1)). The proposed device is suitable for intrauterine insemination as well as in vitro fertilization thanks to the highly efficient sorting process not interfering with the natural function and energy resource of human sperm.

  10. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  11. SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Williams, D. R.

    1975-01-01

    The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.

  12. PIV Analysis of Cavitation Flow Characteristics of He II

    SciTech Connect

    Harada, K.; Murakami, M.

    2006-04-27

    In the present experimental study cavitation phenomena in both He I and He II flows were investigated through the application of the PIV technique and visual observation under the saturated vapor pressure condition. The cavitation flow was generated in the downstream regions of a Venturi channel and a converging jet nozzle driven by a contracting metal bellows. It is seen that cavitation inception is a kind of stochastic process and has definite temperature dependence. The spatial distribution of the cavitation bubble velocity is measured by using the PIV technique. Some differences in the cavitating flow pattern and the void fraction are found between He II and He I cavitating flows. The PIV result indicates that the void fraction for He II flow is larger than that for He I flow.

  13. Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    PubMed Central

    Bacik, Karol A.; Schaub, Michael T.; Billeh, Yazan N.; Barahona, Mauricio

    2016-01-01

    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios. PMID:27494178

  14. Analysis and Applications of Radiometric Forces in Rarefied Gas Flows

    DTIC Science & Technology

    2010-06-16

    Forces in Rarefied Gas Flows 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sergey F. Gimelshein & Natalia E. Gimelshein (ERC, Inc...Forces in Rarefied Gas Flows Sergey F. Gimelshein∗, Natalia E. Gimelshein∗, Andrew D. Ketsdever† and Nathaniel P. Selden∗∗ ∗ERC, Inc, Edwards AFB, CA 93524...geometries. Keywords: Radiometric force, shear, ES-BGK equation PACS: 51.10.+y INTRODUCTION Rarefied gas flow surrounding a thin vane with a temperature

  15. Evaluation of free-molecular flow passage conductances with thermal radiation analysis software

    NASA Astrophysics Data System (ADS)

    Peterson, Milford A.

    1986-12-01

    This paper describes a methodology for accurately evaluating the conductance of flow passages of virtually any geometry in the free-molecular flow regime. The approach utilizes commonly available thermal analysis software (a thermal radiation interchange factor code such as NEVADA/RENO) thereby avoiding the costly development of specialized software for conductance calculations. Since this software is generally highly developed to include graphics capabilities and large libraries of available surface geometries, complex flow passages can be readily modeled. Thus, a major source of uncertainty in the analysis of rarefied gas flows, namely the evaluation of flow passage conductances, can be eliminated. The validity of this approach is demonstrated by agreement between calculated and experimentally measured conductance values for a variety of different flow passage geometries. Finally, flow passages from the Space Telescope venting analysis are utilized to demonstrate several modeling techniques which may be employed to expedite conductance calculations.

  16. Information Flow in the Launch Vehicle Design/Analysis Process

    NASA Technical Reports Server (NTRS)

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.

    1999-01-01

    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  17. Prospects for Eulerian CFD analysis of helicopter vortex flows

    NASA Technical Reports Server (NTRS)

    Drela, Mark; Murman, Earll M.

    1987-01-01

    The applicability of current finite-volume CFD algorithms based on the Euler equations to the vortex flow over a helicopter in forward flight is investigated analytically. The general characteristics of the flow are reviewed; existing Euler, Navier-Stokes, perturbation, high-order, and adaptive methods are briefly characterized; and a novel Eulerian/Lagrangian approach with entropy and vorticity corrections is presented in detail. Numerical results for simple convection of a finite-core Lamb vortex moving downstream with its axis perpendicular to the flow are presented in graphs, and the possibility of extending the method to three-dimensional, viscous, and shock flows is discussed.

  18. Extension of a three-dimensional viscous wing flow analysis

    NASA Technical Reports Server (NTRS)

    Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

    1990-01-01

    Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.

  19. AMS analysis and flow source relationship of lava flows and ignimbrites from the eastern Trans-Mexican Volcanic Belt, Mexico

    NASA Astrophysics Data System (ADS)

    Caballero, C. I.; Alva-Valdivia, L. M.; Morales-Barrera, W.; Rodríguez, S. R.

    2013-05-01

    The results of an AMS analysis carried on 36 sites from a late Miocene - Holocene volcanic stratigraphic sequence from the eastern Trans-Mexican Volcanic Belt is presented. 22 sites (450 samples) belong to lava flows, mainly of basaltic composition, from different emission centers from the Xalapa Monogenitc Volcanic Field, (Rodríguez et al 2010, González-Mercado, 2005), "Cofre de Perote Vent Cluster" (CPVC), "Naolinco Volcanic Field" (NVF), (Siebert and Carrasco-Núñez, 2002), and the Chiconquiaco-Palma Sola volcanic complex (López-Infanzón, 1991; Ferrari et al., 2005). 14 sites belong to the widely distributed El Castillo rhyolitic ignimbrite dated 2.44 to 2.21 Ma (Morales-Barrera, 2009) which is a non-welded to welded ignimbrite. AMS measurements were performed with a KLY2 Kappabridge and processed with Anisoft software using Jelinek statistics. Sometimes a density distribution analysis was also performed when magnetic fabric showed more dispersed distribution patterns. AMS ellipsoids from basalt sites show mostly prolate shapes, while those from ignimbrites show mostly oblate shapes, which may partly due to magnetic mineralogy and also to flow dynamics. Flow directions were mostly obtained from the imbrication angle of magnetic foliation (evaluated from kmin axis mean as corresponding to its pole) and considering the symmetry of the axes distribution. Flow direction inferences are discussed in relation with flow source when it is clearly evident from geologic field observations, as it is usually the case with basalt lava flows. While in ignimbrites, flow inferences from petrographic and facies distributions are compared with AMS flow inferences, showing agreement between them in some cases but not in others, may be due to local tilting occurring after ignimbrite emplacement.

  20. F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.

    1984-01-01

    An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.

  1. Two-dimensional vapor flow analysis in heat pipes

    SciTech Connect

    Prenger, F.C.; Busse, C.A.

    1984-01-01

    The computer code AGATHE is intended to evaluate axially symmetric heat pipes with compressible vapor flow at Mach numbers up to 1 and at all radial Reynolds numbers. The code can be used to evaluate empirical factors describing turbulence. Furthermore, heat input and output are modeled by describing liquid heat transfer loops. This method leads to nonuniform heating and cooling rates typical of actual heat pipes. Presently the code is adapted to evaluate heat pipes in tubular geometry composed of a series of heat transfer and adiabatic zones of cylindrical or conical shape. In this analysis the two-dimensional mathematical problem was reduced to a number of ordinary differential equations, which are integrated by a Runge-Kutta scheme. The reduction was achieved, first, by starting from the Navier-Stokes equation using the boundary layer approximation; this approximation introduces the main limitation of the code, restricting its use to the calculation of vapor ducts with large length-to-diameter ratios. Second, the velocity profile was simulated by a power series. The n coefficients of this series were determined such that at each axial position the radial pressure gradient was approximately zero, as specified by the boundary layer approximation.

  2. Transonic analysis and design of axisymmetric bodies in nonuniform flow

    NASA Technical Reports Server (NTRS)

    Chang, Jen-Fu; Lan, C. Edward

    1987-01-01

    An inviscid nonuniform axisymmetric transonic code was developed for applications in analysis and design. Propfan slipstream effect on pressure distribution for a body with and without sting was investigated. Results show that nonuniformity causes pressure coefficient to be more negative and shock strength to be stronger and more rearward. Sting attached to a body reduced the pressure peak and moves the rear shock forward. Extent and Mach profile shapes of the nonuniformity region appeared to have little effect on the pressure distribution. Increasing nonuniformity magnitude made pressure coefficient more negative and moved the shock rearward. Design study was conducted with the CONMIN optimizer for an ellipsoid and a body with the NACA-0012 counter. For the ellipsoid, the general trend showed that to reduce the pressure drag, the front portion of the body should be thinner and the contour of the rear portion should be flatter than the ellipsoid. For the design of a body with a sharp trailing edge in transonic flow with an initial shape given by the NACA-0012 contour, the pressure drag was reduced by decreasing the nose radius and increasing the thickness in the aft portion. Drag reduction percentages are given.

  3. Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA).

    PubMed

    Briers, J D; Richards, G; He, X W

    1999-01-01

    Coherent light scattered from an ensemble of moving scatterers produces a time-varying speckle pattern. The intensity fluctuations observed in a single speckle can be regarded either as a time-varying interference effect or as a Doppler beating effect. Techniques based on each of these approaches have been developed to analyze the fluctuations in an attempt to measure the velocities of the scatterers. Most of these methods measure the temporal statistics of the intensity fluctuations in a single speckle, i.e., at a single point. If a map of the velocity distribution is required, some form of scanning must be introduced. One way of avoiding the need to scan is to make use of the spatial statistics of time-integrated speckle. This is the basis of a technique, already described in the literature, called laser speckle contrast analysis (LASCA). In this article, we present a brief review of the theory linking the intensity fluctuations to the velocity and of the various techniques that have been proposed to measure them. We then describe the present configuration of our LASCA technique and describe some recent developments in our search for a real-time, noninvasive, full-field technique for visualizing capillary blood flow. © 1999 Society of Photo-Optical Instrumentation Engineers.

  4. Isogeometric analysis of drop deformation in isoviscous shear flow

    NASA Astrophysics Data System (ADS)

    Ahmadi Joneidi, Amin; Verhoosel, Clemens; Anderson, Patrick

    2012-11-01

    We use the Boundary Integral Method (BIM) to study the deformation of a drop in iso-viscous shear flow. Traditionally the drop surface is represented by a linear triangular mesh. The novelty of this work compared to prior studies is applying Isogeometric Analysis (IGA) to define the drop interface. In this method splines are used as smooth shape functions to create the surface instead of the traditional non-smooth triangular surface. This makes IGA applicable in the case when the physics at the interface becomes more complicated, for example if the deformation of a red blood cell or a vesicle is investigated; these involve higher-order surface gradients in the force jump across the interface. For the iso-viscous drop it is observed that the drop deforms and deviates from the initial spherical shape and orients itself in the fixed direction. Different values of the capillary number -which is the measure of the ratio between viscous and surface tension forces- have been studied and the results match very well with traditional BIM. IGA results for more complex interfacial force jumps are discussed.

  5. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma.

    PubMed

    Lin, Pei; Owens, Rebecca; Tricot, Guido; Wilson, Carla S

    2004-04-01

    Bone marrow aspirates from 306 patients with multiple myeloma were analyzed by flow cytometric immunophenotyping. The plasma cells (PCs) were identified by their characteristic light scatter distribution and reactivity patterns to CD138, CD38, and CD45. Monoclonality was confirmed by immunoglobulin light chain analysis. The immunophenotypic profile of the PCs was determined with a panel of antibodies. Moderate to bright expression of CD56, CD117, CD20, CD45, and CD52 was detected in 71.7%, 17.8%, 9.3%, 8.8%, and 5.2% of cases, respectively. These antigens were expressed by a distinct subpopulation of the PCs in 6.3%, 2.2%, 3.7%, 2.9%, and 2.6% of additional cases. CD19 was negative in more than 99% of cases. The combination of CD38 and CD138 was superior to CD38 alone for identifying CD45+ myeloma and separating CD20+ myeloma from B-cell lymphoma. PC immunophenotyping might be useful for detecting minimal residual disease in cases with aberrant antigen expression and for selection of therapeutic agents that have specific membrane targets.

  6. Automatic analysis of ciliary beat frequency using optical flow

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  7. Maximum flow-based resilience analysis: From component to system

    PubMed Central

    Jin, Chong; Li, Ruiying; Kang, Rui

    2017-01-01

    Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135

  8. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  9. A source flow characteristic technique for the analysis of scramjet exhaust flow field

    NASA Technical Reports Server (NTRS)

    Delguidice, P.; Dash, S.; Kalben, P.

    1974-01-01

    The factors which influence the design and selection of a nozzle for a hypersonic scramjet are described. A two dimensional second-order characteristic procedure capable of analyzing the aerodynamic performance of typical nozzle configurations is presented. Equations of motion governing the two dimensional, axisymmetric, or axially expanding inviscid flow of a gas mixture, with frozen chemistry, are provided. Diagrams of the flow conditions for various configurations are included.

  10. Analysis of nitrogen condensation in an expanding nozzle flow

    NASA Technical Reports Server (NTRS)

    Wang, F. C.

    1976-01-01

    Condensation of nitrogen flow in an expanding nozzle flow is analyzed using one-dimensional gas dynamic equations and the equations for nucleation and droplet growth. Effects of variations in the Tolman constant and the mass accommodation factor are discussed as well as the effect of foreign nuclei. Comparisons are made with experimental data obtained from a small, contoured nozzle.

  11. Computational Analysis of Flow Through a Transonic Compressor Rotor

    DTIC Science & Technology

    2005-09-01

    a commercial Computer Aided Design (CAD) software company, has developed a new code that allows modeling of two phase flow. ICEM -CFD and CFX-5, both...commercial Computer Aided Design (CAD) software company, has developed a new code that allows modeling of two phase flow. ICEM -CFD and CFX-5, both Anys...6 III. PROCEDURES............................................................................................................9 A. ICEM -CFD

  12. Information Flow Analysis of Level 4 Payload Processing Operations

    NASA Technical Reports Server (NTRS)

    Danz, Mary E.

    1991-01-01

    The Level 4 Mission Sequence Test (MST) was studied to develop strategies and recommendations to facilitate information flow. Recommendations developed as a result of this study include revised format of the Test and Assembly Procedure (TAP) document and a conceptualized software based system to assist in the management of information flow during the MST.

  13. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  14. Wind Tunnel Renovation, Flow Verification and Flapping Wing Analysis

    DTIC Science & Technology

    2006-06-01

    26 E. PITOT TUBE FLOW REFERENCE ..........................................................28...RECOMMENDATIONS FOR FURTHER IMPROVEMENT ................47 APPENDIX A. PITOT TUBE CALIBRATION...intake and test section mounted horizontally. After the test section, the flow is turned upward through guide vanes and driven by an axial fan powered

  15. Load flow analysis: Base cases, data, diagrams, and results

    SciTech Connect

    Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P.

    1997-10-01

    This report describes how an electric utility system is modeled by using load flow techniques to establish a validated power flow case suitable for simulating and evaluating alternative system scenarios. Details of the load flow model are supported by additional technical and descriptive information intended to correlate modeled electrical system parameters with the corresponding physical equipment that makes up the system. Pictures and technical specifications of system equipment from the utility, public, or vendor are provided to support this association for many system components. The report summarizes the load flow model construction, simulation, and validation and describes the general capabilities of an information query system designed to access load flow parameters and other electrical system information.

  16. A Power and Particle Flow Analysis of the VASIMR Experiments

    NASA Astrophysics Data System (ADS)

    Bengtson, R. D.; Gibson, J.; Panevsky, M.; Breizman, B. N.; Díaz, F. R. Chang; Baine, M.; Ilin, A. V.; McCaskill, G. E.; Squire, J. P.; Winter, D. S.; Bering, E. A.

    2000-10-01

    We will present a power and particle balance of the VASIMR experiment. Power input is measured with measurements of AC voltage, currents, and their relative phase. Particle flow in is measured with flow meters along with pressure measurements at several locations. Power losses to the wall are measured through thermocouples. Spectroscopic measurements provide an estimate of impurity density, an estimate of radiated power, and electron temperature measurements. A bolometer with an energy sensitivity for energies gives an estimate of total radiated power and is verified with measurements of H_α at several locations. Ion flow velocities are estimated through three techniques: Mach probes, retarding potential analyzer, and spectroscopic measurements. Plasma conditions are measured using Langmuir probes designed to reduce RF interference. These measurements will be combined to present a consistent picture of power and particle flow in VASIMR experiment. Scaling with atomic mass, RF power, and particle flow will also be presented.

  17. An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.

    ERIC Educational Resources Information Center

    Meyerhoff, Mark E.; Kovach, Paul M.

    1983-01-01

    Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…

  18. An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.

    ERIC Educational Resources Information Center

    Meyerhoff, Mark E.; Kovach, Paul M.

    1983-01-01

    Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…

  19. Carbon flow analysis of China's agro-ecosystem from 1980 to 2013: A perspective from substance flow analysis.

    PubMed

    Liu, Yu; Wang, Can; Chen, Minpeng

    2017-05-01

    Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6PgC/year in 1980 to 3.4PgC/year in 2013, while carbon output grew from 2.2PgC/year in 1980 to 3.8PgC/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China. Copyright © 2016. Published by Elsevier B.V.

  20. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  1. Performance analysis of vortex based mixers for confined flows

    NASA Astrophysics Data System (ADS)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  2. Computational analysis of high-throughput flow cytometry data

    PubMed Central

    Robinson, J Paul; Rajwa, Bartek; Patsekin, Valery; Davisson, Vincent Jo

    2015-01-01

    Introduction Flow cytometry has been around for over 40 years, but only recently has the opportunity arisen to move into the high-throughput domain. The technology is now available and is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, been a technology that has focused on its unique ability to study single cells and appropriate analytical tools are readily available to handle this traditional role of the technology. Areas covered Expansion of flow cytometry to a high-throughput (HT) and high-content technology requires both advances in hardware and analytical tools. The historical perspective of flow cytometry operation as well as how the field has changed and what the key changes have been discussed. The authors provide a background and compelling arguments for moving toward HT flow, where there are many innovative opportunities. With alternative approaches now available for flow cytometry, there will be a considerable number of new applications. These opportunities show strong capability for drug screening and functional studies with cells in suspension. Expert opinion There is no doubt that HT flow is a rich technology awaiting acceptance by the pharmaceutical community. It can provide a powerful phenotypic analytical toolset that has the capacity to change many current approaches to HT screening. The previous restrictions on the technology, based on its reduced capacity for sample throughput, are no longer a major issue. Overcoming this barrier has transformed a mature technology into one that can focus on systems biology questions not previously considered possible. PMID:22708834

  3. Performance analysis of axial-flow mixing impellers

    SciTech Connect

    Wu, J.; Pullum, L.

    2000-03-01

    Theoretical formulations for impeller performance were evaluated based on a blade-element theory. These enable the calculation of the head and power vs. flow-rate curves of axial-flow impellers. The technique uses the life and drag coefficients of the blade section of an impeller to calculate the spanwise swirl-velocity distribution. Using the angular-momentum equation, it is possible to calculate the corresponding spanwise distribution of the energy head of the impeller. Integration of these distributions of head and torque gives the impeller's performance. Parameters including the flow number, the power number, the thrust force number, and the swirl velocity can be found at the impeller operating point, determined using the head curve and an experimentally calibrated resistance curve. A laser Doppler velocimetry (LDV) system was used to measure the velocity distribution for different axial flow impellers in mixing tanks. Calculated flow and power numbers agreed well with the experimental results. Using the blade's spanwise head distribution and a set of calibrated flow-resistance data, it is also possible to estimate an impeller's outlet axial-velocity distribution. Predictions compared well with LDV experimental data. The effect of impeller-blade angle, number of blades, blade camber, and blade thickness on the performance of axial-flow impellers was investigated using the Agitator software.

  4. Flow measurements in sewers based on image analysis: automatic flow velocity algorithm.

    PubMed

    Jeanbourquin, D; Sage, D; Nguyen, L; Schaeli, B; Kayal, S; Barry, D A; Rossi, L

    2011-01-01

    Discharges of combined sewer overflows (CSOs) and stormwater are recognized as an important source of environmental contamination. However, the harsh sewer environment and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. An in situ system for sewer water flow monitoring based on video images was evaluated. Algorithms to determine water velocities were developed based on image-processing techniques. The image-based water velocity algorithm identifies surface features and measures their positions with respect to real world coordinates. A web-based user interface and a three-tier system architecture enable remote configuration of the cameras and the image-processing algorithms in order to calculate automatically flow velocity on-line. Results of investigations conducted in a CSO are presented. The system was found to measure reliably water velocities, thereby providing the means to understand particular hydraulic behaviors.

  5. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  6. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two-dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  7. Finite element analysis of periodic transonic flow problems

    NASA Technical Reports Server (NTRS)

    Fix, G. J.

    1978-01-01

    Flow about an oscillating thin airfoil in a transonic stream was considered. It was assumed that the flow field can be decomposed into a mean flow plus a periodic perturbation. On the surface of the airfoil the usual Neumman conditions are imposed. Two computer programs were written, both using linear basis functions over triangles for the finite element space. The first program uses a banded Gaussian elimination solver to solve the matrix problem, while the second uses an iterative technique, namely SOR. The only results obtained are for an oscillating flat plate.

  8. Nonlinear analysis of aortic flow in living dogs.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Atabek, H. B.; Letzing, W. G.; Patel, D. J.

    1973-01-01

    A nonlinear theory which considered the convective accelerations of blood and the nonlinear elastic behavior and taper angle of the vascular wall was used to study the nature of blood flow in the descending thoracic aorta of living dogs under a wide range of pressures and flows. Velocity profiles, wall friction, and discharge waves were predicted from locally measured input data about the pressure-gradient wave and arterial distention. The results indicated that a major part of the mean pressure gradient was balanced by convective accelerations; the theory, which took this factor into account, predicted the correct velocity distributions and flow waves.

  9. Flow rate analysis of a surface tension driven passive micropump.

    PubMed

    Berthier, Erwin; Beebe, David J

    2007-11-01

    A microfluidic passive pumping method relying on surface tension properties is investigated and a physical model is developed. When a small inlet drop is placed on the entrance of a microfluidic channel it creates more pressure than a large output drop at the channel exit, causing fluid flow. The behavior of the input drop occurs in two characteristic phases. An analytical solution is proposed and verified by experimental results. We find that during the first phase the flow rate is stable and that this phase can be prolonged by refilling the inlet drop to produce continuous flow in the microchannel.

  10. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  11. Aequorea green fluorescent protein analysis by flow cytometry

    SciTech Connect

    Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.; Wolfgang-Kimball, D.

    1995-12-01

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.

  12. Aequorea green fluorescent protein analysis by flow cytometry.

    PubMed

    Ropp, J D; Donahue, C J; Wolfgang-Kimball, D; Hooley, J J; Chin, J Y; Hoffman, R A; Cuthbertson, R A; Bauer, K D

    1995-12-01

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types (Chalfie et al.: Science 263: 802-805, 1994). The longer wavelength peak (470 nm) of GFP's bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. (Nature 373:663-664, 1995) have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T-GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm.

  13. Analysis of ETMS Data Quality for Traffic Flow Management Decisions

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Sridhar, Banavar; Kim, Douglas

    2003-01-01

    The data needed for air traffic flow management decision support tools is provided by the Enhanced Traffic Management System (ETMS). This includes both the tools that are in current use and the ones being developed for future deployment. Since the quality of decision support provided by all these tools will be influenced by the quality of the input ETMS data, an assessment of ETMS data quality is needed. Motivated by this desire, ETMS data quality is examined in this paper in terms of the unavailability of flight plans, deviation from the filed flight plans, departure delays, altitude errors and track data drops. Although many of these data quality issues are not new, little is known about their extent. A goal of this paper is to document the magnitude of data quality issues supported by numerical analysis of ETMS data. Guided by this goal, ETMS data for a 24-hour period were processed to determine the number of aircraft with missing flight plan messages at any given instant of time. Results are presented for aircraft above 18,000 feet altitude and also at all altitudes. Since deviation from filed flight plan is also a major cause of trajectory-modeling errors, statistics of deviations are presented. Errors in proposed departure times and ETMS-generated vertical profiles are also shown. A method for conditioning the vertical profiles for improving demand prediction accuracy is described. Graphs of actual sector counts obtained using these vertical profiles are compared with those obtained using the Host data for sectors in the Fort Worth Center to demonstrate the benefit of preprocessing. Finally, results are presented to quantify the extent of data drops. A method for propagating track positions during ETMS data drops is also described.

  14. Analysis of ETMS Data Quality for Traffic Flow Management Decisions

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Sridhar, Banavar; Kim, Douglas

    2003-01-01

    The data needed for air traffic flow management decision support tools is provided by the Enhanced Traffic Management System (ETMS). This includes both the tools that are in current use and the ones being developed for future deployment. Since the quality of decision support provided by all these tools will be influenced by the quality of the input ETMS data, an assessment of ETMS data quality is needed. Motivated by this desire, ETMS data quality is examined in this paper in terms of the unavailability of flight plans, deviation from the filed flight plans, departure delays, altitude errors and track data drops. Although many of these data quality issues are not new, little is known about their extent. A goal of this paper is to document the magnitude of data quality issues supported by numerical analysis of ETMS data. Guided by this goal, ETMS data for a 24-hour period were processed to determine the number of aircraft with missing flight plan messages at any given instant of time. Results are presented for aircraft above 18,000 feet altitude and also at all altitudes. Since deviation from filed flight plan is also a major cause of trajectory-modeling errors, statistics of deviations are presented. Errors in proposed departure times and ETMS-generated vertical profiles are also shown. A method for conditioning the vertical profiles for improving demand prediction accuracy is described. Graphs of actual sector counts obtained using these vertical profiles are compared with those obtained using the Host data for sectors in the Fort Worth Center to demonstrate the benefit of preprocessing. Finally, results are presented to quantify the extent of data drops. A method for propagating track positions during ETMS data drops is also described.

  15. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  16. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  17. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  18. Analysis of losses in supersonic mixing and reacting flows

    NASA Astrophysics Data System (ADS)

    Riggins, D. W.; McClinton, C. R.

    1991-06-01

    A method for analyzing flow losses and thrust potential in supersonic combustors is presented. This method relies on a complete and consistent one-dimensional representation of a three-dimensional flow-field. Numerical results for flush wall fuel injection into a Mach 3 flow are examined and comparisons are made with experimental measurements of fuel concentration. Mixing results for a swept injection ramp, a straight (unswept) injection ramp, and a thirty degree downstream-directed flush wall jet in the same combustor duct are analyzed. The flow loss/thrust potential of the flush wall jet and the swept ramp are investigated (based on reacting solutions) using computed combustor effectiveness. The wall jet displays slightly higher thrust potential than the swept ramp at the end of the combustor.

  19. Flow diagram analysis of electrical fatalities in construction industry.

    PubMed

    Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad

    2012-01-01

    The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.

  20. Stability analysis of wall driven nanofluid flow through a tube

    NASA Astrophysics Data System (ADS)

    Hossain, M. Mainul; Khan, M. A. H.

    2017-06-01

    Wall driven incompressible viscous fluid flow with nanoparticles through a tube is considered where two different nanofluids (Cu-water, SiO2-water) are used separately. Flow becomes gradually unstable due to movement of wall and existence of nanoparticles. However, Reynolds number, volume fraction and density ratio are responsible for flow instability. The mathematical model of the problem is constructed and solved by means of series solution method. Special type Hermite-Padé approximation method is used to improve the series solution. The critical point for Reynolds number, volume fraction and density ratio are determined and described using approximation technique and bifurcation diagram for both nanofluids. Moreover, Interaction between these three numbers and their effect on velocity profile are discussed. To indicate the nanofluid which is more effective for flow stability is our major concerned.

  1. Similarity analysis of compressor tip clearance flow structure

    NASA Technical Reports Server (NTRS)

    Chen, G. T.; Greitzer, E. M.; Tan, C. S.; Marble, F. E.

    1991-01-01

    A new approach is presented for analyzing compressor tip clearance flow. The basic idea is that the clearance velocity field can be (approximately) decomposed into independent throughflow and crossflow, since chordwise pressure gradients are much smaller than normal pressure gradients in the clearance region. As in the slender body approximation in external aerodynamics, this description implies that the three-dimensional steady clearance flow can be viewed as a two-dimensional, unsteady flow. Using this approach, a similarity scaling for the crossflow in the clearance region is developed and a generalized description of the clearance vortex is derived. Calculations based on the similarity scaling agree well with a wide range of experimental data in regard to flow features such as crossflow velocity field, static pressure field, and tip clearance vortex trajectory.

  2. Measuring Cerebral Blood Flow in Moyamoya Angiopathy by Quantitative Magnetic Resonance Angiography Noninvasive Optimal Vessel Analysis.

    PubMed

    Khan, Nadia; Lober, Robert M; Ostergren, Lauren; Petralia, Jacob; Bell-Stephens, Teresa; Navarro, Ramon; Feroze, Abdullah; Steinberg, Gary K

    2017-02-14

    Moyamoya disease causes progressive occlusion of the supraclinoidal internal carotid artery, and middle, anterior, and less frequently the posterior cerebral arteries, carrying the risk of stroke. Blood flow is often partially reconstituted by compensatory moyamoya collaterals and sometimes the posterior circulation. Cerebral revascularization can further augment blood flow. These changes to blood flow within the cerebral vessels, however, are not well characterized. To evaluate blood flow changes resulting from the disease process and revascularization surgery using quantitative magnetic resonance angiography with noninvasive optimal vessel analysis (NOVA). We retrospectively analyzed 190 preoperative and postoperative imaging scans in 66 moyamoya patients after revascularization surgery. Images were analyzed for blood flow using NOVA and compared with preoperative angiographic staging and postoperative blood flow. Blood flow rates within superficial temporal artery grafts were compared based on angiographic evidence of patency. Diseased vessels had lower blood flow, correlating with angiographic staging. Flow in posterior cererbal and basilar arteries increased with disease severity, particularly when both the anterior and middle cerebral arteries were occluded. Basilar artery flow and ipsilateral internal carotid artery flow decreased after surgery. Flow rates were different between angiographically robust and poor direct bypass grafts, as well as between robust and patent grafts. Preoperative changes in cerebral vessel flow as measured by NOVA correlated with angiographic disease progression. NOVA demonstrated that preoperative augmentation of the posterior circulation decreased after surgery. This report is the first to quantify the shift in collateral supply from the posterior circulation to the bypass graft.

  3. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP)

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.

    1988-01-01

    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  4. Convective flow analysis on the KC-135 aircraft

    NASA Astrophysics Data System (ADS)

    Workman, Gary L.; Kaukler, William F.

    1992-01-01

    A study conducting bouyancy driven convective flow experiments on the NASA KC-135 aircraft is presented. The response of a contained fluid (with an imposed temperature gradient) to changing g-levels during parabolic flight was obtained. Models for both transient and steady state flows were developed utilizing PC-based CFD software. Comparisons between the theoretical models and the physical observations are quite good.

  5. Analysis of Flow Angularity Repeatability Tests in the NTF

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2006-01-01

    An extensive data base of flow angularity repeatability measurements from four NTF check standard model tests is analyzed for statistical consistency and to characterize the results for prediction of angle-of-attack uncertainty for customer tests. A procedure for quality assurance for flow angularity measurements during customer tests is also presented. The efficacy of the procedure is tested using results from a customer test.

  6. Analysis of active region loop flows as observed from SMM

    NASA Astrophysics Data System (ADS)

    Poletto, G.; Kopp, R. A.

    The physical properties of plasma motions within solar loop structures are studied by analyzing and interpreting space observations of flows in active regions outside flare conditions. The indirect evidence for the presence of plasma motions in loops that derives either from observational data or from theoretical arguments is first discussed. Direct observations of plasma flows, mostly acquired by the SMM USVP experiment, are then reviewed. Finally, the results of one recent attempt to compare theory and observations are presented and discussed.

  7. Intraoperative Analysis of Flow Dynamics in Arteriovenous Composite Y Grafts

    PubMed Central

    Lobo Filho, Heraldo Guedis; Lobo Filho, José Glauco; Pimentel, Matheus Duarte; Silva, Bruno Gadelha Bezerra; de Souza, Camylla Santos; Montenegro, Marília Leitão; Leitão, Maria Cláudia de Azevedo; Jamacuru, Francisco Vagnaldo Fechine

    2016-01-01

    Objective Composite graft of left internal thoracic artery and great saphenous vein in revascularization of the left coronary system is a technique well described in literature. The aim of this study is to analyze blood flow dynamics in this configuration of composite graft especially in what concerns left internal thoracic artery's adaptability and influence of great saphenous vein segment on left internal thoracic artery's flow. Methods Revascularization of left coronary system with composite graft, with left internal thoracic artery revascularizing the anterior interventricular artery and a great saphenous vein segment, anastomosed to the left internal thoracic artery, revascularizing another branch of the left coronary system, was performed in 23 patients. Blood flow was evaluated by transit time flowmetry in all segments of the composite graft (left internal thoracic artery proximal segment, left internal thoracic artery distal segment and great saphenous vein segment). Measures were performed in baseline condition and after dobutamine-induced stress, without and with non-traumatic temporary clamping of the distal segments of the composite graft. Results Pharmacological stress resulted in increase of blood flow values in the analyzed segments (P<0.05). Non-traumatic temporary clamping of great saphenous vein segment did not result in statistically significant changes in the flow of left internal thoracic artery distal segment, both in baseline condition and under pharmacological stress. Similarly, non-traumatic temporary clamping of left internal thoracic artery distal segment did not result in statistically significant changes in great saphenous vein segment flow. Conclusion Composite grafts with left internal thoracic artery and great saphenous vein for revascularization of left coronary system, resulted in blood flow dynamics with physiological adaptability, both at rest and after pharmacological stress, according to demand. Presence of great saphenous vein

  8. Analysis of repetitive DNA in chromosomes by flow cytometry.

    PubMed

    Brind'Amour, Julie; Lansdorp, Peter M

    2011-06-01

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in Chinese hamster chromosomes and major satellite sequences in mouse chromosomes. Using CFF we also identified parental homologs of human chromosome 18 with different amounts of repetitive DNA.

  9. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    SciTech Connect

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-04-19

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  10. Flow analysis of Space Shuttle feed line 17-inch disconnect valve

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Pearce, Daniel

    1988-01-01

    A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external-tank/orbiter propellant-feed-line disconnect flapper valves with upstream elbows. The full Navier-Stokes code INS3D is modified to handle interior obstacles. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 x 10 to the 6th.

  11. Error analysis of combined stereo/optical-flow passive ranging

    NASA Astrophysics Data System (ADS)

    Barniv, Yair

    1991-08-01

    The motion of an imaging sensor causes each imaged point of the scene to correspondingly describe a time trajectory on the image plane. The trajectories of all imaged points are reminiscent of a flow (e.g., of liquid) which is the source of the term 'optical flow'. Optical-flow ranging is a method by which the stream of two-dimensional images obtained from a forward-looking forward-moving passive sensor is used to compute depth (or range) to points in the field of view. Another well-known ranging method consists of triangulation based on stereo images obtained from at least two stationary sensors. In this paper we analyze the potential accuracies of a combined optical flow and stereo passive-ranging system in the context of helicopter nap-of-the-earth obstacle avoidance. The Cramer-Rao lower bound is developed for the combined system under the assumption of an unknown angular bias error common to both cameras of a stereo pair. It is shown that the depth accuracy degradations caused by a bias error is negligible for a combined optical-flow and stereo system as compared to a monocular optical-flow system.

  12. Error analysis of combined stereo/optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1991-01-01

    The motion of an imaging sensor causes each imaged point of the scene to correspondingly describe a time trajectory on the image plane. The trajectories of all imaged points are reminiscent of a flow (e.g., of liquid) which is the source of the term 'optical flow'. Optical-flow ranging is a method by which the stream of two-dimensional images obtained from a forward-looking forward-moving passive sensor is used to compute depth (or range) to points in the field of view. Another well-known ranging method consists of triangulation based on stereo images obtained from at least two stationary sensors. In this paper we analyze the potential accuracies of a combined optical flow and stereo passive-ranging system in the context of helicopter nap-of-the-earth obstacle avoidance. The Cramer-Rao lower bound is developed for the combined system under the assumption of an unknown angular bias error common to both cameras of a stereo pair. It is shown that the depth accuracy degradations caused by a bias error is negligible for a combined optical-flow and stereo system as compared to a monocular optical-flow system.

  13. Error analysis of combined stereo/optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1991-01-01

    The motion of an imaging sensor causes each imaged point of the scene to correspondingly describe a time trajectory on the image plane. The trajectories of all imaged points are reminiscent of a flow (e.g., of liquid) which is the source of the term 'optical flow'. Optical-flow ranging is a method by which the stream of two-dimensional images obtained from a forward-looking forward-moving passive sensor is used to compute depth (or range) to points in the field of view. Another well-known ranging method consists of triangulation based on stereo images obtained from at least two stationary sensors. In this paper we analyze the potential accuracies of a combined optical flow and stereo passive-ranging system in the context of helicopter nap-of-the-earth obstacle avoidance. The Cramer-Rao lower bound is developed for the combined system under the assumption of an unknown angular bias error common to both cameras of a stereo pair. It is shown that the depth accuracy degradations caused by a bias error is negligible for a combined optical-flow and stereo system as compared to a monocular optical-flow system.

  14. PHYSALIS: a new method for particle flow simulation. Part III: convergence analysis of two-dimensional flows

    NASA Astrophysics Data System (ADS)

    Huang, Huaxiong; Takagi, Shu

    2003-08-01

    In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.

  15. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  16. A computer program for flow-log analysis of single holes (FLASH).

    PubMed

    Day-Lewis, Frederick D; Johnson, Carole D; Paillet, Frederick L; Halford, Keith J

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel(5) with Visual Basic for Applications routines. The code supports manual and automated model calibration.

  17. Analysis of two-phase flow included vibrations in piping systems

    SciTech Connect

    Hiramatsu, T.; Komura, Y.; Yano, S.

    1982-01-01

    The purpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a horizontally supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. A theoretical analysis is achieved using the transfer method for vibration responses of the system excited by the forces of traveling liquid piston and the momentum change of two-phase flow. Comparing experimental and theoretical studies, the author concluded that the vibrational behavior of piping systems conveying two-phase flowing fluid can be predicted quantitatively. 8 refs.

  18. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  19. Material flow analysis of used personal computers in Japan.

    PubMed

    Yoshida, Aya; Tasaki, Tomohiro; Terazono, Atsushi

    2009-05-01

    Most personal computers (PCs) are discarded by consumers after the data files have been moved to a new PC. Therefore, a used PC collection scheme should be created that does not depend on the distribution route of new PCs. In Japan, manufacturers' voluntary take-back recycling schemes were established in 2001 (for business PCs) and 2003 (for household PCs). At the same time, the export of used PCs from Japan increased, affecting the domestic PC reuse market. These regulatory and economic conditions would have changed the flow of used PCs. In this paper, we developed a method of minimizing the errors in estimating the material flow of used PCs. The method's features include utilization of both input and output flow data and elimination of subjective estimation as much as possible. Flow rate data from existing surveys were used for estimating the flow of used PCs in Japan for fiscal years (FY) 2000, 2001, and 2004. The results show that 3.92 million and 4.88 million used PCs were discarded in FY 2000 and 2001, respectively. Approximately two-thirds of the discarded PCs were disposed of or recycled within the country, one-fourth was reused within the country, and 8% were exported. In FY 2004, 7.47 million used PCs were discarded. The ratio of domestic disposal and recycling decreased to 37% in FY 2004, whereas the domestic reuse and export ratios increased to 37% and 26%, respectively. Flows from businesses to retailers in FY 2004 increased dramatically, which led to increased domestic reuse. An increase in the flow of used PCs from lease and rental companies to secondhand shops has led to increased exports. Results of interviews with members of PC reuse companies were and trade statistics were used to verify the results of our estimation of domestic reuse and export of used PCs.

  20. Gold nanorods for surface Plasmon resonance detection of mercury (II) in flow injection analysis.

    PubMed

    Trieu, Khang; Heider, Emily C; Brooks, Scott C; Barbosa, Fernando; Campiglia, Andres D

    2014-10-01

    This article investigates the flow injection analysis of mercury (II) ions in tap water samples via surface Plasmon resonance detection. Quantitative analysis of mercury (II) is based on the chemical interaction of metallic mercury with gold nanorods immobilized on a glass substrate. A new flow cell design is presented with the ability to accommodate the detecting substrate in the sample compartment of commercial spectrometers. Two alternatives are here considered for mercury (II) detection, namely stop-flow and continuous flow injection analysis modes. The best limit of detection (2.4 ng mL(-1)) was obtained with the continuous flow injection analysis approach. The accurate determination of mercury (II) ions in samples of unknown composition is demonstrated with a fortified tap water sample.

  1. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  2. Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes

    PubMed Central

    Cremers, Eline M.P.; Westers, Theresia M.; Alhan, Canan; Cali, Claudia; Visser-Wisselaar, Heleen A.; Chitu, Dana A.; van der Velden, Vincent H.J.; te Marvelde, Jeroen G.; Klein, Saskia K.; Muus, Petra; Vellenga, Edo; de Greef, Georgina E.; Legdeur, Marie-Cecile C.J.C.; Wijermans, Pierre W.; Stevens-Kroef, Marian J.P.L.; da Silva-Coelho, Pedro; Jansen, Joop H.; Ossenkoppele, Gert J.; van de Loosdrecht, Arjan A.

    2017-01-01

    Flow cytometric analysis is a recommended tool in the diagnosis of myelodysplastic syndromes. Current flow cytometric approaches evaluate the (im)mature myelo-/monocytic lineage with a median sensitivity and specificity of ~71% and ~93%, respectively. We hypothesized that the addition of erythroid lineage analysis could increase the sensitivity of flow cytometry. Hereto, we validated the analysis of erythroid lineage parameters recommended by the International/European LeukemiaNet Working Group for Flow Cytometry in Myelodysplastic Syndromes, and incorporated this evaluation in currently applied flow cytometric models. One hundred and sixty-seven bone marrow aspirates were analyzed; 106 patients with myelodysplastic syndromes, and 61 cytopenic controls. There was a strong correlation between presence of erythroid aberrancies assessed by flow cytometry and the diagnosis of myelodysplastic syndromes when validating the previously described erythroid evaluation. Furthermore, addition of erythroid aberrancies to two different flow cytometric models led to an increased sensitivity in detecting myelodysplastic syndromes: from 74% to 86% for the addition to the diagnostic score designed by Ogata and colleagues, and from 69% to 80% for the addition to the integrated flow cytometric score for myelodysplastic syndromes, designed by our group. In both models the specificity was unaffected. The high sensitivity and specificity of flow cytometry in the detection of myelodysplastic syndromes illustrates the important value of flow cytometry in a standardized diagnostic approach. The trial is registered at www.trialregister.nl as NTR1825; EudraCT n.: 2008-002195-10 PMID:27658438

  3. An improved source flow characteristic technique for the analysis of scramjet exhaust flow fields

    NASA Technical Reports Server (NTRS)

    Delguidice, P. D.; Dash, S.

    1975-01-01

    The process is discussed of designing a nozzle for a hypersonic airbreathing vehicle which involves a complex study of the inter-relationship among many parameters: internal-external expansion, vehicle lift, drag, pitching moments, and structural and weight limitations. The source flow characteristic approach to the design process was extended and improved, and streamline interpolation procedure was incorporated. All characteristic and boundary calculations were made compatible with frozen, equilibrium and ideal gas thermodynamic options, while slip surface calculations (cowl interaction) were extended to underexpanded flow conditions. Since viscous forces can significantly influence vehicle forces, pitching moments and structural/weight considerations, a local integration via flat plate boundary layer skin friction and heat transfer coefficients was included. These effects are calculated using the Spalding and Chi method, and all force and moment calculations are performed via integration of the local forces acting on the specified vehicle wetted areas.

  4. Numerical analysis of mixing enhancement for micro-electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Tang, G. H.; He, Y. L.; Tao, W. Q.

    2010-05-01

    Micro-electroosmotic flow is usually slow with negligible inertial effects and diffusion-based mixing can be problematic. To gain an improved understanding of electroosmotic mixing in microchannels, a numerical study has been carried out for channels patterned with wall blocks, and channels patterned with heterogeneous surfaces. The lattice Boltzmann method has been employed to obtain the external electric field, electric potential distribution in the electrolyte, the flow field, and the species concentration distribution within the same framework. The simulation results show that wall blocks and heterogeneous surfaces can significantly disturb the streamlines by fluid folding and stretching leading to apparently substantial improvements in mixing. However, the results show that the introduction of such features can substantially reduce the mass flow rate and thus effectively prolongs the available mixing time when the flow passes through the channel. This is a non-negligible factor on the effectiveness of the observed improvements in mixing efficiency. Compared with the heterogeneous surface distribution, the wall block cases can achieve more effective enhancement in the same mixing time. In addition, the field synergy theory is extended to analyze the mixing enhancement in electroosmotic flow. The distribution of the local synergy angle in the channel aids to evaluate the effectiveness of enhancement method.

  5. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  6. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    PubMed

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  7. Comparative flow cytometric analysis of immunofunctionalized nanowire and nanoparticle signatures.

    PubMed

    Prina-Mello, Adriele; Whelan, Aine M; Atzberger, Ann; McCarthy, Joseph E; Byrne, Fiona; Davies, Gemma-Louise; Coey, J M D; Volkov, Yuri; Gun'ko, Yurii K

    2010-01-01

    Flow cytometry is one of the gold-standard techniques used in clinical medicine for quantitative immunoassaying. The continuous development of its probes, commonly fluorescent nanoparticles, is important. Lately, the introduction of quantitative multiplexed immunoassay has challenged the use of nanoparticles as probes. Functionalized fluorescent silica-based magnetic nanowires are investigated under flow cytometry as a novel probe category. The preparation and full characterization of these multimodal nanowires is reported and compared to those of silica-based magnetic nanoparticles by flow cytometry. Full characterization includes transmission electron microscopy and fluorescence microscopy imaging, flow cytometric assaying, superconducting quantum interference device (SQUID) magnetization, and Mössbauer spectroscopy measurements. This work shows that loaded silica nanowires have intrinsic geometrical advantages when compared to similar spherical particles due to their unique "flow cytometry fingerprint" when utilized as magnetic carriers for immunodetection applications. These advantages account for a 17% yield in detecting the functional binding between THP-1 and ICAM-1, by utilizing a much lower concentration than that required for the nanoparticles.

  8. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices

    NASA Astrophysics Data System (ADS)

    Huhn, F.; van Rees, W. M.; Gazzola, M.; Rossinelli, D.; Haller, G.; Koumoutsakos, P.

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  9. Computational Analysis of Flow Field Inside Coral Colony

    NASA Astrophysics Data System (ADS)

    Hossain, Md Monir; Staples, Anne

    2015-11-01

    Development of the flow field inside coral colonies is a key issue for understanding coral natural uptake, photosynthesis and wave dissipation capabilities. But most of the computations and experiments conducted earlier, measured the flow outside the coral reef canopies. Experimental studies are also constrained due to the limitation of measurement techniques and limited environmental conditions. Numerical simulations can be an answer to overcome these shortcomings. In this work, a detailed, three-dimensional simulation of flow around a single coral colony was developed to examine the interaction between coral geometry and hydrodynamics. To simplify grid generation and minimize computational cost, Immersed Boundary method (IBM) was implemented. The computation of IBM involves identification of the interface between the solid body and the fluid, establishment of the grid/interface relation and identification of the forcing points on the grid and distribution of the forcing function on the corresponding points. LES was chosen as the framework to capture the turbulent flow field without requiring extensive modeling. The results presented will give insight into internal coral colony flow fields and the interaction between coral and surrounding ocean hydrodynamics.

  10. Studies of the analyte-carrier interface in flow injection analysis

    SciTech Connect

    Brown, S.D.

    1992-01-01

    Chemical analysis in flowing solution is popular for automation of classical methods. However, most of the classical methods are not specific enough for direct multicomponent analysis of simple mixtures. This research project has the goals of study of rapid multicomponent analysis of transient species in flowing media, and investigations of chemical reactions at interfaces and of effects of competition on distribution of products from interfacial reaction. This report summarizes work done over the past 4.5 years; support has been terminated.

  11. Analysis of two-equation turbulence models for recirculating flows

    NASA Technical Reports Server (NTRS)

    Thangam, S.

    1991-01-01

    The two-equation kappa-epsilon model is used to analyze turbulent separated flow past a backward-facing step. It is shown that if the model constraints are modified to be consistent with the accepted energy decay rate for isotropic turbulence, the dominant features of the flow field, namely the size of the separation bubble and the streamwise component of the mean velocity, can be accurately predicted. In addition, except in the vicinity of the step, very good predictions for the turbulent shear stress, the wall pressure, and the wall shear stress are obtained. The model is also shown to provide good predictions for the turbulence intensity in the region downstream of the reattachment point. Estimated long time growth rates for the turbulent kinetic energy and dissipation rate of homogeneous shear flow are utilized to develop an optimal set of constants for the two equation kappa-epsilon model. The physical implications of the model performance are also discussed.

  12. Analysis of a solar collector field water flow network

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  13. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  14. Design and Uncertainty Analysis for a PVTt Gas Flow Standard

    PubMed Central

    Wright, John D.; Johnson, Aaron N.; Moldover, Michael R.

    2003-01-01

    A new pressure, volume, temperature, and, time (PVTt) primary gas flow standard at the National Institute of Standards and Technology has an expanded uncertainty (k = 2) of between 0.02 % and 0.05 %. The standard spans the flow range of 1 L/min to 2000 L/min using two collection tanks and two diverter valve systems. The standard measures flow by collecting gas in a tank of known volume during a measured time interval. We describe the significant and novel features of the standard and analyze its uncertainty. The gas collection tanks have a small diameter and are immersed in a uniform, stable, thermostatted water bath. The collected gas achieves thermal equilibrium rapidly and the uncertainty of the average gas temperature is only 7 mK (22 × 10−6 T). A novel operating method leads to essentially zero mass change in and very low uncertainty contributions from the inventory volume. Gravimetric and volume expansion techniques were used to determine the tank and the inventory volumes. Gravimetric determinations of collection tank volume made with nitrogen and argon agree with a standard deviation of 16 × 10−6 VT. The largest source of uncertainty in the flow measurement is drift of the pressure sensor over time, which contributes relative standard uncertainty of 60 × 10−6 to the determinations of the volumes of the collection tanks and to the flow measurements. Throughout the range 3 L/min to 110 L/min, flows were measured independently using the 34 L and the 677 L collection systems, and the two systems agreed within a relative difference of 150 × 10−6. Double diversions were used to evaluate the 677 L system over a range of 300 L/min to 1600 L/min, and the relative differences between single and double diversions were less than 75 × 10−6. PMID:27413592

  15. Parametric distribution approach for flow availability in small hydro potential analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel

    2016-10-01

    Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.

  16. Analysis of chaotic and noise processes in a fluctuating blood flow using the Allan variance technique.

    PubMed

    Basarab, M A; Basarab, D A; Konnova, N S; Matsievskiy, D D; Matveev, V A

    2016-01-01

    The aim of this work was to develop a novel technique for digital processing of Doppler ultrasound blood flow sensor data from noisy blood flow velocity waveforms. To evaluate the fluctuating blood flow parameters, various nonlinear dynamics methods and algorithms are often being used. Here, for identification of chaotic and noise components in a fluctuating coronary blood flow, for the first time the Allan variance technique was used. Analysis of different types of noises (White, Brownian, Flicker) was carried out and their strong correlation with fractality of time series (the Hurst exponent) was revealed. Based on a specialized software realizing the developed technique, numerical experiments with real clinical data were carried out. Recommendations for identification of noisy patterns of coronary blood flow in normal and pathological states were developed. The methodology gives us the possibility for the more detailed quantitative and qualitative analysis of a noisy fluctuating blood flow data.

  17. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    PubMed Central

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  18. Visualization of moving fluid: quantitative analysis of blood flow velocity using MR imaging.

    PubMed

    Shimizu, K; Matsuda, T; Sakurai, T; Fujita, A; Ohara, H; Okamura, S; Hashimoto, S; Mano, H; Kawai, C; Kiri, M

    1986-04-01

    A new method for the measurement of blood flow using magnetic resonance imaging has been developed. The flow velocities are calculated from the distances that the fluid has moved. The distances are directly visualized by a new pulse sequence. In a phantom study, the measured flow rates showed very good correlation with actual flow rates of up to 20 l/min (3 m/sec). In a volunteer study, pulsatile flow velocities of a large artery were measured with electrocardiographic gating. The flow pattern of a cardiac cycle at the abdominal aorta is similar to that revealed by other methods of measurement, such as Doppler ultrasound. This method allows reasonably accurate quantitative analysis of blood flow in the large arteries.

  19. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-06-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.

  20. Analysis of anelastic flow and numerical treatment via finite elements

    SciTech Connect

    Martinez, M.J.

    1994-05-01

    In this report, we reconsider the various approximations made to the full equations of motion and energy transport for treating low-speed flows with significant temperature induced property variations. This entails assessment of the development of so-called anelastic for low-Mach number flows outside the range of validity of the Boussinesq equations. An integral part of this assessment is the development of a finite element-based numerical scheme for obtaining approximate numerical solutions to this class of problems. Several formulations were attempted and are compared.