Science.gov

Sample records for flow cytometry platforms

  1. Flow cytometry

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.

    1984-09-01

    Flow cytometry instrumentation developed from early efforts to count cells and particles in liquid suspension as they passed through a sensing device. Since the mid-1960's sophisticated instruments have been designed for analyzing cells based on various cytological, biochemical, and functional properties. These instruments have revolutionized automated cell analysis methods in that measurements are made at high speed, multiparameter data is correlated on each cell, statistical precision is high, and cells are separated in high purity from heterogeneous mixtures for identification and functional analysis. Advanced instruments capable of measuring cell volume, surface area, multicolor fluorescence, fluorescence polarization, light scatter within various angular regions, and axial light loss (extinction) at different wavelengths are being used in biomedical research for analyzing and sorting normal and abnormal cell populations. This article reviews the development of flow cytometers, the conceptual basis of flow measurements, and discusses some of the numerous applications of the technology in biology and medicine.

  2. In vitro flow cytometry-based screening platform for cellulase engineering

    PubMed Central

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  3. In vitro flow cytometry-based screening platform for cellulase engineering.

    PubMed

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 10(7) events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  4. A fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes.

    PubMed

    Pitzler, Christian; Wirtz, Georgette; Vojcic, Ljubica; Hiltl, Stephanie; Böker, Alexander; Martinez, Ronny; Schwaneberg, Ulrich

    2014-12-18

    Screening throughput is a key in directed evolution experiments and enzyme discovery. Here, we describe a high-throughput screening platform based on a coupled reaction of glucose oxidase and a hydrolase (Yersinia mollaretii phytase [YmPh]). The coupled reaction produces hydroxyl radicals through Fenton's reaction, acting as initiator of poly(ethyleneglycol)-acrylate-based polymerization incorporating a fluorescent monomer. As a consequence, a fluorescent hydrogel is formed around Escherichia coli cells expressing active YmPh. We achieve five times enrichment of active cell population through flow cytometry analysis and sorting of mixed populations. Finally, we validate the performance of the fluorescent polymer shell (fur-shell) technology by directed phytase evolution that yielded improved variants starting from a library containing 10(7) phytase variants. Thus, fur-shell technology represents a rapid and nonlaborious way of identifying the most active variants from vast populations, as well as a platform for generation of polymer-hybrid cells for biobased interactive materials. PMID:25525992

  5. Photoacoustic flow cytometry

    PubMed Central

    Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2016-01-01

    Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8 nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and

  6. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station.

    PubMed

    Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y

    2014-04-01

    A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance.

  7. Flow cytometry of sperm

    SciTech Connect

    Gledhill, B.L.

    1987-09-21

    This brief paper summarizes automated flow cytometric determination of sperm morphology and flow cytometry/sorting of sperm with application to sex preselection. In the latter context, mention is made of results of karyotypic determination of sex chromosome ratios in albumin-processed human sperm. 23 refs., 1 fig., 1 tab.

  8. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry

    PubMed Central

    Al-Zahrani, Ali A.; Pardhan, Siddika; Brett, Sabine I.; Guo, Qiu Q.; Yang, Jun; Wolf, Philipp; Power, Nicholas E.; Durfee, Paul N.; MacMillan, Connor D.; Townson, Jason L.; Brinker, Jeffrey C.; Fleshner, Neil E.; Izawa, Jonathan I.; Chambers, Ann F.; Chin, Joseph L.; Leong, Hon S.

    2016-01-01

    distinguishing metastatic PCa and localized PCa patients. Nanoscale flow cytometry of PMPs presents an emerging biomarker platform for various stages of prostate cancer. PMID:26814433

  9. Small lasers in flow cytometry.

    PubMed

    Telford, William G

    2004-01-01

    Laser technology has made tremendous advances in recent years, particularly in the area of diode and diode-pumped solid state sources. Flow cytometry has been a direct beneficiary of these advances, as these small, low-maintenance, inexpensive lasers with reasonable power outputs are integrated into flow cytometers. In this chapter we review the contribution and potential of solid-state lasers to flow cytometry, and show several examples of these novel sources integrated into production flow cytometers. Technical details and critical parameters for successful application of these lasers for biomedical analysis are reviewed. PMID:14976380

  10. Two-Photon Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  11. Analyzing the Tumor Microenvironment by Flow Cytometry.

    PubMed

    Young, Yoon Kow; Bolt, Alicia M; Ahn, Ryuhjin; Mann, Koren K

    2016-01-01

    Flow cytometry is an essential tool for studying the tumor microenvironment. It allows us to quickly quantify and identify multiple cell types in a heterogeneous sample. A brief overview of flow cytometry instrumentation and the appropriate considerations and steps in building a good flow cytometry staining panel are discussed. In addition, a lymphoid tissue and solid tumor leukocyte infiltrate flow cytometry staining protocol and an example of flow cytometry data analysis are presented. PMID:27581017

  12. Flow cytometry apparatus

    DOEpatents

    Pinkel, Daniel

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  13. Flow cytometry apparatus

    DOEpatents

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  14. Field evaluation in Chad of community usage of CD4 T lymphocyte counting by alternative single-platform flow cytometry

    PubMed Central

    2013-01-01

    Background Field and community evaluation of the routine usage of CD4 T counting platforms is essential in resource-poor countries for efficient and cost-effective monitoring of HIV-infected adults and children attending health care centers. Methods We herein addressed the principal issues raised by the implementation of the single-platform, volumetric Auto40 flow cytometer (Apogee Flow Systems Ltd, Hemel Hempstead, UK) in 8 community HIV monitoring laboratories of different levels throughout Chad. This is a country with particularly difficult conditions, both in terms of climate and vast geographical territory, making the decentralization of the therapeutic management of HIV-infected patients challenging. Results The routine usage of the Auto40 flow cytometers for a period of 5 years (2008–2013) confirms the reliability and robustness of the analyzer for community-based CD4 T cell enumeration in terms of both absolute numbers and percentages to enable accurate monitoring of HIV-infected adults and children. However, our observations suggest that the Auto40 mini flow cytometer is not suitable for all laboratories as it is oversized and ultimately very expensive. Conclusion The Chad experience with the Auto40 flow cytometer suggests that its usage in resource-limited settings should be mainly reserved to reference (level 1) or district (level 2) laboratories, rather than to laboratories of health care centres (level 3). PMID:24083615

  15. Teaching phagocytosis using flow cytometry.

    PubMed

    Boothby, John T; Kibler, Ruthann; Rech, Sabine; Hicks, Robert

    2004-05-01

    Investigative microbiology on protists in a basic teaching laboratory environment is limited by student skill level, ease of microbial culture and manipulation, instrumentation, and time. The flow cytometer is gaining use as a mainstream instrument in research and clinical laboratories, but has had minimal application in teaching laboratories. Although the cost of a flow cytometer is currently prohibitive for many microbiology teaching environments and the number of trained instructors and teaching materials is limited, in many ways the flow cytometer is an ideal instrument for teaching basic microbiology. We report here on a laboratory module to study phagocytosis in Tetrahymena sp. using flow cytometry in a basic microbiology teaching laboratory. Students and instructors found the flow cytometry data analysis program, Paint-AGate(PRO-TM), to be very intuitive and easy to learn within a short period of time. Assessment of student learning about Tetrahymena sp., phagocytosis, flow cytometry, and investigative microbiology using an inquiry-based format demonstrated an overall positive response from students.

  16. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells

    PubMed Central

    Kim, Jin-Woo; Zharov, Vladimir P.

    2010-01-01

    In vivo multicolor photoacoustic (PA) flow cytometry for ultra-sensitive molecular detection of the CD44+ circulating tumor cells (CTCs) is demonstrated on a mouse model of human breast cancer. Targeting of CTCs with stem-like phenotype, which are naturally shed from parent tumors, was performed with functionalized gold and magnetic nanoparticles. Results in vivo were verified in vitro with a multifunctional microscope, which integrates PA, photothermal (PT), fluorescent and transmission modules. Magnet-induced clustering of magnetic nanoparticles in individual cells significantly amplified PT and PA signals. The novel noninvasive platform, which integrates multispectral PA detection and PT therapy with a potential for multiplex targeting of many cancer biomarkers using multicolor nanoparticles, may prospectively solve grand challenges in cancer research for diagnosis and purging of undetectable yet tumor-initiating cells in circulation before they form metastasis. PMID:19957272

  17. In Vivo Flow Cytometry: A Horizon of Opportunities

    PubMed Central

    Tuchin, Valery V.; Tárnok, Attila; Zharov, Vladimir P.

    2012-01-01

    Flow cytometry has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo flow cytometry which provides detection and imaging of circulating normal and abnormal cells directlyin blood or lymph flow. The goal of this mini-review is to provide a brief history, features and challenges of this new generation of flow cytometry methods and instruments. Spectrum of possibilities of in vivo flow cytometry in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform. PMID:21915991

  18. Quantitative Functional Morphology by Imaging Flow Cytometry.

    PubMed

    Vorobjev, Ivan A; Barteneva, Natasha S

    2016-01-01

    This chapter describes advantages and limitations of imaging flow cytometry (IFC) based on Imagestream instrumentation using a hybrid approach of morphometric measurement and quantitation of multiparametric fluorescent intensities' distribution in cells and particles. Brief comparison is given of IFC with conventional flow cytometry and fluorescent microscopy. Some future directions of the IFC technology are described and discussed. PMID:27460234

  19. Quantitative Functional Morphology by Imaging Flow Cytometry.

    PubMed

    Vorobjev, Ivan A; Barteneva, Natasha S

    2016-01-01

    This chapter describes advantages and limitations of imaging flow cytometry (IFC) based on Imagestream instrumentation using a hybrid approach of morphometric measurement and quantitation of multiparametric fluorescent intensities' distribution in cells and particles. Brief comparison is given of IFC with conventional flow cytometry and fluorescent microscopy. Some future directions of the IFC technology are described and discussed.

  20. DNA polymorphism identity determination using flow cytometry

    DOEpatents

    Nolan, John P.; White, P. Scott; Cai, Hong

    2001-01-01

    DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.

  1. Flow Cytometry: Impact on Early Drug Discovery.

    PubMed

    Edwards, Bruce S; Sklar, Larry A

    2015-07-01

    Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, "sip-and-spit" sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery.

  2. Flow Cytometry: Impact On Early Drug Discovery

    PubMed Central

    Edwards, Bruce S.; Sklar, Larry A.

    2015-01-01

    Summary Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens-of-thousands of cells per second and over five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, “sip-and-spit” sampling technology has restricted it to low sample throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens-of-thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multi-parameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry and parallel sample processing promise dramatically expanded single cell profiling capabilities to bolster systems level approaches to drug discovery. PMID:25805180

  3. Multiplex immunoassay for persistent organic pollutants in tilapia: Comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays required a flow cytometer with sophisticated fluidics and optics. The new imaging superparamagnetic SEMs-based platform transports SEMs with considerably ...

  4. Spaceflight Flow Cytometry: Design Challenges and Applications

    NASA Technical Reports Server (NTRS)

    Pappas, Dimitri; Kao, Shih-Hsin; Jeevarajan, Antony S.

    2004-01-01

    Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health and a wide array of biochemistry and immunology assays. While flow cytometry has been widely used for cellular analysis in both clinical and research settings, the requirements for proper operation in spaceflight impose constraints on any instrument designs. The challenges of designing a spaceflight-ready flow cytometer are discussed, as well as some preliminary results using a prototype system.

  5. Uses of flow cytometry in virology.

    PubMed Central

    McSharry, J J

    1994-01-01

    This article reviews some of the published applications of flow cytometry for in vitro and in vivo detection and enumeration of virus-infected cells. Sample preparation, fixation, and permeabilization techniques for a number of virus-cell systems are evaluated. The use of flow cytometry for multiparameter analysis of virus-cell interactions for simian virus 40, herpes simplex viruses, human cytomegalovirus, and human immunodeficiency virus and its use for determining the effect of antiviral compounds on these virus-infected cells are reviewed. This is followed by a brief description of the use of flow cytometry for the analysis of several virus-infected cell systems, including blue tongue virus, hepatitis C virus, avian reticuloendotheliosis virus, African swine fever virus, woodchuck hepatitis virus, bovine viral diarrhea virus, feline leukemia virus, Epstein-Barr virus, Autographa californica nuclear polyhedrosis virus, and Friend murine leukemia virus. Finally, the use of flow cytometry for the rapid diagnosis of human cytomegalovirus and human immunodeficiency virus in peripheral blood cells of acutely infected patients and the use of this technology to monitor patients on antiviral therapy are reviewed. Future prospects for the rapid diagnosis of in vivo viral and bacterial infections by flow cytometry are discussed. Images PMID:7530594

  6. Microfluidic devices and methods for integrated flow cytometry

    DOEpatents

    Srivastava, Nimisha; Singh, Anup K.

    2011-08-16

    Microfluidic devices and methods for flow cytometry are described. In described examples, various sample handling and preparation steps may be carried out within a same microfluidic device as flow cytometry steps. A combination of imaging and flow cytometry is described. In some examples, spiral microchannels serve as incubation chambers. Examples of automated sample handling and flow cytometry are described.

  7. Near infrared lasers in flow cytometry.

    PubMed

    Telford, William G

    2015-07-01

    Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection.

  8. Reticulocyte counting using flow cytometry.

    PubMed

    Nobes, P R; Carter, A B

    1990-08-01

    A flow cytometric method for the quantitation of reticulocytes was refined for routine laboratory use. Blood (2 microliters) is added to 2 ml of 0.4 microM thiazole orange in phosphate buffered saline, incubated at room temperature for 90 minutes, and analysed on a Coulter EPICS Profile flow cytometer, with gating for red cells on the basis of forward and right angled light scatter. Blood (2 microliters) is also incubated with phosphate buffered saline alone as an unstained control. The adult reference range (mean +/- 2 SD), established from 30 laboratory personnel, is 19.4-59.2 x 10(9)/l (0.2-1.6%). Comparison of this technique was made on 39 selected patient samples with visual counting of cells stained with brilliant cresyl blue. The correlation between the two methods was 0.99 with slope 0.96 and intercept 0.02. The precision of the automated technique in three subjects with reticulocyte counts of 0.12%, 1.84%, and 14.3% was 33.3%, 7.3%, and 1.4%, respectively (coefficient of variations). In three patients studied serially after intensive chemotherapy, in whom the reticulocyte count quantitated by routine visual methods approached zero (0-0.1%) for eight to 18 days, the automated counts varied between 0 and 0.5%. Flow cytometric reticulocyte counting is thus a simple and highly reliable methodology for the quantitation of normal and raised reticulocyte counts but cannot be reliably used to quantitate a subnormal level.

  9. Rapid titration of viruses by flow cytometry.

    PubMed

    Drayman, Nir; Oppenheim, Ariella

    2011-06-01

    Traditionally, the most common methods used to titrate virus stocks are the plaque assay and the hemagglutination assay. The protocol presented here is based on the detection of viral-expressed proteins in infected cells by flow cytometry. It is simpler and more rapid than the traditional plaque-forming assay and it enables high-throughput analyses.

  10. Measurement of intracellular ions by flow cytometry.

    PubMed

    Posey, Avery D; Kawalekar, Omkar U; June, Carl H

    2015-01-01

    Using flow cytometry, single-cell measurements of calcium can be made on isolated populations identified by one or more phenotypic characteristics. Most earlier techniques for measuring cellular activation parameters determined the mean value for a population of cells, which did not permit optimal resolution of the responses. The flow cytometer is particularly useful for this purpose because it can measure ion concentrations in large numbers of single cells and thereby allows ion concentration to be correlated with other parameters such as immunophenotype and cell cycle stage. A limitation of flow cytometry, however, is that it does not permit resolution of certain complex kinetic responses such as cellular oscillatory responses. This unit describes the preparation of cells, including labeling with antibodies and with calcium probes, and discusses the principles of data analysis and interpretation. PMID:25827486

  11. A clinical flow cytometry data analysis assistant

    SciTech Connect

    Salzman, G.C. ); Stewart, C.C. ); Duque, R.E. ); Braylan, R.C. . Coll. of Medicine)

    1990-01-01

    A rule-based expert system is being developed to assist clinicians in the analysis of multivariate flow cytometry data for patients with leukemias or lymphomas. The cells are stained with fluorescently labeled monoclonal antibodies and the cell fluorescence is measured with a flow cytometer. Cluster analysis is used to isolate subpopulations in the data on which the clinical decisions are made. Symbolic facts for the expert system are instantiated using these numerical data and the knowledge of the clinicians and experts in flow cytometry. The first prototype used a decision tree and rigid rules. Is successfully classified only nine of eleven leukemia cases. A second prototype incorporating certainty factors into the rules is now being developed that should remove the need for a rigid decision tree. 9 refs.

  12. Cytobank: providing an analytics platform for community cytometry data analysis and collaboration.

    PubMed

    Chen, Tiffany J; Kotecha, Nikesh

    2014-01-01

    Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.

  13. Applications of Imaging Flow Cytometry for Microalgae.

    PubMed

    Hildebrand, Mark; Davis, Aubrey; Abbriano, Raffaela; Pugsley, Haley R; Traller, Jesse C; Smith, Sarah R; Shrestha, Roshan P; Cook, Orna; Sánchez-Alvarez, Eva L; Manandhar-Shrestha, Kalpana; Alderete, Benjamin

    2016-01-01

    The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis(®) ImageStream(®)X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression. PMID:27460237

  14. Resources for flow and image cytometry

    SciTech Connect

    Cassidy, M.

    1990-01-01

    This paper describes resources available to the flow and image cytometry community. I have been asked to limit the discussion to resources available in the United States, so reference to resources exclusively available in Japan, Europe, or Australia are not included. It is not the intention of this paper to include each and every resource available, rather, to describe the types available and give some examples. Included in this manuscript are listings of some of the examples of resources which readers may find useful. Addresses of commercial companies are not included in the interest of space. Most of the examples listed advertise on a regular basis in journals publishing in cytometry fields. The resources to be described are divided into five categories: instrument resources, computer and software resources, standards, physical or user'' resources, and instructional resources. Each of these resources will be discussed separately. 4 tabs.

  15. Multiparameter Flow Cytometry For Clinical Applications

    NASA Astrophysics Data System (ADS)

    Stewart, Carleton C.

    1989-06-01

    Flow Cytometry facilities are well established and provide immunophenotyping and DNA content measurement services. The application of immunophenotyping has been primarily in monitoring therapy and in providing further information to aid in the definitive diagnosis of immunological and neoplastic disease such as: immunodeficiency disease, auto immune disease, organ transplantation, and leukemia and lymphoma. DNA content measurements have been particularly important in determining the fraction of cycling cells and presence of aneuploid cells in neoplasia. This information has been useful in the management of patients with solid tumors.

  16. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres.

    PubMed

    Meimaridou, Anastasia; Haasnoot, Willem; Shelver, Weilin L; Franek, Milan; Nielen, Michel W F

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with considerably less fluid volume into a measuring chamber. Once there SEMs are held in a monolayer by a magnet. Light-emitting diodes (LEDs) are focused on the chamber to illuminate the SEMs - instead of lasers and they are imaged by a charge-coupled device (CCD) detector, offering a more compact sized, transportable and affordable system. The feasibility of utilising this system to develop a 3-plex SEMs-based imaging immunoassay (IMIA) for the screening of persistent organic pollutants (POPs) was studied. Moreover the performance characteristics of 3-plex IMIA were critically compared with the conventional 3-plex flow cytometric immunoassay (FCIA). Both SEM technologies have potential for the multiplex analysis of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in buffer and fish extract with insignificant differences in assay sensitivities. Furthermore, we developed a faster and simpler, modified QuEChERS-like generic POPs extraction from tilapia fillet using sodium hydrogen carbonate as one of the salt additives and dispersive solid-phase extraction (dSPE) as a clean-up. Finally, a preliminary in-house validation using 40 different blank and spiked tilapia fillet samples was performed in both systems and the results obtained were critically compared. The lower-cost imaging SEMs-based system performed similarly to the original flow cytometer and, in combination with the new quicker QuEChERS-like extraction, it has high potential for future rapid screening of POPs in several other sample matrices such as other fish species, vegetable refined oils and environmental samples.

  17. Honey Bee Hemocyte Profiling by Flow Cytometry

    PubMed Central

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  18. Optical clearing in photoacoustic flow cytometry

    PubMed Central

    Menyaev, Yulian A.; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Juratli, Mazen A.; Galanzha, Ekaterina I.; Tuchin, Valery V.; Zharov, Vladimir P.

    2013-01-01

    Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins. PMID:24409398

  19. Applications of Flow Cytometry to Clinical Microbiology†

    PubMed Central

    Álvarez-Barrientos, Alberto; Arroyo, Javier; Cantón, Rafael; Nombela, César; Sánchez-Pérez, Miguel

    2000-01-01

    Classical microbiology techniques are relatively slow in comparison to other analytical techniques, in many cases due to the need to culture the microorganisms. Furthermore, classical approaches are difficult with unculturable microorganisms. More recently, the emergence of molecular biology techniques, particularly those on antibodies and nucleic acid probes combined with amplification techniques, has provided speediness and specificity to microbiological diagnosis. Flow cytometry (FCM) allows single- or multiple-microbe detection in clinical samples in an easy, reliable, and fast way. Microbes can be identified on the basis of their peculiar cytometric parameters or by means of certain fluorochromes that can be used either independently or bound to specific antibodies or oligonucleotides. FCM has permitted the development of quantitative procedures to assess antimicrobial susceptibility and drug cytotoxicity in a rapid, accurate, and highly reproducible way. Furthermore, this technique allows the monitoring of in vitro antimicrobial activity and of antimicrobial treatments ex vivo. The most outstanding contribution of FCM is the possibility of detecting the presence of heterogeneous populations with different responses to antimicrobial treatments. Despite these advantages, the application of FCM in clinical microbiology is not yet widespread, probably due to the lack of access to flow cytometers or the lack of knowledge about the potential of this technique. One of the goals of this review is to attempt to mitigate this latter circumstance. We are convinced that in the near future, the availability of commercial kits should increase the use of this technique in the clinical microbiology laboratory. PMID:10755996

  20. Advances in flow cytometry for sperm sexing.

    PubMed

    Sharpe, J C; Evans, K M

    2009-01-01

    This review presents the key technological developments that have been implemented in the 20 years since the first reports of successful measurement, sorting, insemination and live births using flow cytometry as a proven physical sperm separation technique. Since the first reports of sexed sperm, flow technology efforts have been largely focused on improving sample throughput by increasing the rate at which sperm are introduced to the sorter, and on improving measurement resolution, which has increased the proportion of cells that can be reliably measured and sorted. Today, routine high-purity sorting of X- or Y-chromosome-bearing sperm can be achieved at rates up to 8000 s(-1) for an input rate of 40,000 X- and Y-sperms(-1). With current protocols, straws of sex-sorted sperm intended for use in artificial insemination contain approximately 2 x 10(6)sperm. The sort rate of 8000 sperms(-1) mentioned above corresponds to a production capacity of approximately 14 straws of each sex per hour per instrument. PMID:18950849

  1. An active, collaborative approach to learning skills in flow cytometry.

    PubMed

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J

    2016-06-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula.

  2. [Flow cytometry: applications in transfusion medicine].

    PubMed

    Boval, B

    2000-06-01

    In transfusion medicine, flow cytometry (FCM) is a methodology combining laser radiation, optics and a computerized treatment of numerous results. We can measure size, cellularity and fluorescence intensity of cells or particles in suspension after the binding of appropriate fluorescent antibodies or fluorescent dyes. The main utilisation of FCM in transfusion medicine is for quality control of the process of leukocyte reduction in red cell concentrates or in platelet units, using commercial kits. In addition, it is used for the enumeration of CD 34 positive cells before bone marrow transplantation and for control of platelet function in platelet units. For clinical investigations, FCM may be used for red cell phenotyping, essentially to detect minor populations (chimerism), for the estimation of red cell survival, or for the detection of fetal erythrocytes. In the field of platelet immunology, FCM is an essential tool for detecting platelet antibodies (auto or allo), for platelet phenotyping or for cross-matching. In the future perhaps, FCM will permit us to detect bacterial contamination or prion protein in transfused blood cells. PMID:10919227

  3. Flow-cytometry techniques in radiation biology

    SciTech Connect

    McCarthy, K.F.; Hale, M.L.

    1988-01-01

    Considerable evidence exists that all blood cells are derived from HSC. These cells are of interest to radiobiologists because they are highly sensitive to low doses of ionizing radiation. Hematopoietic stem cells (HSC) are present in the marrow at a concentration of approximately 2-3 HSC per 1000 nucleated marrow cells. In the past, only clonogenic assays requiring 8-13 days and ten irradiated recipient rodents were available for assaying HSC. Because of the importance of HSC in the post-irradiation syndrome, the authors developed a new rapid method based on flow cytometry not only to assay but also to purify and characterize HSC. This new method makes extensive use of non-clonal antibodies conjugated to fluorescent phycobiliproteins through the sulfhydryls of the hinge region of the IgG molecule. An optical bench arrangement with a dye laser and an argon laser was used for dual excitation of the phycobiliprotein-monoclonal antibody conjugates and various cellular and DNA probes. Using 4', 6-diamidino 2-phenylindole dihydrochloride (DAP) exclusion to identify viable cells, it was possible to follow regeneration of post-irradiated rat marrow HSC.

  4. New Horizons in Platelets Flow Cytometry

    PubMed Central

    Saboor, Muhammad; Moinuddin, Moinuddin; Ilyas, Samina

    2013-01-01

    Platelet flow cytometry is an emerging tool in diagnostic and therapeutic hematology. It is eminently suited to study the expression of platelet surface receptors both qualitatively as well as quantitatively. It can serve as a useful marker for the documentation of in vivo platelet activation, and thus, fore-warn the risk of thromboembolism in patients with diabetes mellitus, coronary syndromes, peripheral vascular diseases, and pre-eclampsia. This technique can also be extended to study and compare the effect of various antiplatelet drugs on the level of activation of platelets and to establish any dose-effect relationship of these drugs. Topographical localization of platelet granules and study of platelet-platelet and platelet-leukocyte interaction is also possible by this procedure. All these parameters serve as pointers towards the presence of activated platelets in the circulation with its thromboembolic consequences. This is a simple reliable and cost effective technique which has a wide application in the diagnosis of various inherited and acquired platelet disorders. Study of platelet cluster of differentiation (CD) markers in various inherited disorders i.e. Bernard Soulier’s disease, von Willebrand disease, Glanzman’s disease, and Grey platelet syndrome may help categories the molecular lesions in these oft under-studied disorders. PMID:23983579

  5. Flow cytometry: A powerful technology for measuring biomarkers

    SciTech Connect

    Jett, J.H.

    1994-09-01

    A broad definition of a biomarker is that it is a measurable characteristic of a biological system that changes upon exposure to a physical or chemical insult. While the definition can be further refined, it is sufficient for the purposes of demonstrating the advantages of flow cytometry for making quantitative measurements of biomarkers. Flow cytometry and cell sorting technologies have emerged during the past 25 years to take their place alongside other essential tools used in biology such as optical and electron microscopy. This paper describes the basics of flow cytometry technology, provides illustrative examples of applications of the technology in the field of biomarkers, describes recent developments in flow cytometry that have not yet been applied to biomarker measurements, and projects future developments of the technology. The examples of uses of flow cytometry for biomarker quantification cited in this paper are meant to be illustrative and not exhaustive in the sense of providing a review of the field.

  6. An active, collaborative approach to learning skills in flow cytometry.

    PubMed

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J

    2016-06-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. PMID:27068992

  7. Visible and Near Infrared Fluorescence Spectral Flow Cytometry

    PubMed Central

    Nolan, John P.; Condello, Danilo; Duggan, Erika; Naivar, Mark; Novo, David

    2013-01-01

    There is a long standing interest in measuring complete emission spectra from individual cells in flow cytometry. We have developed flow cytometry instruments and analysis approaches to enable this to be done routinely and robustly. Our spectral flow cytometers use a holographic grating to disperse light from single cells onto a CCD for high speed, wavelength-resolved detection. Customized software allows the single cell spectral data to be displayed and analyzed to produce new spectra-derived parameters. We show that familiar reference and calibration beads can be employed to quantitatively assess instrument performance. We use microspheres stained with six different quantum dots to compare a virtual bandpass filter approach with classic least squares (CLS) spectral unmixing, and then use antibody capture beads and CLS unmixing to demonstrate immunophenotyping of peripheral blood mononuclear cells using spectral flow cytometry. Finally, we characterize and evaluate several near infrared (NIR) emitting fluorophores for use in spectral flow cytometry. Spectral flow cytometry offers a number of attractive features for single cell analysis, including a simplified optical path, high spectral resolution, and streamlined approaches to quantitative multiparameter measurements. The availability of robust instrumentation, software, and analysis approaches will facilitate the development of spectral flow cytometry applications. PMID:23225549

  8. The application of flow cytometry to histocompatibility testing.

    PubMed

    Horsburgh, T; Martin, S; Robson, A J

    2000-03-01

    Flow cytometry is a powerful technique that enables the sensitive and quantitative detection of both cellular antigens and bound biological moieties. This article reviews how flow cytometry is increasingly being used as histocompatibility laboratories for the analysis of antibody specificity and HLA antigen expression. A basic description of flow cytometry principles and standardisation is given, together with an outline of clinical application in the areas of pre-transplant cross-matching, antibody screening, post-transplant antibody monitoring and HLA-B27 detection. It is concluded that flow cytometry is a useful multi-parametric analytical tool, yielding clinical benefit especially in the identification of patients at risk of early transplant rejection. PMID:10834606

  9. Computational analysis of high-throughput flow cytometry data

    PubMed Central

    Robinson, J Paul; Rajwa, Bartek; Patsekin, Valery; Davisson, Vincent Jo

    2015-01-01

    Introduction Flow cytometry has been around for over 40 years, but only recently has the opportunity arisen to move into the high-throughput domain. The technology is now available and is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, been a technology that has focused on its unique ability to study single cells and appropriate analytical tools are readily available to handle this traditional role of the technology. Areas covered Expansion of flow cytometry to a high-throughput (HT) and high-content technology requires both advances in hardware and analytical tools. The historical perspective of flow cytometry operation as well as how the field has changed and what the key changes have been discussed. The authors provide a background and compelling arguments for moving toward HT flow, where there are many innovative opportunities. With alternative approaches now available for flow cytometry, there will be a considerable number of new applications. These opportunities show strong capability for drug screening and functional studies with cells in suspension. Expert opinion There is no doubt that HT flow is a rich technology awaiting acceptance by the pharmaceutical community. It can provide a powerful phenotypic analytical toolset that has the capacity to change many current approaches to HT screening. The previous restrictions on the technology, based on its reduced capacity for sample throughput, are no longer a major issue. Overcoming this barrier has transformed a mature technology into one that can focus on systems biology questions not previously considered possible. PMID:22708834

  10. Measuring DNA content by flow cytometry in fission yeast.

    PubMed

    Sabatinos, Sarah A; Forsburg, Susan L

    2015-01-01

    Flow cytometry is an essential tool to monitor DNA content and determine cell cycle distribution. Its utility in fission yeast reflects the ease of sample preparation, the stochiometric binding of the most popular DNA dyes (propidium iodide and Sytox Green), and ability to monitor cell size. However, the study of DNA replication with multicolour flow analysis has lagged behind its use in mammalian cells. We present basic and advanced protocols for analysis of DNA replication in fission yeast by flow cytometry including whole cell, nuclear "ghosts," two-color imaging with BrdU, and estimates of DNA synthesis using EdU.

  11. An Active, Collaborative Approach to Learning Skills in Flow Cytometry

    ERIC Educational Resources Information Center

    Fuller, Kathryn; Linden, Matthew D.; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N.; Röhrig, Kimberley J.

    2016-01-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow…

  12. Flow cytometry measurements of human chromosome kinetochore labeling

    SciTech Connect

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-03-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results.

  13. A Semiconductor Microlaser for Intracavity Flow Cytometry

    SciTech Connect

    Akhil, O.; Copeland, G.C.; Dunne, J.L.; Gourley, P.L.; Hendricks, J.K.; McDonald, A.E.

    1999-01-20

    Semiconductor microlasers are attractive components for micro-analysis systems because of their ability to emit coherent intense light from a small aperture. By using a surface-emitting semiconductor geometry, we were able to incorporate fluid flow inside a laser microcavity for the first time. This confers significant advantages for high throughput screening of cells, particulates and fluid analytes in a sensitive microdevice. In this paper we discuss the intracavity microfluidics and present preliminary results with flowing blood and brain cells.

  14. Multispectral flow cytometry: The consequences of increased light collection.

    PubMed

    Feher, Kristen; von Volkmann, Konrad; Kirsch, Jenny; Radbruch, Andreas; Popien, Jan; Kaiser, Toralf

    2016-07-01

    In recent years, multispectral flow cytometry systems have come to attention. They differ from conventional flow cytometers in two key ways: a multispectral flow cytometer collects the full spectral information at the single cell level and the detector configuration is fixed and not explicitly tuned to a particular staining panel. This brings about clear hardware advantages, as a closed system should be highly stable, and ease-of-use should be improved if used in conjunction with custom unmixing software. An open question remains: what are the benefits of multispectral over conventional flow cytometry in terms of sensitivity and resolution? To probe this, we use Q (detection efficiency) and B (background) values and develop a novel "multivariate population overlap factor" to characterize the cytometer performance. To verify the usefulness of our factor, we perform representative experiments and compare our overlap factor to Q and B. Finally, we conclude that the increased light collection of multispectral flow cytometry does indeed lead to increased sensitivity, an improved detection limit, and a higher resolution. © 2016 International Society for Advancement of Cytometry. PMID:27295550

  15. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  16. Coefficient of variation in flow cytometry of phagocytosis.

    PubMed

    Fujikawa-Yamamoto, K; Odashima, S

    1987-01-01

    Fluorescence histograms of V79 Chinese hamster lung cells containing phagocytized fluorescent microspheres were measured by flow cytometry. In the fluorescence histograms, the coefficient of variation (CV) of the peak for cells ingesting microspheres was not constant. Rather, it decreased with the number of microspheres ingested by the cells.

  17. Temporal Heterogeneity in Apoptosis Determined by Imaging Flow Cytometry.

    PubMed

    Vorobjev, Ivan A; Barteneva, Natasha S

    2016-01-01

    Apoptotic process is highly heterogeneous, and a long-standing question is how many parameters define time and reversibility of the apoptotic response at a population and single-cell levels. Cell death analysis applications have greatly expanded since the introduction of flow cytometry. Classical approach for evaluation of apoptosis is en masse analysis of cells treated with different stimuli, but these methods cannot demonstrate heterogeneity in the population. Single-cell heterogeneity is now usually assessed by multicolor fluorescence microscopy; however obtaining reasonable statistics is time consuming and laborious. Therefore we combined flow cytometry, imaging flow cytometry, and fluorescent microscopy to characterize at a single-cell and population level sequence of apoptotic events induced by a variety of treatments (Vorobjev, Barteneva, J Histochem Cytochem 63:494-510, 2015). We show that simultaneous use of membrane potential dye TMRE, caspases 3/7 sensor, Annexin V and nuclear staining along with morphological parameters demonstrate heterogeneity of the whole process and is a valuable method for quantitative study of the apoptosis execution. Imaging flow cytometry allowed us to analyze correlation between TMRE, caspases 3/7, and Annexin V staining and morphological characteristics providing valuable information on the process of apoptotic execution. Importantly, comparisons of different data sets obtained by three methods allowed us to achieve temporal resolution of the whole process superior to that had been obtained by only one method. PMID:27460249

  18. Temporal Heterogeneity in Apoptosis Determined by Imaging Flow Cytometry.

    PubMed

    Vorobjev, Ivan A; Barteneva, Natasha S

    2016-01-01

    Apoptotic process is highly heterogeneous, and a long-standing question is how many parameters define time and reversibility of the apoptotic response at a population and single-cell levels. Cell death analysis applications have greatly expanded since the introduction of flow cytometry. Classical approach for evaluation of apoptosis is en masse analysis of cells treated with different stimuli, but these methods cannot demonstrate heterogeneity in the population. Single-cell heterogeneity is now usually assessed by multicolor fluorescence microscopy; however obtaining reasonable statistics is time consuming and laborious. Therefore we combined flow cytometry, imaging flow cytometry, and fluorescent microscopy to characterize at a single-cell and population level sequence of apoptotic events induced by a variety of treatments (Vorobjev, Barteneva, J Histochem Cytochem 63:494-510, 2015). We show that simultaneous use of membrane potential dye TMRE, caspases 3/7 sensor, Annexin V and nuclear staining along with morphological parameters demonstrate heterogeneity of the whole process and is a valuable method for quantitative study of the apoptosis execution. Imaging flow cytometry allowed us to analyze correlation between TMRE, caspases 3/7, and Annexin V staining and morphological characteristics providing valuable information on the process of apoptotic execution. Importantly, comparisons of different data sets obtained by three methods allowed us to achieve temporal resolution of the whole process superior to that had been obtained by only one method.

  19. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  20. Measurement of Soluble Biomarkers by Flow Cytometry

    PubMed Central

    Nagy, Béla; Debreceni, Ildikó Beke; Kappelmayer, János

    2013-01-01

    Microparticle based flow cytometric assays for determination of the level of soluble biomarkers are widely used in several research applications and in some diagnostic setups. The major advantages of these multiplex systems are that they can measure a large number of analytes (up to 500) at the same time reducing assay time, costs and sample volume. Most of these assays are based on antigen-antibody interactions and work as traditional immunoassays, but nucleic acid alterations – by using special hybridization probes –, enzyme- substrate or receptor-ligand interactions can be also studied with them. The applied beads are nowadays provided by the manufacturers, but cheaper biological microbeads can be prepared by any user. One part of the systems can be used on any research or clinical cytometers, but some companies provide dedicated analyzers for their multiplex bead arrays. Due to the high standardization of the bead production and the preparation of the assay components the analytical properties of these assays are quite reliable with a wide range of available applications. Cytokines, intracellular fusion proteins, activated/phosphorylated components of different signaling pathways, transcription factors and nuclear receptors can be identified and quantitated. The assays may serve the diagnostics of autoimmune disorders, different viral and bacterial infections, as well as genetic alterations such as single nucleotide polymorphisms, small deletions/insertions or even nucleotide triplet expansions can be also identified. The most important principles, technical details and applications of these systems are discussed in this short review.

  1. Microfluidic fluorescence in situ hybridization and flow cytometryFlowFISH)

    PubMed Central

    Liu, Peng; Meagher, Robert J.; Light, Yooli Kim; Yilmaz, Suzan; Chakraborty, Romy; Arkin, Adam P.; Hazen, Terry C.; Singh, Anup K.

    2011-01-01

    We describe an integrated microfluidic device (µFlowFISH) capable of performing 16S rRNA fluorescence in situ hybridization (FISH) followed by flow cytometric detection for identifying bacteria in natural microbial communities. The device was used for detection of species involved in bioremediation of Cr(VI) and other metals in groundwater samples from a highly-contaminated environmental site (Hanford, WA, USA). The µFlowFISH seamlessly integrates two components: a hybridization chamber formed between two photopolymerized membranes, where cells and probes are electrophoretically loaded, incubated and washed; and a downstream cross structure for electrokinetically focusing cells into a single-file flow for flow cytometry analysis. The device is capable of analyzing a wide variety of bacteria including aerobic, facultative and anaerobic bacteria and was initially tested and validated using cultured microbes, including Escherichia coli, as well as two strains isolated from Hanford site: Desulfovibrio vulgaris strain RCH1, and Pseudomonas sp. strain RCH2 that are involved in Cr(VI) reduction and immobilization. Combined labeling and detection efficiencies of 74–97% were observed in experiments with simple mixtures of cultured cells confirmed specific labeling. Results obtained were in excellent agreement with those obtained by conventional flow cytometry confirming the accuracy of µFlowFISH. Finally, the device was used for analyzing water samples collected on different dates from the Hanford Site. We were able to monitor the numbers of Pseudomonas sp. with only 100–200 cells loaded into the microchip. The µFlowFISH approach provides an automated platform for quantitative detection of microbial cells from complex samples, and is ideally suited for analysis of precious samples with low cell numbers such as those found at extreme environmental niches, bioremediation sites, and the human microbiome. PMID:21755095

  2. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  3. Managing Multi-center Flow Cytometry Data for Immune Monitoring

    PubMed Central

    White, Scott; Laske, Karoline; Welters, Marij JP; Bidmon, Nicole; van der Burg, Sjoerd H; Britten, Cedrik M; Enzor, Jennifer; Staats, Janet; Weinhold, Kent J; Gouttefangeas, Cécile; Chan, Cliburn

    2014-01-01

    With the recent results of promising cancer vaccines and immunotherapy1–5, immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproducibility is the use of automated analysis borrowing from statistics, machine learning and information visualization21–23, as these methods directly address the subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new automated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For automation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables

  4. Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry

    PubMed Central

    Piatkevich, Kiryl D.; Verkhusha, Vladislav V.

    2014-01-01

    Since the discovery of the first red fluorescent protein (RFP), named DsRed, 12 years ago, a wide pallet of red-shifted fluorescent proteins has been cloned and biotechnologically developed into monomeric fluorescent probes for optical microscopy. Several new types of monomeric RFPs that change the emission wavelength either with time, called fluorescent timers, or after a brief irradiation with violet light, known as photoactivatable proteins, have been also engineered. Moreover, RFPs with a large Stokes shift of fluorescence emission have been recently designed. Because of their distinctive excitation and fluorescence detection conditions developed specifically for microscopy, these fluorescent probes can be suboptimal for flow cytometry. Here, we have selected and summarized the advanced orange, red, and far-red fluorescent proteins with the properties specifically required for the flow cytometry applications. Their effective brightness was calculated for the laser sources available for the commercial flow cytometers and sorters. Compatibility of the fluorescent proteins of different colors in a multiparameter flow cytometry was determined. Novel FRET pairs, utilizing RFPs, RFP-based intracellular biosensors, and their application to a high-throughput screening, are also discussed. PMID:21704849

  5. Laser rastering flow cytometry: fast cell counting and identification

    NASA Astrophysics Data System (ADS)

    Vacca, G.; Junnarkar, M. R.; Goldblatt, N. R.; Yee, M. W.; Van Slyke, B. M.; Briese, T. C.

    2009-02-01

    We describe the concept of laser rastering flow cytometry, where a rapidly scanning laser beam allows counting and classification of cells at much higher rates than currently possible. Modifications to existing flow cytometers to implement the concept include an acousto-optic deflector, fast analog-to-digital conversion, and a two-step digital-signal-processing scheme that handles the high data rates and provides key assay information. Results are shown that prove the concept, demonstrating the ability to resolve closely spaced cells and to measure cells at rates more than an order of magnitude faster than on conventional flow-cytometer-based hematology analyzers.

  6. Fluorescent In Situ Hybridization in Suspension by Imaging Flow Cytometry.

    PubMed

    Maguire, Orla; Wallace, Paul K; Minderman, Hans

    2016-01-01

    The emergence of imaging flow cytometry (IFC) has brought novel applications exploiting its advantages over conventional flow cytometry and microscopy. One of the new applications is fluorescence in situ hybridization in suspension (FISH-IS). Conventional FISH is a slide-based approach in which the spotlike imagery resulting from hybridization with fluorescently tagged probes is evaluated by fluorescence microscopy. The FISH-IS approach evaluated by IFC enables the evaluation of tens to hundreds of thousands of cells in suspension and the analysis can be automated and standardized diminishing operator bias from the analysis. The high cell number throughput of FISH-IS improves the detection of rare events compared to conventional FISH. The applicability of FISH-IS is currently limited to detection of abnormal quantitative differences of hybridization targets such as occur in numerical chromosome abnormalities, deletions and amplifications.Here, we describe a protocol for FISH-IS using chromosome enumeration probes as an example. PMID:27460240

  7. Applications of flow cytometry to artificial insemination: a review.

    PubMed

    Morrell, J M

    1991-10-26

    Flow cytometry is a technique in which sub-populations of cells can be analysed and separated according to the staining pattern seen with various fluorescent markers. This review describes some of the ways in which flow cytometry can be applied to the investigation of sperm populations, either as a means of quality control of semen or to examine the characteristics of different sub-populations of sperm within an ejaculate. These methods can replace or augment existing subjective assessments of semen characteristics. Using this technique it is possible to produce aliquots of sexed sperm for insemination or for in vitro fertilisation. An objective assessment can be made of the effects of environmental stress on male physiology by monitoring changes in semen quality. PMID:1720909

  8. Antenatal screening for HPA-1a by flow cytometry.

    PubMed

    Lavu, E K; Nelson, M; Popp, H J; Gibson, J; Kronenberg, H; Pearson, H; Child, A

    1997-05-01

    Pregnant women who attended antenatal clinics at King George V Hospital, the Birth Centre or were referred by obstetricians from February 19 July, 1996 were screened for the platelet antigen HPA-1a by flow cytometry. Forty out of 2,300 (1.7%) were found to be negative for this antigen. Of the 28 women followed throughout their pregnancy, none developed antibody to HPA-1a. Platelet counts performed on samples from 17 babies born to 17 of these mothers were all normal. This study proves the simplicity and rapidity of flow cytometry for platelet antigen screening. The results were comparable with the Solid Phase Red Cell Adherence (SPRCA) method and with PCR. The lack of a plentiful supply of specific antibody and the rarity of fetomaternal alloimmune thrombocytopenia (FMAIT) argue against the introduction of routine screening for maternal HPA-1a status at the present time.

  9. High-throughput flow cytometry for drug discovery.

    PubMed

    Edwards, Bruce S; Young, Susan M; Saunders, Matthew J; Bologa, Cristian; Oprea, Tudor I; Ye, Richard D; Prossnitz, Eric R; Graves, Steven W; Sklar, Larry A

    2007-05-01

    High-throughput flow cytometry exploits a novel many-samples/one-file approach to dramatically speed data acquisition, limit aspirated sample volume to as little as 2 μl/well and produce multisample data sets that facilitate automated analysis of samples in groups as well as individually. It has been successfully applied to both cell- and microsphere-based bioassays in 96- and 384-well formats, to screen tens-of-thousands of compounds and identify novel bioactive structures. High-content multiparametric analysis capabilities have been exploited for assay multiplexing, allowing the assessment of biologic selectivity and specificity to be an integral component of primary screens. These and other advances in the last decade have contributed to the application of flow cytometry as a uniquely powerful tool for probing biologic and chemical diversity and complex systems biology.

  10. A CLIPS expert system for clinical flow cytometry data analysis

    NASA Technical Reports Server (NTRS)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  11. An efficient method for enumerating oral spirochetes using flow cytometry.

    PubMed

    Orth, Rebecca; O'Brien-Simpson, Neil; Dashper, Stuart; Walsh, Katrina; Reynolds, Eric

    2010-02-01

    Spirochetes, such as Treponema denticola, are thin walled, helical, motile bacteria. They are notoriously difficult to enumerate due to their thinness and the difficulties associated with culturing them. Here we have developed a modified oral bacterial growth medium (OBGM) that significantly improves the cultivation of T. denticola compared with a previously published growth medium. Three methods for the enumeration of T. denticola, semi-solid growth medium colony-forming unit (CFU) counts, DNA analysis and flow cytometry, are described and compared. Enumeration of T. denticola using the semi-solid agar method resulted in a positive linear relationship with absorbance of the culture (R(2)=0.9423). However, the semi-solid agar method was found to consistently underestimate (by 50 fold) the T. denticola cell density compared to previously published data. DNA analysis of T. denticola cultures reliably and consistently resulted in a positive linear relationship with absorbance (R(2)=0.9360), giving a calculated cell density of 6.9 x 10(8)cells/mL at an absorbance of 0.2 at 650 nm. Flow cytometry was also found to result in a positive linear relationship with absorbance (R(2)=0.9874), giving a calculated cell density of 6.6 x 10(8)cells/mL at an absorbance of 0.2 at 650 nm. In comparing all of these enumeration methods, the flow cytometry method was found to have distinct advantages, as it is accurate, rapid, and could distinguish between live and dead bacteria. Thus flow cytometry is a recommended means for the rapid and reliable enumeration of viable spirochetes from culture.

  12. Overcoming limitations of microparticle measurement by flow cytometry.

    PubMed

    Lacroix, Romaric; Robert, Stephane; Poncelet, Philippe; Dignat-George, Françoise

    2010-11-01

    Circulating microparticles are submicron vesicles released from cell membranes in response to activation or apoptosis. Acknowledgment of their role both as markers and pathogenic effectors in thrombosis, inflammation, and the spread of cancer has increased the interest of their measurement in clinical practice. However, assessment of their clinical use is impeded by technological issues. Among the different methodologies available, flow cytometry is the most commonly used technique. This review addresses flow cytometry limitations in microparticle measurement that may be subdivided into three domains: sizing, probing, and counting. This article also covers the various standardization strategies and technological improvements that have been proposed to overcome these limitations. New tools using size-calibrated beads and recent progress in instrumentation have opened new avenues to improve detection of microparticle populations of smaller sizes. Significant optimization in microparticle detection is also expected from the use of new fluorescent dyes and the establishment of practical recommendations. Finally, absolute counting of microparticles will also benefit from adapted bead-based strategies or, alternatively, from the generalized availability of volumetric systems. Overall, recent technological improvements maintain flow cytometry as a highly competitive analytical method to measure microparticles. Challenging these evolutions in pathological situations is a mandatory step to validate their real impact in clinical practice.

  13. Immunophenotyping by slide-based cytometry and by flow cytometry are comparable

    NASA Astrophysics Data System (ADS)

    Gerstner, Andreas O.; Laffers, Wiebke; Mittag, Anja; Daehnert, Ingo; Lenz, Domnik; Bootz, Friedrich; Bocsi, Jozsef; Tarnok, Attila

    2005-03-01

    Immunophenotyping of peripheral blood leukocytes (PBLs) is performed by flow cytometry (FCM) as the golden standard. Slide based cytometry systems for example laser scanning cytometer (LSC) can give additional information (repeated staining and scanning, morphology). In order to adequately judge on the clinical usefulness of immunophenotyping by LSC it is obligatory to compare it with the long established FCM assays. We performed this study to systematically compare the two methods, FCM and LSC for immunophenotyping and to test the correlation of the results. Leucocytes were stained with directly labeled monoclonal antibodies with whole blood staining method. Aliquots of the same paraformaldehyde fixed specimens were analyzed in a FACScan (BD-Biosciences) using standard protocols and parallel with LSC (CompuCyte) after placing to glass slide, drying and fixation by aceton and 7-AAD staining. Calculating the percentage distribution of PBLs obtained by LSC and by FCM shows very good correlation with regression coefficients close to 1.0 for the major populations (neutrophils, lymphocytes, and monocytes), as well as for the lymphocyte sub-populations (T-helper-, T-cytotoxic-, B-, NK-cells). LSC can be recommended for immunophenotyping of PBLs especially in cases where only very limited sample volumes are available or where additional analysis of the cells" morphology is important. There are limitations in the detection of rare leucocytes or weak antigens where appropriate amplification steps for immunofluorescence should be engaged.

  14. Sample handling for kinetics and molecular assembly in flow cytometry

    SciTech Connect

    Sklar, L.A. |; Seamer, L.C.; Kuckuck, F.; Prossnitz, E.; Edwards, B.; Posner, G.

    1998-07-01

    Flow cytometry discriminates particle associated fluorescence from the fluorescence of the surrounding medium. It permits assemblies of macromolecular complexes on beads or cells to be detected in real-time with precision and specificity. The authors have investigated two types of robust sample handling systems which provide sub-second resolution and high throughput: (1) mixers which use stepper-motor driven syringes to initiate chemical reactions in msec time frames; and (2) flow injection controllers with valves and automated syringes used in chemical process control. In the former system, the authors used fast valves to overcome the disparity between mixing 100 {micro}ls of sample in 100 msecs and delivering sample to a flow cytometer at 1 {micro}l/sec. Particles were detected within 100 msec after mixing, but turbulence was created which lasted for 1 sec after injection of the sample into the flow cytometer. They used optical criteria to discriminate particles which were out of alignment due to the turbulent flow. Complex sample handling protocols involving multiple mixing steps and sample dilution have also been achieved. With the latter system they were able to automate sample handling and delivery with intervals of a few seconds. The authors used a fluidic approach to defeat turbulence caused by sample introduction. By controlling both sheath and sample with individual syringes, the period of turbulence was reduced to {approximately} 200 msecs. Automated sample handling and sub-second resolution should permit broad analytical and diagnostic applications of flow cytometry.

  15. FlowCam: Quantification and Classification of Phytoplankton by Imaging Flow Cytometry.

    PubMed

    Poulton, Nicole J

    2016-01-01

    The ability to enumerate, classify, and determine biomass of phytoplankton from environmental samples is essential for determining ecosystem function and their role in the aquatic community and microbial food web. Traditional micro-phytoplankton quantification methods using microscopic techniques require preservation and are slow, tedious and very laborious. The availability of more automated imaging microscopy platforms has revolutionized the way particles and cells are detected within their natural environment. The ability to examine cells unaltered and without preservation is key to providing more accurate cell concentration estimates and overall phytoplankton biomass. The FlowCam(®) is an imaging cytometry tool that was originally developed for use in aquatic sciences and provides a more rapid and unbiased method for enumerating and classifying phytoplankton within diverse aquatic environments.

  16. FlowCam: Quantification and Classification of Phytoplankton by Imaging Flow Cytometry.

    PubMed

    Poulton, Nicole J

    2016-01-01

    The ability to enumerate, classify, and determine biomass of phytoplankton from environmental samples is essential for determining ecosystem function and their role in the aquatic community and microbial food web. Traditional micro-phytoplankton quantification methods using microscopic techniques require preservation and are slow, tedious and very laborious. The availability of more automated imaging microscopy platforms has revolutionized the way particles and cells are detected within their natural environment. The ability to examine cells unaltered and without preservation is key to providing more accurate cell concentration estimates and overall phytoplankton biomass. The FlowCam(®) is an imaging cytometry tool that was originally developed for use in aquatic sciences and provides a more rapid and unbiased method for enumerating and classifying phytoplankton within diverse aquatic environments. PMID:27460250

  17. Pitfalls in the use of multicolour flow cytometry in haematology.

    PubMed

    Johansson, Ulrika; Macey, Marion

    2011-07-01

    Multicolour flow cytometry in haematology has developed considerably in recent years. The ability to analyse eight or more colours of fluorescence on millions of cells in a matter of minutes has enabled the provision of rapid and reliable measures of minimal residual disease for clinicians. The use of multicolour analysis has also enabled more specific characterisation of presenting leukaemias and lymphomas. However, there has not been a concomitant increase in the knowledge and experience of the flow cytometrists to deal with certain problems associated with this more complex analysis.

  18. Capture of Fluorescence Decay Times by Flow Cytometry

    PubMed Central

    Naivar, Mark A.; Jenkins, Patrick; Freyer, James P.

    2012-01-01

    In flow cytometry, the fluorescence decay time of an excitable species has been largely underutilized and is not likely found as a standard parameter on any imaging cytometer, sorting, or analyzing system. Most cytometers lack fluorescence lifetime hardware mainly owing to two central issues. Foremost, research and development with lifetime techniques has lacked proper exploitation of modern laser systems, data acquisition boards, and signal processing techniques. Secondly, a lack of enthusiasm for fluorescence lifetime applications in cells and with bead-based assays has persisted among the greater cytometry community. In this unit, we describe new approaches that address these issues and demonstrate the simplicity of digitally acquiring fluorescence relaxation rates in flow. The unit is divided into protocol and commentary sections in order to provide a most comprehensive discourse on acquiring the fluorescence lifetime with frequency-domain methods. The unit covers (i) standard fluorescence lifetime acquisition (protocol-based) with frequency-modulated laser excitation, (ii) digital frequency-domain cytometry analyses, and (iii) interfacing fluorescence lifetime measurements onto sorting systems. Within the unit is also a discussion on how digital methods are used for aliasing in order to harness higher frequency ranges. Also, a final discussion is provided on heterodyning and processing of waveforms for multi-exponential decay extraction. PMID:25419263

  19. Rapid Cell Population Identification in Flow Cytometry Data*

    PubMed Central

    Aghaeepour, Nima; Nikolic, Radina; Hoos, Holger H.; Brinkman, Ryan R.

    2011-01-01

    We have developed flowMeans, a time-efficient and accurate method for automated identification of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by modelling a single population with multiple clusters. flowMeans uses a change point detection algorithm to determine the number of sub-populations, enabling the method to be used in high throughput FCM data analysis pipelines. Our approach compares favourably to manual analysis by human experts and current state-of-the-art automated gating algorithms. flowMeans is freely available as an open source R package through Bioconductor. PMID:21182178

  20. XML-based Gating Descriptions in Flow Cytometry

    PubMed Central

    Spidlen, Josef; Leif, Robert; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R.

    2008-01-01

    Background The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. Methods To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Results Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation (CR). Conclusions Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard. PMID:18773465

  1. Label-free high-throughput imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  2. AutoGate: automating analysis of flow cytometry data.

    PubMed

    Meehan, Stephen; Walther, Guenther; Moore, Wayne; Orlova, Darya; Meehan, Connor; Parks, David; Ghosn, Eliver; Philips, Megan; Mitsunaga, Erin; Waters, Jeffrey; Kantor, Aaron; Okamura, Ross; Owumi, Solomon; Yang, Yang; Herzenberg, Leonard A; Herzenberg, Leonore A

    2014-05-01

    Nowadays, one can hardly imagine biology and medicine without flow cytometry to measure CD4 T cell counts in HIV, follow bone marrow transplant patients, characterize leukemias, etc. Similarly, without flow cytometry, there would be a bleak future for stem cell deployment, HIV drug development and full characterization of the cells and cell interactions in the immune system. But while flow instruments have improved markedly, the development of automated tools for processing and analyzing flow data has lagged sorely behind. To address this deficit, we have developed automated flow analysis software technology, provisionally named AutoComp and AutoGate. AutoComp acquires sample and reagent labels from users or flow data files, and uses this information to complete the flow data compensation task. AutoGate replaces the manual subsetting capabilities provided by current analysis packages with newly defined statistical algorithms that automatically and accurately detect, display and delineate subsets in well-labeled and well-recognized formats (histograms, contour and dot plots). Users guide analyses by successively specifying axes (flow parameters) for data subset displays and selecting statistically defined subsets to be used for the next analysis round. Ultimately, this process generates analysis "trees" that can be applied to automatically guide analyses for similar samples. The first AutoComp/AutoGate version is currently in the hands of a small group of users at Stanford, Emory and NIH. When this "early adopter" phase is complete, the authors expect to distribute the software free of charge to .edu, .org and .gov users.

  3. Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection.

    PubMed

    Yang, Sung-Yi; Lien, Kang-Yi; Huang, Kao-Jean; Lei, Huan-Yao; Lee, Gwo-Bin

    2008-12-01

    The current study presents a new miniature microfluidic flow cytometer integrated with several functional micro-devices capable of viral sample purification and detection by utilizing a magnetic bead-based immunoassay. The magnetic beads were conjugated with specific antibodies, which can recognize and capture target viruses. Another dye-labeled anti-virus antibody was then used to mark the bead-bound virus for the subsequent optical detection. Several essential components were integrated onto a single chip including a sample incubation module, a micro flow cytometry module and an optical detection module. The sample incubation module consisting of pneumatic micropumps and a membrane-type, active micromixer was used for purifying and enriching the target virus-bound magnetic beads with the aid of a permanent magnet. The micro flow cytometry module and the optical detection module were used to perform the functions of virus counting and collection. Experimental results showed that virus samples with a concentration of 10(3)PFU/ml can be automatically detected successfully by the developed system. In addition, the entire diagnosis procedure including sample incubation and virus detection took only about 40min. Consequently, the proposed micro flow cytometry may provide a powerful platform for rapid diagnosis and future biological applications.

  4. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry.

    PubMed

    Kan, Andrey; Pavlyshyn, Damian; Markham, John F; Dowling, Mark R; Heinzel, Susanne; Zhou, Jie H S; Marchingo, Julia M; Hodgkin, Philip D

    2016-01-01

    Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus

  5. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry

    PubMed Central

    Kan, Andrey; Pavlyshyn, Damian; Markham, John F.; Dowling, Mark R.; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Hodgkin, Philip D.

    2016-01-01

    Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus

  6. Misty Mountain clustering: application to fast unsupervised flow cytometry gating

    PubMed Central

    2010-01-01

    Background There are many important clustering questions in computational biology for which no satisfactory method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then selected by various criteria. These supervised serial clustering methods are time consuming and frequently different criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been developed such as affinity propagation are too expensive to be applied to datasets on the order of 106 points that are often generated by high throughput experiments. Results To circumvent these limitations, we developed a new, unsupervised density contour clustering algorithm, called Misty Mountain, that is based on percolation theory and that efficiently analyzes large data sets. The approach can be envisioned as a progressive top-down removal of clouds covering a data histogram relief map to identify clusters by the appearance of statistically distinct peaks and ridges. This is a parallel clustering method that finds every cluster after analyzing only once the cross sections of the histogram. The overall run time for the composite steps of the algorithm increases linearly by the number of data points. The clustering of 106 data points in 2D data space takes place within about 15 seconds on a standard laptop PC. Comparison of the performance of this algorithm with other state of the art automated flow cytometry gating methods indicate that Misty Mountain provides substantial improvements in both run time and in the accuracy of cluster assignment. Conclusions Misty Mountain is fast, unbiased

  7. Identification of contact and respiratory sensitizers using flow cytometry

    SciTech Connect

    Goutet, Michele . E-mail: michele.goutet@inrs.fr; Pepin, Elsa; Langonne, Isabelle; Huguet, Nelly; Ban, Masarin

    2005-06-15

    Identification of the chemicals responsible for respiratory and contact allergies in the industrial area is an important occupational safety issue. This study was conducted in mice to determine whether flow cytometry is an appropriate method to analyze and differentiate the specific immune responses to the respiratory sensitizer trimellitic anhydride (TMA) and to the contact sensitizer dinitrochlorobenzene (DNCB) used at concentrations with comparable immunogenic potential. Mice were exposed twice on the flanks (days 0, 5) to 10% TMA or 1% DNCB and challenged three times on the ears (days 10, 11, 12) with 2.5% TMA or 0.25% DNCB. Flow cytometry analyses were conducted on draining lymph node cells harvested on days 13 and 18. Comparing TMA and DNCB immune responses on day 13, we found obvious differences that persisted for most of them on day 18. An increased proportion of IgE+ cells correlated to total serum IgE level and an enhancement of MHC II molecule expression were observed in the lymph node B lymphocytes from TMA-treated mice. The percentage of IL-4-producing CD4+ lymphocytes and the IL-4 receptor expression were clearly higher following TMA exposure. In contrast, higher proportions of IL-2-producing cells were detected in CD4+ and CD8+ cells from DNCB-treated mice. Both chemicals induced a significant increase in the percentage of IFN-{gamma}-producing cells among CD8+ lymphocytes but to a greater proportion following TMA treatment. In conclusion, this study encourages the use of flow cytometry to discriminate between contact and respiratory sensitizers by identifying divergent expression of immune response parameters.

  8. Analysis of receptor tyrosine kinase internalization using flow cytometry.

    PubMed

    Li, Ning; Hill, Kristen S; Elferink, Lisa A

    2008-01-01

    The internalization of activated receptor tyrosine kinases (RTKs) by endocytosis and their subsequent down regulation in lysosomes plays a critical role in regulating the duration and intensity of downstream signaling events. Uncoupling of the RTK cMet from ligand-induced degradation was recently shown to correlate with sustained receptor signaling and increased cell tumorigenicity, suggesting that the corruption of these endocytic mechanisms could contribute to increased cMet signaling in metastatic cancers. To understand how cMet signaling for normal cell growth is controlled by endocytosis and how these mechanisms are dysregulated in metastatic cancers, we developed flow cytometry-based assays to examine cMet internalization.

  9. Automated nanoscale flow cytometry for assessing protein-protein interactions.

    PubMed

    von Kolontaj, Kerstin; Horvath, Gabor L; Latz, Eicke; Büscher, Martin

    2016-09-01

    Despite their importance for signalling events, protein-protein interactions cannot easily be analyzed on a single cell level. We developed a robust automated FRET measurement system implemented on a commercial flow cytometer allowing for rapid profiling of molecular associations in living cells. We used this method to measure the most proximal signaling events on human T lymphocyte activation, which preceded calcium influx, and could automatically detect T cell receptor/CD3 complex clustering defects in immunocompromised patients. © 2016 International Society for Advancement of Cytometry. PMID:27584593

  10. Expert systems for flow cytometry data analysis: A preliminary report

    SciTech Connect

    Salzman, G.C. ); Stewart, C.C. . Lab. of Flow Cytometry); Duque, R.E. )

    1990-01-01

    Flow Cytometry has become an accepted technique in the clinical laboratory for rapid immunophenotyping of patient blood samples. Multiple, fluorescent labeled monoclonal antibodies are used to tag the cells, which are then analyzed one at a time at rates of several thousand cells a second. Patient samples are processed through the flow cytometer at more than one a minute. Clinicians are being overwhelmed by the large amount of data that must be analyzed to provide the information needed to assist in disease diagnosis. An expert system is being developed to assist clinicians in analyzing this multivariate flow cytometry data. The data from each sample are processed by a clustering algorithm, which finds the means of the distinct cell subpopulations in a sample. These mean values of fluorescence are translated into words such as negative,'' dim'' and bright'' and the words are combined into patterns that are matched against the premises on the left hand side of the rules used to identify the disease categories. This is a report of work in progress. 13 refs., 4 figs.

  11. Diagnostic Utility of Flow Cytometry in Myelodysplastic Syndromes

    PubMed Central

    Aanei, Carmen Mariana; Picot, Tiphanie; Tavernier, Emmanuelle; Guyotat, Denis; Campos Catafal, Lydia

    2016-01-01

    Myelodysplastic syndromes (MDSs) are clonal disorders of hematopoiesis that exhibit heterogeneous clinical presentation and morphological findings, which complicates diagnosis, especially in early stages. Recently, refined definitions and standards in the diagnosis and treatment of MDS were proposed, but numerous questions remain. Multiparameter flow cytometry (MFC) is a helpful tool for the diagnostic workup of patients with suspected MDS, and various scores using MFC data have been developed. However, none of these methods have achieved the sensitivity that is required for a reassuring diagnosis in the absence of morphological abnormalities. One reason may be that each score evaluates one or two lineages without offering a broad view of the dysplastic process. The combination of two scores (e.g., Ogata and Red Score) improved the sensitivity from 50–60 to 88%, but the positive (PPV) and negative predictive values (NPV) must be improved. There are prominent differences between study groups when these scores are tested. Further research is needed to maximize the sensitivity of flow cytometric analysis in MDS. This review focuses on the application of flow cytometry for MDS diagnosis and discusses the advantages and limitations of different approaches. PMID:27446807

  12. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893

  13. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  14. Quantitative assessment of neutrophil phagocytosis using flow cytometry.

    PubMed

    Nordenfelt, Pontus

    2014-01-01

    Neutrophils have an incredible ability to find and eradicate intruders such as bacteria and fungi. They do this largely through the process of phagocytosis, where the target is internalized into a phagosome, and eventually destroyed by the hostile phagosomal environment. It is important to study phagocytosis in order to understand how neutrophils interact with various pathogens and how they respond to different stimuli. Here, I describe a method to study neutrophil phagocytosis of bacteria using flow cytometry. The bacteria are fluorescently labeled before being introduced to neutrophils. After phagocytosis, both any remaining extracellular bacteria and neutrophils are labeled using one-step staining before three-color analysis. To assess phagocytosis, first the average time it takes for the neutrophils to internalize all bound bacteria is determined. Experiments are then performed using that time point while varying the bacteria-to-neutrophil ratio for full control of the analysis. Due to the ease with which multiple samples can be analyzed, and the quantitative nature of flow cytometry, this approach is both reproducible and sensitive.

  15. Cytosolic Calcium Measurements in Renal Epithelial Cells by Flow Cytometry

    PubMed Central

    Lee, Wing-Kee; Dittmar, Thomas

    2014-01-01

    A variety of cellular processes, both physiological and pathophysiological, require or are governed by calcium, including exocytosis, mitochondrial function, cell death, cell metabolism and cell migration to name but a few. Cytosolic calcium is normally maintained at low nanomolar concentrations; rather it is found in high micromolar to millimolar concentrations in the endoplasmic reticulum, mitochondrial matrix and the extracellular compartment. Upon stimulation, a transient increase in cytosolic calcium serves to signal downstream events. Detecting changes in cytosolic calcium is normally performed using a live cell imaging set up with calcium binding dyes that exhibit either an increase in fluorescence intensity or a shift in the emission wavelength upon calcium binding. However, a live cell imaging set up is not freely accessible to all researchers. Alternative detection methods have been optimized for immunological cells with flow cytometry and for non-immunological adherent cells with a fluorescence microplate reader. Here, we describe an optimized, simple method for detecting changes in epithelial cells with flow cytometry using a single wavelength calcium binding dye. Adherent renal proximal tubule epithelial cells, which are normally difficult to load with dyes, were loaded with a fluorescent cell permeable calcium binding dye in the presence of probenecid, brought into suspension and calcium signals were monitored before and after addition of thapsigargin, tunicamycin and ionomycin. PMID:25407650

  16. Measurement and Characterization of Apoptosis by Flow Cytometry.

    PubMed

    Telford, William; Tamul, Karen; Bradford, Jolene

    2016-01-01

    Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc.

  17. Detection of Kinase Translocation Using Microfluidic Electroporative Flow Cytometry

    NASA Astrophysics Data System (ADS)

    Lu, Chang; Wang, Jun; Bao, Ning; Paris, Leela; Wang, Hsiang-Yu; Geahlen, Robert

    2008-03-01

    Translocation of a protein between different subcellular compartments is a common event during signal transduction in living cells. Detection of these events has been largely carried out based on imaging of a low number of cells and subcellular fractionation/Western blotting. These conventional techniques either lack the high throughput desired for probing an entire cell population or provide only the average behaviors of cell populations without information from single cells. Here we demonstrate a new tool, referred to as microfluidic electroporative flow cytometry, to detect the translocation of an EGFP-tagged tyrosine kinase, Syk, to the plasma membrane in B cells at the level of the cell population. We combine electroporation with flow cytometry and observe the release of intracellular kinase out of the cells during electroporation. We found that the release of the kinase was strongly influenced by its subcellular localization. Cells stimulated through the antigen receptor have a fraction of the kinase at the plasma membrane and retain more kinase after electroporation than do cells without stimulation and translocation. This tool will have utility for kinase-related drug discovery and tumor diagnosis and staging.

  18. Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry

    PubMed Central

    Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.

    2010-01-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively

  19. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  20. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  1. 3D flow focusing for microfluidic flow cytometry with ultrasonics

    NASA Astrophysics Data System (ADS)

    Gnyawali, Vaskar; Strohm, Eric M.; Daghighi, Yasaman; van de Vondervoort, Mia; Kolios, Michael C.; Tsai, Scott S. H.

    2015-11-01

    We are developing a flow cytometer that detects unique acoustic signature waves generated from single cells due to interactions between the cells and ultrasound waves. The generated acoustic waves depend on the size and biomechanical properties of the cells and are sufficient for identifying cells in the medium. A microfluidic system capable of focusing cells through a 10 x 10 μm ultrasound beam cross section was developed to facilitate acoustic measurements of single cells. The cells are streamlined in a hydro-dynamically 3D focused flow in a 300 x 300 μm channel made using PDMS. 3D focusing is realized by lateral sheath flows and an inlet needle (inner diameter 100 μm). The accuracy of the 3D flow focusing is measured using a dye and detecting its localization using confocal microscopy. Each flowing cell would be probed by an ultrasound pulse, which has a center frequency of 375 MHz and bandwidth of 250 MHz. The same probe would also be used for recording the scattered waves from the cells, which would be processed to distinguish the physical and biomechanical characteristics of the cells, eventually identifying them. This technique has potential applications in detecting circulating tumor cells, blood cells and blood-related diseases.

  2. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    EPA Science Inventory

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  3. Recent applications of flow cytometry in aquatic microbial ecology.

    PubMed

    Troussellier, M; Courties, C; Vaquer, A

    1993-01-01

    Microorganisms (unicellular algae, bacteria) constitute fundamental compartments of aquatic ecosystems because of their high concentrations and activities. The evaluation and understanding of their behavior and role raise different problems for which traditional methodologies are often inadequate, whether they refer to global or classical microscopic analyses. Flow cytometry (FCM) has been recently used to study microorganisms in aquatic environments. Although this technology is still applied on a limited scale in our field, a large number of works has been done showing that FCM seems to be a promising tool for aquatic microbial ecology. This paper summarizes, from the literature produced during the last decade and with original data obtained in our laboratory, the main questions related to the cell identification, the evaluation of cell viability, biomasses and productions and the measurements of bacterial and phytoplanktonic activities. The representatives of sampling and observation scales is also discussed within the framework of the FCM measurements. PMID:8220221

  4. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5.

  5. Applications of Flow Cytometry to Characterize Bacterial Physiological Responses

    PubMed Central

    Contreras-Garduño, Jorge A.; Pedraza-Reyes, Mario

    2014-01-01

    Although reports of flow cytometry (FCM) applied to bacterial analysis are increasing, studies of FCM related to human cells still vastly outnumber other reports. However, current advances in FCM combined with a new generation of cellular reporter probes have made this technique suitable for analyzing physiological responses in bacteria. We review how FCM has been applied to characterize distinct physiological conditions in bacteria including responses to antibiotics and other cytotoxic chemicals and physical factors, pathogen-host interactions, cell differentiation during biofilm formation, and the mechanisms governing development pathways such as sporulation. Since FCM is suitable for performing studies at the single-cell level, we describe how this powerful technique has yielded invaluable information about the heterogeneous distribution of differently and even specialized responding cells and how it may help to provide insights about how cell interaction takes place in complex structures, such as those that prevail in bacterial biofilms. PMID:25276788

  6. [Flow cytometry in immunology and hematology: some essential practical aspects].

    PubMed

    Doinel, C; Bourin, P

    1989-12-01

    Flow cytometry, supported by monoclonal antibodies, has widely contributed in the cellular identification, notably in the clinical and haematological fields. This technique has found several applications since the qualitative phenotyping and the quantitative analysis of the immune system's cell populations are helpful in the diagnosis and the therapy. Besides, these indications require an appropriate knowledge of several methodological aspects including factors related to the sample donor: age and sex; sampling: time and quantity; and the sample preparation conditions. References values, needed for the results interpretation, have a meaning only if they are defined within these validity limits. Previous trials have been done in order to define a biological value representative of the immunological status, such as the CD4/CD8 ratio. Unfortunately this ratio is not justified in the scope of new knowledge concerning the cellular interactions and the functional heterogeneity of cells involved in the immune system.

  7. Flow Cytometry in the Diagnosis of Myelodysplastic Syndromes

    PubMed Central

    Szánthó, Eszter; Kappelmayer, János; Hevessy, Zsuzsa

    2013-01-01

    Myelodysplastic syndromes are clonal hematopoietic stem cell disorders. Their exact etiology is unknown. Myelodysplastic syndromes cause progressive bone marrow failure resulting in pancytopenia and refractory, transfusion-dependent anemia. One can observe typical morphological alterations in the erythroid, myeloid and/or megakaryocytic cell lineage. Blast counts may also be increased. The pathologic cells are genetically unstable, and a myelodysplastic syndrome might transform into acute myeloid leukemia. The overall survival of these diseases range between few months to around ten years. Correct diagnosis and accurate prognostic classification is essential. In the past decades several scoring systems were established beginning with the French-American-British classification to the most recent Revised International Prognostic Scoring System. In all of these classifications bone marrow morphology is still the most important factor, though nowadays the genetic aberrations and flow cytometry findings are also included. The diagnosis and prognostic classification of myelodysplastic syndromes remain a great challenge for hematologists.

  8. A Survey of Flow Cytometry Data Analysis Methods

    PubMed Central

    Bashashati, Ali; Brinkman, Ryan R.

    2009-01-01

    Flow cytometry (FCM) is widely used in health research and in treatment for a variety of tasks, such as in the diagnosis and monitoring of leukemia and lymphoma patients, providing the counts of helper-T lymphocytes needed to monitor the course and treatment of HIV infection, the evaluation of peripheral blood hematopoietic stem cell grafts, and many other diseases. In practice, FCM data analysis is performed manually, a process that requires an inordinate amount of time and is error-prone, nonreproducible, nonstandardized, and not open for re-evaluation, making it the most limiting aspect of this technology. This paper reviews state-of-the-art FCM data analysis approaches using a framework introduced to report each of the components in a data analysis pipeline. Current challenges and possible future directions in developing fully automated FCM data analysis tools are also outlined. PMID:20049163

  9. Bead-Based Assays for Biodetection: From Flow-Cytometry to Microfluidics

    SciTech Connect

    Ozanich, Richard M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby J.

    2009-05-04

    ABSTRACT The potential for the use of biological agents by terrorists is a real threat. Two approaches for detection of biological species will be described: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. The methods and automated fluidic systems used for trapping functionalized microbeads will be described. This approach allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive assays. The automated fluidic approach resulted in up to five-fold improvements in assay sensitivity/speed as compared to identical assays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based assays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (> 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100’s of picomolar range (10’s of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach. Video taping magnetic nanoparticle capture and release was used to improve understanding of the process and revealed interesting behavior.

  10. Bead-based assays for biodetection: from flow-cytometry to microfluidics

    NASA Astrophysics Data System (ADS)

    Ozanich, Richard M., Jr.; Antolick, Kathryn; Bruckner-Lea, Cynthia J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby; Warner, Cynthia L.; Warner, Marvin G.

    2009-05-01

    The potential for the use of biological agents by terrorists is a real threat. Two approaches for antibody-based detection of biological species are described in this paper: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. These approaches both involve the use of automated fluidic systems for trapping antibody-functionalized microbeads, which allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive immunoassays. The automated fluidic approach resulted in up to five-fold improvements in immunoassay sensitivity/speed as compared to identical immunoassays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based immunoassays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (>= 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100's of picomolar range (10's of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach.

  11. Use of CCD sensors in flow cytometry for nonimaging applications

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang

    1997-05-01

    The use of charge coupled devices (CCDs) as non-imaging sensors in flow cytometric systems to replace the classical photomultplier tubes (PMTs) is very advantageous: the quantum efficiency of the CCDs is about 5 to 10 times higher as for PMTs, the charge storage capability of CCDs avoids analogue processing of the fluorescence signals, the dynamic range is up to 18 bits and the fluorescence intensity at different wavelengths can be recorded on the same chip. In this report a full frame CCD imager is used in a thermoelectrically cooled environment. The output signal for the CCD is digitized with a 12-bit ADC and the data are sorted as list-mode data typically used in flow cytometric work. The performance of the system is demonstrated with DNA staining of mammalian cells with acridine-orange, propidium iodide and ethidium bromide. DNA histograms comparable with standard flow cytometry are recorded. From the same data set pulse-widths histograms can be processed and used for doublet discrimination. The high quantum efficiency of the CCD sensors is of special interest for fluorescing dyes in the dark red or near IR wavelength range.

  12. Reticulocyte count using thiazole orange. A flow cytometry method.

    PubMed

    Van Hove, L; Goossens, W; Van Duppen, V; Verwilghen, R L

    1990-01-01

    Recently flow cytometry techniques have been developed to replace the microscope reticulocyte count. We used thiazole orange, a RNA binding fluorochrome, to discriminate reticulocytes from mature erythrocytes. Thiazole orange and the Retic-COUNT software package were evaluated for performance of routine analysis on different flow instruments. The applied methodology analysed 10(4) cells semi-automatically in an easily performed manner. Consistent results were obtained with dipotassium EDTA anticoagulated blood (stable for 30 h after venesection), with incubation times in thiazole orange solution ranging from 2 to 7 h at 25 degrees C. This allowed flexibility in specimen collection and storage and assay performance with no change in results. Changes of incubation temperature up to 30 degrees C had no measurable effect. The values obtained showed good linearity, precision and accuracy for normal, low and high reticulocyte counts. However interferences were observed: RBC autofluorescence, nucleated RBC, Howell-Jolly bodies, high leucocyte count, high platelet count and giant platelets, all falsely increased the number of reticulocytes. These artifacts were eliminated by software gate corrections, thus leaving less than 5% of the specimen to be reanalysed by the microscopic method. The thiazole orange flow cytometric method was determined to be a fast, reliable method for the routine clinical quantitation of reticulocytes.

  13. Diagnostic flow cytometry for low-grade myelodysplastic syndromes.

    PubMed

    Ogata, Kiyoyuki

    2008-12-01

    It has long been considered that flow cytometry (FCM) has little role in clinical practice in the diagnosis of myelodysplastic syndromes (MDS). However, recent advances in the analytical method and knowledge of MDS FCM are changing this stereotype. This paper reviews the concept and current status of FCM in the diagnosis of low-grade MDS. The diagnosis of low-grade MDS in the absence of ringed sideroblasts and chromosomal aberration is not always straightforward, and a report from a recent international working conference has proposed FCM as an adjunctive diagnostic test for such cases. Currently, only a limited number of laboratories are applying FCM to the diagnosis of MDS. Furthermore, standard analytical methods in FCM for MDS have not been established, and no single FCM parameter is sufficiently sensitive and specific to make the diagnosis of MDS. To establish MDS FCM as a widely accepted, dependable diagnostic tool, prospective studies should increase flow parameters that can be analysed reproducibly and determine their sensitivity and specificity, either alone or in combination. CD34+ cell-related parameters that are applicable for diagnosing low-grade MDS in many laboratories are introduced here.

  14. Flow cytometry for the diagnosis of autoimmune thrombocytopenia.

    PubMed

    Tomer, Aaron

    2006-03-01

    Autoimmune thrombocytopenia is a disorder characterized by antibody-mediated accelerated platelet destruction. Despite its clinical importance, the diagnosis of autoimmune thrombocytopenia is one of exclusion, thus inevitably associated with potential difficulties. Current clinically applicable methods used to determine antigen-specific antibodies, primarily directed to GPIIb/IIIa (CD41a) and GPIb (CD42b), include the monoclonal antibody-specific immobilization of platelet antigen (MAIPA) assay and the radioactive immunobead assay. Neither of these assays is commonly used by clinical laboratories, however, because of methodologic and practical limitations. As a result, diagnoses are generally based on clinical impression despite patient presentations that are sometimes complex. To overcome some of these difficulties, flow cytometric techniques have been developed, employing standard methods and equipment suitable for testing a single sample or multiple samples, as may occur in cases of autoimmune thrombocytopenia. The availability of a feasible technique such as flow cytometry, with improved sensitivity and specificity, should facilitate the routine use of a diagnostic method in the evaluation of thrombo-cytopenic patients suspected of having an autoimmune disorder and permit follow-up to determine immune remission. PMID:16537048

  15. Evaluation of a green laser pointer for flow cytometry.

    PubMed

    Habbersett, Robert C; Naivar, Mark A; Woods, Travis A; Goddard, Gregory R; Graves, Steven W

    2007-10-01

    Flow cytometers typically incorporate expensive lasers with high-quality (TEM00) output beam structure and very stable output power, significantly increasing system cost and power requirements. Red diode lasers minimize power consumption and cost, but limit fluorophore selection. Low-cost DPSS laser pointer modules could possibly offer increased wavelength selection but presumed emission instability has limited their use. A $160 DPSS 532 nm laser pointer module was first evaluated for noise characteristics and then used as the excitation light source in a custom-built flow cytometer for the analysis of fluorescent calibration and alignment microspheres. Eight of ten modules tested were very quiet (RMS noise < or = 0.6% between 0 and 5 MHz). With a quiet laser pointer module as the light source in a slow-flow system, fluorescence measurements from alignment microspheres produced CVs of about 3.3%. Furthermore, the use of extended transit times and < or =1 mW of laser power produced both baseline resolution of all 8 peaks in a set of Rainbow microspheres, and a detection limit of <20 phycoerythrin molecules per particle. Data collected with the transit time reduced to 25 micros (in the same instrument but at 2.4 mW laser output) demonstrated a detection limit of approximately 75 phycoerythrin molecules and CVs of about 2.7%. The performance, cost, size, and power consumption of the tested laser pointer module suggests that it may be suitable for use in conventional flow cytometry, particularly if it were coupled with cytometers that support extended transit times. PMID:17712796

  16. Rapid titration of retroviral vectors encoding intracellular antigens by flow cytometry.

    PubMed

    Sladek, T L; Jacobberger, J W

    1990-06-01

    Flow cytometry was used to detect cells infected with retroviral vectors encoding both simian virus 40 large T antigen and G418 resistance after indirect immunofluorescence staining using a T-antigen-specific monoclonal antibody and a fluorescein-conjugated secondary antibody. Titers of viral stocks determined by flow cytometry were equivalent to those determined by quantitation of G418-resistant colonies.

  17. Flow cytometry reliability analysis and variations in sugarcane DNA content.

    PubMed

    Oliveira, A C L; Pasqual, M; Bruzi, A T; Pio, L A S; Mendonça, P M S; Soares, J D R

    2015-01-01

    The aim of this study was to evaluate the reliability of flow cytometry analysis and the use of this technique to differentiate species and varieties of sugarcane (Saccharum spp) according to their relative DNA content. We analyzed 16 varieties and three species belonging to this genus. To determine a reliable protocol, we evaluated three extraction buffers (LB01, Marie, and Tris·MgCl2), the presence and absence of RNase, six doses of propidium iodide (10, 15, 20, 25, and 30 μg), four periods of exposure to propidium iodide (0, 5, 10, and 20 min), and seven external reference standards (peas, beans, corn, radish, rye, soybean, and tomato) with reference to the coefficient of variation and the DNA content. For statistical analyses, we used the programs Sisvar(®) and Xlstat(®). We recommend using the Marie extraction buffer and at least 15 μg propidium iodide. The samples should not be analyzed immediately after the addition of propidium iodide. The use of RNase is optional, and tomato should be used as an external reference standard. The results show that sugarcane has a variable genome size (8.42 to 12.12 pg/2C) and the individuals analyzed could be separated into four groups according to their DNA content with relative equality in the genome sizes of the commercial varieties.

  18. Investigation of platelet function and platelet disorders using flow cytometry.

    PubMed

    Rubak, Peter; Nissen, Peter H; Kristensen, Steen D; Hvas, Anne-Mette

    2016-01-01

    Patients with thrombocytopenia or platelet disorders are at risk of severe bleeding. We report the development and validation of flow cytometry assays to diagnose platelet disorders and to assess platelet function independently of platelet count. The assays were developed to measure glycoprotein levels (panel 1) and platelet function (panel 2) in sodium citrated blood. Twenty healthy volunteers and five patients diagnosed with different platelet disorders were included. Glycoprotein expression levels of the receptors Ia, Ib, IIb, IIIa and IX were measured and normalised with forward scatter (FS) as a measurement of platelet size. Platelet function was assessed by CD63, P-selectin and bound fibrinogen in response to arachidonic acid, adenosine diphosphate (ADP), collagen-related peptide, ristocetin and thrombin receptor-activation peptide-6. All patients except one with suspected δ-granule defect showed aberrant levels of glycoproteins in panel 1. Glanzmann's thrombasthenia and genetically verified Bernard-Soulier syndrome could be diagnosed using panel 1. All patients showed reduced platelet function according to at least one agonist. Using panel 2 it was possible to diagnose Bernard-Soulier syndrome, δ-granule defect and GPVI disorder. By combining the two assays, we were able to diagnose different platelet disorders and investigate platelet function independent of platelet count.

  19. Monitoring circulating apoptotic cells by in-vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Tan, Yuan; Chen, Yun; Zhang, Li; Li, Yan; Liu, Guangda; Wu, Bin; Wang, Chen

    2008-02-01

    Chemotherapies currently constitute one main venue of cancer treatment. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of tumor cell growth and metastasis. A reliable early evaluation and prediction of response to the chemotherapy is critical to its success. Chemotherapies induce apoptosis in tumor cells and a portion of such apoptotic cancer cells may be present in the circulation. However, the fate of circulating tumor cells is difficult to assess with conventional methods that require blood sampling. We report the in situ measurement of circulating apoptotic cells in live animals using in vivo flow cytometry, a novel method that enables real-time detection and quantification of circulating cells without blood extraction. Apoptotic cells are rapidly cleared from the circulation with a half-life of ~10 minutes. Real-time monitoring of circulating apoptotic cells can be useful for detecting early changes in disease processes, as well as for monitoring response to therapeutic intervention.

  20. Improving the signal analysis for in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin

    2015-03-01

    At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.

  1. Tracking Immune Cell Proliferation and Cytotoxic Potential Using Flow Cytometry

    PubMed Central

    Tario, Joseph D.; Muirhead, Katharine A.; Pan, Dalin; Munson, Mark E.; Wallace, Paul K.

    2015-01-01

    In the second edition of this series, we described the use of cell tracking dyes in combination with tetramer reagents and traditional phenotyping protocols to monitor levels of proliferation and cytokine production in antigen-specific CD8+ T cells. In particular, we illustrated how tracking dye fluorescence profiles could be used to ascertain the precursor frequencies of different subsets in the T-cell pool that are able to bind tetramer, synthesize cytokines, undergo antigen-driven proliferation, and/or carry out various combinations of these functional responses. Analysis of antigen-specific proliferative responses represents just one of many functions that can be monitored using cell tracking dyes and flow cytometry. In this third edition, we address issues to be considered when combining two different tracking dyes with other phenotypic and viability probes for the assessment of cytotoxic effector activity and regulatory T-cell functions. We summarize key characteristics of and differences between general protein- and membrane-labeling dyes, discuss determination of optimal staining concentrations, and provide detailed labeling protocols for both dye types. Examples of the advantages of two-color cell tracking are provided in the form of protocols for (a) independent enumeration of viable effector and target cells in a direct cytotoxicity assay and (b) simultaneous monitoring of proliferative responses in effector and regulatory T cells. PMID:21116982

  2. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  3. Detecting endotoxin with a flow cytometry-based magnetic aptasensor.

    PubMed

    Zuo, Ming-Yan; Chen, Li-Juan; Jiang, Hao; Tan, Lin; Luo, Zhao-Feng; Wang, Yan-Mei

    2014-12-01

    Endotoxin, which is also known as lipopolysaccharide (LPS), is a marker for intruding gram-negative pathogens. It is essential to detect endotoxin quickly and sensitively in a complex milieu. A new flow cytometry (FCM)-based magnetic aptasensor assay that employs two endotoxin-binding aptamers and magnetic beads has been developed to detect endotoxin. The endotoxin-conjugated sandwich complex on magnetic beads was observed by scanning confocal laser microscopy. The resulting magnetic aptasensor rapidly detected (<1 min) endotoxin within a broad dynamic detection range of 10(-8) to 10(0)mg/ml in the presence of bovine serum albumin (BSA), RNA, sucrose, and glucose, which are most likely to coexist with endotoxin in the majority of biological liquids. Only 2 μl of magnetic aptasensor was required to quantify the endotoxin solution. Furthermore, the magnetic aptasensor could be regenerated seven times and still presented an outstanding response to the endotoxin solution. Therefore, the magnetic aptasensor exhibited high sensitivity, selectivity, and reproducibility, thereby serving as a powerful tool for the quality control and high-throughput detection of endotoxin in the food and pharmaceutical industries.

  4. Cell-based flow cytometry assay to measure cytotoxic activity.

    PubMed

    Noto, Alessandra; Ngauv, Pearline; Trautmann, Lydie

    2013-12-17

    Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.

  5. Homogeneous agglutination assay based on micro-chip sheathless flow cytometry.

    PubMed

    Ma, Zengshuai; Zhang, Pan; Cheng, Yinuo; Xie, Shuai; Zhang, Shuai; Ye, Xiongying

    2015-11-01

    Homogeneous assays possess important advantages that no washing or physical separation is required, contributing to robust protocols and easy implementation which ensures potential point-of-care applications. Optimizing the detection strategy to reduce the number of reagents used and simplify the detection device is desirable. A method of homogeneous bead-agglutination assay based on micro-chip sheathless flow cytometry has been developed. The detection processes include mixing the capture-probe conjugated beads with an analyte containing sample, followed by flowing the reaction mixtures through the micro-chip sheathless flow cytometric device. The analyte concentrations were detected by counting the proportion of monomers in the reaction mixtures. Streptavidin-coated magnetic beads and biotinylated bovine serum albumin (bBSA) were used as a model system to verify the method, and detection limits of 0.15 pM and 1.5 pM for bBSA were achieved, using commercial Calibur and the developed micro-chip sheathless flow cytometric device, respectively. The setup of the micro-chip sheathless flow cytometric device is significantly simple; meanwhile, the system maintains relatively high sensitivity, which mainly benefits from the application of forward scattering to distinguish aggregates from monomers. The micro-chip sheathless flow cytometric device for bead agglutination detection provides us with a promising method for versatile immunoassays on microfluidic platforms.

  6. Aequorea green fluorescent protein analysis by flow cytometry

    SciTech Connect

    Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.; Wolfgang-Kimball, D.

    1995-12-01

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.

  7. Performance of calibration standards for antigen quantitation with flow cytometry.

    PubMed

    Lenkei, R; Gratama, J W; Rothe, G; Schmitz, G; D'hautcourt, J L; Arekrans, A; Mandy, F; Marti, G

    1998-10-01

    In the frame of the activities initiated by the Task Force for Antigen Quantitation of the European Working Group on Clinical Cell Analysis (EWGCCA), an experiment was conducted to evaluate microbead standards used for quantitative flow cytometry (QFCM). An unified window of analysis (UWA) was established on three different instruments (EPICS XL [Coulter Corporation, Miami, FL], FACScan and FACS Calibur [Becton Dickinson, San Jose, CA]) with QC3 microbeads (FCSC, PR). By using this defined fluorescence intensity scale, the performance of several monoclonal antibodies directed to CD3, CD4, and CD8 (conjugated and unconjugated), from three manufacturers (BDIS, Coulter [Immunotech], and DAKO) was tested. In addition, the QIFI system (DAKO) and QuantiBRITE (BDIS), and a method of relative fluorescence intensity (RFI, method of Giorgi), were compared. mAbs reacting with three more antigens, CD16, CD19, and CD38 were tested on the FACScan instrument. Quantitation was carried out using a single batch of cryopreserved peripheral blood leukocytes, and all tests were performed as single color analyses. Significant correlations were observed between the antibody-binding capacity (ABC) values of the same CD antigen measured with various calibrators and with antibodies differing in respect to vendor, labeling and possible epitope recognition. Despite the significant correlations, the ABC values of most monoclonal antibodies differed by 20-40% when determined by the different fluorochrome conjugates and different calibrators. The results of this study indicate that, at the present stage of QFCM consistent ABC values may be attained between laboratories provided that a specific calibration system is used including specific calibrators, reagents, and protocols.

  8. Detection of CFTR protein in human leukocytes by flow cytometry.

    PubMed

    Johansson, Jan; Vezzalini, Marzia; Verzè, Genny; Caldrer, Sara; Bolognin, Silvia; Buffelli, Mario; Bellisola, Giuseppe; Tridello, Gloria; Assael, Baroukh Maurice; Melotti, Paola; Sorio, Claudio

    2014-07-01

    Leukocytes have previously been shown to express detectable levels of the protein cystic fibrosis transmembrane conductance regulator (CFTR). This study aims to evaluate the application of flow cytometric (FC) analysis to detect CFTR expression, and changes thereof, in these cells. Aliquots (200 μL) of peripheral whole blood from 12 healthy control volunteers (CTRLs), 12 carriers of a CFTR mutation (CFC), and 40 patients with cystic fibrosis (CF) carrying various combinations of CFTR mutations were incubated with specific fluorescent probes recognizing CFTR protein expressed on the plasma membrane of leukocytes. FC was applied to analyze CFTR expression in monocytes, lymphocytes, and polymorphonuclear (PMN) cells. CFTR protein was detected in monocytes and lymphocytes, whereas inconclusive results were obtained from the analysis of PMN cells. Mean fluorescence intensity (MFI) ratio value and %CFTR-positive cells above a selected threshold were the two parameters selected to quantify CFTR expression in cells. Lowest variability and the highest reproducibility were obtained when analyzing monocytes. ANOVA results indicated that both parameters were able to discriminate monocytes of healthy controls and CF individuals according to CFTR mutation classes with high accuracy. Significantly increased MFI ratio values were recorded in CFTR-defective cells that were also able to improve CFTR function after ex vivo treatment with PTC124 (Ataluren), an investigative drug designed to permit the ribosome to read through nonsense CFTR mutations. The method described is minimally invasive and may be used in the monitoring of responses to drugs whose efficacy can depend on increased CFTR protein expression levels. © 2014 International Society for Advancement of Cytometry.

  9. Understanding microbial/DOM interactions using fluorescence and flow cytometry

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren

    2015-04-01

    The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial

  10. A java-based application for differential diagnosis of hematopoietic neoplasms using immunophenotyping by flow cytometry.

    PubMed

    Nguyen, A N; Milam, J D; Johnson, K A; Banez, E I

    2000-07-01

    We describe the implementation of a Java-based application for differential diagnosis of hematopoietic neoplasms using immunophenotyping by flow cytometry. The current version of this Java applet includes the knowledge-base for 33 hematopoietic neoplasms and 43 diagnostic immunophenotyping markers. Java, a new object-oriented computing language, helps facilitate development of this applet, a platform-independent module that can be implemented on the World Wide Web. As the Web rapidly becomes more accessible to users around the world, Web-based software may eventually form the core of decision-support systems in clinical settings. Java-based applications, such as the one described in this paper, are expected to contribute significantly in this area.

  11. Discovery of Regulators of Receptor Internalization with High-Throughput Flow Cytometry

    PubMed Central

    Tapia, Phillip H.; Fisher, Gregory W.; Simons, Peter C.; Strouse, J. Jacob; Foutz, Terry; Waggoner, Alan S.; Jarvik, Jonathan; Sklar, Larry A.

    2012-01-01

    We developed a platform combining fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform facilitates drug discovery for trafficking receptors such as G protein-coupled receptors and was validated with the β2-adrenergic receptor (β2AR) system. When a chemical library containing ∼1200 off-patent drugs was screened against cells expressing FAP-tagged β2ARs, all 33 known β2AR-active ligands in the library were successfully identified, together with a number of compounds that might regulate receptor internalization in a nontraditional manner. Results indicated that the platform identified ligands of target proteins regardless of the associated signaling pathway; therefore, this approach presents opportunities to search for biased receptor modulators and is suitable for screening of multiplexed targets for improved efficiency. The results revealed that ligands may be biased with respect to the rate or duration of receptor internalization and that receptor internalization may be independent of activation of the mitogen-activated protein kinase pathway. PMID:22767611

  12. Good Cell, Bad Cell: Flow Cytometry Reveals T-cell Subsets Important in HIV Disease

    PubMed Central

    Chattopadhyay, Pratip K.; Roederer, Mario

    2010-01-01

    Flow cytometry is a key technology in the study of HIV disease. In this article, we review various cellular markers that can be measured in the setting of pathogenesis or vaccination studies, including markers of activation, differentiation, senescence, immune suppression, and function. In addition, we discuss important considerations for making these measurements. Finally, we examine how flow cytometry studies have taught researchers about the disease process, and the potential for flow cytometry technology to guide treatment decisions and evaluate vaccine candidates in the future. PMID:20583275

  13. Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org).

    PubMed

    Spidlen, Josef; Breuer, Karin; Brinkman, Ryan

    2012-07-01

    FlowRepository.org is a Web-based flow cytometry data repository provided by the International Society for Advancement of Cytometry (ISAC). It supports storage, annotation, analysis, and sharing of flow cytometry datasets. A fundamental tenet of scientific research is that published results should be open to independent validation and refutation. With FlowRepository, researchers can annotate their datasets in compliance with the Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard, thus greatly facilitating third-party interpretation of their data. In this unit, we will mainly focus on the deposition, sharing, and annotation of flow cytometry data.

  14. Integrated biophotonic μTAS for flow cytometry and particle detection

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arvind; Packirisamy, Muthukumaran

    2009-06-01

    Recent advancements in the integration of photonic technologies with microfluidics for Micro-Total Analysis Systems (μTAS) have paved way for the realization of a lot of potential applications in the field of biosensing and biomedical detections. Some of the prominent features of these integrated μTAS are improved performance, high sensitivity and signal-to-noise ratio, reduced consumption of samples and reagents, and portability, among others. In this work, a hybrid integrated biophotonic μTAS on silicon-polymer platform is presented. Herein, the optical fibers are directly integrated with the Silicon microfluidic chip and an Echelle grating based Spectrometer-on-Chip on Silica-on-Silicon (SOS) is integrated with the opto-microfluidic assembly. Flow actuation within the system is enabled by a mechanical Piezodriven Valveless Micropump (PVM). Finite Element Analysis (FEA) has been carried out in order to study the behavior of the fluid flow within the microfluidic channels due to the piezo actuation, and the geometry of the bio-detection chamber within the microfluidic system has been optimized accordingly in order to obtain no-stagnation flow conditions. The opto-microfluidic performance and the piezo-actuated valveless micropump were characterized in separate experiments. The integrated μTAS was tested for flow cytometry and particle detection using laser induced fluorescence. The experimental results show that the system is suitable for high throughput biodetections.

  15. Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements.

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2015-11-01

    A novel concept of Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements is introduced for flow cytometry applications. The system affords robust, maintenance-free and high-speed elasticity-sensitive measurements. PMID:26347908

  16. [Assessment of bactericidal and growth-inhibiting activity of blood serum using flow cytometry and photometry].

    PubMed

    Budikhina, A S; Mikhaĭlova, N A; Bitkova, E E; Khvatov, V B; Pinegin, B V

    2007-01-01

    Method of measurement of biological fluids bactericidal activity against Staphylococcus aureus using laser flow cytometry has been developed and proposed for clinical use. Overall bactericidal activity of sera of healthy donors has been assessed by this method. Strong positive correlation between bactericidal activity measured by flow cytometry and ability of the sera of healthy donors to inhibit bacterial growth assessed by photometric method was determined. High degree of positive correlation between results of cytometry and classical microbiological method of measurement of mentioned parameters has been shown.

  17. Imaging Flow Cytometry for the Study of Erythroid Cell Biology and Pathology

    PubMed Central

    Samsel, Leigh; McCoy, J Philip

    2015-01-01

    Erythroid cell maturation and diseases affecting erythrocytes are frequently accompanied by morphologic and immunophenotypic changes to these cells. In the past, these changes have been assessed primarily through the use of manual microscopy, which substantially limits the statistical rigor, throughput, and objectivity of these studies. Imaging flow cytometry provides a technology to examine both the morphology of cells as well as to quantify the staining intensity and signal distribution of numerous fluorescent markers on a cell-by-cell basis with high throughput in a statistically robust manner, and thus is ideally suited to studying erythroid cell biology. To date imaging flow cytometry has been used to study erythrocytes in three areas: 1) erythroid cell maturation, 2) sickle cell disease, and 3) infectious diseases such as malaria. In the maturation studies, imaging flow cytometry can closely recapitulate known stages of maturation and has led to the identification of a new population of erythroid cell precursors. In sickle cell disease, imaging flow cytometry provides a robust method to quantify sickled erythrocytes and to identify cellular aggregates linked to morbidities, and in malaria, imaging flow cytometry has been used to screen for new chemotherapeutic agents. These studies have demonstrated the value of imaging flow cytometry for investigations of erythrocyte biology and pathology. PMID:25858229

  18. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    PubMed Central

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for

  19. A Competitive Flow Cytometry Screening System for Directed Evolution of Therapeutic Enzyme.

    PubMed

    Cheng, Feng; Kardashliev, Tsvetan; Pitzler, Christian; Shehzad, Aamir; Lue, Hongqi; Bernhagen, Jürgen; Zhu, Leilei; Schwaneberg, Ulrich

    2015-07-17

    A ligand-mediated eGFP-expression system (LiMEx) was developed as a novel flow cytometry based screening platform that relies on a competitive conversion/binding of arginine between arginine deiminase and arginine repressor. Unlike product-driven detection systems, the competitive screening platform allows to evolve enzymes toward efficient operation at low substrate concentrations under physiological conditions. The principle of LiMEx was validated by evolving arginine deiminase (ADI, an anticancer therapeutic) for stronger inhibition of tumor growth. After screening of ∼8.2 × 10(6) clones in three iterative rounds of epPCR libraries, PpADI (ADI from Pseudomonas plecoglossicida) variant M31 with reduced S0.5 value (0.17 mM compared to 1.23 mM (WT)) and, importantly, increased activity at physiological arginine concentration (M31:6.14 s(-1); WT: not detectable) was identified. Moreover, M31 showed a significant inhibitory effect against SK-MEL-28 and G361 melanoma cell lines. (IC50 = 0.02 μg/mL for SK-MEL-28 and G361). PMID:25658761

  20. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    EPA Science Inventory

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  1. Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry

    PubMed Central

    Neumeyer, Andrea; Hübschmann, Thomas; Müller, Susann; Frunzke, Julia

    2013-01-01

    Summary Phenotypic variation of microbial populations is a well-known phenomenon and may have significant impact on the success of industrial bioprocesses. Flow cytometry (FC) and the large repertoire of fluorescent dyes bring the high-throughput analysis of multiple parameters in single bacterial cells into reach. In this study, we evaluated a set of different fluorescent dyes for suitability in FC single cell analysis of the biotechnological platform organism Corynebacterium glutamicum. Already simple scattering properties of C. glutamicum cells in the flow cytometer were shown to provide valuable information on the growth activity of analysed cells. Furthermore, we used DAPI staining for a FC-based determination of the DNA content of C. glutamicum cells grown on standard minimal or complex media. Characteristic DNA patterns were observed mirroring the typical uncoupled DNA synthesis in the logarithmic (log) growth phase and are in agreement with a symmetric type of cell division of C. glutamicum. Application of the fluorescent dyes Syto 9, propidium iodide, and DiOC2(3) allowed the identification of subpopulations with reduced viability and membrane potential within early log and stationary phase populations. The presented data highlight the potential of FC-based analyses for online monitoring of C. glutamicum bioprocesses and provide a first reference for future applications and protocols. PMID:23279937

  2. Profiling T cell activation using single-molecule fluorescence in situ hybridization and flow cytometry.

    PubMed

    Bushkin, Yuri; Radford, Felix; Pine, Richard; Lardizabal, Alfred; Mangura, Bonita T; Gennaro, Maria Laura; Tyagi, Sanjay

    2015-01-15

    Flow cytometric characterization of Ag-specific T cells typically relies on detection of protein analytes. Shifting the analysis to detection of RNA would provide several significant advantages, which we illustrate by developing a new host immunity-based platform for detection of infections. Cytokine mRNAs synthesized in response to ex vivo stimulation with pathogen-specific Ags are detected in T cells with single-molecule fluorescence in situ hybridization followed by flow cytometry. Background from pre-existing in vivo analytes is lower for RNAs than for proteins, allowing greater sensitivity for detection of low-frequency cells. Moreover, mRNA analysis reveals kinetic differences in cytokine expression that are not apparent at the protein level but provide novel insights into gene expression programs expected to define different T cell subsets. The utility of probing immunological memory of infections is demonstrated by detecting T cells that recognize mycobacterial and viral Ags in donors exposed to the respective pathogens. PMID:25505292

  3. In vitro micronucleus assay for the analysis of total particulate matter in cigarette smoke: comparison of flow cytometry and laser scanning cytometry with microscopy.

    PubMed

    Yao, Jianhua; Gao, Qian; Mi, Qili; Li, Xuemei; Miao, Mingming; Cheng, Peng; Luo, Ying

    2013-08-15

    The possible genotoxicity of the total particulate matter (TPM) in cigarette smoke has typically been evaluated using the in vitro micronucleus assay. In recent years, automated scoring techniques have been developed to replace the manual counting process in this assay. However, these automated scoring techniques have not been applied in routine genotoxicity assays for the analysis of TPM to improve the assay efficiency. Chinese hamster ovary (CHO) cells were treated with TPM produced from 14 types of cigarettes at five concentrations (25-200μg/ml) without exogenous metabolic activation. The three following methods were used to score the micronucleus (MN) frequency: (a) flow cytometry with SYTOX and EMA dyes, which differentially stain micronuclei and apoptotic/necrotic chromatin to enhance assay reliability; (b) laser scanning cytometry with FITC and PI dyes, which is a system that combines the analytical capabilities of flow and image cytometry; and (c) visual microcopy with Giemsa dye. The test results obtained using the three methods were compared using correlation analysis. The key findings for this set of compounds include the following: (a) both flow cytometry- and laser scanning cytometry-based methods were effective for MN identification, (b) the three scoring methods could detect dose-dependent micronucleus formation for the 14 types of TPM, and (c) the MN frequencies that were measured in the same samples by flow cytometry, laser scanning cytometry, and visual microscopy were highly correlated, and there were no significant differences (p>0.05). In conclusion, both flow cytometry and laser scanning cytometry can be used to evaluate the MN frequency induced by TPM without exogenous metabolic activation. The simpler and faster processing and the high correlation of the results make these two automatic methods appropriate tools for use in in vitro micronucleus assays for the analysis of TPM using CHO cells.

  4. Role of Flow Cytometry in the Diagnosis and Prognosis of Plasma Cell Myeloma.

    PubMed

    Olteanu, Horatiu

    2016-03-01

    This article provides an overview of the role of flow cytometry in the diagnosis and follow-up of plasma cell myeloma. A brief introduction to the general immunophenotypic features of normal and myeloma plasma cells is provided, followed by a discussion of technical issues as they relate to the application of flow cytometry in this entity. The prognostic and therapeutic utility of flow cytometric immunophenotyping in myeloma is also analyzed, with an emphasis on the growing role of minimal residual analysis as potential biomarker for evaluating treatment efficacy and for tailoring risk-adapted treatment, in prospective clinical trials. PMID:26940271

  5. First proposed panels on acute leukemia for four-color immunophenotyping by flow cytometry from the Brazilian group of flow cytometry-GBCFLUX.

    PubMed

    Ikoma, Maura R V; Sandes, Alex F; Thiago, Leandro S; Cavalcanti Júnior, Geraldo B; Lorand-Metze, Irene G H; Costa, Elaine S; Pimenta, Glicinia; Santos-Silva, Maria C; Bacal, Nydia S; Yamamoto, Mihoko; Souto, Elizabeth X

    2015-01-01

    Multiparameter flow cytometry is a highly sensitive, fast, and specific diagnostic technology with a wide range of applicability in hematology. Although well-established eight-color immunophenotyping panels are already available, most Brazilian clinical laboratories are equipped with four-color flow cytometer facilities. Based on this fact, the Brazilian Group of Flow Cytometry (Grupo Brasileiro de Citometria de Fluxo, GBCFLUX) for standardization of clinical flow cytometry has proposed an antibody panel designed to allow precise diagnosis and characterization of acute leukemia (AL) within resource-restricted areas. Morphological analysis of bone marrow smears, together with the screening panel, is mandatory for the primary identification of AL. The disease-oriented panels proposed here are divided into three levels of recommendations (mandatory, recommendable, and optional) in order to provide an accurate final diagnosis, as well as allow some degree of flexibility based on available local resources and patient-specific needs. The proposed panels will be subsequently validated in an interlaboratory study to evaluate its effectiveness on the diagnosis and classification of AL. (Assoc editor comm. 2).

  6. Enumeration and Biomass Estimation of Bacteria in Aquifer Microcosm Studies by Flow Cytometry

    PubMed Central

    DeLeo, P. C.; Baveye, P.

    1996-01-01

    Flow cytometry was used to enumerate and characterize bacteria from a sand column microcosm simulating aquifer conditions. Pure cultures of a species of Bacillus isolated from subsurface sediments or Bacillus megaterium were first evaluated to identify these organisms' characteristic histograms. Counting was then carried out with samples from the aquifer microcosms. Enumeration by flow cytometry was compared with more-traditional acridine orange direct counting. These two techniques gave statistically similar results. However, counting by flow cytometry, in this case, surveyed a sample size 700 times greater than did acridine orange direct counting (25 (mu)l versus 0.034 (mu)l) and required 1/10 the time (2 h versus 20 h). Flow cytometry was able to distinguish the same species of bacteria grown under different nutrient conditions, and it could distinguish changes in cell growth patterns, specifically single cell growth versus chained cell growth in different regions of an aquifer microcosm. A biomass estimate was calculated by calibrating the total fluorescence of a sample from a pure culture with the dry weight of a freeze-dried volume from the original pure culture. Growth conditions significantly affected histograms and biomass estimates, so the calibration was carried out with cells grown under conditions similar to those in the aquifer microcosm. Costs associated with using flow cytometry were minimal compared with the amount of time saved in counting cells and estimating biomass. PMID:16535470

  7. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOEpatents

    Clague, David S.; Wheeler, Elizabeth K.; Lee, Abraham P.

    2009-03-17

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  8. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOEpatents

    Clague, David S.; Wheeler, Elizabeth K.; Lee, Abraham P.

    2006-07-25

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  9. Beyond conventional cell analysis: the latest science and technology in flow cytometry.

    PubMed

    Wright, Sharlene

    2016-01-01

    Combining powerful performance and innovative design and technology, it is possible to deliver a compact, easy-to-use flow cytometry system. Pushing the 'norms' of conventional flow cytometry, today's--and tomorrow's--systems enable complex research into high-content applications in cell biology, as well as a deeper understanding of the advantages gained from the emerging nanoparticle frontier. Flow cytometry is a powerful tool for interrogating complex biological questions at the forefront of biomedical and life science research and increasingly for clinical laboratory applications. Today's investigators want to harness that power and are demanding smaller and more powerful instruments that are more affordable and easier to use. Using innovation, engineers are able to deliver solutions to meet the challenge.

  10. Methodology and Application of Flow Cytometry for Investigation of Human Malaria Parasites

    PubMed Central

    Grimberg, Brian T.

    2011-01-01

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. PMID:21296083

  11. Methodology and application of flow cytometry for investigation of human malaria parasites.

    PubMed

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries.

  12. Flow Cytometry, a Versatile Tool for Diagnosis and Monitoring of Primary Immunodeficiencies

    PubMed Central

    Aubert, Geraldine

    2016-01-01

    Genetic defects of the immune system are referred to as primary immunodeficiencies (PIDs). These immunodeficiencies are clinically and immunologically heterogeneous and, therefore, pose a challenge not only for the clinician but also for the diagnostic immunologist. There are several methodological tools available for evaluation and monitoring of patients with PIDs, and of these tools, flow cytometry has gained prominence, both for phenotyping and functional assays. Flow cytometry allows real-time analysis of cellular composition, cell signaling, and other relevant immunological pathways, providing an accessible tool for rapid diagnostic and prognostic assessment. This minireview provides an overview of the use of flow cytometry in disease-specific diagnosis of PIDs, in addition to other broader applications, which include immune phenotyping and cellular functional measurements. PMID:26912782

  13. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    PubMed

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  14. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    PubMed

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-01-01

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation. PMID:26114386

  15. A novel quantitative kinase assay using bacterial surface display and flow cytometry.

    PubMed

    Henriques, Sónia Troeira; Thorstholm, Louise; Huang, Yen-Hua; Getz, Jennifer A; Daugherty, Patrick S; Craik, David J

    2013-01-01

    The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli) to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.

  16. High-throughput autofluorescence flow cytometry of breast cancer metabolism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.

    2016-02-01

    Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.

  17. Flow cytometry as an improved method for the titration of Chlamydiaceae and other intracellular bacteria.

    PubMed

    Käser, T; Pasternak, J A; Hamonic, G; Rieder, M; Lai, K; Delgado-Ortega, M; Gerdts, V; Meurens, F

    2016-05-01

    Chlamydiaceae is a family of intracellular bacteria causing a range of diverse pathological outcomes. The most devastating human diseases are ocular infections with C. trachomatis leading to blindness and genital infections causing pelvic inflammatory disease with long-term sequelae including infertility and chronic pelvic pain. In order to enable the comparison of experiments between laboratories investigating host-chlamydia interactions, the infectious titer has to be determined. Titer determination of chlamydia is most commonly performed via microscopy of host cells infected with a serial dilution of chlamydia. However, other methods including fluorescent ELISpot (Fluorospot) and DNA Chip Scanning Technology have also been proposed to enumerate chlamydia-infected cells. For viruses, flow cytometry has been suggested as a superior alternative to standard titration methods. In this study we compared the use of flow cytometry with microscopy and Fluorospot for the titration of C. suis as a representative of other intracellular bacteria. Titer determination via Fluorospot was unreliable, while titration via microscopy led to a linear read-out range of 16 - 64 dilutions and moderate reproducibility with acceptable standard deviations within and between investigators. In contrast, flow cytometry had a vast linear read-out range of 1,024 dilutions and the lowest standard deviations given a basic training in these methods. In addition, flow cytometry was faster and material costs were lower compared to microscopy. Flow cytometry offers a fast, cheap, precise, and reproducible alternative for the titration of intracellular bacteria like C. suis. © 2016 International Society for Advancement of Cytometry. PMID:26849001

  18. Flow cytometry as an improved method for the titration of Chlamydiaceae and other intracellular bacteria.

    PubMed

    Käser, T; Pasternak, J A; Hamonic, G; Rieder, M; Lai, K; Delgado-Ortega, M; Gerdts, V; Meurens, F

    2016-05-01

    Chlamydiaceae is a family of intracellular bacteria causing a range of diverse pathological outcomes. The most devastating human diseases are ocular infections with C. trachomatis leading to blindness and genital infections causing pelvic inflammatory disease with long-term sequelae including infertility and chronic pelvic pain. In order to enable the comparison of experiments between laboratories investigating host-chlamydia interactions, the infectious titer has to be determined. Titer determination of chlamydia is most commonly performed via microscopy of host cells infected with a serial dilution of chlamydia. However, other methods including fluorescent ELISpot (Fluorospot) and DNA Chip Scanning Technology have also been proposed to enumerate chlamydia-infected cells. For viruses, flow cytometry has been suggested as a superior alternative to standard titration methods. In this study we compared the use of flow cytometry with microscopy and Fluorospot for the titration of C. suis as a representative of other intracellular bacteria. Titer determination via Fluorospot was unreliable, while titration via microscopy led to a linear read-out range of 16 - 64 dilutions and moderate reproducibility with acceptable standard deviations within and between investigators. In contrast, flow cytometry had a vast linear read-out range of 1,024 dilutions and the lowest standard deviations given a basic training in these methods. In addition, flow cytometry was faster and material costs were lower compared to microscopy. Flow cytometry offers a fast, cheap, precise, and reproducible alternative for the titration of intracellular bacteria like C. suis. © 2016 International Society for Advancement of Cytometry.

  19. National flow cytometry and sorting research resource. Annual progress report, July, 1, 1994--June 30, 1995, Year 12

    SciTech Connect

    Jett, J.H.

    1995-04-27

    Research progress utilizing flow cytometry is described. Topics include: rapid kinetics flow cytometry; characterization of size determinations for small DNA fragments; statistical analysis; energy transfer measurements of molecular confirmation in micelles; and enrichment of Mus spretus chromosomes by dual parameter flow sorting and identification of sorted fractions by fluorescence in-situ hybridization onto G-banded mouse metaphase spreads.

  20. Determination of natural killer cell function by flow cytometry.

    PubMed Central

    Kane, K L; Ashton, F A; Schmitz, J L; Folds, J D

    1996-01-01

    Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity. PMID:8705672

  1. Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development

    PubMed Central

    Schwickart, Martin; Schneider, Amy K.; Vainshtein, Inna; Del Nagro, Christopher; Standifer, Nathan; Roskos, Lorin K.

    2015-01-01

    Receptor occupancy (RO) assays are designed to quantify the binding of therapeutics to their targets on the cell surface and are frequently used to generate pharmacodynamic (PD) biomarker data in nonclinical and clinical studies of biopharmaceuticals. When combined with the pharmacokinetic (PK) profile, RO data can establish PKPD relationships, which are crucial for informing dose decisions. RO is commonly measured by flow cytometry on fresh blood specimens and is subject to numerous technical and logistical challenges. To ensure that reliable and high quality results are generated from RO assays, careful assay design, key reagent characterization, data normalization/reporting, and thorough planning for implementation are of critical importance during development. In this article, the authors share their experiences and perspectives in these areas and discuss challenges and potential solutions when developing and implementing a flow cytometry‐based RO method in support of biopharmaceutical drug development. © 2015 The Authors Cytometry Part B: Clinical Cytometry Published by Wiley Periodicals, Inc. PMID:26054054

  2. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    PubMed Central

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  3. Computational prediction of manually gated rare cells in flow cytometry data.

    PubMed

    Qiu, Peng

    2015-07-01

    Rare cell identification is an interesting and challenging question in flow cytometry data analysis. In the literature, manual gating is a popular approach to distill flow cytometry data and drill down to the rare cells of interest, based on prior knowledge of measured protein markers and visual inspection of the data. Several computational algorithms have been proposed for rare cell identification. To compare existing algorithms and promote new developments, FlowCAP-III put forward one computational challenge that focused on this question. The challenge provided flow cytometry data for 202 training samples and two manually gated rare cell types for each training sample, roughly 0.02 and 0.04% of the cells, respectively. In addition, flow cytometry data for 203 testing samples were provided, and participants were invited to computationally identify the rare cells in the testing samples. Accuracy of the identification results was evaluated by comparing to manual gating of the testing samples. We participated in the challenge, and developed a method that combined the Hellinger divergence, a downsampling trick and the ensemble SVM. Our method achieved the highest accuracy in the challenge.

  4. Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art

    PubMed Central

    Hossain, Md. Sharoare; Johannisson, Anders; Wallgren, Margareta; Nagy, Szabolcs; Siqueira, Amanda Pimenta; Rodriguez-Martinez, Heriberto

    2011-01-01

    Flow cytometry is now a recognized methodology within animal spermatology, and has moved from being a research tool to become routine in the assessment of animal semen destined to breeding. The availability of ‘bench-top' flow cytometers and of newer and versatile markers for cell structure and function had allowed the instrumentation to measure more sperm parameters, from viability to reactiveness when exposed to exogenous stimuli, and to increase our capabilities to sort spermatozoa for potential fertilizing capacity, or chromosomal sex. The present review summarizes the state of the art regarding flow cytometry applied to animal andrology, albeit keeping an open comparative intent. It critically evaluates the present and future capabilities of flow cytometry for the diagnostics of potential fertility and for the development of current reproductive technologies such as sperm freezing, sperm selection and sperm sorting. The flow cytometry methods will probably further revolutionize our understanding of the sperm physiology and their functionality, and will undoubtedly extend its application in isolating many uncharacterized features of spermatozoa. However, continuous follow-up of the methods is a necessity owing to technical developments and the complexity of mapping spermatozoa. PMID:21478895

  5. Computational prediction of manually gated rare cells in flow cytometry data1

    PubMed Central

    Qiu, Peng

    2015-01-01

    Rare cell identification is an interesting and challenging question in flow cytometry data analysis. In the literature, manual gating is a popular approach to distill flow cytometry data and drill down to the rare cells of interest, based on prior knowledge of measured protein markers and visual inspection of the data. Several computational algorithms have been proposed for rare cell identification. To compare existing algorithms and promote new developments, FlowCAP-III put forward one computational challenge that focused on this question. The challenge provided flow cytometry data for 202 training samples and two manually gated rare cell types for each training sample, roughly 0.02% and 0.04% of the cells, respectively. In addition, flow cytometry data for 203 testing samples were provided, and participants were invited to computationally identify the rare cells in the testing samples. Accuracy of the identification results was evaluated by comparing to manual gating of the testing samples. We participated in the challenge, and developed a method that combined the Hellinger divergence, a downsampling trick and the ensemble SVM. Our method achieved the highest accuracy in the challenge. PMID:25755118

  6. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia.

    PubMed

    Karawajew, Leonid; Dworzak, Michael; Ratei, Richard; Rhein, Peter; Gaipa, Giuseppe; Buldini, Barbara; Basso, Giuseppe; Hrusak, Ondrej; Ludwig, Wolf-Dieter; Henze, Günter; Seeger, Karl; von Stackelberg, Arend; Mejstrikova, Ester; Eckert, Cornelia

    2015-07-01

    Multiparametric flow cytometry is an alternative approach to the polymerase chain reaction method for evaluating minimal residual disease in treatment protocols for primary acute lymphoblastic leukemia. Given considerable differences between primary and relapsed acute lymphoblastic leukemia treatment regimens, flow cytometric assessment of minimal residual disease in relapsed leukemia requires an independent comprehensive investigation. In the present study we addressed evaluation of minimal residual disease by flow cytometry in the clinical trial for childhood relapsed acute lymphoblastic leukemia using eight-color flow cytometry. The major challenge of the study was to reliably identify low amounts of residual leukemic cells against the complex background of regeneration, characteristic of follow-up samples during relapse treatment. In a prospective study of 263 follow-up bone marrow samples from 122 patients with B-cell precursor acute lymphoblastic leukemia, we tested various B-cell markers, adapted the antibody panel to the treatment protocol, and evaluated its performance by a blinded parallel comparison with the polymerase chain reaction data. The resulting eight-color single-tube panel showed a consistently high overall concordance (P<0.001) and, under optimal conditions, sensitivity similar to that of the reference polymerase chain reaction method. Overall, evaluation of minimal residual disease by flow cytometry can be successfully integrated into the clinical management of relapsed childhood acute lymphoblastic leukemia either as complementary to the polymerase chain reaction or as an independent risk stratification tool. ALL-REZ BFM 2002 clinical trial information: NCT00114348.

  7. Ultrasonic analyte concentration and application in flow cytometry

    DOEpatents

    Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven

    2008-03-11

    The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.

  8. Ultrasonic analyte concentration and application in flow cytometry

    SciTech Connect

    Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven

    2015-07-07

    The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.

  9. Ultrasonic analyte concentration and application in flow cytometry

    SciTech Connect

    Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven

    2014-07-22

    The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.

  10. Circulation times of cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  11. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  12. Application of flow cytometry to detection and characterization of Legionella spp

    SciTech Connect

    Tyndall, R.L.; Hand, R.E. Jr.; Mann, R.C.; Evans, C.; Jernigan, R.

    1985-04-01

    Flow cytometry, using fluorescein-bound specific antibodies and propidium iodide, was shown to be effective in detecting Legionella spp. in cooling tower waters. The procedure was quicker and less labor intensive than fluorescent microscopy. The use of these procedures also identified qualitative differences, perhaps related to infectivity, in Legionella populations.

  13. Improved Method for Bacterial Cell Capture after Flow Cytometry Cell Sorting ▿

    PubMed Central

    Guillebault, D.; Laghdass, M.; Catala, P.; Obernosterer, I.; Lebaron, P.

    2010-01-01

    Fixed cells with different nucleic acid contents and scatter properties (low nucleic acid [LNA], high nucleic acid 1 [HNA1], and HNA2) were sorted by flow cytometry (FCM). For each sort, 10,000 cells were efficiently captured on poly-l-lysine-coated microplates, resulting in efficient and reproducible PCR amplification. PMID:20817799

  14. Flow cytometry of sputum: assessing inflammation and immune response elements in the bronchial airways**

    EPA Science Inventory

    Rationale: The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. ...

  15. Teaching the Microbial Growth Curve Concept Using Microalgal Cultures and Flow Cytometry

    ERIC Educational Resources Information Center

    Forget, Nathalie; Belzile, Claude; Rioux, Pierre; Nozais, Christian

    2010-01-01

    The microbial growth curve is widely studied within microbiology classes and bacteria are usually the microbial model used. Here, we describe a novel laboratory protocol involving flow cytometry to assess the growth dynamics of the unicellular microalgae "Isochrysis galbana." The algal model represents an appropriate alternative to bacteria…

  16. A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots

    SciTech Connect

    Kovtun, Oleg; Ross, Emily; Tomlinson, Ian; Rosenthal, Sandra

    2012-01-01

    Here we present the development and validation of a flow cytometry-based dopamine transporter (DAT) binding assay that uses antagonist-conjugated quantum dots (QDs).We anticipate that our QD-based assay is of immediate value to the high throughput screening of novel DAT modulators.

  17. Data File Standard for Flow Cytometry, Version FCS 3.1

    SciTech Connect

    Spidlen, Josef; Moore, Wayne; Parks, David; Goldberg, Michael; Bray, Chris; Gorombey, Peter; Hyun, Bill; Hubbard, Mark; Lange, Simon; Lefebvre, Ray; Leif, Robert; Novo, David; Ostruszka, Leo; Treister, Adam; Wood, James; Murphy, Robert F.; Roederer, Mario; Sudar, Damir; Zigon, Robert; Brinkman, Ryan R.; Brierre, Pierre

    2009-11-10

    The flow cytometry data file standard provides the specifications needed to completely describe flow cytometry data sets within the confines of the file containing the experimental data. In 1984, the first Flow Cytometry Standard format for data files was adopted as FCS 1.0. This standard was modified in 1990 as FCS 2.0 and again in 1997 as FCS 3.0. We report here on the next generation flow cytometry standard data file format. FCS 3.1 is a minor revision based on suggested improvements from the community. The unchanged goal of the standard is to provide a uniform file format that allows files created by one type of acquisition hardware and software to be analyzed by any other type. The FCS 3.1 standard retains the basic FCS file structure and most features of previous versions of the standard. Changes included in FCS 3.1 address potential ambiguities in the previous versions and provide a more robust standard. The major changes include simplified support for international characters and improved support for storing compensation. The major additions are support for preferred display scale, a standardized way of capturing the sample volume, information about originality of the data file, and support for plate and well identification in high throughput, plate based experiments. Please see the normative version of the FCS 3.1 specification in Supporting Information for this manuscript (or at http://www.isac-net.org/ in the Current standards section) for a complete list of changes.

  18. Detection of single lambda DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Keller, R.A. )

    1993-01-01

    The authors have demonstrated flow cytometric detection and sizing of single pieces of fluorescently stained lambda DNA (48.5 kb) and individual Kpn I restriction fragments of lambda DNA at 17.05 kb and 29.95 kb. DNA fragments were stained stoichiometrically with an intercalating dye such that the fluorescence from each fragment was directly proportional to fragment length. Laser powers range from 10 to 100 mW and transit times through the focused laser beam were several milliseconds. Measurements were made using time-resolved single photon counting of the detected fluorescence emission from individual stained DNA fragments. Samples were analyzed at rates of about 50 fragments per second. The measured fluorescence intensities are linearly correlated with DNA fragment length over the range measured. Detection sensitivity and resolution needed for analysis of small pieces of DNA are discussed and a comparison of single photon counting measurements of DNA fragments to measurements using more conventional flow cytometers is made. Applications of this methodology to DNA sizing and DNA fingerprinting are discussed.

  19. Applications of fixed-time flow cytometry in cell biology

    NASA Astrophysics Data System (ADS)

    Tarnok, Attila

    1998-04-01

    Flow cytometric (FCM) measurement of intracellular free calcium [Ca2+]i, transients is usually done by two methods: (a) after a short prerun period to assess the baseline the measurement is stopped, stimulus is added and the measurement continued or (b) stimulus is injected during measurement and the sample pressure briefly increased to deliver cells rapidly to the detection point. In (a) measurement of very short transients [Ca2+]i is impeded by the lag time between stimulus addition and restart of acquisition. In (b) response of pressure sensitive cells is hard to analyze. Furthermore, (a) and (b) do not allow to quantify and sort rare responders. A simple Fixed- Time device has been developed. Ca2+ sensitive fluorescent dye labeled cells and a stimulus are placed in different vials. Both fluids are forced by the same pressure through tubing that merges into a T-junction where they mix and are delivered through a connecting tube to the FCM: [Ca2+]i is measured at a certain time after stimulation that is adjusted by sample flow rate and length of the connecting tube. With Fixed-Time, the pressure sensitive neuronal NH15-CA2 cell was analyzed. Furthermore, rare neurotransmitter responsive fibroblast from normal and transfected cultures were sorted and cloned and their dose response characterized. The results demonstrate that fixed- time FCM is an important tool for the analysis of the cells physiology and the preparation of responders.

  20. Sex-sorting sperm using flow cytometry/cell sorting.

    PubMed

    Garner, Duane L; Evans, K Michael; Seidel, George E

    2013-01-01

    The sex of mammalian offspring can be predetermined by flow sorting relatively pure living populations of X- and Y-chromosome-bearing sperm. This method is based on precise staining of the DNA of sperm with the nucleic acid-specific fluorophore, Hoechst 33342, to differentiate between the subpopulations of X- and Y-sperm. The fluorescently stained sperm are then sex-sorted using a specialized high speed sorter, MoFlo(®) SX XDP, and collected into biologically supportive media prior to reconcentration and cryopreservation in numbers adequate for use with artificial insemination for some species or for in vitro fertilization. Sperm sorting can provide subpopulations of X- or Y-bearing bovine sperm at rates in the 8,000 sperm/s range while maintaining; a purity of 90% such that it has been applied to cattle on a commercial basis. The sex of offspring has been predetermined in a wide variety of mammalian species including cattle, swine, horses, sheep, goats, dogs, cats, deer, elk, dolphins, water buffalo as well as in humans using flow cytometric sorting of X- and Y-sperm. PMID:22992923

  1. Sex-sorting sperm using flow cytometry/cell sorting.

    PubMed

    Garner, Duane L; Evans, K Michael; Seidel, George E

    2013-01-01

    The sex of mammalian offspring can be predetermined by flow sorting relatively pure living populations of X- and Y-chromosome-bearing sperm. This method is based on precise staining of the DNA of sperm with the nucleic acid-specific fluorophore, Hoechst 33342, to differentiate between the subpopulations of X- and Y-sperm. The fluorescently stained sperm are then sex-sorted using a specialized high speed sorter, MoFlo(®) SX XDP, and collected into biologically supportive media prior to reconcentration and cryopreservation in numbers adequate for use with artificial insemination for some species or for in vitro fertilization. Sperm sorting can provide subpopulations of X- or Y-bearing bovine sperm at rates in the 8,000 sperm/s range while maintaining; a purity of 90% such that it has been applied to cattle on a commercial basis. The sex of offspring has been predetermined in a wide variety of mammalian species including cattle, swine, horses, sheep, goats, dogs, cats, deer, elk, dolphins, water buffalo as well as in humans using flow cytometric sorting of X- and Y-sperm.

  2. Flow-cytometry-based DNA hybidization and polymorphism analysis

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Kommander, Kristina; White, P. S.; Nolan, John P.

    1998-05-01

    Functional analysis of the human genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well- suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. We are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. Our approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advantages of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  3. Quantifying spore viability of the honey bee pathogen Nosema apis using flow cytometry.

    PubMed

    Peng, Yan; Lee-Pullen, Tracey F; Heel, Kathy; Millar, A Harvey; Baer, Boris

    2014-05-01

    Honey bees are hosts to more than 80 different parasites, some of them being highly virulent and responsible for substantial losses in managed honey bee populations. The study of honey bee pathogens and their interactions with the bees' immune system has therefore become a research area of major interest. Here we developed a fast, accurate and reliable method to quantify the viability of spores of the honey bee gut parasite Nosema apis. To verify this method, a dilution series with 0, 25, 50, 75, and 100% live N. apis was made and SYTO 16 and Propidium Iodide (n = 35) were used to distinguish dead from live spores. The viability of spores in each sample was determined by flow cytometry and compared with the current method based on fluorescence microscopy. Results show that N. apis viability counts using flow cytometry produced very similar results when compared with fluorescence microscopy. However, we found that fluorescence microscopy underestimates N. apis viability in samples with higher percentages of viable spores, the latter typically being what is found in biological samples. A series of experiments were conducted to confirm that flow cytometry allows the use of additional fluorescent dyes such as SYBR 14 and SYTOX Red (used in combination with SYTO 16 or Propidium Iodide) to distinguish dead from live spores. We also show that spore viability quantification with flow cytometry can be undertaken using substantially lower dye concentrations than fluorescence microscopy. In conclusion, our data show flow cytometry to be a fast, reliable method to quantify N. apis spore viabilities, which has a number of advantages compared with existing methods.

  4. Flow cytometry detection of vitamin D receptor changes during vitamin D treatment in Crohn's disease.

    PubMed

    Bendix, M; Dige, A; Deleuran, B; Dahlerup, J F; Jørgensen, S P; Bartels, L E; Husted, L B; Harsløf, T; Langdahl, B; Agnholt, J

    2015-07-01

    Crohn's disease (CD) is a chronic inflammatory disease associated with a dysregulated T cell response towards intestinal microflora. Vitamin D has immune modulatory effects on T cells through the nuclear vitamin D receptor (VDR) in vitro. It is unclear how oral vitamin D treatment affects VDR expression. The aim of this study was to establish a flow cytometry protocol, including nuclear and cytoplasmic VDR expression, and to investigate the effects of vitamin D treatment on T cell VDR expression in CD patients. The flow cytometry protocol for VDR staining was developed using the human acute monocytic leukaemia cell line (THP-1). The protocol was evaluated in anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) from vitamin D3- (n = 9) and placebo-treated (n = 9) CD patients. Anti-VDR-stained PBMCs were examined by flow cytometry, and their cytokine production was determined by cytokine bead array. VDR, CYP27B1 and RXRα mRNA expression levels in CD4(+) T cells were measured by quantitative reverse transcriptase polymerase chain reaction. The flow cytometry protocol enabled detection of cytoplasmic and nuclear VDR expression. The results were confirmed by confocal microscopy and supported by correlation with VDR mRNA expression. VDR expression in CD4(+) T cells increased following stimulation. This VDR up-regulation was inhibited with 30% by vitamin D treatment compared to placebo in CD patients (P = 0027). VDR expression was correlated with in-vitro interferon-γ production in stimulated PBMCs (P = 0.01). Flow cytometry is a useful method with which to measure intracellular VDR expression. Vitamin D treatment in CD patients reduces T cell receptor-mediated VDR up-regulation.

  5. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data.

    PubMed

    Van Gassen, Sofie; Callebaut, Britt; Van Helden, Mary J; Lambrecht, Bart N; Demeester, Piet; Dhaene, Tom; Saeys, Yvan

    2015-07-01

    The number of markers measured in both flow and mass cytometry keeps increasing steadily. Although this provides a wealth of information, it becomes infeasible to analyze these datasets manually. When using 2D scatter plots, the number of possible plots increases exponentially with the number of markers and therefore, relevant information that is present in the data might be missed. In this article, we introduce a new visualization technique, called FlowSOM, which analyzes Flow or mass cytometry data using a Self-Organizing Map. Using a two-level clustering and star charts, our algorithm helps to obtain a clear overview of how all markers are behaving on all cells, and to detect subsets that might be missed otherwise. R code is available at https://github.com/SofieVG/FlowSOM and will be made available at Bioconductor. PMID:25573116

  6. Flow cytometry for the development of biotechnological processes with microalgae.

    PubMed

    Hyka, P; Lickova, S; Přibyl, P; Melzoch, K; Kovar, K

    2013-01-01

    The current interest in microalgae as a sustainable source of next generation biofuels and other valuable substances is driving exploration of their use as unique biotechnological production systems. To design and optimise appropriate production strategies, the behaviour of particular microalgal species should be well characterised under different culture conditions. Thus, flow cytometric (FCM) methods, which are already well established in environmental and toxicological studies of microalgae, are also useful for analysing the physiological state of microalgae, and have the potential to contribute to the rapid development of feasible bioprocesses. These methods are commonly based on the examination of intrinsic features of individual cells within a population (such as autofluorescence or size). Cells possessing the desired physiological or morphological features, which are detectable with or without fluorescent staining, are counted or isolated (sorted) using an FCM device. The options for implementation of FCM in the development of biotechnological processes detailed in this review are (i) analysing the chemical composition of biomass, (ii) monitoring cellular enzyme activity and cell viability, and (iii) sorting cells to isolate those overproducing the target compound or for the preparation of axenic cultures.

  7. Heterogeneity of salivary gland tumors studied by flow cytometry.

    PubMed

    Tytor, M; Gemryd, P; Wingren, S; Grenko, R T; Lundgren, J; Lundquist, P G; Nordenskjöld, B

    1993-01-01

    Intratumor DNA heterogeneity was investigated by flow cytometric analysis of multiple samples taken from different sites of 8 benign and 16 malignant primarily resected salivary gland tumors. All benign tumors had diploid DNA content. The overall incidence of DNA diploidy in 16 malignant cases examined was 50%. Intratumor differences in DNA ploidy were observed in four malignant tumors (25%); 2 of these 4 heterogeneous tumors contained both aneuploid and diploid cell clones. The remaining 12 tumors showed a homogeneous DNA content in the different specimens; 8 were diploid, 3 aneuploid, and 1 was polypoid. The DNA nondiploid tumors were clinically more advanced than the DNA diploid ones (p < 0.01). The tumor proliferation rate (fraction of cells in S-phase) was higher in DNA nondiploid samples than in diploid ones (p < 0.01). The DNA nondiploid tumors seemed to recur more often than DNA diploid ones did. The data emphasize the usefulness of DNA measurements for the characterization of malignant salivary gland tumors but also the importance of adequate sampling in assessing their DNA ploidy.

  8. In vivo plant flow cytometry: A first proof-of-concept

    PubMed Central

    Nedosekin, Dmitry A.; Khodakovskaya, Mariya V.; Biris, Alexandru S.; Wang, Daoyuan; Xu, Yang; Villagarcia, Hector; Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2011-01-01

    In vivo flow cytometry has facilitated advances in the ultrasensitive detection of tumor cells, bacteria, nanoparticles, dyes, and other normal and abnormal objects directly in blood and lymph circulatory systems. Here, we propose in vivo plant flow cytometry for the real-time noninvasive study of nanomaterial transport in xylem and phloem plant vascular systems. As a proof of this concept, we demonstrate in vivo real-time photoacoustic monitoring of quantum dot-carbon nanotube conjugate uptake and uptake by roots and spreading through stem to leaves in a tomato plant. In addition, in vivo scanning cytometry using multimodal photoacoustic, photothermal, and fluorescent detection schematics provided multiplex detection and identification of nanoparticles accumulated in plant leaves in the presence of intensive absorption, scattering, and autofluorescent backgrounds. The use of a portable fiber-based photoacoustic flow cytometer for studies of plant vasculature was demonstrated. These integrated cytometry modalities using both endogenous and exogenous contrast agents have a potential to open new avenues of in vivo study of the nutrients, products of photosynthesis and metabolism, nanoparticles, infectious agents, and other objects transported through plant vasculature. PMID:21905208

  9. Metabolic activity in filamentous fungi can be analysed by flow cytometry.

    PubMed

    Bradner, J R; Nevalainen, K M H

    2003-08-01

    The use of flow cytometry in combination with fluorescent dyes as a technique to rapidly differentiate and enumerate bacterial and yeast cells is well established. We have shown that through the judicial choice of stains, the nondestructive screening and sorting of fungal material is possible. The early stages of growth, from germination through hyphal development of three filamentous fungal species, Penicillium, Phoma and Trichoderma, have been followed using forward- and side-angle scatter on a Becton Dickinson FACSCalibur flow cytometer. By staining isolates with the permeant fluorogenic substrates, dihydroethidium and hexidium iodide metabolic activity in the developing hyphae has been measured. We have been able to demonstrate that there is a 12-13 h window of opportunity during which germination and the early stages of hyphal development of filamentous fungi can be analysed by flow cytometry.

  10. Label-free cell cycle analysis for high-throughput imaging flow cytometry

    PubMed Central

    Blasi, Thomas; Hennig, Holger; Summers, Huw D.; Theis, Fabian J.; Cerveira, Joana; Patterson, James O.; Davies, Derek; Filby, Andrew; Carpenter, Anne E.; Rees, Paul

    2016-01-01

    Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types. PMID:26739115

  11. Real Time Detection of Protein Trafficking with High Throughput Flow Cytometry (HTFC) and Fluorogen Activating Protein (FAP) Base Biosensor

    PubMed Central

    Wu, Yang; Tapia, Phillip H.; Jarvik, Jonathan; Waggoner, Alan S.; Sklar, Larry A.

    2014-01-01

    We combined fluorogen activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform allows drug discovery for trafficking receptors, such as G-protein coupled receptors, receptor tyrosine kinases and ion channels, that were previously not suitable for high throughput screening by flow cytometry.. The system has been validated using the β2-adrenergic receptor (β2AR) system and extended to other GPCRs. When a chemical library containing ~1,200 off-patent drugs was screened against cells expressing FAP tagged β2AR, all known β2AR active ligands in the library were successfully identified, together with a few compounds that were later confirmed to regulate receptor internalization in a non-traditional manner. The unexpected discovery of new ligands by this approach indicates the potential of using this protocol for GPCR de-orphanization. In addition, screens of multiplexed targets promise improved efficiency with minor protocol modification. PMID:24510772

  12. Phospho-proteomic immune analysis by flow cytometry: from mechanism to translational medicine at the single-cell level.

    PubMed

    Perez, Omar D; Nolan, Garry P

    2006-04-01

    Understanding a molecular basis for cellular function is a common goal of biomedicine. The complex and dynamic cellular processes underlying physiological processes become subtly or grossly perturbed in human disease. A primary objective is to demystify this complexity by creating and establishing relevant model systems to study important aspects of human disease. Although significant technological advancements over the last decade in both genomic and proteomic arenas have enabled progress, accessing the complexity of cellular interactions that occur in vivo has been a difficult arena in which to make progress. Moreover, there are extensive challenges in translating research tools to clinical applications. Flow cytometry, over the course of the last 40 years, has revolutionized the field of immunology, in both the basic science and clinical settings, as well as having been instrumental to new and exciting areas of discovery such as stem cell biology. Multiparameter machinery and systems exist now to access the heterogeneity of cellular subsets and enable phenotypic characterization and functional assays to be performed on material from both animal models and humans. This review focuses primarily on the development and application of using activation-state readouts of intracellular activity for phospho-epitopes. We present recent work on how a flow cytometric platform is used to obtain mechanistic insight into cellular processes as well as highlight the clinical applications that our laboratory has explored. Furthermore, this review discusses the challenges faced with processing high-content multidimensional and multivariate data sets. Flow cytometry, as a platform that is well situated in both the research and clinical settings, can contribute to drug discovery as well as having utility for both biomarker and patient-stratification.

  13. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    PubMed Central

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-01-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis. PMID:27596736

  14. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood.

    PubMed

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-01-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis. PMID:27596736

  15. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening

    PubMed Central

    Galanzha, Ekaterina I; Tuchin, Valery V; Zharov, Vladimir P

    2007-01-01

    Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed. PMID:17226898

  16. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    NASA Astrophysics Data System (ADS)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  17. Waveguide detection of right-angle-scattered light in flow cytometry

    DOEpatents

    Mariella, Jr., Raymond P.

    2000-01-01

    A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.

  18. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry

    PubMed Central

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E.; Luker, Gary D.; Norris, Theodore B.; Baker, James R.

    2008-01-01

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes. PMID:19221581

  19. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    PubMed

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  20. Validation of algal viability treated with total residual oxidant and organic matter by flow cytometry.

    PubMed

    Lee, Junghyun; Choi, Eun Joo; Rhie, Kitae

    2015-08-15

    Algal cell growth after starch and oxidant treatments in seawater species (Isochrysis galbana and Phaeodactylum tricornutum) and freshwater species (Selenastrum capricornutum and Scenedesmus obliquus) were evaluated by flow cytometry with fluorescein diacetate (FDA) staining to determine algal viability. Growth of algal cell was found to be significantly different among groups treated with NaOCl, starch and/or sodium thiosulfate, which are active substance (Total Residual Oxidant; TRO as Cl2), organic compound to meet efficacy testing standard and neutralizer of TRO by Ballast Water Management Convention of International Maritime Organization, respectively. The viability of algal cell treated with TRO in starch-add culture of 5days after treatment and neutralization was decreased significantly. ATP contents of the treated algal cells corresponded to the FL1 fluorescent signal of flow cytometry with FDA staining. I. galbana was the most sensitive to TRO-neutralized cultures during viability analysis.

  1. Use of Flow Cytometry to Measure Biogeochemical Rates and Processes in the Ocean

    NASA Astrophysics Data System (ADS)

    Lomas, Michael W.; Bronk, Deborah A.; van den Engh, Ger

    2011-01-01

    An important goal of marine biogeochemists is to quantify the rates at which elements cycle through the ocean's diverse microbial assemblage, as well as to determine how these rates vary in time and space. The traditional view that phytoplankton are producers and bacteria are consumers has been found to be overly simplistic, and environmental metagenomics is discovering new and important microbial metabolisms at an accelerating rate. Many nutritional strategies previously attributed to one microorganism or functional group are also or instead carried out by other groups. To tease apart which organism is doing what will require new analytical approaches. Flow cytometry, when combined with other techniques, has great potential for expanding our understanding of microbial interactions because groups can be distinguished optically, sorted, and then collected for subsequent analyses. Herein, we review the advances in our understanding of marine biogeochemistry that have arisen from the use of flow cytometry.

  2. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials.

    PubMed

    Grimberg, Brian T; Jaworska, Maria M; Hough, Lindsay B; Zimmerman, Peter A; Phillips, James G

    2009-09-15

    A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.

  3. Detection of antibodies to Staphylococcus aureus in water buffalo milk by flow cytometry.

    PubMed

    D'Apice, L; Fenizia, D; Capparelli, R; Scala, F; Iannelli, D

    1996-03-01

    An assay has been developed to detect antibodies to Staphylococcus aureus in water buffalo milk by flow cytometry. The method was the protein A-deficient strain Wood 46 of S aureus incubated with milk samples and fluorescein-labelled rabbit anti-water buffalo antiserum. The assay can detect antibodies when the pathogen is not detectable by bacterial tests and can determine the antibody titre directly on undiluted samples.

  4. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  5. Characterisation of the green turtle's leukocyte subpopulations by flow cytometry and evaluation of their phagocytic activity.

    PubMed

    Muñoz, F A; Franco-Noguez, S Y; Gonzalez-Ballesteros, E; Negrete-Philippe, A C; Flores-Romo, L

    2014-06-01

    Phagocytosis is a fundamental aspect of innate immunity that is conserved across many species making it a potentially useful health-assessment tool for wildlife. In non-mammalian vertebrates, heterophils, monocytes, macrophages, melanomacrophages, and thrombocytes all have phagocytic properties. Recently, B lymphocytes from fish, amphibians, and aquatic turtles have also showed phagocytic capacity. Phagocytes can be studied by flow cytometry; however, the use of this tool is complicated in reptiles partly because nucleated erythrocytes complicate the procedure. We separated green turtle leukocytes by density gradient centrifugation and identified subpopulations by flow cytometry and confocal microscopy. Additionally, we assessed their ability to phagocytize Fluorspheres and Ovoalbumin-Alexa. We found that heterophils and lymphocytes but not monocytes could be easily identified by flow cytometry. While heterophils from adults and juvenile turtles were equally able to phagocytize fluorspheres, adults had significantly more phagocytic ability for OVA-Alexa. Lymphocytes had a mild phagocytic activity with fluorospheres (27-38 %; 39-45 %) and OVA-Alexa (35-46 %; 14-22 %) in juvenile and adult green turtles, respectively. Confocal microscopy confirmed phagocytosis of fluorospheres in both heterophils and lymphocytes. This provides the first evidence that green turtle lymphocytes have phagocytic activity and that this assay could potentially be useful to measure one aspect of innate immunity in this species. PMID:24570347

  6. Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation.

    PubMed

    Kinet, R; Dzaomuho, P; Baert, J; Taminiau, B; Daube, G; Nezer, C; Brostaux, Y; Nguyen, F; Dumont, G; Thonart, P; Delvigne, F

    2016-08-01

    Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming widely used for studying phenotypic and genotypic diversity among microbial communities. This technology is considered in this work for the assessment of a bioaugmentation treatment in order to enhance cellulolytic potential of landfill leachate. The experimental results reveal the relevant increase of leachate cellulolytic potential due to bioaugmentation. Cytometric monitoring of microbial dynamics along these assays is then realized. The flow FP package is used to establish microbial samples fingerprint from initial 2D cytometry histograms. This procedure allows highlighting microbial communities' variation along the assays. Cytometric and 16S rRNA gene sequencing fingerprinting methods are then compared. The two approaches give same evidence about microbial dynamics throughout digestion assay. There are however a lack of significant correlation between cytometric and amplicon sequencing fingerprint at genus or species level. Same phenotypical profiles of microbiota during assays matched to several 16S rRNA gene sequencing ones. Flow cytometry fingerprinting can thus be considered as a promising routine on-site method suitable for the detection of stability/variation/disturbance of complex microbial communities involved in bioprocesses. PMID:27160955

  7. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts

    PubMed Central

    Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Sawant, Rupa; Torchilin, Vladimir P.; Verkhusha, Vladislav V.; Ma, Jie; Frank, Markus H.; Biris, Alexandru S.; Zharov, Vladimir P.

    2012-01-01

    In vivo photoacoustic (PA) and fluorescence flow cytometry were previously applied separately using pulsed and continuous wave lasers respectively, and positive contrast detection mode only. This paper introduces a real-time integration of both techniques with positive and negative contrast modes using only pulsed lasers. Various applications of this new tool are summarized, including detection of liposomes loaded with Alexa-660 dye, red blood cells labeled with Indocyanine Green, B16F10 melanoma cells co-expressing melanin and green fluorescent protein (GFP), C8161-GFP melanoma cells targeted by magnetic nanoparticles, MTLn3 adenocarcinoma cells expressing novel near-infrared iRFP protein, and quantum dot-carbon nanotube conjugates. Negative contrast flow cytometry provided label-free detection of low absorbing or weakly fluorescent cells in blood absorption and autofluorescence background, respectively. The use of pulsed laser for time-resolved discrimination of objects with long fluorescence lifetime (e.g., quantum dots) from shorter autofluorescence background (e.g., blood plasma) is also highlighted in this paper. The supplementary nature of PA and fluorescence detection increased the versatility of the integrated method for simultaneous detection of probes and cells having various absorbing and fluorescent properties, and provided verification of PA data using a more established fluorescence based technique. The principles of integrated photoacoustic and fluorescence flow cytometry using positive contrast for detection of strongly absorbing and fluorescent cells and negative contrast for detection of weakly absorbing and fluorescent cells in blood absorption and autofluorescence background, respectively. PMID:22903924

  8. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.

    PubMed

    Qiu, Peng

    2014-01-01

    Flow cytometry is able to measure the expressions of multiple proteins simultaneously at the single-cell level. A flow cytometry experiment on one biological sample provides measurements of several protein markers on or inside a large number of individual cells in that sample. Analysis of such data often aims to identify subpopulations of cells with distinct phenotypes. Currently, the most widely used analytical approach in the flow cytometry community is manual gating on a sequence of nested biaxial plots, which is highly subjective, labor intensive, and not exhaustive. To address those issues, a number of methods have been developed to automate the gating analysis by clustering algorithms. However, completely removing the subjectivity can be quite challenging. This paper describes an alternative approach. Instead of automating the analysis, we develop novel visualizations to facilitate manual gating. The proposed method views single-cell data of one biological sample as a high-dimensional point cloud of cells, derives the skeleton of the cloud, and unfolds the skeleton to generate 2D visualizations. We demonstrate the utility of the proposed visualization using real data, and provide quantitative comparison to visualizations generated from principal component analysis and multidimensional scaling.

  9. Flow cytometry as an auxiliary tool for the selection of probiotic bacteria.

    PubMed

    Mudroňová, D

    2015-01-01

    Selection of appropriate bacterial strains is crucial for development of new probiotic preparations. The fundamental prerequisite for potential efficacy of a probiotic preparation for oral application is the selection of appropriate bacterial strains with good gastrointestinal colonisation abilities, antimicrobial activity, and tolerance of conditions in the gastrointestinal tract, resistance to different antimicrobial agents, survival during processing and storage. The strain should be genetically stable, it should have good growth properties, to maintain its high viability at processing and when in storage. Mostly, the properties of promising strains are tested in the first phase in vitro, and only the best ones undergo subsequent in vivo testing. in vitro tests are often performed by classical microbiological cultivation methods which are material and time consuming, and they are not able to distinguish between 'viable but nonculturable' and dead bacteria. Flow cytometry is usually used for counting, phenotyping or functional characterisation of immune cells. Nowadays, flow cytometry is increasingly used in microbiology for counting bacteria, determining their viability and metabolic activity, detecting specific strains or testing their adherence abilities. The utilisation of flow cytometry in combination with an appropriate fluorescent labelling represents an effective and rapid method for the selection of probiotic bacteria.

  10. Discovering cell types in flow cytometry data with random matrix theory

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Nussenblatt, Robert; Losert, Wolfgang

    Flow cytometry is a widely used experimental technique in immunology research. During the experiments, peripheral blood mononuclear cells (PBMC) from a single patient, labeled with multiple fluorescent stains that bind to different proteins, are illuminated by a laser. The intensity of each stain on a single cell is recorded and reflects the amount of protein expressed by that cell. The data analysis focuses on identifying specific cell types related to a disease. Different cell types can be identified by the type and amount of protein they express. To date, this has most often been done manually by labelling a protein as expressed or not while ignoring the amount of expression. Using a cross correlation matrix of stain intensities, which contains both information on the proteins expressed and their amount, has been largely ignored by researchers as it suffers from measurement noise. Here we present an algorithm to identify cell types in flow cytometry data which uses random matrix theory (RMT) to reduce noise in a cross correlation matrix. We demonstrate our method using a published flow cytometry data set. Compared with previous analysis techniques, we were able to rediscover relevant cell types in an automatic way. Department of Physics, University of Maryland, College Park, MD 20742.

  11. Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation.

    PubMed

    Kinet, R; Dzaomuho, P; Baert, J; Taminiau, B; Daube, G; Nezer, C; Brostaux, Y; Nguyen, F; Dumont, G; Thonart, P; Delvigne, F

    2016-08-01

    Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming widely used for studying phenotypic and genotypic diversity among microbial communities. This technology is considered in this work for the assessment of a bioaugmentation treatment in order to enhance cellulolytic potential of landfill leachate. The experimental results reveal the relevant increase of leachate cellulolytic potential due to bioaugmentation. Cytometric monitoring of microbial dynamics along these assays is then realized. The flow FP package is used to establish microbial samples fingerprint from initial 2D cytometry histograms. This procedure allows highlighting microbial communities' variation along the assays. Cytometric and 16S rRNA gene sequencing fingerprinting methods are then compared. The two approaches give same evidence about microbial dynamics throughout digestion assay. There are however a lack of significant correlation between cytometric and amplicon sequencing fingerprint at genus or species level. Same phenotypical profiles of microbiota during assays matched to several 16S rRNA gene sequencing ones. Flow cytometry fingerprinting can thus be considered as a promising routine on-site method suitable for the detection of stability/variation/disturbance of complex microbial communities involved in bioprocesses.

  12. Automated gating of flow cytometry data via robust model-based clustering.

    PubMed

    Lo, Kenneth; Brinkman, Ryan Remy; Gottardo, Raphael

    2008-04-01

    The capability of flow cytometry to offer rapid quantification of multidimensional characteristics for millions of cells has made this technology indispensable for health research, medical diagnosis, and treatment. However, the lack of statistical and bioinformatics tools to parallel recent high-throughput technological advancements has hindered this technology from reaching its full potential. We propose a flexible statistical model-based clustering approach for identifying cell populations in flow cytometry data based on t-mixture models with a Box-Cox transformation. This approach generalizes the popular Gaussian mixture models to account for outliers and allow for nonelliptical clusters. We describe an Expectation-Maximization (EM) algorithm to simultaneously handle parameter estimation and transformation selection. Using two publicly available datasets, we demonstrate that our proposed methodology provides enough flexibility and robustness to mimic manual gating results performed by an expert researcher. In addition, we present results from a simulation study, which show that this new clustering framework gives better results in terms of robustness to model misspecification and estimation of the number of clusters, compared to the popular mixture models. The proposed clustering methodology is well adapted to automated analysis of flow cytometry data. It tends to give more reproducible results, and helps reduce the significant subjectivity and human time cost encountered in manual gating analysis.

  13. Monitoring antibacterial permeabilization in real time using time-resolved flow cytometry.

    PubMed

    Freire, João Miguel; Gaspar, Diana; de la Torre, Beatriz Garcia; Veiga, Ana Salomé; Andreu, David; Castanho, Miguel A R B

    2015-02-01

    Despite the intensive study of antibiotic-induced bacterial permeabilization, its kinetics and molecular mechanism remain largely elusive. A new methodology that extends the concept of the live-dead assay in flow cytometry to real time-resolved detection was used to overcome these limitations. The antimicrobial activity of pepR was monitored in time-resolved flow cytometry for three bacterial strains: Escherichia coli (ATCC 25922), E. coli K-12 (CGSC Strain 4401) and E. coli JW3596-1 (CGSC Strain 11805). The latter strain has truncated lipopolysaccharides (LPS) in the outer membrane. This new methodology provided information on the efficacy of the antibiotics and sheds light on their mode of action at membrane-level. Kinetic data regarding antibiotic binding and lytic action were retrieved. Membrane interaction and permeabilization events differ significantly among strains. The truncation of LPS moieties does not hamper AMP binding but compromises membrane disruption and bacterial killing. We demonstrated the usefulness of time-resolved flow cytometry to study antimicrobial-induced permeabilization by collecting kinetic data that contribute to characterize the action of antibiotics directly on bacteria. PMID:25445678

  14. Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity

    PubMed Central

    Ayers, Lisa; Harrison, Paul; Kohler, Malcolm; Ferry, Berne

    2014-01-01

    Background Flow cytometry is the most commonly used technology to measure microvesicles (MVs). Despite reported limitations of this technique, MV levels obtained using conventional flow cytometry have yielded many clinically relevant findings, such as associations with disease severity and ability to predict clinical outcomes. This study aims to determine if MV enumeration by flow cytometry correlates with a measurement of their functional capacity, as this may explain how flow cytometry generates clinically relevant results. Methods One hundred samples from healthy individuals and patients with obstructive sleep apnoea were analysed by conventional flow cytometry (FACSCalibur) and by three functional MV assays: Zymuphen MP-activity in which data were given as phosphatidylserine equivalent, STA® Phospholipid Procoag Assay expressed as clotting time and Endogenous Thrombin Potential (ETP) reflecting in vitro thrombin generation. Correlations were determined by Spearman correlation. Results Absolute counts of lactadherin+ procoagulant MVs generated by flow cytometry weakly correlated with the results obtained from the Zymuphen MP-activity (r=0.5370, p<0.0001); correlated with ETP (r=0.7444, p<0.0001); negatively correlated with STA® Phospholipid Procoag Assay clotting time (−0.7872, p<0.0001), reflecting a positive correlation between clotting activity and flow cytometry. Levels of Annexin V+ procoagulant and platelet-derived MVs were also associated with functional assays. Absolute counts of MVs derived from other cell types were not correlated with the functional results. Conclusions Quantitative results of procoagulant and platelet-derived MVs from conventional flow cytometry are associated with the functional capability of the MVs, as defined by three functional MV assays. Flow cytometry is a valuable technique for the quantification of MVs from different cellular origins; however, a combination of several analytical techniques may give the most comprehensive

  15. Flow Cytometry with Gold Nanoparticles and their Clusters as scattering Contrast Agents: FDTD Simulation of Light-Cell Interaction

    PubMed Central

    Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V.; Zharov, Vladimir P.

    2010-01-01

    The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. PMID:19670359

  16. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    PubMed

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections.

  17. Simultaneous measurement of human hematopoietic stem and progenitor cells in blood using multicolor flow cytometry.

    PubMed

    Cimato, Thomas R; Furlage, Rosemary L; Conway, Alexis; Wallace, Paul K

    2016-09-01

    Hematopoietic stem cells are the source of all inflammatory cell types. Discovery of specific cell surface markers unique to human hematopoietic stem (HSC) and progenitor (HSPC) cell populations has facilitated studies of their development from stem cells to mature cells. The specific marker profiles of HSCs and HSPCs can be used to understand their role in human inflammatory diseases. The goal of this study is to simultaneously measure HSCs and HSPCs in normal human venous blood using multicolor flow cytometry. Our secondary aim is to determine how G-CSF mobilization alters the quantity of each HSC and HSPC population. Here we show that cells within the CD34+ fraction of human venous blood contains cells with the same cell surface markers found in human bone marrow samples. Mobilization with G-CSF significantly increases the quantity of total CD34+ cells, blood borne HSCs, multipotent progenitors, common myeloid progenitors, and megakaryocyte erythroid progenitors as a percentage of total MNCs analyzed. The increase in blood borne common lymphoid and granulocyte macrophage progenitors with G-CSF treatment did not reach significance. G-CSF treatment predominantly increased the numbers of HSCs and multipotent progenitors in the total CD34+ cell population; common myeloid progenitors and megakaryocyte erythroid progenitors were enriched relative to total MNCs analyzed, but not relative to total CD34+ cells. Our findings illustrate the utility of multicolor flow cytometry to quantify circulating HSCs and HSPCs in venous blood samples from human subjects. © 2016 International Clinical Cytometry Society. PMID:26663713

  18. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    PubMed

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. PMID:26908592

  19. Flow cytometry and single nucleus sorting for Cre-based analysis of changes in transcriptional states.

    PubMed

    Samadder, Partha; Weng, Ning; Doetschman, Thomas; Heimark, Ronald L; Galbraith, David W

    2016-05-01

    The organs of eukaryotic organisms comprise complex interspersions of cell types, whose different molecular activities, and corresponding cellular states, cooperate during development to produce the final, functional organ. Dysfunction of organs in disease, particularly oncogenesis, initiates with changes of state of a minor subset of cells. It therefore is hard to detect early molecular indicators of disease within an overwhelming background of normal cells. Flow cytometry and sorting provides a convenient way to purify minority subpopulations, if a specific fluorophore can be unambiguously and exclusively associated with this subpopulation. We have generated a number of transgenic mouse lines expressing a nuclear-localized version of the Green Fluorescent Protein (GFP), within which the production of a chimeric histone 2B-GFP protein occurs under the control of a constitutively-active, actin-derived promoter, separated by a Floxed-STOP sequence. In the presence of Cre recombinase, within F1 progeny of these mouse lines, excision of the STOP sequence activates transcription which results in the emergence of cells containing green fluorescent nuclei. We describe the characterization of these lines using a combination of microscopic imaging, flow cytometry and sorting, and Reverse-Transcription polymerase chain reaction of transcripts within single sorted nuclei isolated from tissue homogenates. These lines should be particularly useful for analysis of transcriptional changes in oncogenesis. © 2016 International Society for Advancement of Cytometry. PMID:27003621

  20. Barrett's esophagus. Correlation between mucin histochemistry, flow cytometry, and histologic diagnosis for predicting increased cancer risk.

    PubMed Central

    Haggitt, R. C.; Reid, B. J.; Rabinovitch, P. S.; Rubin, C. E.

    1988-01-01

    A predominance of sulfated mucin in the nongoblet columnar cells of Barrett's specialized metaplastic epithelium has been postulated to be a form of mild dysplasia and to indicate an increased risk of adenocarcinoma. Flow cytometry for the analysis of nuclear DNA content and cell cycle parameters has also been postulated to be an objective aid in the diagnosis of dysplasia and carcinoma in Barrett's esophagus. The authors investigated the relationship among sulfated mucin, flow cytometric data, and histologic diagnosis in each of 152 biopsies from 42 patients who had Barrett's specialized metaplastic epithelium. Sulfated mucin, as detected by the high iron diamine-Alcian blue stain, was present in biopsies from 8 of 11 (73%) patients with the histologic diagnosis of dysplasia or carcinoma, in 7 of 9 (78%) patients whose biopsies were indefinite for dysplasia, and in 12 of 22 (55%) patients whose biopsies were negative for dysplasia (P = 0.37). Sulfated mucins predominated in 9%, 22%, and 9% of the patients, respectively (P = 0.56). Abnormal flow cytometry (aneuploidy or increased G2/tetraploid fraction) was found in all patients with the histologic diagnosis of dysplasia or carcinoma, in 3 of 9 (33%) indefinite for dysplasia, and in 1 of 22 (5%) negative for dysplasia (P = less than 0.0001). Neither the presence nor the predominance of sulfated mucin in the specialized metaplastic epithelium of Barrett's esophagus has sufficiently high sensitivity or specificity for dysplasia or carcinoma to be of value in managing patients. Abnormal flow cytometry shows excellent correlation with the histologic diagnosis of dysplasia and carcinoma; it detects a subset of patients whose biopsies are histologically indefinite or negative for dysplasia, but who have flow cytometric abnormalities similar to those otherwise seen only in dysplasia and carcinoma. Images Figure 1 Figure 2 Figure 3 PMID:3354644

  1. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    PubMed Central

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2007-01-01

    Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI), SYBR Green I (SG), SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR) were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA) content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content. PMID:17381841

  2. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

    PubMed Central

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  3. Determination of cluster composition in heteroaggregation of binary particle systems by flow cytometry.

    PubMed

    Rollié, Sascha; Sundmacher, Kai

    2008-12-01

    Cluster composition in aggregation processes of multiple particle species can be dynamically determined by flow cytometry if particle populations are fluorescently labeled. By flow cytometric single particle analysis, aggregates can be characterized according to the exact amount of constituent particles, allowing the detailed and separate quantification of homo- and heteroaggregation. This contribution demonstrates the application of flow cytometry for the experimental detection of heteroaggregation in a binary particle mixture of oppositely charged polystyrene (PS) particles and Rhodamine-B labeled melamine-formaldehyde (MF-RhB) particles. Experiments with different particle concentration, temperature, mixing mode, ionic strength and particle mixing ratio are presented. Aggregation kinetics are enhanced with increasing particle concentration and temperature as well as by increased shear of mixing. These results represent well-known behavior published in previous investigations and validate the performance of flow cytometry for probing heteroaggregation processes. Physical insight with a novel level of detail is gained by the quantification of de- and restabilization phenomena. At low ionic strength, "raspberry"-type aggregates with PS cores are formed by primary heteroaggregation. At moderate particle number ratios, these aggregates are electrostatically destabilized and form more complex aggregates in a secondary heteroaggregation process. At high particle number ratios (> or =50:1), the raspberry-type aggregates are electrostatically restabilized and secondary heteroaggregation is prevented. The dynamic change of aggregate charge was verified by zeta-potential measurements. The elevation of salt concentration over several orders of magnitude retards aggregation dynamics, since attractive interparticle forces are diminished by an electrostatic double layer. This indicates that heteroaggregation induced by attractive interparticle forces is faster than aggregation

  4. Fluorogen Activating Proteins in Flow Cytometry for the Study of Surface Molecules and Receptors

    PubMed Central

    Saunders, Matthew J.; Szent-Gyorgyi, Christopher; Fisher, Gregory W.; Jarvik, Jonathan W.; Bruchez, Marcel P.; Waggoner, Alan S.

    2012-01-01

    The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.g. EGFP and its variants) are fluorescent whether the fusion protein exists on the surface or in sub-cellular compartments. A flow cytometer cannot distinguish between these separate sources of fluorescence. This can be of great concern when using flow cytometry, plate readers or microscopy to quantify cell surface receptors or other surface proteins genetically fused to fluorescent proteins. Recently developed fluorogen activating proteins (FAPs) solve many of these issues by allowing the selective visualization of only those cell surface proteins that are exposed to the extra cellular milieu. FAPs are GFP-sized single chain antibodies that specifically bind to and generate fluorescence from otherwise non-fluorescent dyes (‘activate the fluorogen’). Like the fluorescent proteins, FAPs can be genetically fused to proteins of interest. When exogenously added fluorogens bind FAPs, fluorescence immediately increases by as much as 20,000 fold, rendering the FAP fusion proteins highly fluorescent. Moreover, since fluorogens can be made membrane impermeant, fluorescence can be limited to only those receptors expressed on the cell surface. Using cells expressing beta-2 adrenergic receptor (β2AR) fused at its N-terminus to a FAP, flow cytometry based receptor internalization assays have been developed and characterized. The fluorogen/FAP system is ideally suited to the study of cell surface proteins by fluorescence and avoids drawbacks of using receptor/fluorescent protein fusions, such as internal accumulation. We also briefly comment on extending FAP-based technologies to the study of events occurring inside of the cell as well. PMID:22366230

  5. Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species

    PubMed Central

    Loureiro, João; Rodriguez, Eleazar; Doležel, Jaroslav; Santos, Conceição

    2007-01-01

    Background and Aims After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. Methods GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. Key Results In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. Conclusions WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high

  6. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods.

    PubMed

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEON(LA)) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEON(LA) with an additional protein corona formed by bovine serum albumin (SEON(LA-BSA)) and commercially available Rienso(®) particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  7. Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry

    PubMed Central

    Gump, Jacob M; Thorburn, Andrew

    2014-01-01

    We detail here a protocol using tandem-tagged mCherry-EGFP-LC3 (C-G-LC3) to quantify autophagic flux in single cells by ratiometric flow cytometry and to isolate subpopulations of cells based on their relative levels of autophagic flux. This robust and sensitive method measures autophagic flux rather than autophagosome number and is an important addition to the autophagy researcher’s array of tools for measuring autophagy. Two crucial steps in this protocol are i) generate cells constitutively expressing C-G-LC3 with low to medium fluorescence and low fluorescence variability, and ii) correctly set up gates and voltage/gain on a properly equipped flow cytometer. We have used this method to measure autophagic flux in a variety of cell types and experimental systems using many different autophagy stimuli. On a sorting flow cytometer, this technique can be used to isolate cells with different levels of basal autophagic flux, or cells with variable induction of flux in response to a given stimulus for further analysis or experimentation. We have also combined quantification of autophagic flux with methods to measure apoptosis and cell surface proteins, demonstrating the usefulness of this protocol in combination with other flow cytometry labels and markers. PMID:24915460

  8. A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action

    PubMed Central

    Hendon-Dunn, Charlotte Louise; Doris, Kathryn Sarah; Thomas, Stephen Richard; Allnutt, Jonathan Charles; Marriott, Alice Ann Neville; Hatch, Kim Alexandra; Watson, Robert James; Bottley, Graham; Marsh, Philip David; Taylor, Stephen Charles

    2016-01-01

    Current methods for assessing the drug susceptibility of Mycobacterium tuberculosis are lengthy and do not capture information about viable organisms that are not immediately culturable under standard laboratory conditions as a result of antibiotic exposure. We have developed a rapid dual-fluorescence flow cytometry method using markers for cell viability and death. We show that the fluorescent marker calcein violet with an acetoxy-methyl ester group (CV-AM) can differentiate between populations of M. tuberculosis growing at different rates, while Sytox green (SG) can differentiate between live and dead mycobacteria. M. tuberculosis was exposed to isoniazid or rifampin at different concentrations over time and either dual stained with CV-AM and SG and analyzed by flow cytometry or plated to determine the viability of the cells. Although similar trends in the loss of viability were observed when the results of flow cytometry and the plate counting methods were compared, there was a lack of correlation between these two approaches, as the flow cytometry analysis potentially captured information about cell populations that were unable to grow under standard conditions. The flow cytometry approach had an additional advantage in that it could provide insights into the mode of action of the drug: antibiotics targeting the cell wall gave a flow cytometry profile distinct from those inhibiting intracellular processes. This rapid drug susceptibility testing method could identify more effective antimycobacterials, provide information about their potential mode of action, and accelerate their progress to the clinic. PMID:26902767

  9. A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action.

    PubMed

    Hendon-Dunn, Charlotte Louise; Doris, Kathryn Sarah; Thomas, Stephen Richard; Allnutt, Jonathan Charles; Marriott, Alice Ann Neville; Hatch, Kim Alexandra; Watson, Robert James; Bottley, Graham; Marsh, Philip David; Taylor, Stephen Charles; Bacon, Joanna

    2016-07-01

    Current methods for assessing the drug susceptibility of Mycobacterium tuberculosis are lengthy and do not capture information about viable organisms that are not immediately culturable under standard laboratory conditions as a result of antibiotic exposure. We have developed a rapid dual-fluorescence flow cytometry method using markers for cell viability and death. We show that the fluorescent marker calcein violet with an acetoxy-methyl ester group (CV-AM) can differentiate between populations of M. tuberculosis growing at different rates, while Sytox green (SG) can differentiate between live and dead mycobacteria. M. tuberculosis was exposed to isoniazid or rifampin at different concentrations over time and either dual stained with CV-AM and SG and analyzed by flow cytometry or plated to determine the viability of the cells. Although similar trends in the loss of viability were observed when the results of flow cytometry and the plate counting methods were compared, there was a lack of correlation between these two approaches, as the flow cytometry analysis potentially captured information about cell populations that were unable to grow under standard conditions. The flow cytometry approach had an additional advantage in that it could provide insights into the mode of action of the drug: antibiotics targeting the cell wall gave a flow cytometry profile distinct from those inhibiting intracellular processes. This rapid drug susceptibility testing method could identify more effective antimycobacterials, provide information about their potential mode of action, and accelerate their progress to the clinic.

  10. Rapid Analysis of the Internal Configurations of Droplets of Liquid Crystal using Flow Cytometry

    PubMed Central

    Miller, Daniel S.; Wang, Xiaoguang; Buchen, James; Lavrentovich, Oleg D.; Abbott, Nicholas L.

    2014-01-01

    We report the use of flow cytometry to identify the internal ordering (director configurations) of micrometer-sized droplets of thermotropic liquid crystals (LCs) dispersed in aqueous solutions of adsorbates (surfactants and phospholipids). We reveal that changes in the configurations of the LC droplets induced by the adsorbates generate distinct changes in light scattering plots (side versus forward scattering). Specifically, when compared to bipolar droplets, radial droplets generate a narrower distribution of side scattering intensities (SSC, large angle light scattering) for a given intensity of forward scattering (FSC, small angle light scattering). This difference is shown to arise from the rotational symmetry of a radial LC droplet which is absent for the bipolar configuration of the LC droplet. In addition, the scatter plots for radial droplets possess a characteristic “S-shape”, with two or more SSC intensities observed for each intensity of FSC. The origin of the experimentally observed S-shape is investigated via calculation of form factors and established to be due to size-dependent interference effects that differ for the forward and side scattered light. Finally, by analyzing emulsions comprised of mixtures of bipolar and radial droplets at rates of up to 10,000 droplets per second, we demonstrate that flow cytometry permits precise determination of the percentage of radial droplets within the mixture with a coefficient of determination of 0.98 (as validated by optical microscopy). Overall, the results presented in this paper demonstrate that flow cytometry provides a promising approach for high throughput quantification of the internal configurations of LC emulsion microdroplets. Because large numbers of droplets can be characterized, it enables statistically robust analyses of LC droplets. The methodology also appears promising for quantification of chemical and biological assays based on adsorbate-induced ordering transitions within LC droplets

  11. Detection of Salmonella typhimurium in dairy products with flow cytometry and monoclonal antibodies.

    PubMed Central

    McClelland, R G; Pinder, A C

    1994-01-01

    Flow cytometry, combined with fluorescently labelled monoclonal antibodies, offers advantages of speed and sensitivity for the detection of specific pathogenic bacteria in foods. We investigated the detection of Salmonella typhimurium in eggs and milk. Using a sample clearing procedure, we determined that the detection limit was on the order of 10(3) cells per ml after a total analysis time of 40 min. After 6 h of nonselective enrichment, the detection limits were 10 cells per ml for milk and 1 cell per ml for eggs, even in the presence of a 10,000-fold excess of Escherichia coli cells. Images PMID:7811064

  12. Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes.

    PubMed

    da Silva, Teresa Lopes; Roseiro, José Carlos; Reis, Alberto

    2012-04-01

    Conventional microbiology methods used to monitor microbial biofuels production are based on off-line analyses. The analyses are, unfortunately, insufficient for bioprocess optimization. Real time process control strategies, such as flow cytometry (FC), can be used to monitor bioprocess development (at-line) by providing single cell information that improves process model formulation and validation. This paper reviews the current uses and potential applications of FC in biodiesel, bioethanol, biomethane, biohydrogen and fuel cell processes. By highlighting the inherent accuracy and robustness of the technique for a range of biofuel processing parameters, more robust monitoring and control may be implemented to enhance process efficiency.

  13. Determination of internalization of chromium oxide nano-particles in Escherichia coli by flow cytometry.

    PubMed

    Khatoon, Imrana; Vajpayee, Poornima; Singh, Gulshan; Pandey, Alok K; Dhawan, Alok; Gupta, K C; Shanker, Rishi

    2011-02-01

    In this study, Escherichia coil DH5alpha (ATCC 35218) were exposed to 0-100 microg/mL chromium oxide nanoparticles (Cr2O3, Nps) for 15-120 min to study the internalization of Nps by flowcytometry. A concentration-duration dependent increased side scatter (SSC) confirmed the internalization of Cr2O3 NPs by the E. coli. This study suggests that the uptake of Nps by bacterial cells can be rapidly monitored with flow cytometry for toxicity and risk assessment. PMID:21485855

  14. Cutaneous T cell lymphoma mimicking cutaneous histiocytosis: differentiation by flow cytometry.

    PubMed

    Baines, S J; McCormick, D; McInnes, E; Dunn, J K; Dobson, J M; McConnell, I

    2000-07-01

    A two-year-old, neutered female cross-bred labrador had multiple cutaneous nodules, biopsies of which revealed pathological changes consistent with cutaneous histiocytosis. During a period of one month the dog developed multicentric lymphadenopathy, a retrobulbar mass and masses within the quadriceps and cervical muscles. Fine needle aspiration cytology of the cutaneous nodules and lymph nodes and histological examination of the cutaneous nodules and muscle masses suggested the presence of lymphoblastic lymphoma. A definitive diagnosis of CD8+ T cell lymphoma was achieved by immunophenotyping the tumour cells by flow cytometry.

  15. A structured population modeling framework for quantifying and predicting gene expression noise in flow cytometry data.

    PubMed

    Flores, Kevin B

    2013-07-01

    We formulated a structured population model with distributed parameters to identify mechanisms that contribute to gene expression noise in time-dependent flow cytometry data. The model was validated using cell population-level gene expression data from two experiments with synthetically engineered eukaryotic cells. Our model captures the qualitative noise features of both experiments and accurately fit the data from the first experiment. Our results suggest that cellular switching between high and low expression states and transcriptional re-initiation are important factors needed to accurately describe gene expression noise with a structured population model.

  16. In vivo flow cytometry and time-resolved near-IR angiography and lymphography

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Tuchin, Valery V.; Brock, Robert W.; Zharov, Vladimir P.

    2007-05-01

    Integration of photoacoustic and photothermal techniques with high-speed, high-resolution transmission and fluorescence microscopy shows great potential for in vivo flow cytometry and indocyanine green (ICG) near-infrared (IR) angiography of blood and lymph microvessels. In particular, the capabilities of in vivo flow cytometry using rat mesentery and nude mouse ear models are demonstrated for real-time quantitative detection of circulating and migrating individual blood and cancer cells in skin, mesentery, lymph nodes, liver, kidney; studying vascular dynamics with a focus on lymphatics; monitoring cell traffic between blood and lymph systems; high-speed imaging of cell deformability in flow; and label-free real-time monitoring of single cell extravasation from blood vessel lumen into tissue. As presented, the advantages of ICG IR-angiography include estimation of time resolved dye dynamics (appearance and clearance) in blood and lymph microvessels using fluorescent and photoacoustic modules of the integrated technique. These new approaches are important for monitoring and quantifying metastatic and apoptotic cells; comparative measurements of plasma and cell velocities; analysis of immune responses; monitoring of circulating macromolecules, chylomicrons, bacteria, viruses and nanoparticles; molecular imaging. In the future, we believe that the integrated technique presented will have great potential for translation to early disease diagnoses (e.g. cancer) or assessment of innovative therapeutic interventions in humans.

  17. Monitoring Rhodosporidium toruloides NCYC 921 batch fermentations growing under carbon and nitrogen limitation by flow cytometry.

    PubMed

    Andrade, Raoni; Leal, Rodrigo; Roseiro, José; Reis, Alberto; da Silva, Teresa Lopes

    2012-03-01

    The yeast Rhodosporidium toruloides NCYC 921 was grown on carbon or nitrogen limited batch cultures. The fermentations were monitored using traditional techniques and multi-parameter flow cytometry. The lipid content was assessed by flow cytometry in association with the fluorocrome Nile Red which emits yellow gold fluorescence when dissolved in neutral lipids and red fluorescence when dissolved in polar lipids. In this way, it was possible to at-line monitor the yeast lipid composition in terms of polarity classes throughout the batch growths. It was found that the neutral lipids decreased during the carbon-limited stationary phase, and increased during the nitrogen-limited batch growth. The maximum lipid content was obtained for the nitrogen-limited yeast culture (24% w/w lipids). The yeast cells with permeabilised membranes profile remained almost unchanged during the time course of both fermentations. The scatter light measurements (forward and side scatter signals) provided information on the yeast growth phase. The multi-parameter flow cytometric approach here reported represents a better control system based on measurements made at the single cell level for optimization of the yeast lipid production bioprocess performance.

  18. Bayesian clustering of flow cytometry data for the diagnosis of B-chronic lymphocytic leukemia.

    PubMed

    Lakoumentas, John; Drakos, John; Karakantza, Marina; Nikiforidis, George C; Sakellaropoulos, George C

    2009-04-01

    In the rapidly advancing field of flow cytometry, methodologies facilitating automated clinical decision support are increasingly needed. In the case of B-chronic lymphocytic leukemia (B-CLL), discrimination of the various subpopulations of blood cells is an important task. In this work, our objective is to provide a useful paradigm of computer-based assistance in the domain of flow-cytometric data analysis by proposing a Bayesian methodology for flow cytometry clustering. Using Bayesian clustering, we replicate a series of (unsupervised) data clustering tasks, usually performed manually by the expert. The proposed methodology is able to incorporate the expert's knowledge, as prior information to data-driven statistical learning methods, in a simple and efficient way. We observe almost optimal clustering results, with respect to the expert's gold standard. The model is flexible enough to identify correctly non canonical clustering structures, despite the presence of various abnormalities and heterogeneities in data; it offers an advantage over other types of approaches that apply hierarchical or distance-based concepts.

  19. A cytometry microparticle platform approach for screening tobacco microRNA changes after agrobacterium delivery.

    PubMed

    Powell, Joshua D; Chen, Qiang; Mason, Hugh S

    2016-08-01

    MicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored changes in Nicotiana benthamiana tobacco microRNA expression as it relates to expression of a recombinant anti-Ebola GP1 antibody. The antibody was delivered to tobacco leaves through a bacterial Agrobacterium tumefaciens "agroinfiltration" expression strategy. A multiplex microparticle-based cytometry assay tracked the expression changes of 53 host tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b. After agroinfiltration, probes specific for nta-mir-398, and nta-mir-482d were significantly altered in their respective expression levels, however changes were partially attributed to the infiltration broth medium used in the antibody delivery process. Confirmation of nta-mir-398 and nta-mir-482d expression changes was also verified through RT-qPCR. To our knowledge this study is the first to profile medium and Agrobacterium injection at the microRNA level through a multiplex microparticle approach. PMID:27343681

  20. An Improved Flow Cytometry Method For Precise Quantitation Of Natural-Killer Cell Activity

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Nehlsen-Cannarella, Sandra; Sams, Clarence

    2006-01-01

    The ability to assess NK cell cytotoxicity using flow cytometry has been previously described and can serve as a powerful tool to evaluate effector immune function in the clinical setting. Previous methods used membrane permeable dyes to identify target cells. The use of these dyes requires great care to achieve optimal staining and results in a broad spectral emission that can make multicolor cytometry difficult. Previous methods have also used negative staining (the elimination of target cells) to identify effector cells. This makes a precise quantitation of effector NK cells impossible due to the interfering presence of T and B lymphocytes, and the data highly subjective to the variable levels of NK cells normally found in human peripheral blood. In this study an improved version of the standard flow cytometry assay for NK activity is described that has several advantages of previous methods. Fluorescent antibody staining (CD45FITC) is used to positively identify target cells in place of membranepermeable dyes. Fluorescent antibody staining of target cells is less labor intensive and more easily reproducible than membrane dyes. NK cells (true effector lymphocytes) are also positively identified by fluorescent antibody staining (CD56PE) allowing a simultaneous absolute count assessment of both NK cells and target cells. Dead cells are identified by membrane disruption using the DNA intercalating dye PI. Using this method, an exact NK:target ratio may be determined for each assessment, including quantitation of NK target complexes. Backimmunoscatter gating may be used to track live vs. dead Target cells via scatter properties. If desired, NK activity may then be normalized to standardized ratios for clinical comparisons between patients, making the determination of PBMC counts or NK cell percentages prior to testing unnecessary. This method provides an exact cytometric determination of NK activity that highly reproducible and may be suitable for routine use in the

  1. Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry

    PubMed Central

    Tigges, John; Toxavidis, Vasilis; Camacho, Virginia; Felton, Edward J.; Khoory, Joseph; Kreimer, Simion; Ivanov, Alexander R.; Mantel, Pierre-Yves; Jones, Jennifer; Akuthota, Praveen; Das, Saumya; Ghiran, Ionita

    2016-01-01

    The identification of extracellular vesicles (EVs) as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM) to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions) and concentration (proportions) of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus further inform

  2. Use of flow cytometry for analysis of phage-mediated killing of Enterobacter aerogenes.

    PubMed

    Verthé, Kristof; Verstraete, Willy

    2006-09-01

    In this study, the use of flow cytometry to analyze phage-mediated killing of Enterobacter aerogenes under varying conditions of temperature and nutrient availability was assessed. Bacteriophage UZ1, specific for an E. aerogenes strain, was applied at a multiplicity of infection (MOI) of 1 and 1000 to a Teflon surface, artificially infected with its host at a level of 4.5 log cells. After incubation for 20 h, bacteriophages were quantified using the soft agar layer method. For the quantification of bacterial cells, plate counting and flow cytometric analysis of live/dead stained cells were performed in parallel. At an MOI of 1, phage treatment was successful only after incubation under nutrient-rich conditions at 37 degrees C: E. aerogenes cells were not detected and a tenfold increase in phage UZ1 was observed. At a MOI of 1000, no E. aerogenes cells could be cultured after incubation at 37 and 4 degrees C. However, flow cytometric analysis revealed that lysis did not occur at 4 degrees C but was achieved during subsequent plate culture. In conclusion, the use of flow cytometry enabled identification of culture-based bias during plate culture. The flow cytometric assay used in this study proved to be rapid, as this culture-independent method does not require lengthy incubation periods post-sampling. The bacteriophage-mediated killing of E. aerogenes cells on Teflon surfaces indicated that disinfection of E. aerogenes with bacteriophage UZ1 can be successful when high MOIs are achieved, while at low multiplicities of infection conditions favorable for phage replication are required.

  3. Characterisation of cryoinjury in Euglena gracilis using flow-cytometry and cryomicroscopy.

    PubMed

    Fleck, Roland A; Pickup, Roger W; Day, John G; Benson, Erica E

    2006-04-01

    Flow-cytometry and cryomicroscopy elucidated that the unicellular algal protist Euglena gracilis was undamaged by cryoprotectant added at 0 degree C, and super-cooling in the absence of ice. Cryoinjuries were however induced by: osmotic shock resulting from excessive cryodehydration, intracellular ice, and fracturing of the frozen medium on thawing. Suboptimal cooling at -0.3 degrees C min(-1) to -60 degrees C and osmotic shock invariably resulted in damage to the organism's pellicle and osmoregulatory system causing, a significant (P > 0.005) increase in cell size. Cell damage was not repairable and led to death. The responses of E. gracilis to cryopreservation as visualised by flow-cytometry and cryomicroscopy assisted the development of an improved storage protocol. This comprised: cryoprotection with methanol [10%(v/v)] at 0 degree C, cooling at 0.5 degrees C min(-1) to -60 degrees C, isothermal hold for 30 min, and direct immersion in liquid nitrogen. Highest post-thaw viability (>60%) was obtained using two-step thawing, which involved initial slow warming to -130 degrees C followed by relatively rapid warming (approximately 90 degrees C min(-1)) to ambient temperature (ca. 25 degrees C). PMID:16455069

  4. Tree-Based Methods for Discovery of Association between Flow Cytometry Data and Clinical Endpoints.

    PubMed

    Eliot, M; Azzoni, L; Firnhaber, C; Stevens, W; Glencross, D K; Sanne, I; Montaner, L J; Foulkes, A S

    2009-01-01

    We demonstrate the application and comparative interpretations of three tree-based algorithms for the analysis of data arising from flow cytometry: classification and regression trees (CARTs), random forests (RFs), and logic regression (LR). Specifically, we consider the question of what best predicts CD4 T-cell recovery in HIV-1 infected persons starting antiretroviral therapy with CD4 count between 200 and 350 cell/muL. A comparison to a more standard contingency table analysis is provided. While contingency table analysis and RFs provide information on the importance of each potential predictor variable, CART and LR offer additional insight into the combinations of variables that together are predictive of the outcome. In all cases considered, baseline CD3-DR-CD56+CD16+ emerges as an important predictor variable, while the tree-based approaches identify additional variables as potentially informative. Application of tree-based methods to our data suggests that a combination of baseline immune activation states, with emphasis on CD8 T-cell activation, may be a better predictor than any single T-cell/innate cell subset analyzed. Taken together, we show that tree-based methods can be successfully applied to flow cytometry data to better inform and discover associations that may not emerge in the context of a univariate analysis.

  5. The role of multiparametric flow cytometry in the detection of minimal residual disease in acute leukaemia.

    PubMed

    Lee, Denise; Grigoriadis, George; Westerman, David

    2015-12-01

    Flow cytometry is the most accessible method for minimal residual disease (MRD) detection due to its availability in most haematological centres. Using a precise combination of different antibodies, immunophenotypic detection of MRD in acute leukaemia can be performed by identifying abnormal combinations or expressions of antigens on malignant cells at diagnosis, during and post treatment. These abnormal phenotypes, referred to as leukaemia-associated immunophenotypes (LAIPs) are either absent or expressed at low frequency in normal bone marrow (BM) cells and are used to monitor the behaviour and quantitate the amount of residual disease following treatment. In paediatric acute lymphoblastic leukaemia (ALL), the level of MRD by multiparametric flow cytometry (MPFC) during therapy is recognised as an important predictor of outcome. Although less extensively studied, adult ALL and adult and paediatric acute myeloid leukaemia (AML) have also demonstrated similar findings. The challenge now is incorporating this information for risk-stratification so that therapy can be tailored individually and ultimately improve outcome while also limiting treatment-related toxicity. In this review we will elaborate on the current and future role of MPFC in MRD in acute leukaemia while also addressing its limitations.

  6. The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.

    PubMed

    Wu, Yang; Campos, Samuel K; Lopez, Gabriel P; Ozbun, Michelle A; Sklar, Larry A; Buranda, Tione

    2007-05-15

    The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum dots. Based on their broad absorption spectra and relatively narrow emission, which is tunable on the basis of dot size, quantum dot calibration beads can be made for any fluorophore that matches their emission color. In an earlier publication, we characterized the spectroscopic properties of commercial streptavidin functionalized dots (Invitrogen). Here we describe the molecular assembly of these dots on biotinylated beads. The law of mass action is used to readily define the site densities of the dots on the beads. The applicability of these beads is tested against the industry standard, namely commercial fluorescein calibration beads. The utility of the calibration beads is also extended to the characterization surface densities of dot-labeled epidermal growth factor ligands as well as quantitative indicators of the binding of dot-labeled virus particles to cells.

  7. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  8. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians.

    PubMed

    Peiris, Tanuja Harshani; García-Ojeda, Marcos E; Oviedo, Néstor J

    2016-04-01

    Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians.

  9. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    PubMed

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production. PMID:22971830

  10. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    PubMed

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.

  11. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts.

    PubMed

    Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Sawant, Rupa; Torchilin, Vladimir P; Verkhusha, Vladislav V; Ma, Jie; Frank, Markus H; Biris, Alexandru S; Zharov, Vladimir P

    2013-05-01

    In vivo photoacoustic (PA) and fluorescence flow cytometry were previously applied separately using pulsed and continuous wave lasers respectively, and positive contrast detection mode only. This paper introduces a real-time integration of both techniques with positive and negative contrast modes using only pulsed lasers. Various applications of this new tool are summarized, including detection of liposomes loaded with Alexa-660 dye, red blood cells labeled with Indocyanine Green, B16F10 melanoma cells co-expressing melanin and green fluorescent protein (GFP), C8161-GFP melanoma cells targeted by magnetic nanoparticles, MTLn3 adenocarcinoma cells expressing novel near-infrared iRFP protein, and quantum dot-carbon nanotube conjugates. Negative contrast flow cytometry provided label-free detection of low absorbing or weakly fluorescent cells in blood absorption and autofluorescence background, respectively. The use of pulsed laser for time-resolved discrimination of objects with long fluorescence lifetime (e.g., quantum dots) from shorter autofluorescence background (e.g., blood plasma) is also highlighted in this paper. The supplementary nature of PA and fluorescence detection increased the versatility of the integrated method for simultaneous detection of probes and cells having various absorbing and fluorescent properties, and provided verification of PA data using a more established fluorescence based technique. PMID:22903924

  12. Discriminative variable subsets in Bayesian classification with mixture models, with application in flow cytometry studies.

    PubMed

    Lin, Lin; Chan, Cliburn; West, Mike

    2016-01-01

    We discuss the evaluation of subsets of variables for the discriminative evidence they provide in multivariate mixture modeling for classification. The novel development of Bayesian classification analysis presented is partly motivated by problems of design and selection of variables in biomolecular studies, particularly involving widely used assays of large-scale single-cell data generated using flow cytometry technology. For such studies and for mixture modeling generally, we define discriminative analysis that overlays fitted mixture models using a natural measure of concordance between mixture component densities, and define an effective and computationally feasible method for assessing and prioritizing subsets of variables according to their roles in discrimination of one or more mixture components. We relate the new discriminative information measures to Bayesian classification probabilities and error rates, and exemplify their use in Bayesian analysis of Dirichlet process mixture models fitted via Markov chain Monte Carlo methods as well as using a novel Bayesian expectation-maximization algorithm. We present a series of theoretical and simulated data examples to fix concepts and exhibit the utility of the approach, and compare with prior approaches. We demonstrate application in the context of automatic classification and discriminative variable selection in high-throughput systems biology using large flow cytometry datasets.

  13. Quantitative studies of chicken somatotrophs during growth and development by morphometry, immunocytochemistry, and flow cytometry.

    PubMed

    Malamed, S; Deaver, D; Perez, F; Radecki, S; Gibney, J; Scanes, C G

    1997-10-01

    Changes in the male chicken somatotroph during growth and maturation have been examined by morphometric and immunocytochemical (ICC) analysis of serial sections of the anterior pituitary gland and by flow cytometry of dispersed anterior pituitary cells. ICC showed that somatotrophs are confined to the middle and caudal thirds of the anterior pituitary gland at all ages from 5 to 26 weeks. At a given age somatotrophs are of equal size at all positions along the cephalocaudal axis of the anterior pituitary gland. However, there are age-related changes: from 5 to 11 weeks rises occur in both the mean total somatotroph volume per gland (64%) and the mean number of somatotrophs (78%), while the mean volume of the single somatotroph is unchanged. From 11 to 18 weeks the mean volume of the single somatotroph decreases 41%. From 18 to 26 weeks the mean volume of the somatotroph, the mean total somatotroph volume, and the mean number per gland do not change. Flow cytometry studies suggested that somatotrophs from adults have less growth hormone (GH) than somatotrophs from young birds. The increases in total somatotroph volume and number from 5 to 11 weeks are consistent with the rise in anterior pituitary GH reported previously. Basic quantitative morphological information about age-related changes in somatotrophs is reported here. When combined with additional facts from future work, they may explain the well-documented sharp decline in circulating GH from 5 to 11 weeks.

  14. Discriminative variable subsets in Bayesian classification with mixture models, with application in flow cytometry studies.

    PubMed

    Lin, Lin; Chan, Cliburn; West, Mike

    2016-01-01

    We discuss the evaluation of subsets of variables for the discriminative evidence they provide in multivariate mixture modeling for classification. The novel development of Bayesian classification analysis presented is partly motivated by problems of design and selection of variables in biomolecular studies, particularly involving widely used assays of large-scale single-cell data generated using flow cytometry technology. For such studies and for mixture modeling generally, we define discriminative analysis that overlays fitted mixture models using a natural measure of concordance between mixture component densities, and define an effective and computationally feasible method for assessing and prioritizing subsets of variables according to their roles in discrimination of one or more mixture components. We relate the new discriminative information measures to Bayesian classification probabilities and error rates, and exemplify their use in Bayesian analysis of Dirichlet process mixture models fitted via Markov chain Monte Carlo methods as well as using a novel Bayesian expectation-maximization algorithm. We present a series of theoretical and simulated data examples to fix concepts and exhibit the utility of the approach, and compare with prior approaches. We demonstrate application in the context of automatic classification and discriminative variable selection in high-throughput systems biology using large flow cytometry datasets. PMID:26040910

  15. Immunodetection of Outer Membrane Proteins by Flow Cytometry of Isolated Mitochondria

    PubMed Central

    Pickles, Sarah; Arbour, Nathalie; Vande Velde, Christine

    2014-01-01

    Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver. PMID:25285411

  16. Evaluating the morphology of erythrocyte population: An approach based on atomic force microscopy and flow cytometry.

    PubMed

    Ghosh, Sayari; Chakraborty, Ishita; Chakraborty, Monojit; Mukhopadhyay, Ashis; Mishra, Raghwendra; Sarkar, Debasish

    2016-04-01

    Erythrocyte morphology is gaining importance as a powerful pathological index in identifying the severity of any blood related disease. However, the existing technique of quantitative microscopy is highly time consuming and prone to personalized bias. On the other hand, relatively unexplored, complementary technique based on flow cytometry has not been standardized till date, particularly due to the lack of a proper morphological scoring scale. In this article, we have presented a new approach to formulate a non-empirical scoring scale based on membrane roughness (R(rms)) data obtained from atomic force microscopy. Subsequently, the respective morphological quantifier of the whole erythrocyte population, commonly known as morphological index, was expressed as a function of highest correlated statistical parameters of scattered signal profiles generated by flow cytometry. Feed forward artificial neural network model with multilayer perceptron architecture was used to develop the intended functional form. High correlation coefficient (R(2) = 0.95), even for model-formulation exclusive samples, clearly indicates the universal validity of the proposed model. Moreover, a direct pathological application of the proposed model has been illustrated in relation to patients, diagnosed to be suffering from a wide variety of cancer.

  17. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  18. Antimicrobial Activity of Rhoeo discolor Phenolic Rich Extracts Determined by Flow Cytometry.

    PubMed

    García-Varela, Rebeca; García-García, Rebeca M; Barba-Dávila, Bertha A; Fajardo-Ramírez, Oscar R; Serna-Saldívar, Sergio O; Cardineau, Guy A

    2015-01-01

    Traditional medicine has led to the discovery of important active substances used in several health-related areas. Phytochemicals in Rhoeo discolor extracts have proven to have important antimicrobial activity. In the present study, our group determined the antimicrobial effects of extracts of Rhoeo discolor, a plant commonly used in Mexico for both medicinal and ornamental purposes. We evaluated the in vitro activity of phenolic rich extracts against specifically chosen microorganisms of human health importance by measuring their susceptibility via agar-disc diffusion assay and flow cytometry: Gram-positive Listeria innocua and Streptococcus mutans, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and lastly a fungal pathogen Candida albicans. Ten different extracts were tested in eight different doses on all the microorganisms. Analytical data revealed a high content of phenolic compounds. Both agar-disc diffusion assay and flow cytometry results demonstrated that Pseudomonas aeruginosa was the least affected by extract exposure. However, low doses of these extracts (predominantly polar), in a range from 1 to 4 μg/mL, did produce a statistically significant bacteriostatic and bactericidal effect on the rest of the microorganisms. These results suggest the addition of certain natural extracts from Rhoeo discolor could act as antibacterial and antimycotic drugs or additives for foods and cosmetics.

  19. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments

    PubMed Central

    Léonard, Lucie; Bouarab Chibane, Lynda; Ouled Bouhedda, Balkis; Degraeve, Pascal; Oulahal, Nadia

    2016-01-01

    The investigation on antimicrobial mechanisms is a challenging and crucial issue in the fields of food or clinical microbiology, as it constitutes a prerequisite to the development of new antimicrobial processes or compounds, as well as to anticipate phenomenon of microbial resistance. Nowadays it is accepted that a cells population exposed to a stress can cause the appearance of different cell populations and in particular sub-lethally compromised cells which could be defined as viable but non-culturable (VBNC). Recent advances on flow cytometry (FCM) and especially on multi-parameter flow cytometry (MP-FCM) provide the opportunity to obtain high-speed information at real time on damage at single-cell level. This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments. Special attention will be paid to recent studies exploiting the possibility to corroborate MP-FCM results with additional techniques (plate counting, microscopy, spectroscopy, molecular biology techniques, membrane modeling) in order to elucidate the antimicrobial mechanism of action of a given antimicrobial treatment or compound. The combination of MP-FCM methodologies with these additional methods is namely a promising and increasingly used approach to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatments. PMID:27551279

  20. Determination of aneuploids in hop (Humulus lupulus L.) using flow cytometry.

    PubMed

    Sesek, P; Sustar-Vozlic, J; Bohanec, B

    2000-01-01

    In order to study the possibility that high-resolution flow cytometry can be used for determination of aneuploids, different genotypes of Humulus lupulus were analyzed. Triploid cultivars are bred by hybridization between diploid and tetraploid lines, and as the result of this process, some aneuploids are occasionally also formed. We analyzed eight triploid cultivars and seven putative aneuploids. Triploid cultivars Cerera, Cicero, Celeia, Cekin, Blisk, Mt. Hood, Huller Bit. and Willamette (3x = 30) were measured for nuclear DNA content using Trifolium repens as reference. No significant differences among peak positions of triploid cultivars (having an average CV value per peak of 1.94%) were found. Measurement of nuclear DNA content was also performed for seven lines: 175/75, 89/113, 89/154, 91/215, 175/17, 89/87 and 91/74 previously determined by chromosome counting to be aneuploids (CV per peak was 1.41%). A statistically lower DNA content was found for line 175/75 and higher values were measured for lines 89/154, 89/113 and 91/215. Repeated chromosome counting revealed that the number of chromosomes in line 175/75 was 29, while lines 89/154, 89/113 and 91/215 possessed 31 chromosomes. The other lines were identified as triploids. We conclude that flow cytometry can be efficiently used for determination of aneuploidy in Humulus lupulus. PMID:10653127

  1. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians

    PubMed Central

    Peiris, Tanuja Harshani; García‐Ojeda, Marcos E.

    2016-01-01

    Abstract Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  2. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    PubMed Central

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  3. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis.

  4. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    PubMed

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis. PMID:27460238

  5. Using dual laser flow cytometry for monitoring phytoplankton composition and integrity

    SciTech Connect

    Schaefer, H.; Beisker, W.; Steinberg, C.

    1995-12-31

    Dual laser flow cytometry can be used for determining phytoplankton populations in lakes and lowland rivers and streams. Apart from answering basic limnological questions such as the time course of algal blooms or the annual succession of phytoplankton composition further investigations can be made for estimating the integrity of phytoplankton community using biomass distribution spectra. Thus anthropogenic influence such as eutrophication, acidification or effects of xenobiotica can be monitored. Dual laser flow cytometry with excitation wavelengths of 458 and 528 nm was used to measure photosynthesis pigment fluorescence (chlorophyll a (CHLa), Em>665 nm) and phycoerythrin (PE, Em 575 nm) and cell density of phytoplankton organisms in water samples. CHLa is excited directly by 458 nm and by energy transfer from carotenoids (Ex 528 nm). The ratio of the two fluorescence parameters (CFR) allows to identify pigment groups in the phytoplankton population (chlorophytes and euglenophytes from chrysophytes, diatoms and dinophytes). PE-containing cyanophytes and cryptophytes can be detected by their PE fluorescence (Ex 528 nm). As a result of preliminary studies for preparing biomass spectra of phytoplankton communities measurements of protein content by staining with fluorescein isothiocyanate (FITC, ex 488 nm, Em 530 nm) are also shown.

  6. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments.

    PubMed

    Léonard, Lucie; Bouarab Chibane, Lynda; Ouled Bouhedda, Balkis; Degraeve, Pascal; Oulahal, Nadia

    2016-01-01

    The investigation on antimicrobial mechanisms is a challenging and crucial issue in the fields of food or clinical microbiology, as it constitutes a prerequisite to the development of new antimicrobial processes or compounds, as well as to anticipate phenomenon of microbial resistance. Nowadays it is accepted that a cells population exposed to a stress can cause the appearance of different cell populations and in particular sub-lethally compromised cells which could be defined as viable but non-culturable (VBNC). Recent advances on flow cytometry (FCM) and especially on multi-parameter flow cytometry (MP-FCM) provide the opportunity to obtain high-speed information at real time on damage at single-cell level. This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments. Special attention will be paid to recent studies exploiting the possibility to corroborate MP-FCM results with additional techniques (plate counting, microscopy, spectroscopy, molecular biology techniques, membrane modeling) in order to elucidate the antimicrobial mechanism of action of a given antimicrobial treatment or compound. The combination of MP-FCM methodologies with these additional methods is namely a promising and increasingly used approach to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatments. PMID:27551279

  7. Mathematical analysis of mis-estimation of cell subsets in flow cytometry: viability staining revisited.

    PubMed

    Petrunkina, A M; Harrison, R A P

    2011-05-31

    Many research projects in cell biology now use flow cytometry for analysis or for isolation of specific cell types. In such studies, cell viability is obviously a crucial issue. However, many studies appear to rely upon light-scattering characteristics to identify and gate out non-viable cells, despite the fact that reliable identification of such cells can only be achieved through staining with impermeable fluorescent nuclear dyes such as propidium iodide or 7-amino actinomycin. In this paper we apply mathematical analysis to the theoretical problem of quantifying cell sub-populations labeled with two or more fluorescent markers, comparing situations in which dead cells have been identified with those in which cell viability has not been assessed. We demonstrate that in all cases in which dead cells are present within the population, percentages of live sub-populations in different subsets are mis-estimated. In cases where the pattern of marker expression differs greatly between live and dead cells, or where the proportion of dead cells is high, this mis-estimation will be aggravated; the subsets pattern will therefore be biased in a population selected only on the basis of light-scatter behavior. The importance of accurately detecting and gating out dead cells is illustrated by an experimental example accompanying the mathematical analysis. To conclude, identification of dead cells by means of viability stains should be an absolute routine in practical flow cytometry, so as to avoid mis-estimation in sorting or analysis.

  8. Detection of DNA Strand Breaks in Apoptotic Cells by Flow- and Image-Cytometry

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong

    2010-01-01

    Extensive DNA fragmentation that generates a multitude of DNA double-strand breaks (DSBs) is a hallmark of apoptosis. A widely used approach to identify apoptotic cells relies on labeling DSBs in situ with fluorochromes. Flow or image cytometry is then used to detect and quantify apoptotic cells labeled this way. We developed several variants of the methodology that is based on the use of exogenous terminal deoxynucleotidyl transferase (TdT) to label 3′-OH ends of the DSBs with fluorochromes, defined as the TUNEL assay. This chapter describes the variant based on DSBs labeling using 5-Bromo-2′-deoxyuridine-5′-triphosphate (BrdUTP) as a TdT substrate and the incorporated BrdU is subsequently detected immunocytochemically with anti-BrdU antibody. We also describe modifications of the protocol that allow using other than BrdUTP deoxyribonucleotides to label DSBs. Concurrent differential staining of cellular DNA and multiparameter analysis of cells by flow- or image cytometry enables one to correlate the induction of apoptosis with the cell cycle phase. Examples of the detection of apoptotic cells in cultures of human leukemic cell lines treated with TNF-α and DNA topoisomerase I inhibitor topote-can are presented. The protocol can be applied to the cells growing in vitro, treated ex vivo with cytotoxic drugs as well as to clinical samples. PMID:21057923

  9. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study.

    PubMed

    Cheminant, Morgane; Derrieux, Coralie; Touzart, Aurore; Schmit, Stéphanie; Grenier, Adrien; Trinquand, Amélie; Delfau-Larue, Marie-Hélène; Lhermitte, Ludovic; Thieblemont, Catherine; Ribrag, Vincent; Cheze, Stéphane; Sanhes, Laurence; Jardin, Fabrice; Lefrère, François; Delarue, Richard; Hoster, Eva; Dreyling, Martin; Asnafi, Vahid; Hermine, Olivier; Macintyre, Elizabeth

    2016-03-01

    Quantification of minimal residual disease may guide therapeutic strategies in mantle cell lymphoma. While multiparameter flow cytometry is used for diagnosis, the gold standard method for minimal residual disease analysis is real-time quantitative polymerase chain reaction (RQ-PCR). In this European Mantle Cell Lymphoma network (EU-MCL) pilot study, we compared flow cytometry with RQ-PCR for minimal residual disease detection. Of 113 patients with at least one minimal residual disease sample, RQ-PCR was applicable in 97 (86%). A total of 284 minimal residual disease samples from 61 patients were analyzed in parallel by flow cytometry and RQ-PCR. A single, 8-color, 10-antibody flow cytometry tube allowed specific minimal residual disease assessment in all patients, with a robust sensitivity of 0.01%. Using this cut-off level, the true-positive-rate of flow cytometry with respect to RQ-PCR was 80%, whereas the true-negative-rate was 92%. As expected, RQ-PCR frequently detected positivity below this 0.01% threshold, which is insufficiently sensitive for prognostic evaluation and would ideally be replaced with robust quantification down to a 0.001% (10-5) threshold. In 10 relapsing patients, the transition from negative to positive by RQ-PCR (median 22.5 months before relapse) nearly always preceded transition by flow cytometry (4.5 months), but transition to RQ-PCR positivity above 0.01% (5 months) was simultaneous. Pre-emptive rituximab treatment of 2 patients at minimal residual disease relapse allowed re-establishment of molecular and phenotypic complete remission. Flow cytometry minimal residual disease is a complementary approach to RQ-PCR and a promising tool in individual mantle cell lymphoma therapeutic management. (clinicaltrials identifiers: 00209209 and 00209222).

  10. An EPROM-based programmable contour generator for use in flow cytometry.

    PubMed

    Wheeless, D M; Cambier, J L; Wheeless, L L

    1988-09-01

    An erasable programmable read-only memory (EPROM) contour generator has been fabricated to produce contours for use in flow cytometry. Contours are analog waveforms representing the fluorescence or light-scatter intensity distribution along a cell or object. The generator has particular utility in the development and testing of slit-scan instrumentation and analysis algorithms. Contours are generated without the requirement of specimens or full operation of the flow instrumentation. The generator provides control of contour height, width, offset, and rate. The EPROM may be custom programmed to produce contours for specific test applications or for reproducing "real" contour events. The generator is useful in situations where constant repetitive contours of predetermined characteristics are required.

  11. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry.

    PubMed

    Wood, Brent L

    2016-01-01

    Flow cytometry has become an indispensible tool for the diagnosis and classification of hematopoietic neoplasms. The ability to rapidly distinguish cellular subpopulations via multiparametric assessment of quantitative differences in antigen expression on single cells and enumerate the relative sizes of the resulting subpopulations is a key feature of the technology. More recently, these capabilities have been expanded to include the identification and enumeration of rare subpopulations within complex cellular mixtures, for example, blood or bone marrow, leading to the application for post-therapeutic monitoring or minimal residual disease detection. This review will briefly present the principles to be considered in the construction and use of flow cytometric assays for minimal residual disease detection including the use of informative antibody combinations, the impact of immunophenotypic instability, enumeration, assay sensitivity, and reproducibility.

  12. Real-time Fourier transform spectrometry for fluorescence imaging and flow cytometry

    SciTech Connect

    Buican, T.N.

    1990-01-01

    We present a Fourier transform (FT) spectrometer that is suitable for real-time spectral analysis in fluorescence imaging and flow cytometry. The instrument consists of a novel type of interferometer that can be modulated at frequencies of up to 100 kHz and has a high light throughput; and a dedicated, parallel array processor for the real-time computation of spectral parameters. The data acquisition array processor can be programmed by a host computer to perform any desired linear transform on the interferogram and can thus separate contributions from multiple fluorescence microscopy. The integration of a flow cytometer and a spectral imaging fluorescence microscope is discussed, and the concepts of direct and reversed virtual sorting'' are introduced. 9 refs., 8 figs.

  13. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development

    PubMed Central

    Malleret, Benoît; Claser, Carla; Ong, Alice Soh Meoy; Suwanarusk, Rossarin; Sriprawat, Kanlaya; Howland, Shanshan Wu; Russell, Bruce; Nosten, Francois; Rénia, Laurent

    2011-01-01

    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing. PMID:22355635

  14. A novel fluorescent sensor for measurement of CFTR function by flow cytometry.

    PubMed

    Vijftigschild, Lodewijk A W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2013-06-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis. CFTR-dependent iodide transport measured by fluorescent quenching of ectopically expressed halide-sensitive yellow fluorescent protein (YFP) is widely being used to study CFTR function by microscopy or plate readers. Since YFP fluorescence in these systems is dependent on YFP expression levels and iodide concentration, differences in sensor expression level between experimental units are normalized at the start of each experiment. To allow accurate measurement of CFTR function by flow cytometry, we reasoned that co-expression of an iodide insensitive fluorescent protein would allow for normalization of sensor expression levels and more accurate quantification of CFTR function. Our data indicated that dsRed and mKate fluorescence are iodide insensitive, and we determined an optimal format for co-expression of these fluorescent proteins with halide-sensitive YFP. We showed using microscopy that ratiometric measurement (YFP/mKate) corrects for differences in sensor expression levels. Ratiometric measurements were essential to accurately measure CFTR function by flow cytometry that we here describe for the first time. Mixing of wild type or mutant CFTR expressing cells indicated that addition of approximately 10% of wild type CFTR expressing cells could be distinguished by ratiometric YFP quenching. Flow cytometric ratiometric YFP quenching also allowed us to study CFTR mutants associated with differential residual function upon ectopic expression. Compared with conventional plate-bound CFTR function assays, the flow cytometric approach described here can be used to study CFTR function in suspension cells. It may be further adapted to study CFTR function in heterologous cell populations using cell surface markers and selection of cells that display high CFTR function by cell sorting.

  15. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  16. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry.

    PubMed

    Garner, D L; Gledhill, B L; Pinkel, D; Lake, S; Stephenson, D; Van Dilla, M A; Johnson, L A

    1983-03-01

    The relative content of DNA in spermatozoa presumed to be the X- and Y-chromosome-bearing gametes from bulls, boars, rams and rabbits and the amount of DNA in spermatozoa of cockerels was determined by flow cytometry. Differences in the relative content of DNA and proportions of the presumed X- and Y-sperm populations in cryopreserved semen from Holstein, Jersey, Angus, Hereford and Brahman bulls were also determined. Spermatozoa were washed by centrifugation using a series of dimethyl sulfoxide solutions made in isotonic sodium citrate, fixed in ethanol, treated with papain and dithioerythritol to loosen the chromatin structure and remove cellular organelles, and stained quantitatively for DNA with the fluorochrome 4'-6-diamidino-2-phenylindole (DAPI). Approximately 5000 stained sperm nuclei, which were nonviable due to the removal of other cellular organelles during the washing procedure, were measured for DNA in an epi-illumination flow cytometer. A single distinct peak for cockerel spermatozoa and two symmetrical, overlapping peaks for species with X- and Y-spermatozoa were seen. This and other evidence strongly supports the interpretation that the peaks represent the X- and Y-sperm populations. The content of DNA in sperm nuclei from cockerels, bulls, boars, rams and rabbits, as determined by fluorescence flow cytometry, corresponded to biochemical estimates of DNA per sperm cell. Analyses of the bimodal histograms by computer-fitting two Gaussian distributions to the data showed the means of the peaks differed by 3.9, 3.7, 4.1 and 3.9% for bulls, boars, rams and rabbits, respectively. In four replicate analyses of semen from 25 bulls representing 5 breeds, the average population of sperm nuclei in the Y-peaks ranged from 49.5 to 50.5% for all breeds. The X-Y peak differences did not vary within each breed, but were significantly different when the breeds were compared. Spermatozoa from Jersey bulls had larger X-Y peak differences (P less than 0.001) than

  17. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    PubMed

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  18. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  19. Screening of Urine Samples by Flow Cytometry Reduces the Need for Culture▿

    PubMed Central

    Jolkkonen, Santra; Paattiniemi, Eeva-Liisa; Kärpänoja, Pauliina; Sarkkinen, Hannu

    2010-01-01

    Urine samples constitute a large proportion of samples tested in clinical microbiology laboratories. Culturing of the samples is fairly time- and labor-consuming, and most of the samples will yield no growth or insignificant growth. We analyzed the feasibility of the flow cytometry-based UF-500i instrument (Sysmex, Japan) to screen out urine samples with no growth or insignificant growth and reduce the number of samples to be cultured. A total of 1,094 urine specimens sent to our laboratory for culture during 4 months in the spring of 2009 in Lahti, Finland, were included in the study. After culture, all samples were analyzed with the Sysmex UF-500i for bacterial and leukocyte (white blood cell [WBC]) counts. Youden index and closest (0,1) methods were used to determine the cutoff values for bacterial and WBC counts in culture-positive and -negative groups. By flow cytometry, samples considered positive for UTI in culture had bacterial and WBC values that were significantly higher than those for samples considered negative. The flow cytometric screening worked best when both bacterial counts and WBC counts were used with age- and gender-specific cutoff values for all patient groups, excluding patients with urological disease or anomaly. By use of these cutoff values, 5/167 (3.0%) of culture-positive samples were missed by UF-500i and the percentage of samples that did not need to be cultured was 64.5%. Use of the UF-500i instrument is a reliable method for screening out a major part of the UTI-negative samples, significantly diminishing the amount of work required in the microbiology laboratory. PMID:20592157

  20. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model.

    PubMed

    Jenner, Dominic; Ducker, Catherine; Clark, Graeme; Prior, Jo; Rowland, Caroline A

    2016-04-01

    The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC. PMID:26841315

  1. Optical analysis of nanomaterial-cell interactions: flow cytometry and digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Mues, Sarah; Antunovic, Jan; Ossig, Rainer; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    The in vitro cytotoxicity assessment of engineered nanoparticles commonly involves the measurement of different endpoints like the formation of reactive oxygen species, cell viability or cell death. Usually these parameters are determined by optical readouts of enzymatically converted substrates that often interfere with the tested nanomaterials. Using cell viability (WST-8) and cell death (LDH) as parameter we have initially investigated the toxic effects of spherical (NM 300) and rod shaped (NM 302) silver nanomaterials with a matrix of four cell lines representing different functions: lung and kidney epithelial cells, macrophages and fibroblasts. In addition, we have used a label-free flow cytometer configuration to investigate interactions of particles and macrophages by side scatter signal analysis. Finally, we explored digital holographic microscopy (DHM) for multimodal label-free analysis of nanomaterial toxicity. Quantitative DHM phase images were analyzed for cell thickness, volume, density, dry mass and refractive index. We could demonstrate that silver spheres lead to more cytotoxic effects than rods in all four examined cell lines and both assay. Exemplarily a dose dependent interaction increase of cells with NM 300 and NM 302 analyzed by flow cytometry is shown. Furthermore, we found that the refractive index of cells is influenced by incubation with NM 300 in a decreasing manner. A 24 hours time-lapse measurement revealed a dose dependent decrease of dry mass and surface area development indicating reduced cell viability and cell death. Our results demonstrate digital holographic microscopy and flow cytometry as valuable label-free tools for nanomaterial toxicity and cell interaction studies.

  2. Toxinological studies of the venom from Cassiopea xamachana nematocysts isolated by flow cytometry.

    PubMed

    Radwan, F F; Burnett, J W

    2001-01-01

    The tentacle epithelial tissue of Cassiopea xamachana contains nematocysts and symbiotic algal particles. These two structures were dissociated, analyzed and sorted by flow cytometry. A simple separating method was developed utilizing the algal chlorophyll autofluorescence and the nematocysts' fluorescence after the uptake of fluorescent stains. A five-fold increase in mouse lethality; significantly more potent hemolytic and cytosensing activities; as well as a cleanup in the capillary electropherogram and SDS gel profiles for the crude nematocyst venom preparations prepared by fluorescence activated cell sorting (FACS), was observed relative to alternative methods. Because the hemolytic potency of pre-sorting nematocyst venom was minimal and the post-sorting counterpart was significantly positive, the possibility that algae inhibited the venom's toxinological activity was considered. PMID:11166675

  3. Characterization of aggregate load and pattern in living yeast cells by flow cytometry.

    PubMed

    Hidalgo, Itahisa Hernández; Fleming, Thomas; Eckstein, Volker; Herzig, Stephan; Nawroth, Peter P; Tyedmers, Jens

    2016-01-01

    Protein aggregation is both a hallmark of and a driving force for a number of diseases. It is therefore important to identify the nature of these aggregates and the mechanism(s) by which the cell counteracts their detrimental properties. Currently, the study of aggregation in vivo is performed primarily using fluorescently tagged versions of proteins and analyzing the aggregates by fluorescence microscopy. While this strategy is considered the gold standard, it has several limitations, particularly with respect to its suitability for high-throughput screening (HTS). Here, using a GFP fusion of the well-characterized yeast prion amyloid protein [PSI+], we demonstrate that flow cytometry, which utilizes the same physical principles as fluorescence microscopy, can be used to determine the aggregate load and pattern in live and fixed yeast cells. Furthermore, our approach can easily be applied to high-throughput analyses such as screenings with a yeast deletion library. PMID:27625208

  4. Flow cytometry for monitoring contaminant exposure in black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Bickham, J.W.; Lyne, T.B.; Lewis, T.; Ruedas, L.A.; Custer, Christine M.; Melancon, M.J.

    1994-01-01

    The flow cytometry method (FCM) was employed to determine cellular DNA content of black-crowned night-heron (Nycticorax nycticorax) embryos and 10-day-old chicks collected at sites differing in types of chemical contamination. The coefficient of variation of DNA content (CV) in blood collected from embryos suggested cytogenetic damage at a site in Louisiana known to be contaminated with petroleum. Blood CV from chicks suggested genetic damage at a site in Texas also known to be contaminated with petroleum. Spleen CVs in chicks were significantly lower than respective means from the reference site. The CVs of chick blood and liver and spleen negatively correlated, suggesting recovery of spleen and liver cells after exposure to a clastogenic compound. Thus, the lower CVs may also have been indicative of genetic damage. Based on the findings of this study, FCM is a potential indicator of certain environmental contaminants in black-crowned night-herons.

  5. Flow cytometry for monitoring contaminant exposure in black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Bickham, J.W.; Lyne, T.B.; Lewis, T.; Ruedas, L.A.; Custer, Christine M.; Melancon, M.J.

    1994-01-01

    The flow cytometry method (FCM) was employed to determine cellular DNA content of black-crowned night-heron (Nycticorax nycticorax) embryos and 10-day-old chicks collected at sites differing in types of chemical contamination. The coefficient of variation of DNA content (CV) in blood collected from embryos suggested cytogenetic damage at a site in Louisiana known to be contaminated with petroleum. Blood CV from chicks suggested genetic damage at a site in Texas also known to be contaminated with petroleum. Spleen CVs in chicks were significantly lower than respective means from the reference site. the CVs of chick blood and liver and spleen negatively correlated, suggesting recovery of spleen and liver cells after exposure to a clastogenic compound. Thus, the lower CVs may also have been indicative of genetic damage. Based on the findings of this study, FCM is a potential indicator of certain environmental contaminants in black-crowned night-herons.

  6. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity

    PubMed Central

    O’Brien-Simpson, Neil M.; Pantarat, Namfon; Attard, Troy J.; Walsh, Katrina A.; Reynolds, Eric C.

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  7. Monitoring of dynamic microbiological processes using real-time flow cytometry.

    PubMed

    Arnoldini, Markus; Heck, Tobias; Blanco-Fernández, Alfonso; Hammes, Frederik

    2013-01-01

    We describe a straightforward approach to continuously monitor a variety of highly dynamic microbiological processes in millisecond resolution with flow cytometry, using standard bench-top instrumentation. Four main experimental examples are provided, namely: (1) green fluorescent protein expression by antibiotic-stressed Escherichia coli, (2) fluorescent labeling of heat-induced membrane damage in an autochthonous freshwater bacterial community, (3) the initial growth response of late stationary E. coli cells inoculated into fresh growth media, and (4) oxidative disinfection of a mixed culture of auto-fluorescent microorganisms. These examples demonstrate the broad applicability of the method to diverse biological experiments, showing that it allows the collection of detailed, time-resolved information on complex processes. PMID:24244624

  8. Flow Cytometry Analysis of NK Cell Phenotype and Function in Aging.

    PubMed

    Tarazona, Raquel; Campos, Carmen; Pera, Alejandra; Sanchez-Correa, Beatriz; Solana, Rafael

    2015-01-01

    Natural killer (NK) cells represent a subpopulation of lymphocytes involved in innate immunity, defined recently as group 1 of innate lymphoid cells (ILCs). NK cells are cytotoxic lymphocytes with a relevant role in the destruction of transformed cells as virus-infected or tumor cells, as well as the regulation of the immune response through cytokine and chemokine production that activates other cellular components of innate and adaptive immunity. In humans, NK cell subsets have been defined according to the level of expression of CD56. Aging differentially affects NK cell subsets and NK cell function. Here, we describe protocols for the delineation of NK cell subsets and the analysis of their functional capacity using multiparametric flow cytometry.

  9. [Multi-parametric Flow Cytometry for Neuroblastoma, a new and possible diagnostic tool: case report].

    PubMed

    Manrique, Belén; López Marti, Jessica; Cacciavillano, Walter; Rossi, Jorge

    2016-04-01

    Neuroblastoma is the most frequent extracranial solid tumor in childhood, representing 5.6% according to the "Registro Oncopediatrico Hospitalario Argentino". For its diagnosis, several complementary methods (radiological, biological and biochemical) are required, and Multi-parametric Flow Cytometry (MFC) arises as a potential diagnostic method, despite not having been so far extensively explored. MFC is a method that allows to obtain several information about size, internal complexity and antigenic expression by the use of a laser and fluorescent monoclonal antibodies. There are an increasing number of reports in the literature, which reveal the importance of using MFC for diagnosis and monitoring of solid tumors. The aim in this presentation is to highlight the fundamental role that MFC had in the case of a patient affected by neuroblastoma, in which an early diagnosis using this methodology allowed prompt administration of adequate treatment.

  10. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Khlebtsov, Nicolai G.; Tuchin, Valery V.

    2006-12-01

    A new photoacoustic flow cytometry was developed for real-time detection of circulating cells, nanoparticles, and contrast agents in vivo. Its capability, integrated with photothermal and optical clearing methods, was demonstrated using a near-infrared tunable laser to characterize the in vivo kinetics of Indocyanine Green alone and single cancer cells labeled with gold nanorods and Indocyanine Green in the vasculature of the mouse ear. In vivo applications are discussed, including selective nanophotothermolysis of metastatic squamous cells, label-free detection of melanoma cells, study of pharmokinetics, and immune response to apoptotic and necrotic cells, with potential translation to humans. The threshold sensitivity is estimated as one cancer cell in the background of 107 normal blood cells.

  11. Comparative analysis of hemocyte phagocytosis between six species of arthropods as measured by flow cytometry.

    PubMed

    Oliver, Jonathan D; Dusty Loy, J; Parikh, Grishma; Bartholomay, Lyric

    2011-10-01

    Phagocytosis of pathogens by hemocytes is a rapid-acting immune response and represents a primary means of limiting microbial infection in some species of arthropods. To survey the relative capacity of hemocyte phagocytosis as a function of the arthropod immune response, we examined the extent of phagocytosis among a wide taxonomic range of arthropod species including a decapod crustacean (Litopenaeus vannamei), three ixodid tick species (Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis), a mosquito species (Aedes aegypti), and a larval moth (Manduca sexta). Injected fluorescent beads were used as a model to elicit phagocytosis and were measured by flow cytometry, a technique provided in detail that may be adapted for use with any species of arthropod. The data indicated that smaller arthropods generally had a higher proportion of phagocytic cells than larger arthropods.

  12. Radiocarbon dating of sub-fossil pollen grans extracted from terrestrial sediments using flow Cytometry.

    NASA Astrophysics Data System (ADS)

    Jones, Richard; Tennant, Richard; Love, John

    2015-04-01

    Producing robust high-resolution radiocarbon chronologies for sediment archives is often hampered by a lack of suitable terrestrial plant macrofossils. Pollen is a viable alternative, readily identifiable as terrestrial in origin and often present in sufficient quantitates for AMS 14C dating. Producing reliable samples is challenging because of time-consuming methods of extraction and purification and possible contamination from other organic material. Here we report a new, rapid method using flow cytometry (FCM) to distinguish, sort and collect sufficient quantities of fossil pollen with minimal contamination from lake sediments. Indeed it is now possible to produce datable samples using a single species if that species is sufficiently abundant in a sample. FCM dating of microfossils shows considerable promise in generating robust geochronological frameworks for terrestrial sequences including those that have previously proved problematic.

  13. Flow cytometry for monitoring contaminant exposure in black-crowned night-herons.

    PubMed

    Custer, T W; Bickham, J W; Lyne, T B; Lewis, T; Ruedas, L A; Custer, C M; Melancon, M J

    1994-08-01

    The flow cytometry methods (FCM) was employed to determine cellular DNA content of black-crowned night-heron (Nycticorax nycticorax) embryos and 10-day-old chicks collected at sites differing in types of chemical contamination. The coefficient of variation of DNA content (CV) in blood collected from embryos suggested cytogenetic damage at a side in Louisiana known to be contaminated with petroleum. Blood CV from chicks suggested genetic damage at a site in Texas also known to be contaminated with petroleum. Spleen CVs in chicks were significantly lower than respective means from the reference site. The CVs of chick blood and liver and spleen negatively correlated, suggesting recovery of spleen and liver cells after exposure to a clastogenic compound. Thus, the lower CVs may also have been indicative of genetic damage. Based on the findings of this study, FCM is a potential indicator of certain environmental contaminants in black-crowned night-herons.

  14. Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder

    NASA Astrophysics Data System (ADS)

    Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa

    2010-11-01

    Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.

  15. Epitope mapping of the infectious hematopoietic necrosis virus glycoprotein by flow cytometry.

    PubMed

    Xu, Li-Ming; Liu, Miao; Zhao, Jing-Zhuang; Cao, Yong-Sheng; Yin, Jia-Sheng; Liu, Hong-Bai; Lu, Tongyan

    2014-10-01

    The glycoprotein of infectious hematopoietic necrosis virus was truncated to ten overlapping fragments. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the glycoprotein fragment were incubated with an anti-glycoprotein polyclonal antibody. Prey pairs were detected and quantitated by flow cytometry with all fragments but one, G2, reacting with the polyclonal antibody. The antigenicity of all ten fragments was analyzed using conventional methods, and epitopes were localized in all fragments, except for G2 and were consistent with FCM analysis. Antigenicity of purified glycoprotein fusion proteins was confirmed by western blotting and ELISA. This method provides a rapid, quantitative and simple strategy for identifying linear B cell epitopes of a given protein.

  16. Quality control in the application of flow cytometry to studies of environmentally-induced genetic damage

    SciTech Connect

    McCreedy, C.D.; Robinson, J.P.; Dallas, C.E.; Jagoe, C.H.

    1999-07-01

    Flow cytometry (FCM) has been used to demonstrate altered DNA content in fish, reptiles, birds and mammals exposed to radionuclides, PAHs and other contaminants. However, artifacts resulting from sample preparation, handling, variations in instrument parameters or other factors may confound such measurements. Some artifacts resemble genotoxic responses and so could lead to erroneous positive conclusions. As part of ongoing studies of effects of various pollutants on DNA content in fishes, the authors tested sample handling and preparation methods for the induction of artifacts. The authors describe QA/QC methods, including control of staining, conditions, doublet discrimination by comparison of peak versus integral fluorescence, internal DNA standards, and the use of time versus fluorescence plots. Consistent application of these practices is essential to obtain valid measurements of DNA content in environmental samples, and neglect of these can result in poor quality data and the acceptance of incorrect hypotheses.

  17. Measuring antibody neutralization of dengue virus (DENV) using a flow cytometry-based technique.

    PubMed

    de Alwis, Ruklanthi; de Silva, Aravinda M

    2014-01-01

    Dengue virus (DENV) is an emerging virus that threatens over two-third of the world's population. The specific diagnosis of dengue infection by serology is based on assays that detect DENV-specific antibodies including neutralizing antibodies (Abs). Neutralizing Abs are an important, if not the main, mechanism of protection from natural dengue virus (DENV) infection as well. The current gold-standard assay for measuring neutralizing Ab responses against DENV is the plaque reduction neutralization assay (PRNT). However, this assay is slow and laborious and utilizes physiologically irrelevant cell lines. Here, we describe a relatively high-throughput, flow cytometry-based neutralization assay for DENV that has been optimized for use with a human monocytic suspension cell line, U937 + DC-SIGN, or the more commonly used adherent monkey kidney cells, Vero-81. PMID:24696329

  18. Analysis of DNA-guided self-assembly of microspheres using imaging flow cytometry.

    PubMed

    Tang, Hao; Deschner, Ryan; Allen, Peter; Cho, Younjin; Sermas, Patrick; Maurer, Alejandro; Ellington, Andrew D; Willson, C Grant

    2012-09-19

    Imaging flow cytometry was used to analyze the self-assembly of DNA-conjugated polystyrene microspheres. This technique enables quantitative analysis of the assembly process and thereby enables detailed analysis of the effect of structural and process variables on the assembly yield. In a demonstration of the potential of this technique, the influence of DNA strand base pair (bp) length was examined, and it was found that 50 bp was sufficient to drive the assembly of microspheres efficiently, forming not only dimers but also chainlike structures. The effect of stoichiometry on the yield was also examined. The analysis demonstrated that self-assembly of 50 bp microspheres can be driven nearly to completion by stoichiometric excess in a manner similar to Le Chatelier's principle in common chemical equilibrium. PMID:22938015

  19. Monitoring of Dynamic Microbiological Processes Using Real-Time Flow Cytometry

    PubMed Central

    Arnoldini, Markus; Heck, Tobias; Blanco-Fernández, Alfonso; Hammes, Frederik

    2013-01-01

    We describe a straightforward approach to continuously monitor a variety of highly dynamic microbiological processes in millisecond resolution with flow cytometry, using standard bench-top instrumentation. Four main experimental examples are provided, namely: (1) green fluorescent protein expression by antibiotic-stressed Escherichia coli, (2) fluorescent labeling of heat-induced membrane damage in an autochthonous freshwater bacterial community, (3) the initial growth response of late stationary E. coli cells inoculated into fresh growth media, and (4) oxidative disinfection of a mixed culture of auto-fluorescent microorganisms. These examples demonstrate the broad applicability of the method to diverse biological experiments, showing that it allows the collection of detailed, time-resolved information on complex processes. PMID:24244624

  20. Quantitating MHC class II trafficking in primary dendritic cells using imaging flow cytometry

    PubMed Central

    Hennies, Cassandra M.; Lehn, Maria A.; Janssen, Edith M.

    2015-01-01

    Presentation of antigenic peptides in MHC class II (MHCII) on dendritic cells (DCs) is the first step in the activation of antigen-specific CD4+T cells. The expression of surface MHCII-peptide complexes is tightly regulated as the frequency of MHCII-peptide complexes can affect the magnitude, as well as the phenotype of the ensuing CD4+T cell response. The surface MHCII-peptide levels are determined by the balance between expression of newly generated complexes, complex internalization, and their subsequent re-emergence or degradation. However, the molecular mechanisms that underpin these processes are still poorly understood. Here we describe a multispectral imaging flow cytometry assay to visualize MHCII trafficking that can be used as a tool to dissect the molecular mechanisms that regulate MHCII homeostasis in primary mouse and human DCs. PMID:25967952

  1. Assessment of immune parameters of manila clam Ruditapes philippinarum in different physiological conditions using flow cytometry

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Il; Donaghy, Ludovic; Kang, Hyun-Sil; Hong, Hyun-Ki; Kim, Young-Ok; Choi, Kwang-Sik

    2012-03-01

    Cellular and humoral immune parameters are often used as biomarkers to trace environmental and physiological stresses in marine bivalves. In this study, we compared various immune parameters of Manila clams ( Ruditapes philippinarum) under normal conditions and under a high level of desiccation, using flow cytometry. The immune parameters analyzed included, total hemocyte count, hemocyte mortality, hemocyte DNA damage, reactive oxygen species (ROS) production, and phagocytosis activity. Total hemocyte count, hemocyte DNA damage, and hemocyte mortality were significantly elevated among clams under high desiccation stress, while phagocytosis activity and spontaneous ROS production were significantly lower compared to those parameters of the control clams ( p<0.05). These data suggest that the immune parameters analyzed in this study well reflect the physiological status of clams.

  2. Flow cytometry evidence of human granulocytes interaction with polyhedral oligomeric silsesquioxanes: effect of nanoparticle charge

    NASA Astrophysics Data System (ADS)

    Renò, Filippo; Carniato, Fabio; Rizzi, Manuela; Olivero, Francesco; Pittarella, Pamela; Marchese, Leonardo

    2013-05-01

    Nanoparticles (NPs) entering the human body are immediately confronted with the innate part of human immune system. In particular, monocyte and neutrophil granulocytes readily clear particles by phagocytosis, even if in the case of NPs the uptake mechanism may be classified as macropinocytosis. Among engineered nanoparticles, in the last years, siliceous materials have emerged as promising materials for several applications ranging from catalysis to biomedical. The polyhedral oligomeric silsesquioxanes (POSS) are nanodimensional, easily synthesizable molecular compounds and POSS-based systems are promising carriers for biological molecules. In this work, the ability of human granulocytes to uptake positively and negatively charged POSS was measured using a simple flow cytometry analysis based on cell size modifications. The data obtained showed that after a 30 min exposure only positive NPs were uptaken by human granulocyte using both macropinocytosis and clathrin-mediated mechanisms as demonstrated by uptake inhibition mediated by amiloride and chlorpromazine.

  3. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis.

    PubMed

    Patra, Bishnubrata; Chen, Ying-Hua; Peng, Chien-Chung; Lin, Shiang-Chi; Lee, Chau-Hwang; Tung, Yi-Chung

    2013-01-01

    Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell-cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers. PMID:24396525

  4. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity.

    PubMed

    O'Brien-Simpson, Neil M; Pantarat, Namfon; Attard, Troy J; Walsh, Katrina A; Reynolds, Eric C

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  5. Spatial characterization of glutathione depletion in the KHT sarcoma using flow cytometry.

    PubMed

    Minchinton, A I; Chaplin, D J

    1991-06-01

    Intravenous administration of the fluorescent DNA stain Hoechst 33342 to tumour-bearing mice was used to label cells proportionally to their proximity from the vasculature. Flow cytometry was used to sort cells from the tumour into populations based on their Hoechst 33342-derived fluorescence. The cell populations were then assayed for their glutathione (GSH) content and their radiosensitivity. Tumours from mice pretreated with buthionine sulphoximine (BSO) were compared with untreated animals. The major findings of this study suggest that the cellular GSH concentration within tumours decreases with distance from the vasculature, and that the GSH concentration within cells from all locations in the tumour can be depleted by enzymatically inhibiting its synthesis using BSO. This depletion of GSH resulted in a small degree of hypoxic radiosensitization of cells both distal and proximal to the vasculature.

  6. Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes.

    PubMed

    Tracy, Bryan P; Gaida, Stefan M; Papoutsakis, Eleftherios T

    2010-02-01

    Flow cytometry (FC) and FC-based cell sorting have been established as critical tools in modern cell and developmental biology. Yet, their applications in bacteria, especially in the multiparametric mode, remain limited. We argue that FC technologies have the potential to greatly accelerate the analysis and development of microbial complex phenotypes through applications of metabolic engineering, synthetic biology, and evolutionary engineering. We demonstrate the importance of FC for elucidating population heterogeneity because of developmental processes or epigenetic regulation. FC can be engaged for both synthetic and analytical applications of complex phenotypes within a single species, multispecies, and microbial-library populations. Examples include methods to identify developmental microbial stages associated with productive metabolic phenotypes, select desirable promoters from a single species or metagenomic libraries, and to screen designer riboswitches for synthetic-biology applications. PMID:20206495

  7. Fluorescence Assisted Selection of Transformants (FAST): Using flow cytometry to select fungal transformants.

    PubMed

    Vlaardingerbroek, Ido; Beerens, Bas; Shahi, Shermineh; Rep, Martijn

    2015-03-01

    The availability of drug resistance markers for fungal transformation is often a limiting factor in both fungal genetics research and industrial applications. We describe a new technique using flow cytometry to select fungal transformants using well-known fluorescent proteins as markers for transformation. This new technique, Fluorescence-Assisted Selection of Transformants (FAST), was used for a transformation of Fusarium oxysporum with GFP as a marker targeted at a specific site on chromosome 14. The resulting strain was then transformed again with a gene replacement construct containing both RFP and a gene for drug resistance as markers. By directly comparing FAST with drug resistance selection we show that both methods yield comparable numbers of gene deletion mutants.

  8. Overview of clinical flow cytometry data analysis: recent advances and future challenges.

    PubMed

    Pedreira, Carlos E; Costa, Elaine S; Lecrevisse, Quentin; van Dongen, Jacques J M; Orfao, Alberto

    2013-07-01

    Major technological advances in flow cytometry (FC), both for instrumentation and reagents, have emerged over the past few decades. These advances facilitate simultaneous evaluation of more parameters in single cells analyzed at higher speed. Consequently, larger and more complex data files that contain information about tens of parameters for millions of cells are generated. This increasing complexity has challenged pre-existing data analysis tools and promoted the development of new algorithms and tools for data analysis and visualization. Here, we review the currently available (conventional and newly developed) data analysis and visualization strategies that aim for easier, more objective, and robust interpretation of FC data both in biomedical research and clinical diagnostic laboratories.

  9. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples

    PubMed Central

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-01-01

    We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations’ characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are

  10. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  11. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples

    PubMed Central

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-01-01

    We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations’ characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are

  12. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples.

    PubMed

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-01-01

    We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations' characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are

  13. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

    PubMed

    Cron, Andrew; Gouttefangeas, Cécile; Frelinger, Jacob; Lin, Lin; Singh, Satwinder K; Britten, Cedrik M; Welters, Marij J P; van der Burg, Sjoerd H; West, Mike; Chan, Cliburn

    2013-01-01

    Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less). Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM) approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM) naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC) samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a consistent labeling

  14. Quantification and Characterization of Phagocytosis in the Soil Amoeba Acanthamoeba castellanii by Flow Cytometry

    PubMed Central

    Avery, S. V.; Harwood, J. L.; Lloyd, D.

    1995-01-01

    Phagocytosis in the common grazing soil amoeba Acanthamoeba castellanii was characterized by flow cytometry. Uptake of fluorescently labelled latex microbeads by cells was quantified by appropriate setting of thresholds on light scatter channels and, subsequently, on fluorescence histograms. Confocal laser scanning microscopy was used to verify the effectiveness of sodium azide as a control for distinguishing between cell surface binding and internalization of beads. It was found that binding of beads at the cell surface was complete within 5 min and 80% of cells had beads associated with them after 10 min. However, the total number of phagocytosed beads continued to rise up to 2 h. The prolonged increase in numbers of beads phagocytosed was due to cell populations containing increasing numbers of beads peaking at increasing time intervals from the onset of phagocytosis. Fine adjustment of thresholds on light scatter channels was used to fractionate cells according to cell volume (cell cycle stage). Phagocytotic activity was approximately threefold higher in the largest (oldest) than in the smallest (newly divided) cells of A. castellanii and showed some evidence of periodicity. At no stage in the cell cycle did phagocytosis cease. Binding and phagocytosis of beads were also markedly influenced by culture age and rate of rotary agitation of cell suspensions. Saturation of phagocytosis (per cell) at increasing bead or decreasing cell concentrations occurred at bead/cell ratios exceeding 10:1. This was probably a result of a limitation of the vacuolar uptake system of A. castellanii, as no saturation of bead binding was evident. The advantages of flow cytometry for characterization of phagocytosis at the single-cell level in heterogeneous protozoal populations and the significance of the present results are discussed. PMID:16534962

  15. Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes.

    PubMed

    Steudler, Susanne; Böhmer, Ulrike; Weber, Jost; Bley, Thomas

    2015-02-01

    Solid-state fermentation (SSF) is a robust process that is well suited to the on-site cultivation of basidiomycetes that produce enzymes for the treatment of lignocellulosics. Reliable methods for biomass quantification are essential for the analysis of fungal growth kinetics. However, direct biomass determination is not possible during SSF because the fungi grow into the substrate and use it as a nutrient source. This necessitates the use of indirect methods that are either very laborious and time consuming or can only provide biomass measurements during certain growth periods. Here, we describe the development and optimization of a new rapid method for fungal biomass determination during SSF that is based on counting fungal nuclei by flow cytometry. Fungal biomass was grown on an organic substrate and its concentration was measured by isolating the nuclei from the fungal hyphae after cell disruption, staining them with SYTOX(®) Green, and then counting them using a flow cytometer. A calibration curve relating the dry biomass of the samples to their concentrations of nuclei was established. Multiple buffers and disruption methods were tested. The results obtained were compared with values determined using the method of ergosterol determination, a classical technique for fungal biomass measurement during SSF. Our new approach can be used to measure fungal biomass on a range of different scales, from 15 mL cultures to a laboratory reactor with a working volume of 10 L (developed by the Research Center for Medical Technology and Biotechnology (fzmb GmbH)). © 2014 International Society for Advancement of Cytometry.

  16. Flow Cytometry-Based Methods to Characterize Immune Senescence in Nonhuman Primates.

    PubMed

    Meyer, Christine; Haberthur, Kristen; Asquith, Mark; Messaoudi, Ilhem

    2015-01-01

    Flow cytometry is an invaluable technique that can be used to phenotypically and functionally characterize immune cell populations ex vivo. This technology has greatly advanced our ability to gain critical insight into age-related changes in immune function, commonly known as immune senescence. Rodents have been traditionally used to investigate the molecular mechanisms of immune senescence because they offer the distinct advantages of an extensive set of reagents, the presence of genetically modified strains, and a short lifespan that allows for longevity studies of short duration. More recently, nonhuman primates (NHPs), and specifically rhesus macaques, have emerged as a leading translational model to study various aspects of human aging. In contrast to rodents, they share significant genetic homology as well as physiological and behavioral characteristics with humans. Furthermore, rhesus macaques are a long-lived outbred species, which makes them an ideal translational model. Therefore, NHPs offer a unique opportunity to carry out mechanistic studies under controlled laboratory conditions (e.g., photoperiod, temperature, diet, and medications) in a species that closely mimics human biology. Moreover similar techniques (e.g., activity recording and MRI) can be used to measure physiological parameters in NHPs, making direct comparisons between NHP and human data sets possible. In addition, the outbred genetics of NHPs enables rigorous validation of research findings that goes beyond proof of principle. Finally, self-selection bias that is often unavoidable in human clinical trials can be completely eliminated with NHP studies. Here we describe flow cytometry-based methods to phenotypically and functionally characterize innate immune cells as well as T and B lymphocyte subsets from isolated peripheral blood mononuclear cells (PBMC) in rhesus macaques. PMID:26420709

  17. Using flow cytometry to estimate pollen DNA content: improved methodology and applications

    PubMed Central

    Kron, Paul; Husband, Brian C.

    2012-01-01

    Background and Aims Flow cytometry has been used to measure nuclear DNA content in pollen, mostly to understand pollen development and detect unreduced gametes. Published data have not always met the high-quality standards required for some applications, in part due to difficulties inherent in the extraction of nuclei. Here we describe a simple and relatively novel method for extracting pollen nuclei, involving the bursting of pollen through a nylon mesh, compare it with other methods and demonstrate its broad applicability and utility. Methods The method was tested across 80 species, 64 genera and 33 families, and the data were evaluated using established criteria for estimating genome size and analysing cell cycle. Filter bursting was directly compared with chopping in five species, yields were compared with published values for sonicated samples, and the method was applied by comparing genome size estimates for leaf and pollen nuclei in six species. Key Results Data quality met generally applied standards for estimating genome size in 81 % of species and the higher best practice standards for cell cycle analysis in 51 %. In 41 % of species we met the most stringent criterion of screening 10 000 pollen grains per sample. In direct comparison with two chopping techniques, our method produced better quality histograms with consistently higher nuclei yields, and yields were higher than previously published results for sonication. In three binucleate and three trinucleate species we found that pollen-based genome size estimates differed from leaf tissue estimates by 1·5 % or less when 1C pollen nuclei were used, while estimates from 2C generative nuclei differed from leaf estimates by up to 2·5 %. Conclusions The high success rate, ease of use and wide applicability of the filter bursting method show that this method can facilitate the use of pollen for estimating genome size and dramatically improve unreduced pollen production estimation with flow cytometry. PMID

  18. Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids

    PubMed Central

    Nemorin, A.; David, J.; Maledon, E.; Nudol, E.; Dalon, J.; Arnau, G.

    2013-01-01

    Background and Aims Dioscorea alata is a polyploid species with a ploidy level ranging from diploid (2n = 2x = 40) to tetraploid (2n = 4x = 80). Ploidy increase is correlated with better agronomic performance. The lack of knowledge about the origin of D. alata spontaneous polyploids (triploids and tetraploids) limits the efficiency of polyploid breeding. The objective of the present study was to use flow cytometry and microsatellite markers to understand the origin of D. alata polyploids. Methods Different progeny generated by intracytotype crosses (2x × 2x) and intercytotype crosses (2x × 4x and 3x × 2x) were analysed in order to understand endosperm incompatibility phenomena and gamete origins via the heterozygosity rate transmitted to progeny. Results This work shows that in a 2x × 2x cross, triploids with viable seeds are obtained only via a phenomenon of diploid female non-gametic reduction. The study of the transmission of heterozygosity made it possible to exclude polyspermy and polyembryony as the mechanisms at the origin of triploids. The fact that no seedlings were obtained by a 3x × 2x cross made it possible to confirm the sterility of triploid females. Flow cytometry analyses carried out on the endosperm of seeds resulting from 2x × 4x crosses revealed endosperm incompatibility phenomena. Conclusions The major conclusion is that the polyploids of D. alata would have appeared through the formation of unreduced gametes. The triploid pool would have been built and diversified through the formation of 2n gametes in diploid females as the result of the non-viability of seeds resulting from the formation of 2n sperm and of the non-viability of intercytotype crosses. The tetraploids would have appeared through bilateral sexual polyploidization via the union of two unreduced gametes due to the sterility of triploids. PMID:23912697

  19. Characterization of functional variables in epididymal alpaca (Vicugna pacos) sperm using imaging flow cytometry.

    PubMed

    Santiani, Alexei; Ugarelli, Alejandra; Evangelista-Vargas, Shirley

    2016-10-01

    Epididymal alpaca sperm represent an alternative model for the study of alpaca semen. The objective of this study was to characterize the normal values of some functional variables in epididymal alpaca sperm using imaging flow cytometry. Alpaca testicles (n=150) were processed and sperm were recovered from the cauda epididymides. Only 76 samples with acceptable motility and sperm count were considered for assessment by imaging flow cytometry. Acrosome integrity and integrity/viability were assessed by FITC-PSA/PI and FITC-PNA/PI. Mitochondrial membrane potential (MMP) was assessed by MitoTracker CMXRos and MitoTracker Deep Red FM. Lipid peroxidation was evaluated using BODIPY 581/591 C11. Results show that the mean values for acrosome-intact sperm were 95.03±6.39% and 93.34±7.96%, using FITC-PSA and FITC-PNA, respectively. The mean values for acrosome-intact viable sperm were 60.58±12.12% with FITC-PSA/PI and 58.81±12.94% with FITC-PNA/PI. Greater MMP was detected in 65.03±15.92% and 59.52±19.19%, using MitoTracker CMXRos and MitoTracker Deep Red FM, respectively. Lipid peroxidation was 0.84±0.95%. Evaluation of acrosome-intact and acrosome-intact viable sperm with FITC-PSA/PI compared with. FITC-PNA/PI or MMP with MitoTracker CMXRos compared with MitoTracker Deep Red FM were correlated (P<0.05). The MMP using MitoTracker CMXRos was the only variable correlated (P<0.05) with sperm motility (r=0.3979). This report provides a basis for future research related to alpaca semen using the epididymal sperm model.

  20. Detection of reticulated platelets in whole blood of rats using flow cytometry.

    PubMed

    Pankraz, Alexander; Ledieu, David; Pralet, Dominique; Provencher-Bolliger, Anne

    2008-09-01

    As opposed to erythropoiesis, which is regularly assessed in the peripheral blood of animals by reticulocyte count, thrombopoiesis is rarely assessed in assays that detect immature platelets in the peripheral blood. An assessment of recent thrombopoiesis is feasible with the analysis of reticulated platelets in the peripheral blood via flow cytometry, but rarely performed. The aim of this study was to establish an assay for the detection of reticulated platelets in whole blood of rats via flow cytometry, using a two-color staining method with a platelet-specific antibody (CD61-PE) and thiazole orange to detect RNA-containing platelets. Platelets were detected in K3EDTA-anticoagulated, paraformaldehyde-fixed samples, using a CD61-PE antibody as well as a gate specific for the light scatter properties of platelets. The intra-assay coefficient of variation varied between 3.6% and 8.3% (n=6 animals). The stability of the assay was determined by storing blood prior to staining, storing stained samples for up to 2h at room temperature, and by diluting the blood prior to analysis with autologous plasma to create samples with artificial anemia and thrombocytopenia. Only samples stored at room temperature prior to analysis showed a significantly lower percentage of reticulated platelets. Percentage of reticulated platelets in the reference population (n=41 rats) was 10.0+/-1.3% reticulated platelets (mean+/-SD; min=6.2%; max=12.5%). These data show that the detection of reticulated platelets in whole blood of rats using a platelet-specific antibody is feasible. This test presents a minimal-invasive method to assess thrombopoiesis in rats that can be used for example in preclinical toxicological studies.

  1. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples.

    PubMed

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-01-01

    We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations' characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are

  2. Characterization of functional variables in epididymal alpaca (Vicugna pacos) sperm using imaging flow cytometry.

    PubMed

    Santiani, Alexei; Ugarelli, Alejandra; Evangelista-Vargas, Shirley

    2016-10-01

    Epididymal alpaca sperm represent an alternative model for the study of alpaca semen. The objective of this study was to characterize the normal values of some functional variables in epididymal alpaca sperm using imaging flow cytometry. Alpaca testicles (n=150) were processed and sperm were recovered from the cauda epididymides. Only 76 samples with acceptable motility and sperm count were considered for assessment by imaging flow cytometry. Acrosome integrity and integrity/viability were assessed by FITC-PSA/PI and FITC-PNA/PI. Mitochondrial membrane potential (MMP) was assessed by MitoTracker CMXRos and MitoTracker Deep Red FM. Lipid peroxidation was evaluated using BODIPY 581/591 C11. Results show that the mean values for acrosome-intact sperm were 95.03±6.39% and 93.34±7.96%, using FITC-PSA and FITC-PNA, respectively. The mean values for acrosome-intact viable sperm were 60.58±12.12% with FITC-PSA/PI and 58.81±12.94% with FITC-PNA/PI. Greater MMP was detected in 65.03±15.92% and 59.52±19.19%, using MitoTracker CMXRos and MitoTracker Deep Red FM, respectively. Lipid peroxidation was 0.84±0.95%. Evaluation of acrosome-intact and acrosome-intact viable sperm with FITC-PSA/PI compared with. FITC-PNA/PI or MMP with MitoTracker CMXRos compared with MitoTracker Deep Red FM were correlated (P<0.05). The MMP using MitoTracker CMXRos was the only variable correlated (P<0.05) with sperm motility (r=0.3979). This report provides a basis for future research related to alpaca semen using the epididymal sperm model. PMID:27577979

  3. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.

    PubMed

    Lawrence, William G; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K

    2008-08-01

    Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes (PMTs) used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes (APDs), which have improved red sensitivity and a working fluorescence detection range beyond 1,000 nm. A comparison of the wavelength-dependent performance of the APD and PMT was carried out using pulsed light-emitting diode sources, calibrated test beads, and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of PMTs and APD detectors. The APD used an additional amplifier stage to match the internal gain of the PMT. The resolution of the APD and PMT was compared for flow cytometry applications using a pulsed light-emitting diode source over the 500-1060 nm spectral range. These measurements showed the relative changes in the signal-to-noise performance of the APD and PMT over a broad spectral range. Both the APD and PMTs were used to measure the signal-to-noise response for a set of six peak calibration beads over the 530-800 nm wavelength range. CD4-positive cells labeled with antibody-conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the APD and the PMT. The ratios of the intensities of the CD4- and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the APD was able to separate these populations at wavelengths above 800 nm. These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal intensity levels. While the APD and PMT show similar signal-to-noise performance in the visible spectral range, the dark noise of the APD detector reduces the sensitivity at low signal levels. At wavelengths longer than 650 nm, the high quantum efficiency

  4. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes

    PubMed Central

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.

    2008-01-01

    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  5. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  6. Light-scattering polarization measurements as a new parameter in flow cytometry

    SciTech Connect

    de Grooth, B.G.; Terstappen, L.W.; Puppels, G.J.; Greve, J.

    1987-11-01

    Polarization measurement of orthogonal light scattering is introduced as a new optical parameter in flow cytometry. In the experimental setup, the electrical field of the incident laser beam is polarized in the direction of the sample flow. The intensity of the orthogonal light scattering polarized along the direction of the incoming laser beam is called depolarized orthogonal light scattering. Theoretical analysis shows that for small values of the detection aperture, the measured depolarization is caused by anisotropic cell structures and multiple scattering processes inside the cell. Measurements of the orthogonal depolarized light scattering in combination with the normal orthogonal light scattering of human leucocytes revealed two populations of granulocytes. By means of cell sorting it was shown that the granulocytes with a relatively high depolarization are eosinophilic granulocytes. Similar experiments with human lymphocytes revealed a minor subpopulation of yet-unidentified lymphocytes with a relative large orthogonal light-scattering depolarization. The results were obtained with an argon ion laser tuned at different wavelengths as well as with a 630-nm helium neon laser. These results show that measurement of depolarized orthogonal light scattering is a useful new parameter for flow-cytometric cell differentiation.

  7. High degree of concordance between flow cytometry and geno2pheno methods for HIV-1 tropism determination in proviral DNA.

    PubMed

    Torres, Alex José Leite; Brígido, Luis Fernando de Macedo; Abrahão, Marcos Herculano Nunes; Angelo, Ana Luiza Dias; de Jesus Ferreira, Gilcivaldo; Coelho, Luana Portes; Ferreira, João Leandro; Jorge, Célia Regina Mayoral Pedroso; Netto, Eduardo Martins; Brites, Carlos

    2015-01-01

    Use of CCR5 antagonists requires previous viral tropism determination. The available methods have high cost, are time-consuming, or require highly trained personnel, and sophisticated equipment. We compared a flow cytometry-based tropism assay with geno2pheno method to determine HIV-1 tropism in AIDS patients, in Bahia, Brazil. We tested peripheral blood mononuclear cells of 102 AIDS patients under antiretroviral therapy by using a cytometry-based tropism assay and geno2pheno assay. Cellular membrane receptors were identified by using CXCR4, CCR5 and CD4 monoclonal antibodies, while detection of cytoplasmic mRNAs for gag and pol HIV regions was achieved by using a labeled probe. Genotypic identification of X4 and R5 tropic viruses was attempted by geno2pheno algorithm. There was a high degree of concordance between cytometry-based tropism assay and geno2pheno algorithm in determination of HIV-1 tropism. Cytometry-based tropism assay demonstrated higher sensitivity and specificity in comparison to geno2pheno, which was used as a gold-standard. One sample could not be amplified by geno2pheno method, but was classified as duotropic by cytometry-based tropism assay. We did not find any association between CD4+ count or plasma HIV-1 RNA viral load and tropism results. The overall performances of cytometry-based tropism assay and geno2pheno assay were almost identical in determination of HIV-1 tropism.

  8. Flow Cytometry: A Promising Technique for the Study of Silicone Oil-Induced Particulate Formation in Protein Formulations

    PubMed Central

    Ludwig, D. Brett; Trotter, Joseph T.; Gabrielson, John P.; Carpenter, John F.

    2010-01-01

    Subvisible particles in formulations intended for parenteral administration are of concern in the biopharmaceutical industry. However, monitoring and control of subvisible particulates can be complicated by formulation components, such as the silicone oil used for the lubrication of prefilled syringes, and it is difficult to differentiate microdroplets of silicone oil from particles formed by aggregated protein. In this study, we demonstrate the ability of flow cytometry to resolve mixtures comprising subvisible bovine serum albumin (BSA) aggregate particles and silicone oil emulsion droplets with adsorbed BSA. Flow cytometry was also utilized to investigate the effects of silicone oil emulsions on the stability BSA, lysozyme, abatacept or trastuzumab formulations containing surfactant, sodium chloride or sucrose. To aid in particle characterization, the fluorescence detection capabilities of Flow cytometry were exploited by staining silicone oil with BODIPY® 493/503 and model proteins with Alexa Fluor® 647. Flow cytometric analyses revealed that silicone oil emulsions induced the loss of soluble protein via protein adsorption onto the silicone oil droplet surface. Addition of surfactant prevented protein from adsorbing onto the surface of silicone oil droplets. There was minimal formation of homogeneous protein aggregates due to exposure to silicone oil droplets, although oil droplets with surface-adsorbed trastuzumab exhibited flocculation. The results of this study demonstrate the utility of flow cytometry as an analytical tool for monitoring the effects of subvisible silicone oil droplets on the stability of protein formulations. PMID:21146492

  9. Inertial microfluidics for sheath-less high-throughput flow cytometry.

    PubMed

    Bhagat, Ali Asgar S; Kuntaegowdanahalli, Sathyakumar S; Kaval, Necati; Seliskar, Carl J; Papautsky, Ian

    2010-04-01

    Flow cytometer is a powerful single cell analysis tool that allows multi-parametric study of suspended cells. Most commercial flow cytometers available today are bulky, expensive instruments requiring high maintenance costs and specially trained personnel for operation. Hence, there is a need to develop a low cost, portable alternative that will aid in making this powerful research tool more accessible. In this paper we describe a sheath-less, on-chip flow cytometry system based on the principle of Dean coupled inertial microfluidics. The design takes advantage of the Dean drag and inertial lift forces acting on particles flowing through a spiral microchannel to focus them in 3-D at a single position across the microchannel cross-section. Unlike the previously reported micro-flow cytometers, the developed system relies entirely on the microchannel geometry for particle focusing, eliminating the need for complex microchannel designs and additional microfluidic plumbing associated with sheath-based techniques. In this work, a 10-loop spiral microchannel 100 microm wide and 50 microm high was used to focus 6 microm particles in 3-D. The focused particle stream was detected with a laser induced fluorescence (LIF) setup. The microfluidic system was shown to have a high throughput of 2,100 particles/sec. Finally, the viability of the developed technique for cell counting was demonstrated using SH-SY5Y neuroblastoma cells. The passive focusing principle and the planar nature of the described design will permit easy integration with existing lab-on-a-chip (LOC) systems.

  10. Usefullness of IGH/TCR PCR studies in lymphoproliferative disorders with inconclusive clonality by flow cytometry.

    PubMed

    Ribera, Jordi; Zamora, Lurdes; Juncà, Jordi; Rodríguez, Inés; Marcé, Silvia; Cabezón, Marta; Millá, Fuensanta

    2013-07-25

    In up to 5-15% of studies of lymphoproliferative disorders (LPD) flow cytometry (FCM) or immunomorphologic methods cannot discriminate malignant from reactive processes. The aim of this work was to determine the usefulness of PCR for solving these diagnostic uncertainties. We analyzed IGH and TCRγ genes by PCR in 106 samples with inconclusive FCM results. A clonal result was registered in 36/106 studies, with a LPD being confirmed in 27 (75%) of these cases. Specifically, 9/9 IGH clonal and 16/25 TCRγ clonal results were finally diagnosed with LPD. Additionally, 2 clonal TCRγ samples with suspicion of undefined LPD were finally diagnosed with T LPD. Although polyclonal results were obtained in 47 of the cases studied (38 IGH and 9 TCRγ), hematologic neoplasms were diagnosed in 4/38 IGH polyclonal and in 1/9 TCRγ polyclonal studies. There were also 14 PCR polyclonal results (4 IGH, 10 TCRγ), albeit non-conclusive. Of these, 2/4 were eventually diagnosed with B-cell lymphoma and 3/10 with T-cell LPD. In 8 IGH samples the results of PCR techniques were non-informative but in 3/8 cases a B lymphoma was finally confirmed. We concluded that PCR is a useful technique to identify LPD when FCM is inconclusive. A PCR clonal B result is indicative of malignancy but IGH polyclonal and non-conclusive results do not exclude lymphoid neoplasms. Interpretation of T-cell clonality should be based on all the available clinical and analytical data. © 2013 Clinical Cytometry Society. PMID:23894019

  11. [Rapid detection of extended-spectrum beta-lactamases by flow cytometry method].

    PubMed

    Duyan, Serhat; Kılıç, Abdullah; Yılmaz, Soner; Ardıç, Nurittin

    2015-10-01

    Extended-spectrum beta-lactamases (ESBL), produced by Enterobacteriaceae members are enzymes that especially cause a resistance to cephalosporin group antibiotics commonly used in clinics. Early and rapid detection of ESBL production is crucial for antimicrobial treatment and infection control; however the methods used for this purpose are time consuming (24 to 48 hours). The aim of this study was to determine a flow cytometry based-test which provides to detect ESBL producing bacteria in a short time. A total of 38 ESBL-producing (29 Escherichia coli, 9 Klebsiella pneumoniae) and 10 non-producing (5 E.coli, 5 K.pneumoniae) Enterobacteriaceae strains isolated between 2012 and 2013 were included in this study. The identification and antibiotic susceptibility tests of the isolates were performed by using Phoenix(TM) 100 automated system (Becton Dickinson, USA). The presence of bla(TEM), bla(SHV), bla(CTX-M1), bla(CTX-M2) and bla(CTX-M9) genes were investigated in ESBL positive isolates via polymerase chain reaction method. At least one of the ESBL genes were detected in 36 out of 38 isolates and no genes were detected in two E.coli isolates. In flow cytometric method, the percentages of death cells exposed to cephalosporin [(ceftazidime (CAZ) or cefotaxime (CTX)] and clavulanic acid (CLA) combination, were compared with death cells exposed only to cephalosporin (CAZ or CTX). CLA index values (CAZ-CLA and CTX-CLA indices) were obtained for CTX and CAZ. Index values which was higher than 1.5 just for one cephalosporin were accepted as GSBL positive. The mean index values for CTX-CLA in ESBL positive strains according to their genotypic characteristics were between 1.14 and 7.22, while those values for CAZ-CLA were between 0.85 and 5.6. When the two groups of 38 ESBL positive and 10 ESBL negative strains were evaluated, statistically significant difference was detected for both CAZ-CLA and CTX-CLA indices (p< 0.005). CTX-CLA indices (p= 0.001) shown a better

  12. Determination by flow cytometry polyploidy inducing-capacity of colchicine in Cajanus cajan (L.) Mill sp.

    PubMed

    Udensi, O U; Ontui, V

    2013-07-01

    The need to optimize flow cytometric analysis for the determination of ploidy level is a worthwhile venture to precisely know at what concentration of a mutagen and at what time of exposure polyploidy could be induced. Flow cytometry was used to determine the polyploidy inducing-capacity of colchicine in pigeon pea (Cajanus cajan (L.) Mill sp). Seeds of pigeon pea were soaked in three different concentrations of colchicine-5 mg, 10 and 15 mg L(-1) for 24, 48 and 72 h, respectively, while the control group was soaked in water. Treated seeds and those from the control were planted in a greenhouse using a Completely Randomized Design (CRD). Results show that colchicine induced tetraploids (4n) and mixoploids (2n+ 4n) as the concentration of colchicine increased and soaking duration. Days to seedling emergence increased as concentration of colchicine and duration of soaking increased while germination rate decreased proportionately with the increase in colchicine concentration and soaking duration but did not significantly affect percentage seedling survival. Explicitly, colchicine has the capacity of inducing polyploidy; especially tetraploids on the seeds of pigeon pea, which obviously could be harnessed for further breeding and improvement of the pigeon pea. PMID:24505986

  13. Lectin staining and flow cytometry reveals female-induced sperm acrosome reaction and surface carbohydrate reorganization

    PubMed Central

    Kekäläinen, Jukka; Larma, Irma; Linden, Matthew; Evans, Jonathan P.

    2015-01-01

    All cells are covered by glycans, an individually unique layer of oligo- and polysaccharides that are critical moderators of self-recognition and other cellular-level interactions (e.g. fertilization). The functional similarity between these processes suggests that gamete surface glycans may also have an important, but currently overlooked, role in sexual selection. Here we develop a user-friendly methodological approach designed to facilitate future tests of this possibility. Our proposed method is based on flow cytometric quantification of female-induced sperm acrosome reaction and sperm surface glycan modifications in the Mediterranean mussel Mytilus galloprovincialis. In this species, as with many other taxa, eggs release water-soluble factors that attract conspecific sperm (chemoattraction) and promote potentially measurable changes in sperm behavior and physiology. We demonstrate that flow cytometry is able to identify sperm from other seawater particles as well as accurately measure both acrosome reaction and structural modifications in sperm glycans. This methodological approach can increase our understanding of chemically-moderated gamete-level interactions and individual-specific gamete recognition in Mytilus sp. and other taxa with similar, easily identifiable acrosome structure. Our approach is also likely to be applicable to several other species, since carbohydrate-mediated cellular-level interactions between gametes are universal among externally and internally fertilizing species. PMID:26470849

  14. A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry.

    PubMed

    Spiro, A; Lowe, M; Brown, D

    2000-10-01

    A new multiplexed, bead-based method which utilizes nucleic acid hybridizations on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences is described. The method consists of three elements: beads (5.6-microm diameter) with oligomer capture probes attached to the surface, three fluorophores for multiplexed detection, and flow cytometry instrumentation. Two fluorophores are impregnated within each bead in varying amounts to create different bead types, each associated with a unique probe. The third fluorophore is a reporter. Following capture of fluorescent cDNA sequences from environmental samples, the beads are analyzed by flow cytometric techniques which yield a signal intensity for each capture probe proportional to the amount of target sequences in the analyte. In this study, a direct hybrid capture assay was developed and evaluated with regard to sequence discrimination and quantitation of abundances. The target sequences (628 to 728 bp in length) were obtained from the 16S/23S intergenic spacer region of microorganisms collected from polluted groundwater at the nuclear waste site in Hanford, Wash. A fluorescence standard consisting of beads with a known number of fluorescent DNA molecules on the surface was developed, and the resolution, sensitivity, and lower detection limit for measuring abundances were determined. The results were compared with those of a DNA microarray using the same sequences. The bead method exhibited far superior sequence discrimination and possesses features which facilitate accurate quantitation. PMID:11010868

  15. Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses

    PubMed Central

    Marcoux, Geneviève; Duchez, Anne-Claire; Cloutier, Nathalie; Provost, Patrick; Nigrovic, Peter A.; Boilard, Eric

    2016-01-01

    Extracellular vesicles (EV) are small membrane vesicles produced by cells upon activation and apoptosis. EVs are heterogeneous according to their origin, mode of release, membrane composition, organelle and biochemical content, and other factors. Whereas it is apparent that EVs are implicated in intercellular communication, they can also be used as biomarkers. Continuous improvements in pre-analytical parameters and flow cytometry permit more efficient assessment of EVs; however, methods to more objectively distinguish EVs from cells and background, and to interpret multiple single-EV parameters are lacking. We used spanning-tree progression analysis of density-normalized events (SPADE) as a computational approach for the organization of EV subpopulations released by platelets and erythrocytes. SPADE distinguished EVs, and logically organized EVs detected by high-sensitivity flow cytofluorometry based on size estimation, granularity, mitochondrial content, and phosphatidylserine and protein receptor surface expression. Plasma EVs were organized by hierarchy, permitting appreciation of their heterogeneity. Furthermore, SPADE was used to analyze EVs present in the synovial fluid of patients with inflammatory arthritis. Its algorithm efficiently revealed subtypes of arthritic patients based on EV heterogeneity patterns. Our study reveals that computational algorithms are useful for the analysis of high-dimensional single EV data, thereby facilitating comprehension of EV functions and biomarker development. PMID:27786276

  16. Petrochemical-related DNA damage in wild rodents detected by flow cytometry

    SciTech Connect

    McBee, K.; Bickham, J.W.

    1988-03-01

    The need for quick, reliable, in situ tests of environmental mutagenicity is evidenced by increasing public concern about potential health effects of pollutants. Conventional tests of clastogenicity usually involve treatment of laboratory test systems with pure samples of suspect compounds followed by scoring numerous metaphase cells for chromosome aberrations. There are at least two shortcomings of these test protocols. They are very time consumptive and are generally restricted to controlled laboratory situations which may not realistically indicate the effects of environmental pollution. The use of flow cytometry to study resident rodent species as bioindicators provides a system by which cytogenetic effects of environmental pollutants upon exposed organisms rapidly and accurately can be ascertained. The authors found that two species of wild rodents (Peromyscus leucopus and Sigmodon hispidus) living at a dump site polluted with a complex mixture of oil, grease, polychlorinated biphenols, hexachlorobenzene, zinc, manganese, cadmium, chromium, copper, and lead had significantly higher frequencies of chromosomal aberrations than did animals from two unpolluted control sites. These data suggest that resident small mammals may be useful as in situ monitors of the presence and action of mutagenic pollutants in the environment. This study was conducted to determine if changes in patterns of DNA content indicative of the action of mutagens could be detected by flow cytometric analysis of tissues from these same animals.

  17. Multiparameter Lab-on-a-Chip flow cytometry of the cell cycle.

    PubMed

    Skommer, Joanna; Akagi, Jin; Takeda, Kazuo; Fujimura, Yuu; Khoshmanesh, Khashayar; Wlodkowic, Donald

    2013-04-15

    Multiparameter analysis of apoptosis in relation to cell cycle position is helpful in exploring mechanism of action of anticancer drugs that target specific molecular cogs of the cell cycle. This work demonstrates a new rationale for using microfluidic Lab-on-a-Chip flow cytometry (μFCM) with a simple 2D hydrodynamic focusing for the multiparameter analysis of apoptosis and DNA ploidy analysis in human hematopoietic cancer cells. The microfluidic system employs disposable microfluidic cartridges fabricated using injection moulding in optically transparent poly(methylmethacrylate). The dedicated and miniaturized electronic hardware interface enables up to six parameter detections using a combination of spatially separated solid-state 473 nm (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide evidence that the simple 2D flow focusing on a chip-based device is sufficient to measure cellular DNA content in both fixed and living tumor cells. The feasibility of using the μFCM system for multiparameter analysis of caspase activation and dissipation of mitochondrial inner membrane potential (ΔΨ(m) loss) in relation to DNA content is also demonstrated. The data shows that straightforward microfluidic chip designs are sufficient to acquire high quality biological data when combined with sophisticated electronic interfaces. They can be a viable alternative to conventional FCM for multiparameter detection of programmed cell death.

  18. Overestimation of heterotrophic bacteria in the Sargasso Sea: direct evidence by flow and imaging cytometry

    NASA Astrophysics Data System (ADS)

    Sieracki, Michael E.; Haugen, Elin M.; Cucci, Terry L.

    1995-08-01

    Accurate measurements of bacterial biomass in the ocean are needed for modeling marine microbial food webs and global biogeochemical cycling. We present direct evidence that previous estimates of heterotrophic bacteria biomass in the oligotrophic ocean are confounded by the presence of the abundant photosynthetic procaryote, Prochlorococcus. The chlorophyll autofluorescence of these photosynthetic bacterial cells is very faint and fades rapidly under epifluorescence microscopy. Detection and enumeration of these cells thus far has almost exclusively been by flow cytometry. Using a cooled, charge-coupled device (CCD) camera we were able to image these cells for direct biovolume measurements. A double-exposed image of DAPI-stained Prochlorococcus cells shows that they are indistinguishable from heterotrophic bacteria in standard slide preparations. At two Sargasso Sea stations Prochlorococcus could cause an overestimation of surface (top 150 m) integrated heterotrophic bacterial biovolume (biomass) of 18 and 22% determined by standard microscope methods. At the subsurface chlorophyll maximum Prochlorococcus was 33 and 43% of the heterotrophic bacterial biovolume (biomass) at these stations. Prochlorococcus cell size increased from 0.05 μm 3 in the surface mixed layer to about 0.2 μm 3 below 100 m, confirming previous interpretations of flow cytometric light scatter measurements. Shifting biomass from the heterotrophic bacteria pool to the primary producer compartment has significant implications for ecosystem structure and trophic transfer in marine food webs.

  19. Estimation of the frequency of malformed sperm by slit scan flow cytometry

    SciTech Connect

    Halamka, J.; Gray, J.W.; Gledhill, B.L.; Lake, S.; Wyrobek, A.J.

    1984-01-01

    An investigation was made of the utility of Slit Scan Flow Cytometry (SSFCM) for measuring the frequencies of malformed sperm heads in control and mutagen treated B6C3F1/CRL mice. In SSFCM, fluorescence profiles of sperm heads stained with the DNA-specific fluorescent dye acriflavine were recorded for sperm flowing lengthwise through a 2.5-..mu..m-thick laser beam. Malformed sperm were detected as having fluorescence profiles that differed substantially from an average fluorescence profile for sperm from untreated mice. Fluorescence profiles were measured for 500 sperm per mouse from five control mice, five mice injected intraperitoneally daily for 5 days with a total of 375 mg/kg of body weight methyl methane sulfonate (MMS), and for 30 mice injected intraperitoneally daily for 5 days with total doses of procarbazine ranging from 125 mg/kg to 1250 mg/kg. Sperm were collected from the caudae epididymides 35 days after the last injection. Frequencies of malformed sperm in these samples were also estimated by visual analysis. All samples were analyzed in double blind fashion. The visual and SSFCM malformed sperm frequencies for the samples from control, MMS-treated, and procarbazine-treated mice were correlated. A dose effect was seen with both the visual and SSFCM estimates for the sperm from the procarbazine-treated mice. 8 references 3 figures.

  20. Protistan grazing analysis by flow cytometry using prey labeled by in vivo expression of fluorescent proteins.

    PubMed

    Fu, Yutao; O'Kelly, Charles; Sieracki, Michael; Distel, Daniel L

    2003-11-01

    Selective grazing by protists can profoundly influence bacterial community structure, and yet direct, quantitative observation of grazing selectivity has been difficult to achieve. In this investigation, flow cytometry was used to study grazing by the marine heterotrophic flagellate Paraphysomonas imperforata on live bacterial cells genetically modified to express the fluorescent protein markers green fluorescent protein (GFP) and red fluorescent protein (RFP). Broad-host-range plasmids were constructed that express fluorescent proteins in three bacterial prey species, Escherichia coli, Enterobacter aerogenes, and Pseudomonas putida. Micromonas pusilla, an alga with red autofluorescence, was also used as prey. Predator-prey interactions were quantified by using a FACScan flow cytometer and analyzed by using a Perl program described here. Grazing preference of P. imperforata was influenced by prey type, size, and condition. In competitive feeding trials, P. imperforata consumed algal prey at significantly lower rates than FP (fluorescent protein)-labeled bacteria of similar or different size. Within-species size selection was also observed, but only for P. putida, the largest prey species examined; smaller cells of P. putida were grazed preferentially. No significant difference in clearance rate was observed between GFP- and RFP-labeled strains of the same prey species or between wild-type and GFP-labeled strains. In contrast, the common chemical staining method, 5-(4,6-dichloro-triazin-2-yl)-amino fluorescein hydrochloride, depressed clearance rates for bacterial prey compared to unlabeled or RFP-labeled cells.

  1. Cutting-Edge Analysis of Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry

    PubMed Central

    Headland, Sarah E.; Jones, Hefin R.; D'Sa, Adelina S. V.; Perretti, Mauro; Norling, Lucy V.

    2014-01-01

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStreamX Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStreamX could be used effectively to advance this scientific field. PMID:24913598

  2. A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry.

    PubMed

    Spiro, A; Lowe, M; Brown, D

    2000-10-01

    A new multiplexed, bead-based method which utilizes nucleic acid hybridizations on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences is described. The method consists of three elements: beads (5.6-microm diameter) with oligomer capture probes attached to the surface, three fluorophores for multiplexed detection, and flow cytometry instrumentation. Two fluorophores are impregnated within each bead in varying amounts to create different bead types, each associated with a unique probe. The third fluorophore is a reporter. Following capture of fluorescent cDNA sequences from environmental samples, the beads are analyzed by flow cytometric techniques which yield a signal intensity for each capture probe proportional to the amount of target sequences in the analyte. In this study, a direct hybrid capture assay was developed and evaluated with regard to sequence discrimination and quantitation of abundances. The target sequences (628 to 728 bp in length) were obtained from the 16S/23S intergenic spacer region of microorganisms collected from polluted groundwater at the nuclear waste site in Hanford, Wash. A fluorescence standard consisting of beads with a known number of fluorescent DNA molecules on the surface was developed, and the resolution, sensitivity, and lower detection limit for measuring abundances were determined. The results were compared with those of a DNA microarray using the same sequences. The bead method exhibited far superior sequence discrimination and possesses features which facilitate accurate quantitation.

  3. Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Katnik, Steve; Myc, Andrzej; Thomas, Thommey; Luker, Kathryn E.; Luker, Gary D.; Baker, James R., Jr.; Norris, Theodore B.

    2007-07-01

    We have developed a new two-photon system for in vivo flow cytometry, thereby allowing us to simultaneously quantify different circulating populations in a single animal. The instrument was able to resolve minute-by-minute depletion dynamics of injected fluorescent microspheres at finer time scales than conventional flow cytometry. Also observed were the circulation dynamics of human MCF-7 and MDA-MB-435 breast cancer cells, which have low and high metastatic potential, respectively. After co-injection of both cell types into mice, markedly greater numbers of MCF-7 cells were present in the circulation at early time points. While low metastatic MCF-7 cells were cleared from the vascular system within 24 hours, detectable numbers of metastatic MDA-MB- 435 cells in the circulation remained constant over time. When we replace the commercial (80-MHz) NIR excitation laser with a reduced-repetition-rate (20-MHz) mode-locked oscillator, the signal is enhanced four-fold, enabling superior detection in blood of cell lines expressing fluorescent proteins tdTomato and mPlum (crosslabeled with DiI and DiD). Detection sensitivity versus incident laser power is understood in terms of detected event photon count distribution, which can be predicted with simple fluorophore distribution assumptions. The technique of two-color, two-photon flow cytometry greatly enhances the capabilities of ex vivo flow cytometry to investigate dynamics of circulating cells in cancer and other important diseases.

  4. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis

    PubMed Central

    Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St. Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S

    2016-01-01

    Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca2+ and Mg2+ based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100–1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca2+ or Mg2+ composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden. PMID:26771074

  5. Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae)

    PubMed Central

    Guo, Li T.; Wang, Shao L.; Wu, Qing J.; Zhou, Xu G.; Xie, Wen; Zhang, You J.

    2015-01-01

    The genome sizes of the B- and Q-types of the whitefly Bemisia tabaci (Gennnadius) were estimated using flow cytometry (Drosophila melanogaster as the DNA reference standard and propidium iodide (PI) as the fluorochrome) and k-mer analysis. For flow cytometry, the mean nuclear DNA content was 0.686 pg for B-type males, 1.392 pg for B-type females, 0.680 pg for Q-type males, and 1.306 pg for Q-type females. Based on the relationship between DNA content and genome size (1 pg DNA = 980 Mbp), the haploid genome size of B. tabaci ranged from 640 to 682 Mbp. For k-mer analysis, genome size of B-type by two methods were consistent highly, but the k-mer depth distribution graph of Q-type was not enough perfect and the genome size was estimated about 60 M larger than its flow cytometry result. These results corroborate previous reports of genome size based on karyotype analysis and chromosome counting. However, these estimates differ from previous flow cytometry estimates, probably because of differences in the DNA reference standard and dyeing time, which were superior in the current study. For Q-type genome size difference by two method, some discussion were also stated, and all these results represent a useful foundation for B. tabaci genomics research. PMID:26042041

  6. Immunological Tools: Engaging Students in the Use and Analysis of Flow Cytometry and Enzyme-linked Immunosorbent Assay (ELISA)

    ERIC Educational Resources Information Center

    Ott, Laura E.; Carson, Susan

    2014-01-01

    Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and…

  7. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis.

    PubMed

    Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S

    2016-01-14

    Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca(2+) and Mg(2+) based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100-1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca(2+) or Mg(2+) composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden.

  8. Development of a new fertility prediction model for stallion semen, including flow cytometry.

    PubMed

    Barrier Battut, I; Kempfer, A; Becker, J; Lebailly, L; Camugli, S; Chevrier, L

    2016-09-01

    Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45

  9. Resolution of natural microbial community dynamics by community fingerprinting, flow cytometry, and trend interpretation analysis.

    PubMed

    Bombach, Petra; Hübschmann, Thomas; Fetzer, Ingo; Kleinsteuber, Sabine; Geyer, Roland; Harms, Hauke; Müller, Susann

    2011-01-01

    Natural microbial communities generally have an unknown structure and composition because of their still not yet cultivable members. Therefore, understanding the relationships among the bacterial members, prediction of their behaviour, and controlling their functions are difficult and often only partly successful endeavours to date. This study aims to test a new idea that allows to follow community dynamics on the basis of a simple concept. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S ribosomal RNA genes was used to describe a community profile that we define as composition of a community. Flow cytometry and analysis of DNA contents and forward scatter characteristics of the single cells were used to describe a community profile, which we define as structure of a community. Both approaches were brought together by a non-metric multidimensional scaling (n-MDS) for trend interpretation of changes in the complex community data sets. This was done on the basis of a graphical evaluation of the cytometric data, leading to the newly developed Dalmatian plot tool, which gave an unexpected insight into the dynamics of the unknown bacterial members of the investigated natural microbial community. The approach presented here was compared with other techniques described in the literature. The microbial community investigated in this study was obtained from a BTEX contaminated anoxic aquifer. The indigenous bacteria were allowed to colonise in situ microcosms consisting of activated carbon. These microcosms were amended with benzene and one of the electron acceptors nitrate, sulphate or ferric iron to stimulate microbial growth. The data obtained in this study indicated that the composition (via T-RFLP) and structure (via flow cytometry) of the natural bacterial community were influenced by the hydro-geochemical conditions in the test site, but also by the supplied electron acceptors, which led to distinct shifts in relative abundances of

  10. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  11. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  12. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel.

  13. Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Müller, Martin C.; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic

  14. Statistical methods for the assessment of EQAPOL proficiency testing: ELISpot, Luminex, and Flow Cytometry.

    PubMed

    Rountree, Wes; Vandergrift, Nathan; Bainbridge, John; Sanchez, Ana M; Denny, Thomas N

    2014-07-01

    In September 2011 Duke University was awarded a contract to develop the National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) External Quality Assurance Program Oversight Laboratory (EQAPOL). Through EQAPOL, proficiency testing programs are administered for Interferon-γ (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot), Intracellular Cytokine Staining Flow Cytometry (ICS) and Luminex-based cytokine assays. One of the charges of the EQAPOL program was to apply statistical methods to determine overall site performance. We utilized various statistical methods for each program to find the most appropriate for assessing laboratory performance using the consensus average as the target value. Accuracy ranges were calculated based on Wald-type confidence intervals, exact Poisson confidence intervals, or via simulations. Given the nature of proficiency testing data, which has repeated measures within donor/sample made across several laboratories; the use of mixed effects models with alpha adjustments for multiple comparisons was also explored. Mixed effects models were found to be the most useful method to assess laboratory performance with respect to accuracy to the consensus. Model based approaches to the proficiency testing data in EQAPOL will continue to be utilized. Mixed effects models also provided a means of performing more complex analyses that would address secondary research questions regarding within and between laboratory variability as well as longitudinal analyses. PMID:24456626

  15. Seeing the Whole Elephant: Imaging Flow Cytometry Reveals Extensive Morphological Diversity within Blastocystis Isolates.

    PubMed

    Yason, John Anthony; Tan, Kevin Shyong Wei

    2015-01-01

    Blastocystis is a common protist isolated in humans and many animals. The parasite is a species complex composed of 19 subtypes, 9 of which have been found in humans. There are biological and molecular differences between Blastocystis subtypes although microscopy alone is unable to distinguish between these subtypes. Blastocystis isolates also display various morphological forms. Several of these forms, however, have not been properly evaluated on whether or not these play significant functions in the organism's biology. In this study, we used imaging flow cytometry to analyze morphological features of Blastocystis isolates representing 3 subtypes (ST1, ST4 and ST7). We also employed fluorescence dyes to discover new cellular features. The profiles from each of the subtypes exhibit considerable differences with the others in terms of shape, size and granularity. We confirmed that the classical vacuolar form comprises the majority in all three subtypes. We have also evaluated other morphotypes on whether these represent distinct life stages in the parasite. Irregularly-shaped cells were identified but all of them were found to be dying cells in one isolate. Granular forms were present as a continuum in both viable and non-viable populations, with non-viable forms displaying higher granularity. By analyzing the images, rare morphotypes such as multinucleated cells could be easily observed and quantified. These cells had low granularity and lower DNA content. Small structures containing nucleic acid were also identified. We discuss the possible biological implications of these unusual forms. PMID:26618361

  16. Measuring pH of the Plasmodium falciparum digestive vacuole by flow cytometry.

    PubMed

    Abu Bakar, Nurhidanatasha

    2015-09-01

    Studies show that the pH of the malaria parasite's digestive vacuole (DV) plays a key role in the physiological functions of this organelle and antimalarial drug accumulation, and yet is technically difficult to measure. In this study, a flow cytometry-based technique was developed to measure the DV pH using a ratiometric pH indicator, FITC-dextran loaded into the DV of saponin-permeabilized parasites. To calculate the DV pH, a standard pH calibration curve was generated by incubating the saponin-permeabilized cells in buffers with different pH in the presence of an ionophore, CCCP. The measured average pH of the DV was 5.27 ± 0.03 that is approximately the same in the parasites observed microscopically by Hayward et al. (2006) (5.50 ± 0.14) using the same probe. The removal of glucose from the medium, causing a rapid depletion of parasite ATP, resulted in an alkalization of the DV. The DV was reacidified upon restoration of glucose to the medium. This technique provides a rapid, simple and quantitative measurement of the DV pH on a large number of cells. It will also be useful in future attempts to evaluate the effect of antimalarial drugs (i.e. chloroquine and artemisinin-based drugs) in pH changes of the DV. PMID:26695209

  17. Quantitative measurement of varicella-zoster virus infection by semiautomated flow cytometry.

    PubMed

    Gates, Irina V; Zhang, Yuhua; Shambaugh, Cindy; Bauman, Meredith A; Tan, Charles; Bodmer, Jean-Luc

    2009-04-01

    Varicella-zoster virus (VZV; human herpesvirus 3) is the etiological cause of chickenpox and, upon reactivation from latency, zoster. Currently, vaccines are available to prevent both diseases effectively. A critical requirement for the manufacturing of safe and potent vaccines is the measurement of the biological activity to ensure proper dosing and efficacy, while minimizing potentially harmful secondary effects induced by immunization. In the case of live virus-containing vaccines, such as VZV-containing vaccines, biological activity is determined using an infectivity assay in a susceptible cellular host in vitro. Infectivity measurements generally rely on the enumeration of plaques by visual inspection of an infected cell monolayer. These plaque assays are generally very tedious and labor intensive and have modest throughput and high associated variability. In this study, we have developed a flow cytometry assay to measure the infectivity of the attenuated vaccine strain (vOka/Merck) of VZV in MRC-5 cells with improved throughput. The assay is performed in 96-well tissue culture microtiter plates and is based on the detection and quantification of infected cells expressing VZV glycoproteins on their surfaces. Multiple assay parameters have been investigated, including specificity, limit of detection, limit of quantification, range of linear response, signal-to-noise ratio, and precision. This novel assay appears to be in good concordance with the classical plaque assay results and therefore provides a viable, higher-throughput alternative to the plaque assay.

  18. Mucin-producing pancreatic tumors: a study of nuclear DNA content by flow cytometry.

    PubMed

    Murakami, Y; Yokoyama, T; Kodama, T; Takesue, Y; Okita, M; Nakamitsu, A; Imamura, Y; Santo, T; Tsumura, H; Miyamoto, K

    1993-01-01

    Nuclear DNA content in eight surgically resected mucin-producing pancreatic tumors (MPPT) consisting of two mucinous intraductal adenocarcinomas (MIDAC), two mucinous intraductal adenomas (MIDA), one mucinous cyst-adenocarcinoma (MCAC), and three mucinous cystadenomas (MCA) were measured by flow cytometry using paraffin-embedded tissue samples. The technique of Shutte was used for the preparation of paraffin-embedded tissue into single dissociated nuclei, while the method of Vindelov was used for staining the isolated nuclei with propidium iodine. Clinicopathologically, the four patients with MIDAC or MIDA were all male and had cystic lesions with a dilated pancreatic duct at the head of the pancreas, while the four patients with MCAC or MCA were all females and had cystic tumors at either the body or tail of the pancreas. All eight patients with MPPT had no metastasis to the regional lymph nodes and were all still alive without recurrence. In an analysis of nuclear DNA content, seven of eight patients had DNA diploid tumors while one patient with a MIDAC perforating the duodenum and choledochus had a DNA aneuploid tumor. Thus, these findings suggest that DNA diploid patterns in MPPT might be associated with a favorable prognosis in MPPT although some patients whose MPPT invaded the surrounding organs might have DNA aneuploid tumors. PMID:8395265

  19. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification.

    PubMed

    Manti, Anita; Boi, Paola; Amalfitano, Stefano; Puddu, Alberto; Papa, Stefano

    2011-12-01

    Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7%±18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities.

  20. Optimization of the cryopreservation of biological resources, Toxoplasma gondii tachyzoites, using flow cytometry.

    PubMed

    Mzabi, Alexandre; Escotte-Binet, Sandie; Le Naour, Richard; Ortis, Naïma; Audonnet, Sandra; Dardé, Marie-Laure; Aubert, Dominique; Villena, Isabelle

    2015-12-01

    The conservation of Toxoplasma gondii strains isolated from humans and animals is essential for conducting studies on Toxoplasma. Conservation is the main function of the French Biological Toxoplasma Resource Centre (BRC Toxoplasma, France, http://www.toxocrb.com/). In this study, we have determined the suitability of a standard cryopreservation methodology for different Toxoplasma strains using the viability of tachyzoites assayed by flow cytometry with dual fluorescent labelling (calcein acetoxymethyl ester and propidium iodide) of tachyzoites. This method provides a comparative quantitative assessment of viability after thawing. The results helped to define and refine quality criteria before tachyzoite cryopreservation and optimization of the cryopreservation parameters. The optimized cryopreservation method uses a volume of 1.0 mL containing 8 × 10(6) tachyzoites, in Iscove's Modified Dulbecco's Medium (IMDM) containing 10% foetal calf serum (FCS). The cryoprotectant additive is 10% v/v Me2SO without incubation. A cooling rate of ∼1 °C/min to -80 °C followed, after 48 h, by storage in liquid nitrogen. Thawing was performed using a 37 °C water bath that produced a warming rate of ∼100 °C/min, and samples were then diluted 1:5 in IMDM with 5% FCS, and centrifuged and resuspended for viability assessment.

  1. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    PubMed Central

    Urbani, Francesca; Proietti, Enrico

    2013-01-01

    The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs) and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM-) based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT) combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma. PMID:24195078

  2. DRAQ5-based, no-lyse, no-wash bone marrow aspirate evaluation by flow cytometry.

    PubMed

    Allan, Robert W; Ansari-Lari, M A; Jordan, Sandra

    2008-05-01

    Flow cytometry (FC) is a powerful tool for objective phenotyping of hematolymphoid neoplasia. Analysis of bone marrow aspirates and peripheral blood specimens by FC typically requires an erythrocyte lysis or gradient separation method to remove erythrocytes prior to analysis, which may result in the loss of certain populations, in particular nucleated erythroid cells. We developed a method to analyze bone marrow aspirates (BMAs) by FC without erythrocyte lysis or washing to minimize cell loss by exploiting the nuclear DRAQ5 fluorescence as a gating parameter (DRAQ5 protocol). We analyzed a total of 31 BMAs from patients with a variety of diagnoses utilizing the DRAQ5 protocol in combination with CD71 and CD45 antibodies to determine the marrow differentials. These were compared with differential counts obtained by morphologic study and erythrocyte lysis FC. The DRAQ5 protocol preserved the nucleated erythrocytes, allowing calculations of the myeloid to erythroid ratio and of blasts/abnormal cells that better reflect the morphologic nucleated cell differential than erythrocyte lysis FC.

  3. Autofluorescence as a Signal to Sort Developing Glandular Trichomes by Flow Cytometry.

    PubMed

    Bergau, Nick; Navarette Santos, Alexander; Henning, Anja; Balcke, Gerd U; Tissier, Alain

    2016-01-01

    The industrial relevance of a number of metabolites produced in plant glandular trichomes (GTs) has spurred research on these specialized organs for a number of years. Most of the research, however, has focused on the elucidation of secondary metabolite pathways and comparatively little has been undertaken on the development and differentiation of GTs. One way to gain insight into these developmental processes is to generate stage-specific transcriptome and metabolome data. The difficulty for this resides in the isolation of early stages of development of the GTs. Here we describe a method for the separation and isolation of intact young and mature type VI trichomes from the wild tomato species Solanum habrochaites. The final and key step of the method uses cell sorting based on distinct autofluorescence signals of the young and mature trichomes. We demonstrate that sorting by flow cytometry allows recovering pure fractions of young and mature trichomes. Furthermore, we show that the sorted trichomes can be used for transcript and metabolite analyses. Because many plant tissues or cells have distinct autofluorescence components, the principles of this method can be generally applicable for the isolation of specific cell types without prior labeling. PMID:27446176

  4. Autofluorescence as a Signal to Sort Developing Glandular Trichomes by Flow Cytometry

    PubMed Central

    Bergau, Nick; Navarette Santos, Alexander; Henning, Anja; Balcke, Gerd U.; Tissier, Alain

    2016-01-01

    The industrial relevance of a number of metabolites produced in plant glandular trichomes (GTs) has spurred research on these specialized organs for a number of years. Most of the research, however, has focused on the elucidation of secondary metabolite pathways and comparatively little has been undertaken on the development and differentiation of GTs. One way to gain insight into these developmental processes is to generate stage-specific transcriptome and metabolome data. The difficulty for this resides in the isolation of early stages of development of the GTs. Here we describe a method for the separation and isolation of intact young and mature type VI trichomes from the wild tomato species Solanum habrochaites. The final and key step of the method uses cell sorting based on distinct autofluorescence signals of the young and mature trichomes. We demonstrate that sorting by flow cytometry allows recovering pure fractions of young and mature trichomes. Furthermore, we show that the sorted trichomes can be used for transcript and metabolite analyses. Because many plant tissues or cells have distinct autofluorescence components, the principles of this method can be generally applicable for the isolation of specific cell types without prior labeling. PMID:27446176

  5. In-vitro human spermatozoa nuclear decondensation assessed by flow cytometry.

    PubMed

    Samocha-Bone, D; Lewin, L M; Weissenberg, R; Madgar, Y; Soffer, Y; Shochat, L; Golan, R

    1998-02-01

    The process of sperm chromatin decondensation occurs when a spermatozoon enters an ovum. Protamine disulphide bonds are reduced to SH and the polycationic protamines combine with the polyanionic egg protein, nucleoplasmin, thus being stripped from DNA which then combines with histones. Defective chromatin decondensation will thus prevent further development of the male pronucleus. In this study human sperm samples were incubated in vitro at 28 degrees C (using a medium in which the polyanion, heparin, substitutes for nucleoplasmin and beta-mercaptoethanol for egg glutathione) for 10, 20 and 30 min before stopping the reaction with formalin (to 3.6%). The DNA of the fixed cells was stained with Acridine Orange by a one-step method and subjected to flow cytometry and data analysis, in which a zone characteristic of condensed chromatin is outlined on red-green fluorescence contour plots. After 20 min of incubation 97% of the control spermatozoa that were in the mature window (WIN M) had decondensed and moved out of this region. Defects in sperm decondensation were seen in four semen samples of the 20 that were tested. In cases where spermatozoa fail to produce a fertilized egg the cause may lie with defective chromatin quality, including failure of the sperm chromatin to decondense. The method described here is a simple procedure for detecting sperm samples containing such defective cells.

  6. Flow cytometry analysis of cell cycle stages in zinc deficient fetal rat brain

    SciTech Connect

    Clegg, M.S.; Rogers, J.M.; Zucker, R.M.; Hurley, L.S.; Keen, C.L.

    1986-03-05

    The authors are currently studying the effects of Zn deficiency on chromatin structure, DNA synthesis, protein synthesis and cell division in the rat. Here the authors present preliminary results of nuclear DNA measurement by flow cytometry. Propidium iodide (PI) was used as a fluorescent probe for total nuclear DNA isolated from Day 18 fetal rat brain. Previously, dams were fed a control (50 ..mu..g Zn/g diet), restricted (50 ..mu..g Zn/g diet) or a Zn deficient (0.5 ..mu..g Zn/g diet) diet. Fetuses were taken at Day 18 of gestation by casaerean section. Whole brain was quickly excised and frozen rapidly in a plastic vial which was subsequently immersed in an alcohol/dry ice bath at -80/sup 0/C. Brain was thawed at 37/sup 0/C in a citrate/DMSO/pH 7.6 buffer and dissociated by several passes through a 26 gauge needle. Nuclei were isolated and stained by incubating in 50 ..mu..g/ml PI, 0.125 ..mu..g/ml RNA-ASE, 0.1% NP-40 at 25/sup 0/C. Zn deficiency resulted in a larger coefficient of variation (CV) for the Go/Gi DNA peak in fetal brain nuclei. The DNA profile of these nuclei is suggestive of a possible block at the Go/Gi-S interphase; restricted fed and ad lib fed controls showed no such blockage.

  7. Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation and flow cytometry.

    PubMed Central

    Wilson, G. D.; McNally, N. J.; Dische, S.; Saunders, M. I.; Des Rochers, C.; Lewis, A. A.; Bennett, M. H.

    1988-01-01

    The proliferative potential of human solid tumours, in vivo, was investigated using bromodeoxyuridine (BrdUrd) incorporation and flow cytometry (FCM). Patients with solid tumours from a variety of sites were injected with 500 mg BrdUrd, intravenously, several hours prior to biopsy or surgical excision. The labelling index (LI), duration of S-phase (Ts) and thus the potential doubling time (Tpot) could be measured within 24 h of sampling. The results show that both the LI and Ts vary greatly between tumours (Ts ranges from 5.8 to 30.7 h). However, within this study of 26 evaluable patients, tumours of the same tissue origin tended to have similar Ts values. Melanomas had the shortest Ts (8.8 h), nine patients with head and neck cancer had Ts values ranging from 5.8 to 18.8 h (median 12.5 h). The longest Ts values (24 h) were found in lung and rectum. The estimates of Tpot ranged from only 3.2 days in an oat cell carcinoma to 23.2 days in a lymphoma. The striking feature of the study was that 38% of the tumours had a potential doubling time of 5 days or less. We found no relationship between proliferation and histopathological differentiation or DNA ploidy. It should now be possible to assess the prognostic significance of pretreatment cell kinetic measurements which may, in the future, aid in the selection of treatment schedules for the individual patient. PMID:3207597

  8. Flow cytometry analysis of cancer cell death induced by the extract of Thai plant Ellipeiopsis cherrevensis.

    PubMed

    Yumoto, Ryoko; Kakizoe, Saki; Nagai, Junya; Patanasethanont, Denpong; Sripanidkulchai, Bung-Orn; Takano, Mikihisa

    2013-01-01

      The mechanism of cancer cell death induced by KP018, an ethanol extract of the Thai plant Ellipeiopsis cherrevensis, was examined in paclitaxel-resistant HepG2 (PR-HepG2) and colon-26 cells using flow cytometry. In PR-HepG2 cells, KP018 induced necrosis in a concentration-dependent manner. Necrosis of PR-HepG2 cells induced by KP018 as well as by hydrogen peroxide was suppressed by co-treatment of the cells with N-acetylcysteine. KP018 decreased the viability of colon-26 cells with an IC50 value of 15.1 µg/mL, which was estimated by XTT assay. As observed in PR-HepG2 cells, KP018 induced necrosis and the necrosis was suppressed by N-acetylcysteine in colon-26 cells. In addition, using colon-26 solid tumor-bearing mice, KP018 was found to suppress tumor growth without apparent toxicities under in vivo conditions. These results indicate that KP018 induces necrosis rather than apoptosis in these cancer cells, and reactive oxygen species such as hydrogen peroxide would be involved in KP018-induced necrosis. KP018 may be a useful source to search for a new anticancer drug that can be used for the chemotherapy of multidrug-resistant tumors.

  9. Genome size of Alexandrium catenella and Gracilariopsis lemaneiformis estimated by flow cytometry

    NASA Astrophysics Data System (ADS)

    Du, Qingwei; Sui, Zhenghong; Chang, Lianpeng; Wei, Huihui; Liu, Yuan; Mi, Ping; Shang, Erlei; Zeeshan, Niaz; Que, Zhou

    2016-08-01

    Flow cytometry (FCM) technique has been widely applied to estimating the genome size of various higher plants. However, there is few report about its application in algae. In this study, an optimized procedure of FCM was exploited to estimate the genome size of two eukaryotic algae. For analyzing Alexandrium catenella, an important red tide species, the whole cell instead of isolated nucleus was studied, and chicken erythrocytes were used as an internal reference. The genome size of A. catenella was estimated to be 56.48 ± 4.14 Gb (1C), approximately nineteen times larger than that of human genome. For analyzing Gracilariopsis lemaneiformis, an important economical red alga, the purified nucleus was employed, and Arabidopsis thaliana and Chondrus crispus were used as internal references, respectively. The genome size of Gp. lemaneiformis was 97.35 ± 2.58 Mb (1C) and 112.73 ± 14.00 Mb (1C), respectively, depending on the different internal references. The results of this research will promote the related studies on the genomics and evolution of these two species.

  10. Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants

    PubMed Central

    Zedek, František; Veselý, Pavel; Horová, Lucie; Bureš, Petr

    2016-01-01

    Two chromosomal structures, known as monocentric and holocentric chromosomes, have evolved in eukaryotes. Acentric fragments of monocentric chromosomes are unequally distributed to daughter cells and/or lost, while holocentric fragments are inherited normally. In monocentric species, unequal distribution should generate chimeras of cells with different nuclear DNA content. We investigated whether such differences in monocentric species are detectable by flow cytometry (FCM) as (i) a decreased nuclear DNA content and (ii) an increased coefficient of variance (CV) of the G1 peak after gamma radiation-induced fragmentation. We compared 13 monocentric and 9 holocentric plant species. Unexpectedly, monocentrics and holocentrics did not differ with respect to parameters (i) and (ii) in their response to gamma irradiation. However, we found that the proportion of G2 nuclei was highly elevated in monocentrics after irradiation, while holocentrics were negligibly affected. Therefore, we hypothesize that DNA-damaging agents induce cell cycle arrest leading to endopolyploidy only in monocentric and not (or to much lesser extent) in holocentric plants. While current microscope-dependent methods for holocentrism detection are unreliable for small and numerous chromosomes, which are common in holocentrics, FCM can use somatic nuclei. Thus, FCM may be a rapid and reliable method of high-throughput screening for holocentric candidates across plant phylogeny. PMID:27255216

  11. Rapid titration of adenoviral infectivity by flow cytometry in batch culture of infected HEK293 cells.

    PubMed

    Gueret, Vincent; Negrete-Virgen, Juan A; Lyddiatt, Andrew; Al-Rubeai, Mohamed

    2002-01-01

    There is a constant and growing interest in exploitingadenoviruses as vectors for gene therapy when transientexpression of a therapeutic protein is necessary. Therequirement for an increased viral titre has prompted asearch for techniques by which this virus may be assayedwith greater speed and simplicity. Conventional plaqueassay for quantification of adenoviral vectors titre incurrent use is laborious and time-consuming (up to 14days). We report herein a method for the monitoring ofadenovirus expressing green fluorescent protein thatincorporates rapid and easy sample handling by means offlow cytometric analysis. Cells (HEK293) were infectedwith adenovirus at various multiplicity of infection(MOI), harvested 17 to 20 h post infection and analysedby flow cytometry. Assumptions were made that onefluorescent cell was infected by a single infectiousparticle at a relatively low MOI. The adenoviral titrewas subsequently estimated from cell analysis in arelatively short time. The results obtained with an E1-complementing cell line (HEK293) were compared with thatobtained using a non-complementing cell line (A549). APoisson distribution successfully modelled the profile ofinfection as a function of MOI. This provided a betterunderstanding of adenoviral infection at the earlieststage possible. Monitoring of GFP fluorescence and viruspropagation in a batch culture of infected cells wassubsequently used as a practical application of thevalidated method.

  12. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    PubMed

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  13. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x))

    PubMed Central

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-01-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  14. New Method to Disaggregate and Analyze Single Isolated Helminthes Cells Using Flow Cytometry: Proof of Concept

    PubMed Central

    Nava-Castro, Karen; Hernández-Bello, Romel; Muñiz-Hernández, Saé; Escobedo, Galileo; Morales-Montor, Jorge

    2011-01-01

    In parasitology, particularly in helminthes studies, several methods have been used to look for the expression of specific molecules, such as RT-PCR, western blot, 2D-electrophoresis, and microscopy, among others. However, these methods require homogenization of the whole helminth parasite, preventing evaluation of individual cells or specific cell types in a given parasite tissue or organ. Also, the extremely high interaction between helminthes and host cells (particularly immune cells) is an important point to be considered. It is really hard to obtain fresh parasites without host cell contamination. Then, it becomes crucial to determine that the analyzed proteins are exclusively from parasitic origin, and not a consequence of host cell contamination. Flow cytometry is a fluorescence-based technique used to evaluate the expression of extra-and intracellular proteins in different type cells, including protozoan parasites. It also allows the isolation and recovery of single-cell populations. Here, we describe a method to isolate and obtain purified helminthes cells. PMID:22187522

  15. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    PubMed

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability.

  16. Ploidy Levels among Species in the ‘Oxalis tuberosa Alliance’ as Inferred by Flow Cytometry

    PubMed Central

    EMSHWILLER, EVE

    2002-01-01

    The ‘Oxalis tuberosa alliance’ is a group of Andean Oxalis species allied to the Andean tuber crop O. tuberosa Molina (Oxalidaceae), commonly known as ‘oca’. As part of a larger project studying the origins of polyploidy and domestication of cultivated oca, flow cytometry was used to survey DNA ploidy levels among Bolivian and Peruvian accessions of alliance members. In addition, this study provided a first assessment of C‐values in the alliance by estimating nuclear DNA contents of these accessions using chicken erythrocytes as internal standard. Ten Bolivian accessions of cultivated O. tuberosa were confirmed to be octoploid, with a mean nuclear DNA content of approx. 3·6 pg/2C. Two Peruvian wild Oxalis species, O. phaeotricha and O. picchensis, were inferred to be tetraploid (both with approx. 1·67 pg/2C), the latter being one of the putative progenitors of O. tuberosa identified by chloroplast‐expressed glutamine synthetase data in prior work. The remaining accessions (from 78 populations provisionally identified as 35 species) were DNA diploid, with nuclear DNA contents varying from 0·79 to 1·34 pg/2C. PMID:12102530

  17. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry.

    PubMed

    Inglis, Heather C; Danesh, Ali; Shah, Avani; Lacroix, Jacques; Spinella, Philip C; Norris, Philip J

    2015-11-01

    Extracellular vesicles (EVs) range in size from 50 nm to 1 µm. Flow cytometry (FCM) is the most commonly used method for analyzing EVs; however, accurate characterization of EVs remains challenging due to their small size and lack of discrete positive populations. Here we report the use of optimization techniques that are especially well-suited for analyzing EVs from a high volume of clinical samples. Utilizing a two pronged approach that included 1) pre-filtration of antibodies to remove aggregates, followed by 2) detergent lysis of a replicate sample to account for remaining false positive events, we were able to effectively limit false positive non-EV events. In addition, we show that lysed samples are a useful alternative to isotypes for setting gates to exclude background fluorescence. To reduce background, we developed an approach using filters to "wash" samples post-staining thus providing a faster alternative to ultracentrifugation and sucrose gradient fractionation. In conclusion, use of these optimized techniques enhances the accuracy and efficiency of EV detection using FCM. PMID:25847910

  18. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry.

    PubMed

    Pohl, Marie O; Stertz, Silke

    2015-01-01

    Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV. PMID:26575457

  19. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry

    PubMed Central

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  20. Ultraviolet radiation as a ballast water treatment strategy: Inactivation of phytoplankton measured with flow cytometry.

    PubMed

    Olsen, Ranveig Ottoey; Hoffmann, Friederike; Hess-Erga, Ole-Kristian; Larsen, Aud; Thuestad, Gunnar; Hoell, Ingunn Alne

    2016-02-15

    This study investigates different UV doses (mJ/cm(2)) and the effect of dark incubation on the survival of the algae Tetraselmis suecica, to simulate ballast water treatment and subsequent transport. Samples were UV irradiated and analyzed by flow cytometry and standard culturing methods. Doses of ≥400 mJ/cm(2) rendered inactivation after 1 day as measured by all analytical methods, and are recommended for ballast water treatment if immediate impairment is required. Irradiation with lower UV doses (100-200 mJ/cm(2)) gave considerable differences of inactivation between experiments and analytical methods. Nevertheless, inactivation increased with increasing doses and incubation time. We argue that UV doses ≥100 mJ/cm(2) and ≤200 mJ/cm(2) can be sufficient if the water is treated at intake and left in dark ballast tanks. The variable results demonstrate the challenge of giving unambiguous recommendations on duration of dark incubation needed for inactivation when algae are treated with low UV doses.

  1. Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines.

    PubMed

    Smith, Steven G; Smits, Kaatje; Joosten, Simone A; van Meijgaarden, Krista E; Satti, Iman; Fletcher, Helen A; Caccamo, Nadia; Dieli, Francesco; Mascart, Francoise; McShane, Helen; Dockrell, Hazel M; Ottenhoff, Tom H M

    2015-01-01

    Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.

  2. Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry.

    PubMed

    Haugland, Gyri T; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes.

  3. Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo

    PubMed Central

    Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Proskurnin, Mikhail A.

    2016-01-01

    Control of sickle cell disease (SCD) stage and treatment efficiency are still time-consuming which makes well-timed prevention of SCD crisis difficult. We show here that in vivo photoacoustic (PA) flow cytometry (PAFC) has a potential for real-time monitoring of circulating sickled cells in mouse model. In vivo data were verified by in vitro PAFC and photothermal (PT) and PA spectral imaging of sickle red blood cells (sRBCs) expressing SCD-associated hemoglobin (HbS) compared to normal red blood cells (nRBCs). We discovered that PT and PA signal amplitudes from sRBCs in linear mode were 2–4-fold lower than those from nRBCs. PT and PA imaging revealed more profound spatial hemoglobin heterogeneity in sRBCs than in nRBCs, which can be associated with the presence of HbS clusters with high local absorption. This hypothesis was confirmed in nonlinear mode through nanobubble formation around overheated HbS clusters accompanied by spatially selective signal amplification. More profound differences in absorption of sRBCs than in nRBCs led to notable increase in PA signal fluctuation (fluctuation PAFC mode) as an indicator of SCD. The obtained data suggest that noninvasive label-free fluctuation PAFC has a potential for real-time enumeration of sRBCs both in vitro and in vivo. PMID:27699143

  4. Quantification of mammalian sperm morphology by slit-scan flow cytometry

    SciTech Connect

    Benaron, D.A.; Gray, J.W.; Gledhill, B.L.; Lake, S.; Wyrobek, A.J.; Young, I.T.

    1982-01-01

    The head shapes of mammalian sperm were measured by slit-scan flow cytometry (SSFCM). Fluorescence profiles were measured for sperm from mice, rabbits, hamsters, and bulls, and for sperm from mice, rabbits, hamsters, and bulls, and for sperm from mice exposed to testicular x-irradiation from 0 to 900 rads. Some of the fluorescence profiles for sperm from the irradiated mice differed significantly from the profiles usually measured for sperm from unexposed mice. An algorithm was developed to determine the frequency of these sperm. The estimated frequencies of atypical profiles correlated well with the frequencies of abnormally shaped sperm determined by microscopic scoring. The maximum SSFCM sensitivity was not as high as that for the visual assay. However, only 100 profiles were measured by SSFCM at each dose while at least 500 sperm were scored visually at each dose. The sensitivity of the SSFCM assay should be increased substantially by measuring more profiles. The objective nature of SSFCM coupled with the high correlation with results from the visually based assay of morphology suggests the use of SSFCM to measure frequencies of misshapen sperm when testing for mutagens or monitoring for effects of environmental contaminants.

  5. Quantification of mammalian sperm morphology by slit-scan flow cytometry

    SciTech Connect

    Benaron, D.A.; Gray, J.W.; Gledhill, B.L.; Lake, S.; Wyrobek, A.J.; Young, I.T.

    1982-03-01

    The head shapes of mammalian sperm have been measured by slit-scan flow cytometry (SSFCM). In this approach, the distribution of fluorescence along acriflavine stained mammalian sperm is recorded and used as a measure of head shape. Fluorescence profiles were measured for sperm from mice, rabbits, hamsters, and bulls, and for sperm from mice exposed to testicular x-irradiation from 0 to 900 rads. The profiles for sperm from nonirradiated animals were characteristic of each species and were reproducible from sperm to sperm. Some of the fluorescence profiles for sperm from the irradiated mice differed significantly from the profiles usually measured for sperm from exposed mice. An algorithm was developed to determine the frequency of these sperm. The estimated frequencies of atypical profiles correlated well (r . 0.99) with the frequencies of abnormally shaped sperm determined by microscopic scoring. The maximum SSFCM sensitivity (minimum detectable dose . 199 rad) was not as high as that for the visual assay (minimum detectable dose . 116 rad). However, only 100 profiles were measured by SSFCM at each dose while at least 500 sperm were scored visually at each dose. The sensitivity of the SSFCM assay should be increased substantially by measuring more profiles. The objective nature of SSFCM couple with the high correlation with results from the visually based assay of morphology suggests the use of SSFCM to measure frequencies of misshapen sperm when testing for mutagens or monitoring for effects of environmental contaminants.

  6. Calcium Influx Characteristics During T Lymphocyte Activation Measured with Flow Cytometry

    PubMed Central

    Vásárhelyi, Barna; Toldi, Gergely

    2013-01-01

    T lymphocytes are of paramount importance in many intercellular reactions, such as the regulation of the inflammatory response and immune reactivity. Until the recent past, single-cell techniques were used for the investigation of calcium influx during T lymphocyte activation. Therefore, over the recent years we have created a novel approach that allows simultaneous recording of calcium influx in several lymphocyte subsets using flow cytometry. Our research group developed a robust algorithm (FacsKin) for the evaluation of the acquired data that fits functions to median values of the fluorescent marker of interest and calculates relevant parameters describing each function. Over the recent years, we have investigated calcium influx characteristics applying this method in a number of autoimmune disorders and under different physiological conditions (such as the neonatal period and pregnancy). In this review, we aim to give a brief summary of our findings and of the common characteristics of calcium influx in the investigated disorders, namely: multiple sclerosis (MS), rheumatoid arthritis (RA), type 1 diabetes mellitus (T1DM), ankylosing spondylitis (AS), and preeclampsia (PE). Based on our results, a number of dominant features were identified that were present in most of the investigated autoimmune diseases.

  7. Characterization by flow cytometry of fluorescent, selective agonist probes of the A(3) adenosine receptor.

    PubMed

    Kozma, Eszter; Gizewski, Elizabeth T; Tosh, Dilip K; Squarcialupi, Lucia; Auchampach, John A; Jacobson, Kenneth A

    2013-04-15

    Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively. C2-Tethered cyanine5-dye labeled MRS5218 bound selectively to hA3AR expressed in whole CHO cells and membranes. By FCM, binding was A3AR-mediated (blocked by A3AR antagonist, at least half through internalization), with t1/2 for association 38min in mA3AR-HEK293 cells; 26.4min in sucrose-treated hA3AR-CHO cells (Kd 31nM). Membrane binding indicated moderate mA3AR affinity, but not selectivity. Specific accumulation of fluorescence (50nM MRS5218) occurred in cells expressing mA3AR, but not other mouse ARs. Evidence was provided suggesting that MRS5218 detects endogenous expression of the A3AR in the human promyelocytic leukemic HL-60 cell line. Therefore, MRS5218 promises to be a useful tool for characterizing the A3AR.

  8. Minimal residual disease detection using flow cytometry: Applications in acute leukemia.

    PubMed

    Chatterjee, T; Mallhi, R S; Venkatesan, S

    2016-04-01

    Minimal residual disease (MRD) describes disease that can be diagnosed by methodologies other than conventional morphology, and includes molecular methods (like polymerase chain reaction (PCR)) or flow cytometry (FCM). Detection and monitoring of MRD is becoming the standard of care, considering its importance in predicting the treatment outcome. MRD aids in identifying high-risk patients and hence therapy can be intensified in them while deintensification of therapy can prevent long-term sequelae of chemotherapy in low-risk category. FCM is considered as a less labor-intensive and faster MRD technique as compared to PCR although it has its own share of disadvantages. Current immune-based methodologies for detection of MRD depend on establishing leukemia-associated aberrant immunophenotype (LAIP), at diagnosis or relapse and use this information at specified time points for detection of MRD, or apply a standardized panel of antibody combinations for all MRD cases, in a different-from-normal approach. This review highlights MRD detection by FCM and its application in acute leukemia.

  9. The application of flow cytometry for estimating genome size and ploidy level in plants.

    PubMed

    Pellicer, Jaume; Leitch, Ilia J

    2014-01-01

    Over the years, the amount of DNA in a nucleus (genome size) has been estimated using a variety of methods, but increasingly, flow cytometry (FCM) has become the method of choice. The popularity of this technique lies in the ease of sample preparation and in the large number of particles (i.e., nuclei) that can be analyzed in a very short period of time. This chapter presents a step-by-step guide to estimating the nuclear DNA content of plant nuclei using FCM. Attempting to serve as a tool for daily laboratory practice, we list, in detail, the equipment required, specific reagents, and buffers needed, as well as the most frequently used protocols to carry out nuclei isolation. In addition, solutions to the most common problems that users may encounter when working with plant material and troubleshooting advice are provided. Finally, information about the correct terminology to use and the importance of obtaining chromosome counts to avoid cytological misinterpretations of the FCM data are discussed.

  10. Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry.

    PubMed

    Perfetto, Stephen P; Chattopadhyay, Pratip K; Lamoreaux, Laurie; Nguyen, Richard; Ambrozak, David; Koup, Richard A; Roederer, Mario

    2006-06-30

    Membrane-damaged cells caused by either mechanical trauma or through normal biological processes can produce artifacts in immunophenotyping analysis by flow cytometry. Dead cells can nonspecifically bind monoclonal antibody conjugates, potentially leading to erroneous conclusions, particularly when cell frequencies are low. To date, DNA intercalating dyes (Ethidium monoazaide (EMA), Propidium Iodide, 7AAD, etc.) or Annexin V have been commonly used to exclude dead cells; however, each suffer from technical problems. The first issue with such dyes is the dependence on a consistent dead cell source for fluorescence compensation. Another major issue is the stability of the staining; except for EMA, fixation and permeablization used for intracellular staining procedures can cause loss of fluorescence. EMA requires a UV exposure to covalently bond to DNA; while this dye is effective and is not affected by intracellular treatments it is weakly fluorescent. Here we report on the optimization of a new class of viability dyes, the amine reactive viability dyes (ViD) as a dead cell exclusion marker. The inclusion of ViD into the staining panel was found to be simple, reproducible and can have a significant benefit on the accuracy of identifying appropriate cell populations. We show the fluorescence of cells stained with these dyes correlates with traditional dead cell discriminating markers, even after fixation and permeabilization. Amine reactive viability dyes are a powerful tool for fluorescence immunophenotyping experiments. PMID:16756987

  11. Role of macrophages in circulating prostate cancer cells studied by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2013-02-01

    Macrophages appear to be directly involved in cancer progression and metastasis. However, the role of macrophages in influencing tumor metastasis has not been fully understood. Here, we have used an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 prostate cancer cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages might facilitate the stay of prostate tumor cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cancer cells. Therefore, the phagocytosis may mainly contribute to the differences in depletion kinetics. The developed methods here would be useful to study the relationship between macrophages and cancer metastasis in small animal tumor model.

  12. Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2012-12-01

    Metastasis is a very complicated multi-step process and accounts for the low survival rate of the cancerous patients. To metastasize, the malignant cells must detach from the primary tumor and migrate to secondary sites in the body through either blood or lymph circulation. Macrophages appear to be directly involved in tumor progression and metastasis. However, the role of macrophages in affecting cancer metastasis has not been fully elucidated. Here, we have utilized an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages facilitates the stay of prostate cancer cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cells. Therefore, the phagocytosis may mainly contribute to the depletion kinetic differences. The developed methods here would be useful to study the relationship between macrophages and tumor metastasis in small animal cancer model.

  13. Flow cytometry used to assess genetic damage in frogs from farm ponds

    USGS Publications Warehouse

    Bly, B.L.; Knutson, M.G.; Sandheinrich, M.B.; Gray, B.R.; Jobe, D.A.

    2004-01-01

    Flow cytometry (FC) is a laboratory method used to detect genetic damage induced by environmental contaminants and other stressors in animals, including amphibians. We tested FC methods on three species of ranid frogs collected from farm ponds and natural wetlands in southeastern Minnesota. We compared FC metrics for Rana clamitans between ponds with direct exposure to agricultural contaminants and reference (unexposed) ponds. Concentrations of atrazine in water from our farm ponds ranged from 0.04 to 0.55 ppb. We found that R. clamitans from exposed ponds had DNA content similar to frogs from unexposed ponds. Pond-averaged C-values (a measure of DNA content) ranged from 6.53 to 7.08 for R. pipiens (n . 13), 6.55 to 6.60 for R. clamitans (n . 40) and 6.74 for R. palustris (n . 5). Among all species, the mean sample CVs ranged from 1.91 (R. palustris) to 6.31 (R. pipiens). Deformities were observed in only 2 of 796 individuals among all species and occurred in both reference and exposed ponds. Although we did not detect evidence of DNA damage associated with agriculture in our study, we demonstrated the potential of FC for screening amphibian populations for genetic damage. Metrics from a variety of amphibian species and locations as well as laboratory studies are needed to further assess the value of FC for monitoring amphibian genetic integrity in contaminated sites.

  14. Evaluation of DNA degradation using flow cytometry: promising tool for postmortem interval determination.

    PubMed

    Williams, Teddric; Soni, Shivani; White, Jason; Can, Gunay; Javan, Gulnaz T

    2015-06-01

    Over the years, there have been numerous formulas proposed for use in determining the postmortem interval (PMI); however, no method is all encompassing and absolute. Even so, very little research has been undertaken to determine if there is a viable correlation between the rate of DNA degradation and PMI, which can be calculated from analysis by flow cytometry. In this study, we analyzed the rate of DNA degradation of spleen and brain tissues from 15 cadavers over a 96-hour period of time at 2 temperature conditions, that is, 21°C (room temperature) and 4°C (refrigerator) to mimic summer and winter weather, respectively. The resulting data were used to form a pattern that correlates DNA degradation to cell death occurrence. Statistical analyses were performed to determine the significance of the relationship between PMI and DNA degradation. Moreover, in search of alternative reliable organs of interest for PMI estimation, the results demonstrate that the brain has lesser DNA degradation as compared with the spleen. Thus, the current study suggests that the brain can be an organ of choice for PMI studies, but more research is underway in this aspect.

  15. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry.

    PubMed

    Moor, Kathrin; Fadlallah, Jehane; Toska, Albulena; Sterlin, Delphine; Balmer, Maria L; Macpherson, Andrew J; Gorochov, Guy; Larsen, Martin; Slack, Emma

    2016-08-01

    Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 μg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.

  16. Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes.

    PubMed

    Hibi, Kyoko; Abe, Akihisa; Ohashi, Eiji; Mitsubayashi, Kohji; Ushio, Hideki; Hayashi, Tetsuhito; Ren, Huifeng; Endo, Hideaki

    2006-07-28

    Listeria monocytogenes can grow at the low temperature commonly used in the storage and transportation of food, and the number of cases of food poisoning caused by L. monocytogenes has increased recently in the US and Europe. Several methods of detecting L. monocytogenes cells have been proposed; however, all existing methods require approximately 48 h incubation. In this study, we attempted rapid detection of L. monocytogenes using flow cytometry (FCM). The method is based on measuring the number of L. monocytogenes cells by using a combination of FCM and immunomagnetic separation (IMS). First, polyclonal antibodies (anti-L. monocytogenes rabbit IgG-FITC) conjugated with fluorescein isothiocyanate (FITC) were reacted with L. monocytogenes cells, and then FCM was applied. The cell numbers were determined by FCM using a traditional colony-counting method in the range of 10(4)-10(8) cells ml(-1). Tetrameric antibody complexes (TAC) were used because they can recognize both magnetic and FITC molecules on the FITC-conjugated antibodies. FITC-labeled L. monocytogenes cells were reacted with a secondary antibody (TAC) bound to magnetic beads. Then, IMS was used. The method is suitable for detection in the range of 10(2)-10(8)cells ml(-1). The FCM assay enumerated the cells within 1 min and the total assay time, including sample preparation, was less than 2 h. PMID:17723519

  17. Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes.

    PubMed

    Herrero, Mónica; Quirós, Covadonga; García, Luis A; Díaz, Mario

    2006-10-01

    The flow cytometry (FC) technique used with certain fluorescent dyes (ChemChrome V6 [CV6], DRAQ5, and PI) has proven useful to label and to detect different physiological states of yeast and malolactic bacterium starters conducting cider fermentation over time (by performing sequential inoculation of microorganisms). First, the technique was tested with pure cultures of both types of microorganisms grown in synthetic media under different induced stress conditions. Metabolically active cells detected by FC and by the standard plate-counting method for both types of microorganisms in fresh overnight pure cultures gave good correlations between the two techniques in samples taken at this stage. Otherwise, combining the results obtained by FC and plating during alcoholic and malolactic fermentation over time in the cider-making process, different subpopulations were detected, showing significant differences between the methods. A small number of studies have applied the FC technique to analyze fermentation processes and mixed cultures over time. The results were used to postulate equations explaining the different physiological states in cell populations taken from fresh, pure overnight cultures under nonstress conditions or cells subjected to stress conditions over time, either under a pure-culture fermentation process (in this work, corresponding to alcoholic fermentation) or under mixed-fermentation conditions (for the malolactic-fermentation phase), that could be useful to improve the control of the processes. PMID:17021224

  18. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x)).

    PubMed

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-03-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  19. In-vitro human spermatozoa nuclear decondensation assessed by flow cytometry.

    PubMed

    Samocha-Bone, D; Lewin, L M; Weissenberg, R; Madgar, Y; Soffer, Y; Shochat, L; Golan, R

    1998-02-01

    The process of sperm chromatin decondensation occurs when a spermatozoon enters an ovum. Protamine disulphide bonds are reduced to SH and the polycationic protamines combine with the polyanionic egg protein, nucleoplasmin, thus being stripped from DNA which then combines with histones. Defective chromatin decondensation will thus prevent further development of the male pronucleus. In this study human sperm samples were incubated in vitro at 28 degrees C (using a medium in which the polyanion, heparin, substitutes for nucleoplasmin and beta-mercaptoethanol for egg glutathione) for 10, 20 and 30 min before stopping the reaction with formalin (to 3.6%). The DNA of the fixed cells was stained with Acridine Orange by a one-step method and subjected to flow cytometry and data analysis, in which a zone characteristic of condensed chromatin is outlined on red-green fluorescence contour plots. After 20 min of incubation 97% of the control spermatozoa that were in the mature window (WIN M) had decondensed and moved out of this region. Defects in sperm decondensation were seen in four semen samples of the 20 that were tested. In cases where spermatozoa fail to produce a fertilized egg the cause may lie with defective chromatin quality, including failure of the sperm chromatin to decondense. The method described here is a simple procedure for detecting sperm samples containing such defective cells. PMID:9542970

  20. Characterisation of fine particles by flow cytometry in estuarine and coastal Arctic waters

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, Patricia F.; Martin, Jean Marie

    1998-06-01

    The chemical and biological nature of suspended pico- (<2 μm) and nano- (2-10 μm) particles was studied by flow cytometry in the Lena River delta and Laptev Sea, Russia, during September 1991. Forward and wide-angle light scatter, natural fluorescence of phytoplankton, and induced fluorescence of organic molecules were used to characterise natural suspended particles. Organic and inorganic particles were identified by staining with specific fluorochromes: FITC for proteins, Con A-FITC for glucose/mannose, and PNA for galactose. Living and nonliving organic particles were distinguished by analysing simultaneously natural red fluorescence (chlorophyll) and organic staining. The upper Lena River and its delta were characterised by a high concentration of total particles (18.5±4.9×10 5 per cm 3), mostly inorganic (13.6±5.4×10 5 per cm 3). In the coastal and open waters of the Laptev Sea, organic particles dominated. Generally, the most important fraction of small organic particles were nonliving (organic detritus, TEP, and organic coatings) characterised by the presence of proteins and polysaccharides. The phytoplanktonic cells were characterised by a high fraction of picoplankton (1000-50 000 cells per cm 3) dominated by Synechococcus sp. and small picoeukaryotes.

  1. A rapid method for infectivity titration of Andes hantavirus using flow cytometry.

    PubMed

    Barriga, Gonzalo P; Martínez-Valdebenito, Constanza; Galeno, Héctor; Ferrés, Marcela; Lozach, Pierre-Yves; Tischler, Nicole D

    2013-11-01

    The focus assay is currently the most commonly used technique for hantavirus titer determination. This method requires an incubation time of between 5 and 11 days to allow the appearance of foci after several rounds of viral infection. The following work presents a rapid Andes virus (ANDV) titration assay, based on viral nucleocapsid protein (N) detection in infected cells by flow cytometry. To this end, an anti-N monoclonal antibody was used that was developed and characterized previously. ANDV N could be detected as early as 6 h post-infection, while viral release was not observed until 24-48 h post-infection. Given that ANDV detection was performed during its first round of infection, a time reduction for titer determination was possible and provided results in only two days. The viral titer was calculated from the percentage of N positive cells and agreed with focus assay titers. Furthermore, the assay was applied to quantify the inhibition of ANDV cell entry by patient sera and by preventing endosome acidification. This novel hantavirus titration assay is a highly quantitative and sensitive tool that facilitates infectivity titration of virus stocks, rapid screening for antiviral drugs, and may be further used to detect and quantify infectious virus in human samples.

  2. Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo

    PubMed Central

    Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Proskurnin, Mikhail A.

    2016-01-01

    Control of sickle cell disease (SCD) stage and treatment efficiency are still time-consuming which makes well-timed prevention of SCD crisis difficult. We show here that in vivo photoacoustic (PA) flow cytometry (PAFC) has a potential for real-time monitoring of circulating sickled cells in mouse model. In vivo data were verified by in vitro PAFC and photothermal (PT) and PA spectral imaging of sickle red blood cells (sRBCs) expressing SCD-associated hemoglobin (HbS) compared to normal red blood cells (nRBCs). We discovered that PT and PA signal amplitudes from sRBCs in linear mode were 2–4-fold lower than those from nRBCs. PT and PA imaging revealed more profound spatial hemoglobin heterogeneity in sRBCs than in nRBCs, which can be associated with the presence of HbS clusters with high local absorption. This hypothesis was confirmed in nonlinear mode through nanobubble formation around overheated HbS clusters accompanied by spatially selective signal amplification. More profound differences in absorption of sRBCs than in nRBCs led to notable increase in PA signal fluctuation (fluctuation PAFC mode) as an indicator of SCD. The obtained data suggest that noninvasive label-free fluctuation PAFC has a potential for real-time enumeration of sRBCs both in vitro and in vivo.

  3. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    PubMed

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  4. High-throughput quantitation of intracellular trafficking and organelle disruption by flow cytometry.

    PubMed

    Chia, Pei Zhi Cheryl; Ramdzan, Yasmin M; Houghton, Fiona J; Hatters, Danny M; Gleeson, Paul A

    2014-05-01

    Current methods for the quantitation of membrane protein trafficking rely heavily on microscopy, which has limited quantitative capacity for analyses of cell populations and is cumbersome to perform. Here we describe a simple flow cytometry-based method that circumvents these limitations. The method utilizes fluorescent pulse-width measurements as a highly sensitive indicator to monitor the changes in intracellular distributions of a fluorescently labelled molecule in a cell. Pulse-width analysis enabled us to discriminate cells with target proteins in different intracellular locations including Golgi, lyso-endosomal network and the plasma membrane, as well as detecting morphological changes in organelles such as Golgi perturbation. The movement of endogenous and exogenous retrograde cargo was tracked from the plasma membrane-to-endosomes-to-Golgi, by decreasing pulse-width values. A block in transport upon RNAi-mediated ablation of transport machinery was readily quantified, demonstrating the versatility of this technique to identify pathway inhibitors. We also showed that pulse-width can be exploited to sort and recover cells based on different intracellular staining patterns, e.g. early endosomes and Golgi, opening up novel downstream applications. Overall, the method provides new capabilities for viewing membrane transport in thousands of cells per minute, unbiased analysis of the trafficking of cargo, and the potential for rapid screening of inhibitors of trafficking pathways.

  5. In vitro effects of nicotine on sperm motility and bio-functional flow cytometry sperm parameters.

    PubMed

    Condorelli, R A; La Vignera, S; Giacone, F; Iacoviello, L; Vicari, E; Mongioi', L; Calogero, A E

    2013-01-01

    The aim of this experimental study was to evaluate the effects of nicotine on sperm motility and on non-conventional sperm parameters in vitro. Capacitated spermatozoa isolated from 10 normozoospermic, healthy, non-smoker men were evaluated. Spermatozoa were exposed to increasing concentrations of nicotine (0, 1, 10, and 100 ng/ml) for 3 and 24 hours. Progressive motility and the following non-conventional sperm parameters, evaluated by flow cytometry, were assessed: mitochondrial membrane potential, viability, phosphatidylserine externalization, late apoptosis, degree of chromatin compactness, and DNA fragmentation. Nicotine suppressed, in a concentration-dependent manner, sperm progressive motility starting from the lowest concentration used (1 ng/ml). Similarly, it reduced the percentage of viable spermatozoa and increased the number of spermatozoa in late apoptosis, with altered chromatin compactness, or DNA fragmentation already after 3 hours of incubation. These effects were observed at a concentration similar (100 ng/ml) to that found in the seminal plasma of smokers (70 ng/ml), with the exception of the effects on sperm DNA fragmentation whose significant effect was detected also at a lower concentration (10 ng/ml). Nicotine may be regarded as a noxious component of cigarette smoke on the male reproductive function.

  6. Cell-cycle distribution of urothelial tumour cells as measured by flow cytometry.

    PubMed Central

    Collste, L. G.; Darzynkiewicz, Z.; Traganos, F.; Sharpless, T. K.; Devonec, M.; Claps, M. L.; Whitmore, W. F.; Melamed, M. R.

    1979-01-01

    The fraction of cells in S + G2 + mitosis from 54 urothelial tumours was calculated by flow cytometry after acridine orange (AO) staining of cells obtained by bladder irrigation or biopsy. Fluorescence signals emitted by the AO-stained DNA and RNA of each cell were separated optically and measured for 5,000 cells per specimen. The patients were classified by the histology of their tumours and clinical data into 5 diagnostic categories: NED (no evidence of disease, but history of bladder tumour), 3; papilloma, 8; non-invasive papillary carcinoma, 8; carcinoma in situ, 17 and invasive carcinoma, 18. The fraction of cells with DNA values in S + G2 + M of the cell cycle varied between 7 and 57% of the total, with a wide range within each diagnostic category, but no statistically significant differences between the groups. The proportion of cells in S + G2 + M from an individual tumour was not correlated with histologic grade or clinical behaviour. The possibility that some tumour cells with DNA values above G1 level are quiescent cells arrested at S or G2 is discussed. PMID:526428

  7. Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry.

    PubMed

    Brake, Denise G; Thaler, Robert; Evenson, Donald P

    2004-04-01

    The health safety of Bt (Bacillus thuringiensis) corn (Zea mays L.) was studied using mouse testes as a sensitive biomonitor of potential toxic effects. Pregnant mice were fed a Bt corn or a nontransgenic (conventional) diet during gestation and lactation. After they were weaned, young male mice were maintained on the respective diets. At 8, 16, 26, 32, 63, and 87 days after birth, three male mice and an adult reference mouse were killed, the testes were surgically removed, and the percentage of germ cell populations was measured by flow cytometry. Multigenerational studies were conducted in the same manner. There were no apparent differences in percentages of testicular cell populations (haploid, diploid, and tetraploid) between the mice fed the Bt corn diet and those fed the conventional diet. Because of the high rate of cell proliferation and extensive differentiation that makes testicular germ cells highly susceptible to some toxic agents, it was concluded that the Bt corn diet had no measurable or observable effect on fetal, postnatal, pubertal, or adult testicular development. If data from this study were extrapolated to humans, Bt corn is not harmful to human reproductive development.

  8. Chromosomal and DNA ploidy characterization of salivary gland neoplasms by combined FISH and flow cytometry.

    PubMed

    El-Naggar, A K; Dinh, M; Tucker, S L; Gillenwater, A; Luna, M A; Batsakis, J G

    1997-08-01

    Concurrent DNA ploidy by flow cytometry and interphase FISH analysis of chromosomes 6 through 12, 17, 18, X, and Y were prospectively performed on 22 salivary gland neoplasms (four benign and 18 malignant) to investigate the diagnostic and biological implications of their alterations in these neoplasms. Our results show that benign neoplasms lack DNA aneuploidy and numerical chromosomal abnormalities. Low-grade malignant neoplasms, except for two lesions, manifested small chromosomal gains and losses and were generally DNA diploid or near-diploid aneuploid, whereas all high-grade tumors showed marked polysomy and were DNA aneuploid. Marked intratumoral and intertumoral chromosomal heterogeneity also were noted in and between individual tumors. Although polysomy was the main finding in DNA aneuploid lesions, monosomy was more noted in DNA diploid neoplasms and was restricted to chromosomes 8, 11, and 17. Significant correlation between the DNA index, chromosomal aneusomy, histological grade, and tumor stage was noted. Our study indicates that (1) benign salivary gland neoplasms lack gross DNA content and numerical chromosomal abnormalities, (2) clonal chromosomal alterations are manifested in most DNA diploid and all DNA aneuploid malignant tumors, (3) chromosomal gain is the most common alteration; chromosomal loss is less frequent and restricted to certain chromosomes, and (4) DNA aneuploidy and chromosomal aneusomy characterize tumors with aggressive features.

  9. Oncocytic tumours of the salivary gland, kidney, and thyroid: nuclear DNA patterns studied by flow cytometry.

    PubMed

    Rainwater, L M; Farrow, G M; Hay, I D; Lieber, M M

    1986-06-01

    Nuclear DNA ploidy studies were performed by flow cytometry on extracted nuclei from 12 oncocytic tumours of the salivary gland, 65 oncocytic tumours of the kidney, and 37 oncocytic tumours of the thyroid gland from the pathology archives of the Mayo Clinic. In order to provide an interesting clinical spectrum, three different classes of well-differentiated oncocytic tumours were selected for examination. Salivary gland oncocytic tumours were chosen for their generally benign behaviour. Oncocytic thyroid cancers exhibiting malignant potential because of local invasion, were thought to represent the opposite extreme of aggressiveness. Renal oncocytic tumours were known to demonstrate an intermediate degree of malignancy. All of the oncocytic salivary gland tumours showed a 'normal' DNA histogram and had a benign clinical course. For the oncocytic tumours of the kidney, 45% of DNA histograms were normal, 40% exhibited a significant increase in the DNA tetraploid/polyploid (4C) peak, and 15% showed a DNA aneuploid peak. Three patients with a DNA tetraploid pattern developed tumour metastasis and two have died from metastatic renal cancer. Among the oncocytic thyroid cancers, 27% were normal, 22% exhibited an increased DNA tetraploid peak, and 51% had a distinct DNA aneuploid peak. None of the thyroid tumour patients with a normal DNA pattern or with an increased DNA tetraploid peak died as a result of thyroid malignancy. In contrast, 58% of patients whose thyroid tumours showed a DNA aneuploid peak subsequently died from thyroid cancer.

  10. Flow cytometry-based methods for assessing soluble scFv activities and detecting pathogen antigens in solution

    SciTech Connect

    Gray, Sean; Weigel, Kris M.; Miller, Keith D.; Ndung'u, Joseph; Buscher, Philippe; Tran, Thao N.; Baird, Cheryl L.; Cangelosi, Gerard A.

    2010-04-01

    Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from nonimmune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeastdisplayed and secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of its ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv toidentify additional yeast-displayed scFv that bind nonoverlapping or noncompeting epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.

  11. Flow Cytometry-Based Methods for Assessing Soluble scFv Activities and Detecting Antigens in Solution

    PubMed Central

    Gray, Sean A.; Weigel, Kris M.; Miller, Keith D.; Ndung'u, Joseph; Büscher, Philippe; Tran, Thao; Baird, Cheryl; Cangelosi, Gerard A.

    2010-01-01

    Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. Alimiting step in the isolation of scFv from non-immune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast-displayed and -secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast-displayed scFv that bind non-overlapping or non-competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast-displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries. PMID:19953671

  12. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles

    PubMed Central

    Arraud, N; Gounou, C; Linares, R; Brisson, A R

    2015-01-01

    Background Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM). Objectives Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders. Methods The concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids. Results We show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000–30 000 Anx5-positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000–2500 Anx5 molecules. Results from EM suggest that EVs down to 100–150 nm diameter are detected by fluorescence triggering. Conclusion This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays. PMID:25348269

  13. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    NASA Astrophysics Data System (ADS)

    Patibandla, Phani K.; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-03-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (˜45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the

  14. Immunofluorescence flow cytometry technique for enumeration of the brown-tide alga, Aureococcus anophagefferens.

    PubMed

    Stauffer, Beth A; Schaffner, Rebecca A; Wazniak, Catherine; Caron, David A

    2008-11-01

    A new immunologically based flow cytometry (IFCM) technique was developed to enumerate Aureococcus anophagefferens, a small pelagophyte alga that is the cause of "brown tides" in bays and estuaries of the mid-Atlantic states along the U.S. coast. The method utilizes a monoclonal antibody conjugated to fluorescein isothiocyanate (FITC-MAb) to label the surface of A. anophagefferens cells which are then detected and enumerated by using a flow cytometer. Optimal conditions for FITC-MAb staining, including solution composition, incubation times, and FITC-MAb concentrations, were determined. The FITC-MAb method was tested for cross-reactivity with nontarget, similarly sized, photoautotrophic protists, and the method was compared to an enzyme-linked immunosorbent assay (ELISA) using the same MAb. Comparisons of the IFCM technique to traditional microscopy enumeration of cultures and spiked environmental samples showed consistent agreement over several orders of magnitude (r(2) > 0.99). Comparisons of the IFCM and ELISA techniques for enumerating cells from a predation experiment showed a substantial overestimation (up to 10 times higher) of the ELISA in the presence of consumers of A. anophagefferens, presumably due to egested cell fragments that retained antigenicity, using the ELISA method, but were not characterized as whole algal cells by the IFCM method. Application of the IFCM method to environmental "brown-tide" samples taken from the coastal bays of Maryland demonstrated its efficacy in resolving A. anophagefferens abundance levels throughout the course of a bloom and over a large range of abundance values. IFCM counts of the brown-tide alga from natural samples were consistently lower than those obtained using the ELISA method and were equivalent to those of the polyclonal immunofluorescence microscopy technique, since both methods discriminate intact cells. Overall, the IFCM approach was an accurate and relatively simple technique for the rapid enumeration of A

  15. Blood group antigen studies using CdTe quantum dots and flow cytometry

    PubMed Central

    Cabral Filho, Paulo E; Pereira, Maria IA; Fernandes, Heloise P; de Thomaz, Andre A; Cesar, Carlos L; Santos, Beate S; Barjas-Castro, Maria L; Fontes, Adriana

    2015-01-01

    New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes. PMID:26185442

  16. Blood group antigen studies using CdTe quantum dots and flow cytometry.

    PubMed

    Cabral Filho, Paulo E; Pereira, Maria I A; Fernandes, Heloise P; de Thomaz, Andre A; Cesar, Carlos L; Santos, Beate S; Barjas-Castro, Maria L; Fontes, Adriana

    2015-01-01

    New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes. PMID:26185442

  17. Light scattering and morphology of the lymphocyte as applied to flow cytometry for distinguishing healthy and infected individuals.

    PubMed

    Ruban, Gennady I; Berdnik, Vladimir V; Marinitch, Dmitry V; Goncharova, Natalia V; Loiko, Valery A

    2010-01-01

    A simple optical model of single lymphocytes with smooth and nonsmooth surfaces has been developed for healthy and infected individuals. The model can be used for rapid (in the real-time scale) solution of the inverse light-scattering problem on the basis of optical data measured by label-free flow cytometry. Light scattering patterns have been calculated for the model developed. It has been shown that the smooth and nonsmooth cells can be resolved using the intensities of the sideward- and backward-scattered light. We have found by calculations and validated by the flow cytometer experiments that intensity distributions for the cells of lymphocyte populations can be used as a preliminary signatures of some virus infections. Potential biomedical applications of the findings for label-free flow cytometry detection of individuals infected with viruses of hepatitis B or C and some others viruses are presented. PMID:21054124

  18. Detection of Intracellular Granularity Induction in Prostate Cancer Cell Lines by Small Molecules Using the HyperCyt® High-Throughput Flow Cytometry System

    PubMed Central

    HAYNES, MARK K.; STROUSE, J. JACOB; WALLER, ANNA; LEITAO, ANDREI; CURPAN, RAMONA F.; BOLOGA, CRISTIAN; OPREA, TUDOR I.; PROSSNITZ, ERIC R.; EDWARDS, BRUCE S.; SKLAR, LARRY A.; THOMPSON, TODD A.

    2013-01-01

    Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. Discovery of effective chemotherapeutics involves the identification of agents that inhibit cancer cell growth. Increases in intracellular granularity have been observed during physiological processes that include senescence, apoptosis, and autophagy, making this phenotypic change a useful marker for identifying small molecules that induce cellular growth arrest or death. In this regard, epithelial-derived cancer cell lines appear uniquely susceptible to increased intracellular granularity following exposure to chemotherapeutics. We have established a novel flow cytometry approach that detects increases in side light scatter in response to morphological changes associated with intracellular granularity in the androgen-sensitive LNCaP and androgen-independent PC3 human prostate cancer cell lines. A cell-based assay was developed to screen for small molecule inducers of intracellular granularity using the HyperCyt® high-throughput flow cytometry platform. Validation was performed using the Prestwick Chemical Library, where known modulators of LNCaP intracellular granularity, such as testosterone, were identified. Nonandrogenic inducers of granularity were also detected. A further screen of ~25,000 small molecules led to the identification of a class of aryl-oxazoles that increased intracellular granularity in both cell lines, often leading to cell death. The most potent agents exhibited submicromolar efficacy in LNCaP and PC3 cells. PMID:19470718

  19. Detection of intracellular granularity induction in prostate cancer cell lines by small molecules using the HyperCyt high-throughput flow cytometry system.

    PubMed

    Haynes, Mark K; Strouse, J Jacob; Waller, Anna; Leitao, Andrei; Curpan, Ramona F; Bologa, Cristian; Oprea, Tudor I; Prossnitz, Eric R; Edwards, Bruce S; Sklar, Larry A; Thompson, Todd A

    2009-07-01

    Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. Discovery of effective chemotherapeutics involves the identification of agents that inhibit cancer cell growth. Increases in intracellular granularity have been observed during physiological processes that include senescence, apoptosis, and autophagy, making this phenotypic change a useful marker for identifying small molecules that induce cellular growth arrest or death. In this regard, epithelial-derived cancer cell lines appear uniquely susceptible to increased intracellular granularity following exposure to chemotherapeutics. We have established a novel flow cytometry approach that detects increases in side light scatter in response to morphological changes associated with intracellular granularity in the androgen-sensitive LNCaP and androgen-independent PC3 human prostate cancer cell lines. A cell-based assay was developed to screen for small molecule inducers of intracellular granularity using the HyperCyt high-throughput flow cytometry platform. Validation was performed using the Prestwick Chemical Library, where known modulators of LNCaP intracellular granularity, such as testosterone, were identified. Nonandrogenic inducers of granularity were also detected. A further screen of approximately 25,000 small molecules led to the identification of a class of aryl-oxazoles that increased intracellular granularity in both cell lines, often leading to cell death. The most potent agents exhibited submicromolar efficacy in LNCaP and PC3 cells. PMID:19470718

  20. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  1. Assessment of sperm function parameters and DNA fragmentation in ejaculated alpaca sperm (Lama pacos) by flow cytometry.

    PubMed

    Cheuquemán, C; Merino, O; Giojalas, L; Von Baer, A; Sánchez, R; Risopatrón, J

    2013-06-01

    Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR-14⁄PI staining; acrosomal membrane integrity using FITC-conjugated Pisum Sativum Agglutinin⁄PI labelling; mitochondrial membrane potential (Δψm) by staining with JC-1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = -0.41) and with plasma membrane integrity (p = 0.01; r = -0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry.

  2. Generalized Unmixing Model for Multispectral Flow Cytometry Utilizing Nonsquare Compensation Matrices

    PubMed Central

    Novo, David; Grégori, Gérald; Rajwa, Bartek

    2014-01-01

    Multispectral and hyperspectral flow cytometry (FC) instruments allow measurement of fluorescence or Raman spectra from single cells in flow. As with conventional FC, spectral overlap results in the measured signal in any given detector being a mixture of signals from multiple labels present in the analyzed cells. In contrast to traditional polychromatic FC, these devices utilize a number of detectors (or channels in multispectral detector arrays) that is larger than the number of labels, and no particular detector is a priori dedicated to the measurement of any particular label. This data-acquisition modality requires a rigorous study and understanding of signal formation as well as unmixing procedures that are employed to estimate labels abundance. The simplest extension of the traditional compensation procedure to multispectral data sets is equivalent to an ordinary least-square (LS) solution for estimating abundance of labels in individual cells. This process is identical to the technique employed for unmixing spectral data in various imaging fields. The present study shows that multispectral FC data violate key assumptions of the LS process, and use of the LS method may lead to unmixing artifacts, such as population distortion (spreading) and the presence of negative values in biomarker abundances. Various alternative unmixing techniques were investigated, including relative-error minimization and variance-stabilization transformations. The most promising results were obtained by performing unmixing using Poisson regression with an identity-link function within a generalized linear model framework. This formulation accounts for the presence of Poisson noise in the model of signal formation and subsequently leads to superior unmixing results, particularly for dim fluorescent populations. The proposed Poisson unmixing technique is demonstrated using simulated 8-channel, 2-fluorochrome data and real 32-channel, 6-fluorochrome data. The quality of unmixing is

  3. Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.

    2001-01-01

    The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may

  4. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    PubMed

    Fleisig, Helen; Wong, Judy

    2012-01-01

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  5. Flow cytometry confirms reticulate evolution and reveals triploidy in Central European Diphasiastrum taxa (Lycopodiaceae, Lycophyta)

    PubMed Central

    Bennert, H. Wilfried; Horn, Karsten; Kauth, Marion; Fuchs, Jörg; Bisgaard Jakobsen, Iben Sophie; Øllgaard, Benjamin; Schnittler, Martin; Steinberg, Matthias; Viane, Ronnie

    2011-01-01

    Background and Aims Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing. Methods Flow cytometry was used first to measure the relative DNA values [with 4′,6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids. Key Results A considerable variation of DNA 2C values (5·26–7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48–10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology. Conclusions Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing

  6. Androgenesis and homozygous gynogenesis in muskellunge (Esox masquinongy): evaluation using flow cytometry.

    PubMed

    Lin, F; Dabrowski, K

    1998-01-01

    The purpose of this work was to study the effects of ultraviolet (UV) irradiation on denucleation of eggs and investigate the heat-shock conditions for diploidization for induction of androgenesis in muskellunge, Esox masquinongy. Several egg incubation media, including saline, Ringer's solution, and Ringer's solution supplemented with bovine serum albumin (BSA), were found suitable to maintain the egg fertility as high as in muskellunge ovarian fluid. The optimal doses of UV radiation were 660-1320 J/m2, at which 100% haploid larvae were produced at a hatching rate of 22.5 +/- 2.8%. UV irradiation at low doses (165-330 J/m2) generated abnormal larvae, which were morphologically identical to haploids. Using a flow cytometry method, it was found that cellular DNA content of these larvae was close to that of diploids but significantly lower in value and had a wider distribution (expressed as coefficient of variation) than that of control fish. This suggested that a low dose of UV irradiation might cause gene mutations, alteration of chromosomal conformation and fragmentation, but did not prevent maternal DNA from participating in mitotic division. Interference of maternal DNA residues could be another reason for the poor viability of androgenetic fish. A high dose of UV radiation (1980 J/m2) caused development of severely deformed embryos, indicating that UV radiation also damaged molecules in the eggs other than the denucleation. Our results suggest that classic color and allozyme markers might not be sufficient to prove a complete androgenesis. In order to optimize time and duration of shock for induced diploidization, we investigated the heat-shock conditions for inhibiting the first mitotic cleavage through induction of homozygous gynogenesis. We found that heat-shock treatment at 31 degrees C for 9 min starting at 1.4 tau 0 (a dimensionless factor describing progress in embryo development) after fertilization produced the highest percentage of diploids at

  7. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry.

    PubMed

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M; Tourkina, Elena; Visconti, Richard P; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45(high) fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47(high)/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ. PMID

  8. Seminal plasma applied post-thawing affects boar sperm physiology: a flow cytometry study.

    PubMed

    Fernández-Gago, Rocío; Domínguez, Juan Carlos; Martínez-Pastor, Felipe

    2013-09-01

    Cryopreservation induces extensive biophysical and biochemical changes in the sperm. In the present study, we used flow cytometry to assess the capacitation-like status of frozen-thawed boar spermatozoa and its relationship with intracellular calcium, assessment of membrane fluidity, modification of thiol groups in plasma membrane proteins, reactive oxygen species (ROS) levels, viability, acrosomal status, and mitochondrial activity. This experiment was performed to verify the effect of adding seminal plasma on post-thaw sperm functions. To determine these effects after cryopreservation, frozen-thawed semen from seven boars was examined after supplementation with different concentrations of pooled seminal plasma (0%, 10%, and 50%) at various times of incubation from 0 to 4 hours. Incubation caused a decrease in membrane integrity and an increase in acrosomal damage, with small changes in other parameters (P > 0.05). Although 10% seminal plasma showed few differences with 0% (ROS increase at 4 hours, P < 0.05), 50% seminal plasma caused important changes. Membrane fluidity increased considerably from the beginning of the experiment, and ROS and free thiols in the cell surface increased by 2 hours of incubation. By the end of the experiment, viability decreased and acrosomal damage increased in the 50% seminal plasma samples. The addition of 50% of seminal plasma seems to modify the physiology of thawed boar spermatozoa, possibly through membrane changes and ROS increase. Although some effects were detrimental, the stimulatory effect of 50% seminal plasma could favor the performance of post-thawed boar semen, as showed in the field (García JC, Domínguez JC, Peña FJ, Alegre B, Gonzalez R, Castro MJ, Habing GG, Kirkwood RN. Thawing boar semen in the presence of seminal plasma: effects on sperm quality and fertility. Anim Reprod Sci 2010;119:160-5). PMID:23756043

  9. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry

    PubMed Central

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M.; Tourkina, Elena; Visconti, Richard P.; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ. PMID

  10. Flow cytometry analysis of Nosema species to assess spore viability and longevity.

    PubMed

    Sánchez Collado, J G; Higes, M; Barrio, L; Martín-Hernández, R

    2014-05-01

    Nosema apis and Nosema ceranae are microsporidia which present resistant spores for the transmission stage (environmental spores) that play an important role for epidemiology and for laboratory studies of honey bee microsporidiosis. In this study, the long-term longevity of N. apis and N. ceranae spores exposed to 4 °C, room temperature (mean 25 °C) and 35 °C for 6-month long and to -20 °C for 10-month long has been assessed by flow cytometry. Storage temperature and the length of storage duration had adverse effects on spore viability of both Nosema spores, with significant differences between the two species. The greatest increase in spore mortality was observed in N. apis spores stored at 33 °C (64, 89%) and in N. ceranae spores at -20 °C (53.55%) and at 33 °C (51.97%). For N. ceranae spores at -20 °C, the loss in viability was very quick, getting an increase over 20% just after 6 days of exposure. Results on viability were confirmed by the infectivity tests where the lowest infectivity for N. ceranae was observed with spores stored for 10 months at -20 °C (79%; P < 0.05) and for N. apis with spores stored at 33 °C (71%; P < 0.05). For both Nosema species, the best storage temperatures were 25 and 4 °C, especially for N. apis that was almost unaffected at those temperatures.

  11. Coconut genome size determined by flow cytometry: Tall versus Dwarf types.

    PubMed

    Freitas Neto, M; Pereira, T N S; Geronimo, I G C; Azevedo, A O N; Ramos, S R R; Pereira, M G

    2016-01-01

    Coconuts (Cocos nucifera L.) are tropical palm trees that are classified into Tall and Dwarf types based on height, and both types are diploid (2n = 2x = 32 chromosomes). The reproduction mode is autogamous for Dwarf types and allogamous for Tall types. One hypothesis for the origin of the Dwarf coconut suggests that it is a Tall variant that resulted from either mutation or inbreeding, and differences in genome size between the two types would support this hypothesis. In this study, we estimated the genome sizes of 14 coconut accessions (eight Tall and six Dwarf types) using flow cytometry. Nuclei were extracted from leaf discs and stained with propidium iodide, and Pisum sativum (2C = 9.07 pg DNA) was used as an internal standard. Histograms with good resolution and low coefficients of variation (2.5 to 3.2%) were obtained. The 2C DNA content ranged from 5.72 to 5.48 pg for Tall accessions and from 5.58 to 5.52 pg for Dwarf accessions. The mean genome sizes for Tall and Dwarf specimens were 5.59 and 5.55 pg, respectively. Among all accessions, Rennel Island Tall had the highest mean DNA content (5.72 pg), whereas West African Tall had the lowest (5.48 pg). The mean coconut genome size (2C = 5.57 pg, corresponding to 2723.73 Mbp/haploid set) was classified as small. Only small differences in genome size existed among the coconut accessions, suggesting that the Dwarf type did not evolve from the Tall type. PMID:26909966

  12. Automated time-resolved analysis of bacteria-substrate interactions using functionalized microparticles and flow cytometry.

    PubMed

    Xie, Xiao; Möller, Jens; Konradi, Rupert; Kisielow, Malgorzata; Franco-Obregón, Alfredo; Nyfeler, Erich; Mühlebach, Andreas; Chabria, Mamta; Textor, Marcus; Lu, Zuhong; Reimhult, Erik

    2011-07-01

    Surface biofouling poses an increasing problem in industrial and health care applications, driving research for surface coatings to prevent anti-microbial colonization and characterization of the efficacy of the same. The diversity and increasing sophistication of such coatings, which postulate different types of anti-microbial action on planktonic and surface adhering bacteria, challenge the suitability of current approaches to evaluate and compare the different approaches as well as the speed and accuracy at which screening can be made. We describe and provide proof of principle for a method to use microparticles functionalized with molecular coatings through self-assembly together with flow cytometry readout to evaluate Escherichia coli bacteria surface adhesion and killing efficiency. Advantages of the method are the automation of the method that allows recording an immense number of interactions and the possibility to simultaneously record effects on both surface adhering and planktonic bacteria. We demonstrate and discuss design criteria to obtain this information on two coatings, poly(L-lysine)-graft-C(3)H(6)N(+)(CH(3))(2)C(12)H(25) (PLL-g-QAC) and poly(L-lysine)-graft-poly(ethylene glycol)-C(3)H(6)N(+)(CH(3))(2)C(12)H(25) (PLL-g-PEG-QAC), which exemplify two different approaches to creating anti-microbial interfaces. Despite an apparent higher killing efficiency of the PLL-g-QAC during brief exposures, the rapid fouling of that surface quickly reduces its efficiency, whereas the PLL-g-PEG-QAC coating showed greater promise in reducing the growth and interfacial colonization of bacteria over longer time scales.

  13. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo.

    PubMed

    Galanzha, Ekaterina I; Zharov, Vladimir P

    2013-01-01

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1-10 CTC/mL) due to the small volume of blood samples (5-10 mL). Consequently, they can miss up to 103-104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102-103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC's capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5-4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits. PMID:24335964

  14. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    PubMed Central

    Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2013-01-01

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 103–104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102–103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits. PMID:24335964

  15. Influence of rimonabant treatment on peripheral blood mononuclear cells; flow cytometry analysis and gene expression profiling

    PubMed Central

    Almestrand, Stefan; Wang, Xiao; Jeppsson-Ahlberg, Åsa; Nordgren, Marcus; Flygare, Jenny; Christensson, Birger; Rössner, Stephan

    2015-01-01

    The cannabinoid receptor type 1 (CB1) antagonist rimonabant has been used as treatment for obesity. In addition, anti-proliferative effects on mitogen-activated leukocytes have been demonstrated in vitro. We have previously shown that rimonabant (SR141716A) induces cell death in ex vivo isolated malignant lymphomas with high expression of CB1 receptors. Since CB1 targeting may be part of a future lymphoma therapy, it was of interest to investigate possible effects on peripheral blood mononuclear cells (PBMC) in patients treated with rimonabant. We therefore evaluated leukocyte subsets by 6 color flow cytometry in eight patients before and at treatment with rimonabant for 4 weeks. Whole-transcript gene expression profiling in PBMC before and at 4 weeks of rimonabant treatment was done using Affymetrix Human Gene 1.0 ST Arrays. Our data show no significant changes of monocytes, B cells, total T cells or T cell subsets in PBMC during treatment with rimonabant. There was a small but significant increase in CD3–, CD16+ and/or CD56+ cells after rimonabant therapy. Gene expression analysis detected significant changes in expression of genes associated with innate immunity, cell death and metabolism. The present study shows that normal monocytes and leukocyte subsets in blood remain rather constant during rimonabant treatment. This is in contrast to the induction of cell death previously observed in CB1 expressing lymphoma cells in response to treatment with rimonabant in vitro. These differential effects observed on normal and malignant lymphoid cells warrant investigation of CB1 targeting as a potential lymphoma treatment. PMID:26157624

  16. Reconfigurable laser arrays with capillary fill microfluidics for chip-based flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thomas, Robert

    2016-03-01

    Low cost, portable chip based flow cytometry has great potential for applications in resource poor and point of care settings. Typical approaches utilise low cost silicon or glass substrates with light emission and detection performed either off-chip using external equipment or incorporated on-chip using `pick and place' diode lasers and photo-detectors. The former approach adds cost and limits portability while the sub-micron alignment tolerances imposed by the application make the latter impractical for all but the simplest of systems. Use of an optically active semiconductor substrate, on the other hand, overcomes these limitations by allowing multiple laser/detector arrays to be formed in the substrate itself using high resolution lithographic techniques. The capacity for multiple emitters and detectors on a single chip not only enables parallel measurement for increased throughput but also allows multiple measurements to be performed on each cell as it passes through the system. Several different experiments can be performed simultaneously and throughput demand can be reduced with the facility for error checking. Furthermore, the fast switching times inherent with semiconductor lasers allows the active sections of the device to be reconfigured on a sub-microsecond time scale providing additional functionality. This is demonstrated here in a capillary fill system using pairs of laser/detectors that are operated in pulsed mode and alternated between lasing and detecting in an interleaved manner. Passing cells are alternately interrogated from opposing directions providing information that can be used to correct for differences in lateral cell position and ultimately differentiate blood cell type.

  17. Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation.

    PubMed

    Escoffier, Jessica; Krapf, Dario; Navarrete, Felipe; Darszon, Alberto; Visconti, Pablo E

    2012-01-15

    Mammalian sperm require time in the female tract in order to be able to fertilize an egg. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential. Recently, we presented evidence showing that epithelial Na+ channels (ENaC) are present in mature sperm and that ENaCs are blocked during capacitation. In the present work, we used flow cytometry to analyze changes in intracellular Na+ concentration ([Na+](i)) during capacitation in individual cells. Our results indicate that capacitated sperm have lower Na+ concentrations. Using sperm with green fluorescent protein in their acrosomes, it was shown that the lower [Na+](i) concentration only occurs in sperm having intact acrosomes. ENaC inhibition has been shown in other cell types to depend on the activation of cystic fibrosis transmembrane conductance regulator (CFTR). In non-capacitated sperm, amiloride, an ENaC inhibitor, and genistein, a CFTR activator, caused a decrease in [Na+](i), suggesting that also in these cells [Na+](i) is dependent on the crosstalk between ENaC and CFTR. In addition, PKA inhibition blocked [Na+](i) decrease in capacitated sperm. Altogether, these data are consistent with the hypothesis that the capacitation-associated hyperpolarization involves a decrease in [Na+](i) mediated by inhibition of ENaC and regulated by PKA through activation of CFTR channels. PMID:22302997

  18. Serotyping of primary human immunodeficiency virus type 1 isolates from diverse geographic locations by flow cytometry.

    PubMed Central

    Zolla-Pazner, S; O'Leary, J; Burda, S; Gorny, M K; Kim, M; Mascola, J; McCutchan, F

    1995-01-01

    The immunologic relatedness of the various human immunodeficiency virus type 1 (HIV-1) clades was determined with 13 human anti-HIV-1 monoclonal antibodies (MAbs) to six immunogenic regions of the HIV-1 structural proteins. The immunoreactivity of the native, oligomeric viral envelope glycoproteins expressed on the surfaces of human peripheral blood mononuclear cells infected in vitro with primary isolates from clades A through E was determined by flow cytometry. Some epitopes in the immunodominant region of gp41 and the C terminus of gp120 appear to be HIV-1 group specific in that they are expressed on the surfaces of cells in cultures infected with the majority of viruses tested from clades A to E. Epitopes within the V3 region appear to be clade restricted. Surprisingly, one MAb to an epitope in the C terminus of gp120 was entirely clade B specific. Staining with anti-V2 and anti-CD4 binding domain (CD4bd) reagents was infrequently detected. Anti-CD4bd MAbs stained only CD4-negative T cells because the CD4bd of gp120 appeared to be complexed with membrane CD4. When present, the epitopes of V2 and the CD4bd appeared to be expressed on cells infected with various clades. Thus, the results suggest that MAbs to gp41, the C terminus, and the V3 loop of gp120 are most useful in serotyping primary isolates of HIV-1, providing group-specific, clade-restricted, and clade-specific reagents. The use of the immunofluorescent method with the reagents described herein distinguishes infection with clade B from that with all other HIV-1 clades. With additional MAbs, this technique will allow a broadly applicable, reproducible, and practical method for serotyping HIV-1. PMID:7745728

  19. Multicolor detection of rare tumor cells in blood using a novel flow cytometry-based system.

    PubMed

    Watanabe, Masaru; Uehara, Yuri; Yamashita, Namiko; Fujimura, Yuu; Nishio, Kaori; Sawada, Takeshi; Takeda, Kazuo; Koizumi, Fumiaki; Koh, Yasuhiro

    2014-03-01

    The presence and number of circulating tumor cells (CTCs) in the blood of patients with solid tumors are predictive of their clinical outcomes. To date, the CellSearch system is the only US Food and Drug Administration-approved CTC enumeration system for advanced breast, prostate, and colon cancers. However, sensitivity issues due to epithelial cellular adhesion molecule (EpCAM)-based enrichment and limited capability for subsequent molecular analysis must be addressed before CTCs can be used as predictive markers in the clinical setting. We have developed a multicolor CTC detection system using cross-contamination-free flow cytometry, which permits the enumeration and characterization of CTCs for multiple molecular analyses. Tumor cell lines with different expression levels of EpCAM were spiked into peripheral blood obtained from healthy donors. Spike-in samples were negatively enriched using anti-CD45-coated magnetic beads to remove white blood cells, and this was followed by fixation and labeling with CD45-Alexa Fluor 700, EpCAM-phycoerythrin, cytokeratin (CK)-fluorescein isothiocyanate antibodies, and/or 7-aminoactinomycin D for nuclei staining. Excellent detection (slope = 0.760-0.888) and a linear performance (R(2) = 0.994-0.998) were noted between the observed and expected numbers of tumor cells, independent of EpCAM expression. The detection rate was markedly higher than that obtained using the CellSearch system, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Additionally, the incorporation of an epithelial-mesenchymal transition (EMT) marker allowed us to detect EpCAM-/CK- cells and EMT-induced tumor cells. Taken together, our multicolor CTC detection system may be highly efficient in detecting previously unrecognized populations of CTCs.

  20. Usefulness of IGH/TCR PCR studies in lymphoproliferative disorders with inconclusive clonality by flow cytometry.

    PubMed

    Ribera, Jordi; Zamora, Lurdes; Juncà, Jordi; Rodríguez, Inés; Marcé, Silvia; Cabezón, Marta; Millá, Fuensanta

    2014-01-01

    In up to 5-15% of studies of lymphoproliferative disorders (LPD), flow cytometry (FCM) or immunomorphologic methods cannot discriminate malignant from reactive processes. The aim of this work was to determine the usefulness of PCR for solving these diagnostic uncertainties. We analyzed IGH and TCRγ genes by PCR in 106 samples with inconclusive FCM results. A clonal result was registered in 36/106 studies, with a LPD being confirmed in 27 (75%) of these cases. Specifically, 9/9 IGH clonal and 16/25 TCRγ clonal results were finally diagnosed with LPD. Additionally, two clonal TCRγ samples with suspicion of undefined LPD were finally diagnosed with T LPD. Although polyclonal results were obtained in 47 of the cases studied (38 IGH and nine TCRγ), hematologic neoplasms were diagnosed in 4/38 IGH polyclonal and in 1/9 TCRγ polyclonal studies. There were also 14 PCR polyclonal results (four IGH, 10 TCRγ), albeit nonconclusive. Of these, 2/4 were eventually diagnosed with B-cell lymphoma and 3/10 with T-cell LPD. In eight IGH samples, the results of PCR techniques were noninformative but in 3/8 cases a B lymphoma was finally confirmed. We concluded that PCR is a useful technique to identify LPD when FCM is inconclusive. A PCR clonal B result is indicative of malignancy but IGH polyclonal and nonconclusive results do not exclude lymphoid neoplasms. Interpretation of T-cell clonality should be based on all the available clinical and analytical data. PMID:23943305

  1. Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology.

    PubMed

    Kuystermans, Darrin; Avesh, Mohd; Al-Rubeai, Mohamed

    2016-05-01

    Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications.

  2. Advancing the detection of maternal haematopoietic microchimeric cells in fetal immune organs in mice by flow cytometry

    PubMed Central

    Solano, Maria Emilia; Thiele, Kristin; Stelzer, Ina Annelies; Mittrücker, Hans-Willi; Arck, Petra Clara

    2014-01-01

    Maternal microchimerism, which occurs naturally during gestation in hemochorial placental mammals upon transplacental migration of maternal cells into the fetus, is suggested to significantly influence the fetal immune system. In our previous publication, we explored the sensitivity of quantitative polymerase chain reaction and flow cytometry to detect cellular microchimerism. With that purpose, we created mixed cells suspensions in vitro containing reciprocal frequencies of wild type cells and cells positive for enhanced green fluorescent protein or CD45.1+, respectively. Here, we now introduce the H-2 complex, which defines the major histocompatibility complex in mice and is homologous to HLA in human, as an additional target to detect maternal microchimerism among fetal haploidentical cells. We envision that this advanced approach to detect maternal microchimeric cells by flow cytometry facilitates the pursuit of phenotypic, gene expression and functional analysis of microchimeric cells in future studies. PMID:25483743

  3. [APPLICATION OF FLOW CYTOMETRY FOR THE ANALYSIS OF CIRCULATING HEMOCYTE POPULATIONS IN THE ASCIDIAN HALOCYNTHIA AURANTIUM (PALLAS, 1787)].

    PubMed

    Sukhachev, A N; Dyachkov, I S; Kudryavtsev, I V; Kumeiko, V V; Tsybulskiy, A V; Polevshchikov, A V

    2015-01-01

    This study addresses the potentialities of flow cytometry in analyzing the composition of circulating hemocyte populations in the ascidian Halocynthia aurantium (Pallas, 1787) both using monoclonal antibodies (mAbs) against some human leukocyte conservative adhesion molecules and without mAbs. Flow cytometry, based on the assessment of forward and side scattering revealed five hemocyte populations. From the wide panel of antibodies against human leukocyte adhesion molecules (CD15, CD29, CD34, CD54, CD62L, CD62P, CD90, CD94, CD117, CD 166), only two mAbs (against CD54, CD90) displayed cross-reactivity with the H. aurantium hemocyte surface antigens. Distribution patterns of these antigens across the hemocyte populations have been analyzed. PMID:26281224

  4. Fluorescein Isothiocyanate-Labeled Lectin Analysis of the Surface of the Nitrogen-Fixing Bacterium Azospirillum brasilense by Flow Cytometry

    PubMed Central

    Yagoda-Shagam, Janet; Barton, Larry L.; Reed, William P.; Chiovetti, Robert

    1988-01-01

    The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies. Images PMID:16347693

  5. Flow cytometry as a method for the evaluation of raw material, product and process in the dairy industry.

    PubMed

    Ruszczyńska, A; Szteyn, J; Wiszniewska-Laszczych, A

    2007-01-01

    Producing dairy products which are safe for consumers requires the constant monitoring of the microbiological quality of raw material, the production process itself and the end product. Traditional methods, still a "gold standard", require a specialized laboratory working on recognized and validated methods. Obtaining results is time- and labor-consuming and do not allow rapid evaluation. Hence, there is a need for a rapid, precise method enabling the real-time monitoring of microbiological quality, and flow cytometry serves this function well. It is based on labeling cells suspended in a solution with fluorescent dyes and pumping them into a measurement zone where they are exposed to a precisely focused laser beam. This paper is aimed at presenting the possibilities of applying flow cytometry in the dairy industry.

  6. Comparison between direct microscopy and flow cytometry for rRNA-based quantification of Candidatus Accumulibacter phosphatis in activated sludge.

    PubMed

    Perez-Feito, Rafael; Peccia, Jordan; Noguera, Daniel R

    2006-02-01

    A comparison of the quantification of a specific microbial group in activated sludge by fluorescent in-situ hybridization, coupled with either direct microscopic counting or flow cytometry, was performed using an enhanced-biological-phosphorus-removal, sequencing-batch reactor. The population dynamics of Candidatus Accumulibacter phosphatis (Cand. A. phosphatis) was evaluated during two separate runs of the reactor. With the operational conditions used, Cand. A. phosphatis was enriched until a failure in the pH controller eliminated its ecological advantage. As a result, the comparison of quantification techniques included Cand. A. phosphatis concentrations as low as 11% and as high as 96% of the total cells in the samples. The analysis demonstrated that, regardless of the particular limitations of each technique, both provided similar results when the activated-sludge flocs were easily dispersed. However, when the activated-sludge samples contained flocs that were difficult to disperse, flow cytometry failed to provide quantitative results. PMID:16566525

  7. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.

  8. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia.

    PubMed

    Ikoma, Maura Rosane Valério; Beltrame, Miriam Perlingeiro; Ferreira, Silvia Inês Alejandra Cordoba Pires; Souto, Elizabeth Xisto; Malvezzi, Mariester; Yamamoto, Mihoko

    2015-01-01

    Minimal residual disease is the most powerful predictor of outcome in acute leukemia and is useful in therapeutic stratification for acute lymphoblastic leukemia protocols. Nowadays, the most reliable methods for studying minimal residual disease in acute lymphoblastic leukemia are multiparametric flow cytometry and polymerase chain reaction. Both provide similar results at a minimal residual disease level of 0.01% of normal cells, that is, detection of one leukemic cell in up to 10,000 normal nucleated cells. Currently, therapeutic protocols establish the minimal residual disease threshold value at the most informative time points according to the appropriate methodology employed. The expertise of the laboratory in a cancer center or a cooperative group could be the most important factor in determining which method should be used. In Brazil, multiparametric flow cytometry laboratories are available in most leukemia treatment centers, but multiparametric flow cytometry processes must be standardized for minimal residual disease investigations in order to offer reliable and reproducible results that ensure quality in the clinical application of the method. The Minimal Residual Disease Working Group of the Brazilian Society of Bone Marrow Transplantation (SBTMO) was created with that aim. This paper presents recommendations for the detection of minimal residual disease in acute lymphoblastic leukemia based on the literature and expertise of the laboratories who participated in this consensus, including pre-analytical and analytical methods. This paper also recommends that both multiparametric flow cytometry and polymerase chain reaction are complementary methods, and so more laboratories with expertise in immunoglobulin/T cell receptor (Ig/TCR) gene assays are necessary in Brazil.

  9. Erratum to: Automated Sample Preparation Method for Suspension Arrays using Renewable Surface Separations with Multiplexed Flow Cytometry Fluorescence Detection

    SciTech Connect

    Grate, Jay W.; Bruckner-Lea, Cindy J.; Jarrell, Ann E.; Chandler, Darrell P.

    2003-04-10

    In this paper we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions.

  10. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia.

    PubMed

    Ikoma, Maura Rosane Valério; Beltrame, Miriam Perlingeiro; Ferreira, Silvia Inês Alejandra Cordoba Pires; Souto, Elizabeth Xisto; Malvezzi, Mariester; Yamamoto, Mihoko

    2015-01-01

    Minimal residual disease is the most powerful predictor of outcome in acute leukemia and is useful in therapeutic stratification for acute lymphoblastic leukemia protocols. Nowadays, the most reliable methods for studying minimal residual disease in acute lymphoblastic leukemia are multiparametric flow cytometry and polymerase chain reaction. Both provide similar results at a minimal residual disease level of 0.01% of normal cells, that is, detection of one leukemic cell in up to 10,000 normal nucleated cells. Currently, therapeutic protocols establish the minimal residual disease threshold value at the most informative time points according to the appropriate methodology employed. The expertise of the laboratory in a cancer center or a cooperative group could be the most important factor in determining which method should be used. In Brazil, multiparametric flow cytometry laboratories are available in most leukemia treatment centers, but multiparametric flow cytometry processes must be standardized for minimal residual disease investigations in order to offer reliable and reproducible results that ensure quality in the clinical application of the method. The Minimal Residual Disease Working Group of the Brazilian Society of Bone Marrow Transplantation (SBTMO) was created with that aim. This paper presents recommendations for the detection of minimal residual disease in acute lymphoblastic leukemia based on the literature and expertise of the laboratories who participated in this consensus, including pre-analytical and analytical methods. This paper also recommends that both multiparametric flow cytometry and polymerase chain reaction are complementary methods, and so more laboratories with expertise in immunoglobulin/T cell receptor (Ig/TCR) gene assays are necessary in Brazil. PMID:26670404

  11. Detection of infective poliovirus by a simple, rapid, and sensitive flow cytometry method based on fluorescence resonance energy transfer technology.

    PubMed

    Cantera, Jason L; Chen, Wilfred; Yates, Marylynn V

    2010-01-01

    The rapid and effective detection of virus infection is critical for clinical management and prevention of disease spread during an outbreak. Several methods have been developed for this purpose, of which classical serological and viral nucleic acid detection are the most common. We describe an alternative approach that utilizes engineered cells expressing fluorescent proteins undergoing fluorescence resonance energy transfer (FRET) upon cleavage by the viral 2A protease (2A(pro)) as an indication of infection. Quantification of the infectious-virus titers was resolved by using flow cytometry, and utility was demonstrated for the detection of poliovirus 1 (PV1) infection. Engineered buffalo green monkey kidney (BGMK) cells expressing the cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) substrate linked by a cleavage recognition site for PV1 2A(pro) were infected with different titers of PV1. After incubation at various time points, cells were harvested, washed, and subjected to flow cytometry analysis. The number of infected cells was determined by counting the number of cells with an increased CFP-to-YFP ratio. As early as 5 h postinfection, a significant number of infected cells (3%) was detected by flow cytometry, and cells infected with only 1 PFU were detected after 12 h postinfection. When applied to an environmental water sample spiked with PV1, the flow cytometry-based assay provided a level of sensitivity similar to that of the plaque assay for detecting and quantifying infectious virus particles. This approach, therefore, is more rapid than plaque assays and can be used to detect other viruses that frequently do not form clear plaques on cell cultures.

  12. Immunological tools: engaging students in the use and analysis of flow cytometry and enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Ott, Laura E; Carson, Susan

    2014-01-01

    Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and evaluation of a novel half-semester course that focused on introducing undergraduate and graduate students to advance conceptual and technical skills associated with flow cytometry and ELISA, with emphasis on applications, experimental design, and data analysis. This course was offered in the North Carolina State University Biotechnology Program over three semesters and consisted of weekly lectures and laboratories. Students performed and/or analyzed flow cytometry and ELISA in three separate laboratory exercises: (1) identification of transgenic zebrafish hematopoietic cells, (2) analysis of transfection efficiency, and (3) analysis of cytokine production upon lipopolysaccharide stimulation. Student learning outcomes were achieved as demonstrated by multiple means of assessment, including three laboratory reports, a data analysis laboratory practicum, and a cumulative final exam. Further, anonymous student self-assessment revealed increased student confidence in the knowledge and skill sets defined in the learning outcomes.

  13. Detection of IgG Anti-Leishmania Antigen by Flow Cytometry as a Diagnostic Test for Cutaneous Leishmaniasis

    PubMed Central

    Schriefer, Albert; Magalhães, Andréa; Meyer, Roberto; Glesby, Marshall J.; Carvalho, Edgar M.; Carvalho, Lucas P.

    2016-01-01

    Diagnosis of cutaneous leishmaniasis (CL) relies on clinical presentation, parasite isolation, histopathologic evaluation and positive Montenegro skin test. However, the low amounts of parasites in the lesion of these individuals make parasite isolation and histopatologic diagnosis unreliable, often leading to false-negative results. Also, 15% of people living in endemic areas have sub-clinical infection characterized by positive Montenegro skin test, which may contribute to misdiagnosis. Although the main Leishmania killing mechanism is through cell-mediated immune response, antibodies against Leishmania antigens are found in infected individuals. Here our goal was to develop a new serological technique using polystyrene microspheres sensitized with soluble Leishmania antigens as a tool for the detection of IgG in serum from CL patients by flow cytometry. To validate the assay we carried out a comparative test (ELISA) commonly used as a diagnostic test for parasitic diseases. To determine cross-reactivity we used serum from patients with Chagas disease, caused by a trypanosome that has several proteins with high homology to those of the Leishmania genus. We observed that the flow cytometry technique was more sensitive than the ELISA, but, less specific. Our results show that the flow cytometry serologic test can be used to confirm CL cases in L. braziliensis transmission areas, however, presence of Chagas disease has to be ruled out in these individuals. PMID:27622535

  14. Detection of IgG Anti-Leishmania Antigen by Flow Cytometry as a Diagnostic Test for Cutaneous Leishmaniasis.

    PubMed

    Pedral-Sampaio, Geraldo; Alves, Jessé S; Schriefer, Albert; Magalhães, Andréa; Meyer, Roberto; Glesby, Marshall J; Carvalho, Edgar M; Carvalho, Lucas P

    2016-01-01

    Diagnosis of cutaneous leishmaniasis (CL) relies on clinical presentation, parasite isolation, histopathologic evaluation and positive Montenegro skin test. However, the low amounts of parasites in the lesion of these individuals make parasite isolation and histopatologic diagnosis unreliable, often leading to false-negative results. Also, 15% of people living in endemic areas have sub-clinical infection characterized by positive Montenegro skin test, which may contribute to misdiagnosis. Although the main Leishmania killing mechanism is through cell-mediated immune response, antibodies against Leishmania antigens are found in infected individuals. Here our goal was to develop a new serological technique using polystyrene microspheres sensitized with soluble Leishmania antigens as a tool for the detection of IgG in serum from CL patients by flow cytometry. To validate the assay we carried out a comparative test (ELISA) commonly used as a diagnostic test for parasitic diseases. To determine cross-reactivity we used serum from patients with Chagas disease, caused by a trypanosome that has several proteins with high homology to those of the Leishmania genus. We observed that the flow cytometry technique was more sensitive than the ELISA, but, less specific. Our results show that the flow cytometry serologic test can be used to confirm CL cases in L. braziliensis transmission areas, however, presence of Chagas disease has to be ruled out in these individuals. PMID:27622535

  15. Flow cytometry studies on the Macrobrachium rosenbergii hemocytes sub-populations and immune responses to novel pathogen spiroplasma MR-1008.

    PubMed

    Du, Jie; Zhu, Huanxi; Ren, Qian; Liu, Peng; Chen, Jing; Xiu, Yunji; Yao, Wei; Meng, Qingguo; Gu, Wei; Wang, Wen

    2012-10-01

    Flow cytometry provides rapid and reproducible methods for analyzing crustacean cellular immune responses to pathogens. We used this method to investigate the hemocytes sub-populations of freshwater prawn Macrobrachium rosenbergii and their immune responses to a novel pathogen spiroplasma MR-1008. M. rosenbergii inoculated with 100 μl spiroplasma strain MR-1008 in logarithmic phase (10(8) spiroplasmas ml(-1)) were examined for total hemocytes count (THC) and changes in differential involvement of hemocytes sub-populations during 1-28 d after inoculation. The results showed that THC was dramatically lowered 1 d after inoculation, and it obviously increased at the 5 d after inoculation; thereafter, a high level of THC was maintained to 15 d. Three morphologically distinct hemocytes sub-populations including granular cells (GC), semigranular cells (SGC) and hyaline cells (HC) could be identified by flow cytometry, and the proportions of the 3 kinds of cell categories varied obviously during the infection of spiroplasma suggesting differential involvement according to the pathogen. The flow cytometry used in this study confirmed that the semigranular cells were the main hemocytes involved in the cellular defense against spiroplasma in the M. rosenbergii.

  16. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device

    PubMed Central

    Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung

    2016-01-01

    Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications. PMID:26877244

  17. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device

    NASA Astrophysics Data System (ADS)

    Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung

    2016-02-01

    Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.

  18. Proliferation and differentiation of oligodendrocyte progenitor cells induced from rat embryonic neural precursor cells followed by flow cytometry.

    PubMed

    Lü, He-Zuo; Wang, Yan-Xia; Li, Ying; Fu, Sai-Li; Hang, Qin; Lu, Pei-Hua

    2008-08-01

    Previous studies have shown that a cell-intrinsic timer might determine when oligodendrocyte progenitor cells (OPCs) isolated from the central nervous system (CNS) stop dividing and initiate differentiation in a defined environment. In this report, the proliferation and differentiation of OPCs induced from neural precursor cells (NPCs) were analyzed by flow cytometry combined with carboxyfluorescein diacetate succinimidyl ester labeling and propidium iodide staining, respectively. When OPCs were cultured in OPC-medium, more than 30% of cells were in S- and G2/M-phases, and continuously self-renewed without differentiation. After exposure to thyroid hormone, there was an obvious decrease in the fraction of cells in both S- and G2/M-phases (<10%). Furthermore, the OPCs no longer proliferated, but differentiated into oligodendrocytes. The dynamic proliferation and differentiation characteristics of OPCs induced from NPCs and analyzed by flow cytometry were similar to those of OPCs isolated from the CNS and analyzed by other methods. These studies indicated that the proliferation and differentiation of OPCs can be followed simply and rapidly by flow cytometry. PMID:18473382

  19. Flow cytometry assays of respiratory burst in Atlantic salmon (Salmo salar L.) and in Atlantic cod (Gadus morhua L.) leucocytes.

    PubMed

    Kalgraff, Cathrine A K; Wergeland, Heidrun I; Pettersen, Eirin Fausa

    2011-09-01

    The oxidation of dihydrorhodamine 123 (DHR) to the fluorescent rhodamine 123 (RHO) was detected using flow cytometry. This assay for detection of respiratory burst activity was established in peripheral blood leucocytes (PBL) and head kidney leucocytes (HKL) of Atlantic salmon and Atlantic cod. The leucocytes were stimulated by phorbol 12-myristate 13-acetate (PMA). For cod cells 10 times lower concentration of PMA had to be used compared to salmon cells, as higher concentrations were toxic and resulted in considerable cell death. The cells found to be RHO-positive were monocytes/macrophages and neutrophils based on the scatter dot plots, but for salmon also some small cells were found to have high fluorescence intensity both in the flow cytometry analyses and by fluorescence microscopy of cytospin preparations. The nature of these cells is not known. For cod leucocytes, such cells were not obvious. The instrument settings are a bit more demanding for cod, as cod cells die more easily compared to salmon cells. In both assays the limit between negative and positive cells has to be carefully considered. The presented flow cytometry protocols for measurements of respiratory burst in salmon and cod leucocytes can be applied in various studies where respiratory burst functions are involved, such as to verify if it is activated or suppressed in connection with infections and immunostimulation.

  20. Phase-sensitive flow cytometry: New technology for analyzing biochemical, functional, and structural features in fluorochrome- labeled cells/particles

    SciTech Connect

    Steinkamp, J.A.

    1993-12-01

    Flow cytometry (FCM) instruments rapidly measure biochemical, functional, and cytological properties of individual cells and macromolecular components, e.g., chromosomes, for clinical diagnostic medicine and biomedical and envirorunental research applications. These measurements are based on labeling cells with multiple fluorochromes for correlated analysis of macromolecules, such as DNA RNA, protein, and cell-surface receptors. This report describes the development of a phase-sensitive flow cytometer that provides unique capabilities for making laser-excited, phase-resolved measurements on fluorochrome-labelled cells and particles.

  1. Gel microdrop flow cytometry assay for low-dose studies of chemical and radiation cytotoxicity.

    PubMed

    Bogen, K T; Enns, L; Hall, L C; Keating, G A; Weinfeld, M; Murphy, G; Wu, R W; Panteleakos, F N

    2001-03-01

    Low-level cytotoxicity may affect low-dose dose-response relations for cancer and other endpoints. Conventional colony-forming assays are rarely sensitive enough to examine small changes in cell survival and growth. Automated image-analysis techniques are limited to ca. 10(4) cells/plate. An alternative method involves encapsulation of single proliferating cells into ca. 35-75-microm-diameter agarose gel microdrops (GMDs) that are randomly grouped, differential exposure of these groups, culture at 37 degrees C for 3-5 days, and finally GMD analysis by flow cytometry (FC) to determine the ratio of GMDs containing multiple versus single cells as a measure of clonogenic survival. This GMD/FC assay was used to examine low-dose cell killing induced by a cooked-meat mutagen/rodent-carcinogen (MeIQx) in DNA-repair-deficient/metabolically-sensitive CHO cells. Results of conventional colony-forming assays using up to 30 replicate plates indicate a shouldered, threshold-like dose-response; in contrast, those obtained using the GMD/FC assay suggest "hypersensitivity"-like nonlinearity in dose-response. The GMD/FC assay was also applied to human A549 lung cells after GMD-encapsulation and gamma radiation followed by culture for a total of 4 days, to examine survival after exposure to > or =100 cGy delivered at a relatively low dose rate (0.18 cGy/min). Dose-response for clonogenic growth was again observed to be reduced with apparent nonlinear suggesting hypersensitivity between 0 and 50 cGy, insofar as doses of 5 and 10 cGy appear to be ca. fivefold more effective per unit dose than the 50- or 100-cGy doses used. The GMD/FC assay may thus reveal low-dose dose-response relations for chemical and radiation effects on cell proliferation/killing with implications for low-dose risk assessment.

  2. Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic Flow Cytometry

    PubMed Central

    Juratli, Mazen A.; Menyaev, Yulian A.; Sarimollaoglu, Mustafa; Siegel, Eric R.; Nedosekin, Dmitry A.; Suen, James Y.; Melerzanov, Alexander V.; Juratli, Tareq A.; Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2016-01-01

    Thromboembolic events are one of the world’s leading causes of death among patients. Embolus or clot formations have several etiologies including paraneoplastic, post-surgery, cauterization, transplantation, or extracorporeal circuits. Despite its medical significance, little progress has been made in early embolus detection, screening and control. The aim of our study is to test the utility of the in vivo photoacoustic (PA) flow cytometry (PAFC) technique for non-invasive embolus detection in real-time. Using in vivo PAFC, emboli were non-invasively monitored in the bloodstream of two different mouse models. The tumor-free mouse model consisted of two groups, one in which the limbs were clamped to produce vessel stasis (7 procedures), and one where the mice underwent surgery (7 procedures). The melanoma-bearing mouse model also consisted of two groups, one in which the implanted tumor underwent compression (8 procedures), and one where a surgical excision of the implanted tumor was performed (8 procedures). We demonstrated that the PAFC can detect a single embolus, and has the ability to distinguish between erythrocyte–rich (red) and leukocyte/platelet-rich (white) emboli in small vessels. We show that, in tumor-bearing mice, the level of circulating emboli was increased compared to tumor-free mice (p = 0.0013). The number of circulating emboli temporarily increased in the tumor-free control mice during vessel stasis (p = 0.033) and after surgical excisions (signed-rank p = 0.031). Similar observations were noted during tumor compression (p = 0.013) and after tumor excisions (p = 0.012). For the first time, it was possible to detect unlabeled emboli in vivo non-invasively, and to confirm the presence of pigmented tumor cells within circulating emboli. The insight on embolus dynamics during cancer progression and medical procedures highlight the clinical potential of PAFC for early detection of cancer and surgery-induced emboli to prevent the fatal

  3. A rapid detection method using flow cytometry to monitor the risk of Legionella in bath water.

    PubMed

    Taguri, Toshitsugu; Oda, Yasunori; Sugiyama, Kanji; Nishikawa, Toru; Endo, Takuro; Izumiyama, Shinji; Yamazaki, Masayuki; Kura, Fumiaki

    2011-07-01

    Legionella species are the causative agents of human legionellosis, and bathing facilities have been identified as the sources of infection in several outbreaks in Japan. Researchers in Japan have recently reported evidence of significant associations between bacterial counts and the occurrence of Legionella in bathing facilities and in a hot tub model. A convenient and quantitative bacterial enumeration method is therefore required as an indicator of Legionella contamination or disinfection to replace existing methods such as time-consuming Legionella culture and expensive Legionella-DNA amplification. In this study, we developed a rapid detection method (RDM) to monitor the risk of Legionella using an automated microbial analyzing device based on flow cytometry techniques to measure the total number of bacteria in water samples within two minutes, by detecting typical patterns of scattered light and fluorescence. We first compared the results of our RDM with plate counting results for five filtered hot spring water samples spiked with three species of bacteria, including Legionella. Inactivation of these samples by chlorine was also assessed by the RDM, a live/dead bacterial fluorescence assay and plate counting. Using the RDM, the lower limit of quantitative bacterial counts in the spiked samples was determined as 3.0×10(3)(3.48log)counts mL(-1). We then used a laboratory model of a hot tub and found that the RDM could monitor the growth curve of naturally occurring heterotrophic bacteria with 1 and 2 days' delayed growth of amoeba and Legionella, respectively, and could also determine the killing curve of these bacteria by chlorination. Finally, samples with ≥3.48 or <3.48log total bacterial counts mL(-1) were tested using the RDM from 149 different hot tubs, and were found to be significantly associated with the positive or negative detection of Legionella with 95% sensitivity and 84% specificity. These findings indicated that the RDM can be used for

  4. Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic Flow Cytometry.

    PubMed

    Juratli, Mazen A; Menyaev, Yulian A; Sarimollaoglu, Mustafa; Siegel, Eric R; Nedosekin, Dmitry A; Suen, James Y; Melerzanov, Alexander V; Juratli, Tareq A; Galanzha, Ekaterina I; Zharov, Vladimir P

    2016-01-01

    Thromboembolic events are one of the world's leading causes of death among patients. Embolus or clot formations have several etiologies including paraneoplastic, post-surgery, cauterization, transplantation, or extracorporeal circuits. Despite its medical significance, little progress has been made in early embolus detection, screening and control. The aim of our study is to test the utility of the in vivo photoacoustic (PA) flow cytometry (PAFC) technique for non-invasive embolus detection in real-time. Using in vivo PAFC, emboli were non-invasively monitored in the bloodstream of two different mouse models. The tumor-free mouse model consisted of two groups, one in which the limbs were clamped to produce vessel stasis (7 procedures), and one where the mice underwent surgery (7 procedures). The melanoma-bearing mouse model also consisted of two groups, one in which the implanted tumor underwent compression (8 procedures), and one where a surgical excision of the implanted tumor was performed (8 procedures). We demonstrated that the PAFC can detect a single embolus, and has the ability to distinguish between erythrocyte-rich (red) and leukocyte/platelet-rich (white) emboli in small vessels. We show that, in tumor-bearing mice, the level of circulating emboli was increased compared to tumor-free mice (p = 0.0013). The number of circulating emboli temporarily increased in the tumor-free control mice during vessel stasis (p = 0.033) and after surgical excisions (signed-rank p = 0.031). Similar observations were noted during tumor compression (p = 0.013) and after tumor excisions (p = 0.012). For the first time, it was possible to detect unlabeled emboli in vivo non-invasively, and to confirm the presence of pigmented tumor cells within circulating emboli. The insight on embolus dynamics during cancer progression and medical procedures highlight the clinical potential of PAFC for early detection of cancer and surgery-induced emboli to prevent the fatal thromboembolic

  5. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  6. A novel high-throughput multi-parameter flow cytometry based method for monitoring and rapid characterization of microbiome dynamics in anaerobic systems.

    PubMed

    Dhoble, Abhishek S; Bekal, Sadia; Dolatowski, William; Yanz, Connor; Lambert, Kris N; Bhalerao, Kaustubh D

    2016-11-01

    A novel multidimensional flow cytometry based method has been demonstrated to monitor and rapidly characterize the dynamics of the complex anaerobic microbiome associated with perturbations in external environmental factors. While community fingerprinting provides an estimate of the meta genomic structure, flow cytometry provides a fingerprint of the community morphology including its autofluorescence spectrum in a high-throughput manner. Using anaerobic microbial consortia perturbed with the controlled addition of various carbon sources, it is possible to quantitatively discriminate between divergent microbiome analogous to community fingerprinting techniques using automated ribosomal intergenic spacer analysis (ARISA). The utility of flow cytometry based method has also been demonstrated in a fully functional industry scale anaerobic digester to distinguish between microbiome composition caused by varying hydraulic retention time (HRT). This approach exploits the rich multidimensional information from flow cytometry for rapid characterization of the dynamics of microbial communities. PMID:27614579

  7. Assessment of sperm function parameters and DNA fragmentation in ejaculated alpaca sperm (Lama pacos) by flow cytometry.

    PubMed

    Cheuquemán, C; Merino, O; Giojalas, L; Von Baer, A; Sánchez, R; Risopatrón, J

    2013-06-01

    Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR-14⁄PI staining; acrosomal membrane integrity using FITC-conjugated Pisum Sativum Agglutinin⁄PI labelling; mitochondrial membrane potential (Δψm) by staining with JC-1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = -0.41) and with plasma membrane integrity (p = 0.01; r = -0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry. PMID:23082871

  8. Platelet antibody screening by flow cytometry is more sensitive than solid phase red cell adherence assay and lymphocytotoxicity technique: a comparative study in Thai patients.

    PubMed

    Buakaew, Jarin; Promwong, Charuporn

    2010-01-01

    The objective of this study was to compare the sensitivity and specificity of lymphocytotoxicity test (LCT), solid phase red cell adherence assay (SPRCA) and flow cytometry in detecting platelet reactive antibodies against human leukocyte antigens (HLA) class I and human platelet antigens (HPA). Sera from 38 thrombocytopenic patients and 5 mothers of thrombocytopenic newborns were screened for platelet reactive antibodies by these three methods using screening platelets and/or lymphocytes panels derived from six subjects. The sensitivity and specificity of each method and levels of agreement were analysed. HLA antibodies were found in 18, 17 and 19 out of 43 patients' sera tested by LCT, SPRCA and flow cytometry, respectively. Four out of 43 patients' sera were reactive against HPA by flow cytometry, but were reactive to only 2 sera by SPRCA. Using flow cytometry as the reference method, the sensitivities/specificities of SPRCA and LCT in HLA antibody detection were 84.21/95.83% and 94.73/100%, respectively, with a good strength of agreement. SPRCA had 50% sensitivity and 100% specificity in HPA antibody detection compare to flow cytometry. Flow cytometry appeared to be the most sensitive technique compared with SPRCA and LCT for both HPA and HLA antibody screening. SPRCA sensitivity was too low for HPA antibody detection, but this might be because of the small number of samples. There was one serum from the mother of a baby suffering neonatal alloimmune thrombocytopenia (NAIT), in whom SPRCA could not detect HPA antibodies, while flow cytometry came out positive. Therefore, SPRCA should not be used in NAIT investigation and flow cytometry should be employed instead.

  9. Predictive value of high residual platelet reactivity by flow cytometry for outcomes of ischemic stroke patients on clopidogrel therapy.

    PubMed

    Qiu, Li-Na; Wang, Lin; Li, Xin; Han, Rui-Fa; Xia, Xiao-Shuang; Liu, Jie

    2015-06-01

    High residual platelet reactivity (HRPR) assessed by multiple tests has been associated with worse clinical outcomes. However, the clinical impact of HRPR assessed by flow cytometry is unknown. The aim of this study was to validate the predictive value of HRPR measured by flow cytometry for clinical outcomes in ischemic stroke patients during clopidogrel therapy. Overall, 198 consecutive patients with ischemic stroke taking clopidogrel underwent platelet function testing on flow cytometer including adenosine diphosphate (ADP)-induced platelet aggregation (PAg) and platelet activation markers (CD62P, CD63, and PAC-1). Poor outcome was defined as poor prognosis and ischemic events during 12-month follow-up. By receiver operating characteristic curve analysis, residual platelet reactivity assessed by flow cytometry was able to distinguish between patients with and without poor outcomes, when platelet inhibition was evaluated with ADP-PAg (area under the curve [AUC], .77; 95% confidence interval [CI], .69-.84; P < .001), CD62P (AUC, .73; 95% CI, .64-.81; P < .001), CD63 (AUC, .72; 95% CI, .64-.80; P < .001), and PAC-1 (AUC, .70; 95% CI, .62-.78; P < .001). The prevalence of HRPR was 25.8% for ADP-PAg, 32.8% for CD62P, 41.4% for CD63, and 56.1% for PAC-1. The multiple logical regression analysis demonstrated that HRPR was an independent predictor of poor outcomes (ADP-PAg: odds ratio [OR] 13.03, 95% CI 5.66-29.98, P < .001; CD62P: OR 8.55, 95% CI 3.94-18.57, P < .001; CD63: OR 8.74, 95% CI 3.89-19.64, P < .001; PAC-1: OR 4.23, 95% CI 1.98-9.08). In conclusion, HRPR, assessed by flow cytometry, is able to detect ischemic stroke patients at increased risk of 12-month poor outcomes on clopidogrel treatment.

  10. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.

    PubMed

    Castillo-Hair, Sebastian M; Sexton, John T; Landry, Brian P; Olson, Evan J; Igoshin, Oleg A; Tabor, Jeffrey J

    2016-07-15

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond.

  11. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.

    PubMed

    Castillo-Hair, Sebastian M; Sexton, John T; Landry, Brian P; Olson, Evan J; Igoshin, Oleg A; Tabor, Jeffrey J

    2016-07-15

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond. PMID:27110723

  12. Platelet antibody detection by flow cytometry: an effective method to evaluate and give transfusional support in platelet refractoriness

    PubMed Central

    Bub, Carolina Bonet; Martinelli, Beatriz Moraes; Avelino, Thayná Mendonça; Gonçalez, Ana Cláudia; Barjas-Castro, Maria de Lourdes; Castro, Vagner

    2013-01-01

    Background Immune platelet refractoriness is mainly caused by human leukocyte antigen antibodies (80-90% of cases) and, to a lesser extent, by human platelet antigen antibodies. Refractoriness can be diagnosed by laboratory tests and patients should receive compatible platelet transfusions. A fast, effective and low cost antibody-screening method which detects platelet human leukocyte/platelet antigen antibodies is essential in the management of immune platelet refractoriness. Objective The aim of this study was to evaluate the efficiency of the flow cytometry platelet immunofluorescence test to screen for immune platelet refractoriness. Methods A group of prospective hematologic patients with clinically suspected platelet refractoriness treated in a referral center in Campinas, SP during July 2006 and July 2011 was enrolled in this study. Platelet antibodies were screened using the flow cytometry platelet immunofluorescence test. Anti-human leukocyte antigen antibodies were detected by commercially available methods. The sensitivity, specificity and predictive values of the immunofluorescence test were determined taking into account that the majority of antiplatelet antibodies presented human leukocyte antigen specificity. Results Seventy-six samples from 32 female and 38 male patients with a median age of 43.5 years (range: 5-84 years) were analyzed. The sensitivity of the test was 86.11% and specificity 75.00% with a positive predictive value of 75.61% and a negative predictive value of 85.71%. The accuracy of the method was 80.26%. Conclusion This study shows that the flow cytometry platelet immunofluorescence test has a high correlation with the anti-human leukocyte antigen antibodies. Despite a few limitations, the method seems to be efficient, fast and feasible as the initial screening for platelet antibody detection and a useful tool to crossmatch platelets for the transfusional support of patients with immune platelet refractoriness. PMID:24106442

  13. Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry.

    PubMed

    Zahavy, E; Fisher, M; Bromberg, A; Olshevsky, U

    2003-04-01

    Development of an ultrasensitive biosensor for biological hazards in the environment is a major need for pollutant control and for the detection of biological warfare. Fluorescence methods combined with immunodiagnostic methods are the most common. To minimize background noise, arising from the unspecific adsorption effect, we have adapted the FRET (frequency resonance energy transfer) effect to the immunofluorescence method. FRET will increase the selectivity of the diagnosis process by introducing a requirement for two different reporter molecules that have to label the antigen surface at a distance that will enable FRET. Utilizing the multiparameter capability of flow cytometry analysis to analyze the double-labeling/FRET immunostaining will lead to a highly selective and sensitive diagnostic method. This work examined the FRET interaction of fluorescence-labeled avidin molecules on biotin-coated microspheres as a model system. As target system, we have used labeled polyclonal antibodies on Bacillus anthracis spores. The antibodies used were purified immunoglobulin G (IgG) molecules raised in rabbits against B. anthracis exosoporium components. The antibodies were fluorescence labeled by a donor-acceptor chromophore pair, alexa488 as a donor and alexa594 as an acceptor. On labeling the spores with alexa488-IgG as a donor and alexa594-IgG as an acceptor, excitation at 488 nm results in quenching of the alexa-488 fluorescence (E(q) = 35%) and appearance of the alexa594 fluorescence (E(s) = 22%), as detected by flow cytometry analysis. The FRET effect leads to a further isolated gate (FL1/FL3) for the target spores compared to competitive spores such as B. thuringiensis subsp. israelensis and B. subtilis. This new approach, combining FRET labeling and flow cytometry analysis, improved the selectivity of the B. anthracis spores by a factor of 10 with respect to B. thuringiensis subsp. israelensis and a factor of 100 with respect to B. subtilis as control spores

  14. New use for an old reagent: Cell cycle analysis of DNA content using flow cytometry in formamide treated cells.

    PubMed

    Carbonari, Maurizio

    2016-05-01

    Formamide has long been one of the most widely used reagents in the study of nucleic acids. However, the use of formamide for treating cells to be analyzed by flow cytometry is a recent development and is restricted to measuring telomere lengths by flow-FISH. In this field, we have published several papers in order to observe the effects of formamide treatment on cells at room temperature. We therefore discovered that, with suitable modifications, a short and simple incubation in this ionizing solvent facilitates cell cycle analysis by flow cytometry, equivalent or superior to that obtained with treatments in alcohol, acetone or detergent in hypotonic solution. Even using a bulky and problematic stain (low quantum efficiency and G-C base preference), such as 7-aminoactinomycin D (7-AAD) which, on the other hand, has the advantage of being excited at 488 nm and does not bind to the RNA, it is possible to obtain excellent coefficients of variation and (G2-M) mode/(G0-G1) mode ratios. These parameters, especially if stained cells are washed before acquisition, arrive at optimal values. It is noteworthy that the ability to wash the cells stained for DNA content analysis without affecting the stoichiometry of the staining has not been described elsewhere in the literature. With formamide treatment the doublets are practically absent, sample recovery is efficient, as well as the preservation of physical parameters, and the stained cells can be stored for at least 10 days at room temperature before acquisition. © 2016 International Society for Advancement of Cytometry. PMID:26866418

  15. A simple multicolor flow cytometry protocol for detection and molecular characterization of circulating tumor cells in epithelial cancers.

    PubMed

    Hristozova, Tsvetana; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2012-06-01

    Circulating tumor cells (CTCs) might not only serve as prognostic marker but could also be useful for monitoring treatment efficacy. A multicolor flow cytometry protocol for their detection and molecular characterization in peripheral blood was developed which consisted of erythrocyte lysis followed by staining of cells with fluorochrome-labeled antibodies against CD45 and the epithelial markers EpCam and cytokeratin 7/8. For reducing the number of events acquired by flow cytometry, an electronic threshold for the fluorescent signals from the epithelial markers was applied. After establishment of the protocol by using spiking experiments, its suitability to determine the absolute number of CTCs as well as their expression of epidermal growth factor receptor (EGFR) and its phosphorylated form (phospho-EGFR) in blood samples from patients with squamous cell carcinoma of the head and neck (SCCHN) was validated. Spiking experiments demonstrated an excellent recovery (mean 85%) and a linear performance (R(2) = 0.98) of the protocol. Sensitivity and specificity were comparable to our former protocol using immunomagnetic CTC pre-enrichment. The analysis of 33 SCCHN patient samples revealed the presence of CTCs in 33.3% of cases with a mean ± SD of 1.5 ± 0.5 CTCs per 3.75 ml blood. EGFR was expressed in 100% and phospho-EGFR in 36.4% of the CTC+ cases. We have established a simple and sensitive multicolor flow cytometry protocol for detection of CTCs in patients with epithelial cancers including SCCHN which will allow their detailed molecular characterization.

  16. Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry.

    PubMed Central

    Ginaldi, L; Farahat, N; Matutes, E; De Martinis, M; Morilla, R; Catovsky, D

    1996-01-01

    AIMS: To obtain reference values of the level of expression of T cell antigens on normal lymphocyte subsets in order to disclose differences which could reflect their function or maturation stages, or both. METHODS: Peripheral blood from 15 healthy donors was processed by flow cytometry with triple colour analysis. For each sample phycoerythrin (PE) conjugated CD2, CD4, CD5, CD8, and CD56 monoclonal antibodies were combined with Cy5-R-phycoerythrin (TC) conjugated CD3 and fluorescein isothiocyanate (FITC) conjugated CD7; CD2- and CD7-PE were also combined with CD3-TC and CD4-FITC. Standard microbeads with different capacities to bind mouse immunoglobulins were used to convert the mean fluorescence intensity (MFI) values of the lymphocyte subsets identified by multiparametric flow cytometry into the number of antigen molecules per cell, measured as antibody binding capacity (ABC). RESULTS: CD4+ (helper/inducer) T cells exhibit a higher CD3 antigen expression compared with CD8+ (suppressor/ cytotoxic) T lymphocytes. Within the CD4+ T cells, the CD4+CD7- subset expressed a lower level of CD3 compared with CD4+CD7+ and CD8+CD7+ cells, and higher CD2 and CD5 expression than the main CD3+CD7+ subset. Major differences in antigen expression were also detected between CD3+ T cells and CD3-CD56+ natural killer (NK) cells: NK cells exhibited higher levels of CD7 and CD56 and lower levels of CD2 and CD5 than T cells. Significantly lower CD5 expression was also detected in the small CD5+ B lymphocyte subset compared with T cells. CONCLUSIONS: Quantitative flow cytometry with triple colour analysis may be used to detect antigen modulations in disease states and to increase the accuracy of diagnosis by comparison with findings in normal counterparts. Images PMID:8813949

  17. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  18. Microfabrication and Test of a Three-Dimensional Polymer Hydro-Focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feedback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.

  19. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    PubMed Central

    Hayashi, Masahito; Hattori, Akihiro; Kim, Hyonchol; Terazono, Hideyuki; Kaneko, Tomoyuki; Yasuda, Kenji

    2011-01-01

    We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA)) based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics. PMID:21747698

  20. In vivo imaging flow cytometry based on laser scanning two-photon microscopy at kHz cross-sectional frame rate

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    In vivo flow cytometry has found numerous applications in biology and pharmacology. However, conventional cytometry does not provide the detailed morphological information that is needed to fully determine the phenotype of individual circulating cells. Imaging cytometry, capable of visualizing the morphology and dynamics of the circulating cells at high spatiotemporal resolution, is highly desired. Current wide-field based image cytometers are limited in the imaging depth and provide only two-dimensional resolution. For deep tissue imaging, laser scanning two-photon fluorescence microscopy (TPM) is widely adopted. However, for applications in flow cytometry, the axial scanning speed of current TPMs is inadequate to provide high-speed cross-sectional imaging of vasculature. We have integrated an optical phase-locked ultrasound lens into a standard TPM and achieved microsecond-scale axial scanning. With a galvo scanner for transverse scanning, we achieved kHz cross-sectional frame rate. Here we report its applications for in vivo deformability cytometry and in vivo imaging flow cytometry, and demonstrate the capability of imaging dynamical morphologies of flowing cells, distinguishing cells and cellular clusters, and simultaneously quantifying different cell populations based on their fluorescent labels.

  1. Comparative of three methods (ELIZA, MAIPA and flow cytometry) to determine anti-platelet antibody in children with ITP.

    PubMed

    Hamidpour, Mohsen; Khalili, Ghader; Tajic, Nader; Shamsian, Bi Bi Shahin; Hamidpour, Rafie

    2014-01-01

    Immune (idiopathic) thrombocytopenic purpurea (ITP) is an autoimmune disease characterized by the increased anti-platelet antibodies in the patient's sera and decreased platelets in the blood circulation. This study has determined and characterized the antiplatelet glycoproteins in children with ITP. Thirty eight children, who were hospitalized with clinical signs of ITP in Mofid Children Hospital (Tehran, Iran) during 18 months, went under our clinical studies in a research project. ELISA, Flow cytometry and MAIPA (Monoclonal Antibody Immobilization of Platelet Antigens) methods were employed to determine serum anti-platelet antibodies level. The anti-platelet antibodies level above mean + 3SD of control group was assumed as positive. The platelet counts ranged between 2 × 10(9)/L and 100 × 10(9)/L. Among the patients 63.5% of them were anti-platelet antibodies positive with ELISA method. Results of platelet lysate method showed that 51.7% of patients had antibodies against platelet antigens. Antibody against platelet GPIIb/IIIa, GPIb/IX and GPIa/IIa using MAIPA method were 48%, 54% and 25% respectively. In flow cytometry 62% of patients showed anti-platelet antibodies. The comparison of three methods shows that since MAIPA is the specific method for the detection of very small amount of antibody against glycoprotein antigens, it has the advantage of differentiating between immune and non-immune thrombocytopenia. PMID:25755908

  2. Comparative of three methods (ELIZA, MAIPA and flow cytometry) to determine anti-platelet antibody in children with ITP

    PubMed Central

    Hamidpour, Mohsen; Khalili, Ghader; Tajic, Nader; Shamsian, Bi Bi Shahin; Hamidpour, Rafie

    2014-01-01

    Immune (idiopathic) thrombocytopenic purpurea (ITP) is an autoimmune disease characterized by the increased anti-platelet antibodies in the patient’s sera and decreased platelets in the blood circulation. This study has determined and characterized the antiplatelet glycoproteins in children with ITP. Thirty eight children, who were hospitalized with clinical signs of ITP in Mofid Children Hospital (Tehran, Iran) during 18 months, went under our clinical studies in a research project. ELISA, Flow cytometry and MAIPA (Monoclonal Antibody Immobilization of Platelet Antigens) methods were employed to determine serum anti-platelet antibodies level. The anti-platelet antibodies level above mean + 3SD of control group was assumed as positive. The platelet counts ranged between 2 × 109/L and 100 × 109/L. Among the patients 63.5% of them were anti-platelet antibodies positive with ELISA method. Results of platelet lysate method showed that 51.7% of patients had antibodies against platelet antigens. Antibody against platelet GPIIb/IIIa, GPIb/IX and GPIa/IIa using MAIPA method were 48%, 54% and 25% respectively. In flow cytometry 62% of patients showed anti-platelet antibodies. The comparison of three methods shows that since MAIPA is the specific method for the detection of very small amount of antibody against glycoprotein antigens, it has the advantage of differentiating between immune and non-immune thrombocytopenia. PMID:25755908

  3. Evaluation of Ultrasound-Induced Damage to Escherichia coli and Staphylococcus aureus by Flow