Sample records for flow diffusion chamber

  1. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  2. Separation of gases by diffusion

    DOEpatents

    Peieris, R. E.; Simon, F. E.; Arms, H. S.

    1960-12-13

    An apparatus is described for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase wlth the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction wlthin the chamber. By these means a concentration gradient along the chamber is established. (auth)

  3. Highly Permeable Silicon Membranes for Shear Free Chemotaxis and Rapid Cell Labeling

    PubMed Central

    Chung, Henry H.; Chan, Charles K.; Khire, Tejas S.; Marsh, Graham A.; Clark, Alfred; Waugh, Richard E.; McGrath, James L.

    2015-01-01

    Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 µL min−1; vavg ~45 mm min−1) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow. PMID:24850320

  4. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  5. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  6. Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones

    DTIC Science & Technology

    1947-06-17

    cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake , located as shown in the...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static "" rake ’ NATIONAL ADVISORY...recoveries were obtained with subsonic entrance flow. INTRODCJCTION For efficient conversion of the kinetic energy of a supersonic air stream into ram

  7. SEPARATION OF GASES BY DIFFUSIION

    DOEpatents

    Peierls, R.E.; Simon, F.E.; Arms, H.S.

    1960-12-13

    A method and apparatus are given for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase with the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction within the chamber. By these means a concentration gradient along the chamber is established.

  8. Study of the propagation of a plane turbulent jet in flow-through chamber workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laigna, K.Yu.; Potter, E.A.

    1988-05-01

    The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less

  9. Design and analysis of a double superimposed chamber valveless MEMS micropump.

    PubMed

    Zordan, E; Amirouche, F

    2007-02-01

    The newly designed micropump model proposed consists of a valveless double chamber pump completely simulated and optimized for drug delivery conditions. First, the inertia force and viscous loss in relation to actuation, pressure, and frequency is considered, and then a model of the nozzle/diffuser elements is introduced. The value of the flowrate obtained from the first model is then used to determine the loss coefficients starting from geometrical properties and flow velocity. From the developed model IT analysis is performed to predict the micropump performance based on the actuation parameters and no energy loss. A single-chamber pump with geometrical dimensions equal to each of the chambers of the double-chamber pump was also developed, and the results from both models are then compared for equally applied actuation pressure and frequency. Results show that the proposed design gives a maximum flow working frequency that is about 30 per cent lower than the single chamber design, with a maximum flowrate that is 140 per cent greater than that of the single chamber. Finally, the influences of geometrical properties on flowrate, maximum flow frequency, loss coefficients, and membrane strain are examined. The results show that the nozzle/ diffuser initial width and chamber side length are the most critical dimensions of the design.

  10. TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavic, I.; Szymakowski, J.; Stachorska, D.

    1961-03-01

    A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less

  11. Effects of Mg pre-flow, memory, and diffusion on the growth of p-GaN with MOCVD (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tu, Charng-Gan; Chen, Hao-Tsung; Chen, Sheng-Hung; Chao, Chen-Yao; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    In MOCVD growth, two key factors for growing a p-type structure, when the modulation growth or delta-doping technique is used, include Mg memory and diffusion. With high-temperature growth (>900 degree C), doped Mg can diffuse into the under-layer. Also, due to the high-pressure growth and growth chamber coating in MOCVD, plenty Mg atoms exist in the growth chamber for a duration after Mg supply is ended. In this situation, Mg doping continues in the following designated un-doped layers. In this paper, we demonstrate the study results of Mg preflow, memory, and diffusion. The results show that pre-flow of Mg into the growth chamber can lead to a significantly higher Mg doping concentration in growing a p-GaN layer. In other words, a duration for Mg buildup is required for high Mg incorporation. Based on SIMS study, we find that with the pre-flow growth, a high- and a low-doping p-GaN layer are formed. The doping concentration difference between the two layers is about 10 times. The thickness of the high- (low-) doping layer is about 40 (65) nm. The growth of the high-doping layer starts 10-15 min after Mg supply starts (Mg buildup time). The diffusion length of Mg into the AlGaN layer beneath (Mg content reduced to <5%) is about 10 nm. The memory time of Mg in the growth chamber is about 60 min, after which the Mg doping concentration is reduced to <1%.

  12. Permeabilized Rat Cardiomyocyte Response Demonstrates Intracellular Origin of Diffusion Obstacles

    PubMed Central

    Jepihhina, Natalja; Beraud, Nathalie; Sepp, Mervi; Birkedal, Rikke; Vendelin, Marko

    2011-01-01

    Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes. PMID:22067148

  13. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  14. Particle and chemical control using tunnel flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chilese, Frank; Delgado, Gildardo R.; Wack, Daniel

    An apparatus for contaminant control, having: a first optical assembly including: a first light homogenizer tunnel with: a first end connected to an extreme ultra-violet light source, a second end in communication with a destination chamber, a first enclosed space, and, a first gas input arranged to introduce a first gas such that the first gas flows in a first direction toward the first end and in a second direction toward the second end. The apparatus alternately having: a second optical assembly including: a second light homogenizer tunnel with: a third end connected to an extreme ultra-violet light source, amore » fourth end in communication with a destination chamber, a second enclosed space, a diffusion barrier tube including: a fifth end facing the fourth end and a sixth end in communication with a destination chamber, and a second gas input between the second light homogenizer tunnel and the diffusion tube.« less

  15. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  16. [Factors affecting benzene diffusion from contaminated soils to the atmosphere and flux characteristics].

    PubMed

    Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng

    2013-12-01

    The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.

  17. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?

    PubMed

    Rodeghiero, Mirco; Niinemets, Ulo; Cescatti, Alessandro

    2007-08-01

    Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.

  18. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  19. Apparatus for purifying exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, O.; Oya, H.

    1980-06-03

    Apparatus for purifying the exhaust gases of internal combustion engines is disclosed is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a shell having an inlet chamber, catalyst chamber, and an outlet chamber. The axial lines of the inlet ports are arranged to cross each other in the inlet chamber at a position near, but upstream of, the upstream facing end of said monolithic catalyst element, so that gas flow can diffuse to the entire plane of the element.

  20. INFLUENCES OF DIFFUSION AND ADVECTIVE FLOW ON THE DISTRIBUTION OF RADON ACTIVITY WITHIN U.S. EPA'S SOIL CHAMBER

    EPA Science Inventory

    The paper presents an analysis of steady-state diffusion in the soil for two different conditions of moisture. The model accounts for multiphase emanation and transport. When the position dependence of the moisture profile is taken into account, the model and measurements agree w...

  1. A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L

    1956-01-01

    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)

  2. A simulation of the atmospheric cloud physics laboratory to aid in its design and the design of the experiments within the laboratory

    NASA Technical Reports Server (NTRS)

    Winchester, L. W., Jr.

    1980-01-01

    Using the finite difference method with overrelaxation, numerical solutions of the steady-state vorticity transport equation were obtained for a continuous flow diffusion chamber of the Hudson-Squires type. The calculation neglected the effects due to temperature, gravity, and saturation. The size and shape of the manifold used to inject the aerosol laden flow were varied to obtain a design which would improve the performance of the chamber from strictly low Reynolds number (less than 20) fluid dynamical considerations.

  3. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.

    PubMed

    Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri

    2015-08-07

    A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.

  4. An evaluation and assessment of flow quality in selected NASA wind tunnels

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1983-01-01

    Tests have been conducted in a number of NASA wind tunnels to measure disturbance levels and spectra in their respective settling chambers, test sections, and diffusers to determine the sources of their disturbances. The present data supplements previous results in other NASA tunnels and adds to the ongoing acquisition of a disturbance level data base. The present results also serve to explain flow related sources which cause relatively large disturbance amplitudes at discrete frequencies. The installation of honeycomb, screens, and acoustic baffles in or upstream of the settling chamber can significantly reduce the disturbance levels.

  5. Internal Flow and Burning Characteristics of 16-inch Ram Jet Operating in a Free Jet at Mach Numbers of 1.35 and 1.73

    NASA Technical Reports Server (NTRS)

    Perchonok, Eugene; Farley, John M

    1951-01-01

    The effects of mass-flow ratio on the additive drag and normal-shock position of a single oblique-shock diffuser are presented. Also evaluated is the variation with operating condition of the velocity distribution at the combustion-chamber inlet. A comparison with connected-pipe data is included. Burner performance with a corrugated gutter-grid flame holder is discussed. It is shown that the total-pressure drop across the combustion chamber can be predicted with reasonable accuracy from the computed flame holder and combustion momentum pressure losses.

  6. Comparison of Rocket Performance using Exhaust Diffuser and Conventional Techniques for Altitude Simulation

    NASA Technical Reports Server (NTRS)

    Sivo, Joseph N.; Peters, Daniel J.

    1959-01-01

    A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.

  7. The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Cubbage, James J., Jr.

    1961-01-01

    An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve.

  8. Results of Tests Performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1995-01-01

    The test results briefly described in this report were obtained on the three-dimensional 1:48 scale tunnel modeled on the design proposed by Messrs. D.S.M.A. Corporation. More particularly, while the test chamber dimensions were indeed scaled down in the ration of 1:48, including the contraction and the collector as well, the duct system itself leading to and from the chamber was adapted to suit laboratory conditions and space limitations. Earlier tests with the two-dimensional model showed that blowing mode was preferred as against the suction mode, hence all tests were performed with blowing only. At the exit of the contraction the maximum airspeed attained with the 1 HP blower unit was about 200 ft/sec. This airspeed may be increased in future if desired. The test results show that pressure recovery in the diffuser was about 34 percent due to the large blockage at its entrance. Velocity traverses taken across the diffuser entrance explain the reason for this blockage. Recirculation, studied with both, hot-wire anemometry and flow-visualization techniques, was largely affected by the design of the test chamber itself and the amount of vent-air admitted to the chamber. Vent-air helped to decrease the level of turbulence.

  9. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  10. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905

  11. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  12. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    PubMed

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  13. Flow Separation

    DTIC Science & Technology

    1975-11-01

    PLENUM CHAMBER 4 DIFFUSER 2 FIXEn NOZZLE BLOCK 5 MODEL i MOVABLE NOZZLE BLOCK 6 SUPPORT Fig. 3. Trl-Color Filter ...boun- dary layer ( Model 2) to examine scaling effects. Special attention was paid to the phenomenon of flow separation in three dimensions...consequence. Special attention should be paid to the difference in scale of an average boundary layer thickness between Model 1 and 2. Because

  14. Comparison of numerical simulation and experimental data for steam-in-place sterilization

    NASA Technical Reports Server (NTRS)

    Young, Jack H.; Lasher, William C.

    1993-01-01

    A complex problem involving convective flow of a binary mixture containing a condensable vapor and noncondensable gas in a partially enclosed chamber was modelled and results compared to transient experimental values. The finite element model successfully predicted transport processes in dead-ended tubes with inside diameters of 0.4 to 1.0 cm. When buoyancy driven convective flow was dominant, temperature and mixture compositions agreed with experimental data. Data from 0.4 cm tubes indicate diffusion to be the primary air removal method in small diameter tubes and the diffusivity value in the model to be too large.

  15. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.

    PubMed

    Dutta, Debashis

    2015-07-24

    The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  17. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  18. Resonant Mode-hopping Micromixing

    PubMed Central

    Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.

    2009-01-01

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159

  19. Modeling Explosive Eruptions at Kīlauea, Hawai'i

    NASA Astrophysics Data System (ADS)

    Gonnermann, H. M.; Ferguson, D. J.; Blaser, A. P.; Houghton, B. F.; Plank, T. A.; Hauri, E. H.; Swanson, D. A.

    2014-12-01

    We have modeled eruptive magma ascent during two explosive eruptions of Kīlauea volcano, Hawai'i. They are the Hawaiian style Kīlauea Iki eruption, 1959, and the subplinian Keanakāko'i eruption, 1650 CE. We have modeled combined magma ascent in the volcanic conduit and exsolution of H2O and CO2 from the erupting magma. To better assess the relative roles of conduit processes and magma chamber, we also coupled conduit flow and magma chamber through mass balance and pressure. We predict magma discharge rates, superficial gas velocities, H2O and CO2 concentrations of the melt, magma chamber pressure, surface deformation, and height of the volcanic jet. Models are in part constrained by H2O and CO2 measured in olivine-hosted melt inclusions and by decompression rates recorded in melt embayment diffusion profiles. We present a parametric analysis, indicating that the pressure within the chamber that fed the subplinian Keanakāko'i eruption was significantly higher than lithostatic pressure. In contrast, chamber pressure for the Hawaiian Kīlauea Iki eruption was close to lithostatic. In both cases the superficial gas velocity, which affects the geometrical distribution of gas-liquid mixtures during upward flow in conduits, may have exceeded values at which bubble coalescence did not affect the flow.

  20. Analysis and Modeling of a Two-Phase Jet Pump of a Flow Boiling Test Facility for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.; Steadham, Justin M.

    1996-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.

  1. 3D numerical simulation of flow field with incompletely flaring gate pier in large unit discharge and deep tail water project

    NASA Astrophysics Data System (ADS)

    Zhao, Zhou; Junxing, Wang

    2018-06-01

    Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ɛ turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.

  2. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    DOE PAGES

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; ...

    2017-09-14

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  3. Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin; Farouk, Bakhtier

    2012-07-01

    Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.

  4. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.

  5. The Growth of Protein Crystals Using McDUCK

    NASA Technical Reports Server (NTRS)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals grown we are currently proposing McDUCK for the growth of macromolecule crystals for use in neutron diffraction studies.

  6. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  7. Internal Flow

    NASA Astrophysics Data System (ADS)

    Greitzer, E. M.; Tan, C. S.; Graf, M. B.

    2004-06-01

    Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.

  8. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  9. A dual-porosity reactive-transport model of off-axis hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2017-12-01

    We built a dual-porosity reactive-transport 2D numerical model of off-axis pillow basalt alteration. An "outer chamber" full of porous glassy material supports significant seawater flushing, and an "inner chamber", which represents the more crystalline interior of a pillow, supports diffusive alteration. Hydrothermal fluids in the two chambers interact, and the two chambers are coupled to 2D flows. In a few million years of low-temperature alteration, the dual-porosity model predicts progressive stages of alteration that have been observed in drilled crust. A single-porosity model, with all else being equal, does not predict alteration stages as well. The dual-chamber model also does a better job than the single-chamber model at predicting the types of minerals expected in off-axis environments. We validate the model's ability to reproduce observations by configuring it to represent a thoroughly-studied transect of the Juan de Fuca Ridge eastern flank.

  10. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  11. Analytical and computational studies on the vacuum performance of a chevron ejector

    NASA Astrophysics Data System (ADS)

    Kong, F. S.; Jin, Y. Z.; Kim, H. D.

    2016-11-01

    The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.

  12. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.

    PubMed

    Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar

    2017-11-07

    Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.

  13. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  14. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Hartmann, Kevin S; Schmidt, Kara

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of thismore » new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of hydrogen sensor performance are being developed. Various commercial sensor platforms (e.g., thermal conductivity, catalytic and metal semiconductor) were used to demonstrate the advantages and issues with the flow through methodology.« less

  15. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 6: Primary nozzle diffuser analysis

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.

  16. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  17. A study of the polyethylene membrane used in diffusion chambers for radon gas concentration measurements

    NASA Astrophysics Data System (ADS)

    Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.

    2007-10-01

    Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.

  18. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  19. Inhibition of Granulopoiesis in Diffusion Chambers by a Granulocyte Chalone

    DTIC Science & Technology

    1974-07-01

    culture has o 5_g a been well documented. ’ Breivik et al. , using chamber to chamber transfers in nonpretreated hosts, have illustrated the...1972. 7. Breivik , H. and Benestad, H. B. Regulation of granulocyte and macrophage formation in diffusion chamber cultures of mouse...haematopoietic cells. Exptl. Cell Res. 70:340-348, 1972. 8. Breivik , H., Benestad, H. B. and B^yum, A. Diffusion chamber and spleen colony assay of murine

  20. An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS

    NASA Astrophysics Data System (ADS)

    Liu, Fengli; Zhang, Jun; Alici, Gursel; Yan, Sheng; Mutlu, Rahim; Li, Weihua; Yan, Tianhong

    2016-09-01

    In this paper, we report a new micromixer based on a flexible artificial cilium activated by an external magnetic field. The cilium is fabricated from Polydimethylsiloxane doped with Fe microparticles. The fabrication method is based on the standard sacrificial layer technology. The cilium was built on a glass slide, and then was bonded on the top of the micro-mixer chamber in a microfluidic chip. This fabrication process for the miniaturized active mixers is simple and cost effective. An electromagnetic system was used to drive the cilium and induce strong convective flows of the fluid in the chamber. In the presence of an alternating magnetic field, the cilium applied a corresponding alternating force on the surrounding fluids. The performance of the electromagnetically activated cilium was quantified and optimized in order to obtain maximum mixing performance. In addition, the mixing performance of the cilium in a circular micro-chamber was compared with pure diffusion. Up to 80% of a 60 ul liquid in the chamber can be fully mixed after 2 min using a cilium mixer under a magnetic flux density of 22 mT in contrast to the 20 min which were needed to obtain the same mixing percentage under pure diffusion. Furthermore, for a mixing degree of 80%, the mixing speed for the cilia micromixer proposed in this study was 9 times faster than that of the diffusion-based micro-mixers reported in the literature.

  1. Effect of zeta potential on the performance of a ring-type electroosmotic mixer.

    PubMed

    Kim, T A; Koo, K H; Kim, Y J

    2009-12-01

    In order to achieve faster mixing, a new type of electrokinetic mixer with a T-type channel is introduced. The proposed mixer takes two fluids from different inlets and combines them into a single channel. The fluids then enter a mixing chamber with different inner and outer radii. Four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with respect to time and have various maximum voltages, zeta potentials and frequency values. The working fluid is water and each inlet has a different initial concentration values. The incompressible Navier-Stokes equation is solved in the channel, with a slip boundary condition on the inner and outer walls of the mixing chamber. The convection-diffusion equation is used to describe the concentration of the dissolved substances in the fluid. The pressure, concentration and flow fields in the channel are calculated and the results are graphically depicted for various flow and electric conditions.

  2. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  3. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  4. Unsteady flowfield in an integrated rocket ramjet engine and combustion dynamics of a gas turbine swirl-stabilized injector

    NASA Astrophysics Data System (ADS)

    Sung, Hong-Gye

    This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by both the spatial and temporal Rayleigh parameters. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis.

  5. Design of an exposure chamber to test samplers used in the evaluation of personal exposure to nanoparticles

    NASA Astrophysics Data System (ADS)

    Amin, R.; Izadi, H.; Quémerais, B.

    2015-05-01

    The aim of this study was to design a laboratory size exposure chamber for the testing of samplers used to collect personal exposure samples for nanoparticles. A polyethylene cylindrical container with a diameter of 42 cm and height of 60 cm was used as the testing chamber. The chamber was divided into 2 parts by an aluminium honey comb. Particles generated using a 1 jet Collison nebulizer (BGI) operating at a flow rate of 4L/min were inserted into the chamber via a tube located near to the top of the chamber. A heater was inserted just after the nebulizer to avoid condensation of water in the tubing, and dilution air, running at 10L/min was inserted just after the heater. As particle charge can dramatically affect sampling a particle neutralizer was attached to the generation system so as to neutralize the particles before they enter the chamber. A diffusion dryer was used to remove any water from the air stream prior to enter the chamber. A fan was used to mix and distribute the generated particles. After generation and mixing, the particles passed through the aluminium honeycomb which is essential to eliminate any turbulent or unwanted air flow. Six sampling ports along with a pressure gauge were placed on the walls 15 cm from the bottom of the chamber. The pressure gauge was added to ensure the desired pressure is achieved during sampling. The sampling ports allowed for the connection of five samplers and sampling pumps as well as the connection of an ultrafine particle counter. The exposure chamber was developed to assess various samplers for carbon nanotubes and cellulose nanocrystals. Results showed that the chamber was working properly and that mixing was sufficiently uniform to test samplers.

  6. Principle design and actuation of a dual chamber electromagnetic micropump with coaxial cantilever valves.

    PubMed

    Zordan, Enrico; Amirouche, Farid; Zhou, Yu

    2010-02-01

    This paper deals with the design and characterization of an electromagnetic actuation micropump with superimposed dual chambers. An integral part of microfluidic system includes micropumps which have become a critical design focus and have the potential to alter treatment and drug delivery requirements to patients. In this paper, conceptual design of variable geometrical nozzle/diffuser elements, coaxial cantilever valve, is proposed. It takes advantages of cantilever fluctuating valves with preset geometry to optimize and control fluid flow. The integration of this conceptual valve into a dual chamber micropump has increased the flow rate when compared to a single chamber micropump. This technique also allows for the fluid flow to be actively controlled by adjusting the movement of the intermediate membrane and the cantilever valves due to their fast response and large deflection properties when subjected to an electromagnetic field. To ensure reliability and performance of both the membrane and electromagnets, finite element method was used to perform the stress-strain analysis and optimize the membrane structure and electromagnet configuration. The frequency-dependent flow rates and backpressure are investigated for different frequencies by varying the applied currents from 1A to 1.75A. The current micropump design exhibits a backpressure of 58 mmH(2)O and has a water flow rate that reaches maximum at 1.985 ml/s under a 1.75A current with a resonance frequency of 45 Hz. This proposed micropump while at its initial prototype stage can satisfy the requirements of wide flow rate drug delivery applications. Its controllability and process design are attractive for high volume fabrication and low cost.

  7. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  8. Unilateral uveitis masquerade syndrome caused by diffuse large B-cell lymphoma diagnosed using multiparametric flow cytometry of the aqueous humor.

    PubMed

    Monsalvo, Silvia; Serrano, Cristina; Prieto, Elena; Fernández-Sanz, Guillermo; Puente, Maria-Camino; Rodriguez-Pinilla, Maria; Garcia Raso, Aranzazu; Llamas, Pilar; Cordoba, Raul

    2017-07-01

    The uveitis masquerade syndromes (UMS) are a group of ocular diseases that may mimic chronic intraocular inflammation. Many malignant entities such as non-Hodgkin's lymphomas may masquerade as uveitis. We report a case of an HIV-positive patient with masquerade syndrome presenting unilateral uveitis. 45-year-old Caucasian man with a diagnosis of diffuse large B-cell lymphoma (DLBCL). The patient was diagnosed by a biopsy of an abdominal mass which showed fragments of gastric mucosa with diffuse growth of neoplastic cells. At diagnosis, the patient suffered from unilateral blurring of vision and a sudden decrease of left-eye visual acuity. A slit-lamp examination of the left eye revealed a diagnosis of anterior uveitis. The patient exhibited no signs of posterior uveitis. An anterior-chamber paracentesis was performed and analyzed by multiparameter flow cytometry (MFC), showing cells CD45, CD19, CD20, CD22, and CD38 positives, and moderate expression of CD10 with kappa light chain restriction, showing a monoclonal B-cell population. The patient received CHOP-R with intrathecal methotrexate followed by consolidation high dose methotrexate obtaining a complete response which is ongoing. Differential diagnosis between chronic uveitis and ocular lymphoma may be challenging. We advocate anterior-chamber paracentesis in cases of refractory uveitis in patients with hematologic malignancies. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  9. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  10. Modeling Analysis for NASA GRC Vacuum Facility 5 Upgrade

    NASA Technical Reports Server (NTRS)

    Yim, J. T.; Herman, D. A.; Burt, J. M.

    2013-01-01

    A model of the VF5 test facility at NASA Glenn Research Center was developed using the direct simulation Monte Carlo Hypersonic Aerothermodynamics Particle (HAP) code. The model results were compared to several cold flow and thruster hot fire cases. The main uncertainty in the model is the determination of the effective sticking coefficient -- which sets the pumping effectiveness of the cryopanels and oil diffusion pumps including baffle transmission. An effective sticking coefficient of 0.25 was found to provide generally good agreement with the experimental chamber pressure data. The model, which assumes a cold diffuse inflow, also fared satisfactorily in predicting the pressure distribution during thruster operation. The model was used to assess other chamber configurations to improve the local effective pumping speed near the thruster. A new configuration of the existing cryopumps is found to show more than 2x improvement over the current baseline configuration.

  11. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  12. Generation and precise control of dynamic biochemical gradients for cellular assays

    NASA Astrophysics Data System (ADS)

    Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.

    2017-03-01

    Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.

  13. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    NASA Astrophysics Data System (ADS)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities < 0.05 ms-1) averaged 1.16 µmol m-2 s-1 CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  14. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  15. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  16. Improving the binding efficiency of quartz crystal microbalance biosensors by applying the electrothermal effect

    PubMed Central

    Huang, Yao-Hung; Chang, Jeng-Shian; Chao, Sheng D.; Wu, Kuang-Chong; Huang, Long-Sun

    2014-01-01

    A quartz crystal microbalance (QCM) serving as a biosensor to detect the target biomolecules (analytes) often suffers from the time consuming process, especially in the case of diffusion-limited reaction. In this experimental work, we modify the reaction chamber of a conventional QCM by integrating into the multi-microelectrodes to produce electrothermal vortex flow which can efficiently drive the analytes moving toward the sensor surface, where the analytes were captured by the immobilized ligands. The microelectrodes are placed on the top surface of the chamber opposite to the sensor, which is located on the bottom of the chamber. Besides, the height of reaction chamber is reduced to assure that the suspended analytes in the fluid can be effectively drived to the sensor surface by induced electrothermal vortex flow, and also the sample costs are saved. A series of frequency shift measurements associated with the adding mass due to the specific binding of the analytes in the fluid flow and the immobilized ligands on the QCM sensor surface are performed with or without applying electrothermal effect (ETE). The experimental results show that electrothermal vortex flow does effectively accelerate the specific binding and make the frequency shift measurement more sensible. In addition, the images of the binding surfaces of the sensors with or without applying electrothermal effect are taken through the scanning electron microscopy. By comparing the images, it also clearly indicates that ETE does raise the specific binding of the analytes and ligands and efficiently improves the performance of the QCM sensor. PMID:25538808

  17. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie

    2007-01-01

    A novel microstirring strategy is applied to accelerate the digestion rate of the substrate Nα-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cm∕s, are generated around a small (∼1.2 mm) conductive ion exchange granule when ac electric fields (133 V∕cm) are applied across a miniature chamber smaller than 10 μl. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of ∼30 and ∼8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate. PMID:19693360

  18. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie

    2007-09-04

    A novel microstirring strategy is applied to accelerate the digestion rate of the substrate N(alpha)-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cms, are generated around a small ( approximately 1.2 mm) conductive ion exchange granule when ac electric fields (133 Vcm) are applied across a miniature chamber smaller than 10 mul. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of approximately 30 and approximately 8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate.

  19. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies

    NASA Astrophysics Data System (ADS)

    Rogers, David C.

    A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min -1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about -4°C to -25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of -15°C and +1% with respect to water, the range is -14.6 to -15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate. A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina. Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to detect silver iodide ice nucleating aerosols and to distinguish ice crystals from water droplets.

  20. Apparatus and method for the acceleration of projectiles to hypervelocities

    DOEpatents

    Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.

    1990-01-01

    A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.

  1. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  2. Rotary blood pump

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J.; Akkerman, James W.; Aber, Greg S.; Vandamm, George A.; Bacak, James W.; Svejkovsky, Paul A.; Benkowski, Robert J.

    1993-11-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  3. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  4. Nuclear medicine technology progress report for quarter ending September 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.

    1981-03-01

    Brain uptake of several /sup 75/Se- and /sup 123m/Te-labelled barbiturates is being studied. These new agents, substituted at the C-5 position, freely pass through the intact blood-brain barrier. Barbiturates labelled with gamma-emitting radionuclides may be an attractive new class of agents for measurement of regional cerebral blood flow. The diffusion chamber assay system has been used to assess the chronic effects of As/sub 2/O/sub 3/ toxicity. A small osmotically actuated minipump was used to deliver aqueous As/sub 2/O/sub 3/ at a continuous delivery rate to animals having intraperitoneally implanted diffusion chambers containing human lung cells (Flow 200). In these preliminarymore » studies, a 49 to 53% inhibition of cell growth was observed over a five-day period when animals received As/sub 2/O/sub 3/ at a dose of 1.7 to 2 mg (kg-d). These initial studies suggest that the minipump may be a useful means of studying the chronic effects of substances on cell proliferation in conjunction with the diffusion chamber assay system. A microscale synthesis of gold antirheumatoid agents was developed. This method involves reaction of thiohexose derivatives such as thioglucosetetraacetate (..beta..-D-TGTA) with trialkylphosphinegold halide intermediates (R/sub 3/PAu-Cl) in the presence of pyridine to give the coupling products R/sub 3/PAu(..beta..-D-TGTA) in good yield (>75%). Using this method, the triethyl analog Et/sub 3/PAu(..beta..-D-TGTA) and triphenyl analog (phi/sub 3/PAu(..beta..-D-TGTA)) have been prepared and characterized.This method will be used to prepare the /sup 195/Au-labeled agents. The platinum antitumor agent cis-dichloro-trans-dihydroxy-bis-(isopropylamine)-platinum (IV) (CHIP) has been purified. This system is efficient for separation of CHIP from impurities produced during the synthetic sequence and will be used to prepare /sup 195m/Pt-CHIP for biological evaluation. (ERB)« less

  5. A novel personal air sampling device for collecting volatile organic compounds: a comparison to charcoal tubes and diffusive badges.

    PubMed

    Rossner, Alan; Farant, Jean-Pierre

    2004-02-01

    Evacuated canisters have been used for many years to collect ambient air samples for gases and vapors. Recently, significant interest has arisen in using evacuated canisters for personal breathing zone sampling as an alternative to sorbent sampling. A novel flow control device was designed and built at McGill University. The flow control device was designed to provide a very low flow rate, <0.5 mL/min, to allow a sample to be collected over an extended period of time. Previous experiments run at McGill have shown agreement between the mathematical and empirical models to predict flow rate. The flow control device combined with an evacuated canister (capillary flow control-canister) was used in a series of experiments to evaluate its performance against charcoal tubes and diffusive badges. Air samples of six volatile organic compounds were simultaneously collected in a chamber using the capillary flow control-canister, charcoal tubes, and diffusive badges. Five different concentrations of the six volatile organic compounds were evaluated. The results from the three sampling devices were compared to each other and to concentration values obtained using an online gas chromatograph (GC). Eighty-four samples of each method were collected for each of the six chemicals. Results indicate that the capillary flow control-canister device compares quite favorably to the online GC and to the charcoal tubes, p > 0.05 for most of the tests. The capillary flow control-canister was found to be more accurate for the compounds evaluated, easier to use, and easier to analyze than charcoal tubes and passive dosimeter badges.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  7. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.

    PubMed

    Onischuk, A A; Purtov, P A; Baklanov, A M; Karasev, V V; Vosel, S V

    2006-01-07

    Zinc and silver vapor homogeneous nucleations are studied experimentally at the temperature from 600 to 725 and 870 K, respectively, in a laminar flow diffusion chamber with Ar as a carrier gas at atmospheric pressure. The size, shape, and concentration of aerosol particles outcoming the diffusion chamber are analyzed by a transmission electron microscope and an automatic diffusion battery. The wall deposit is studied by a scanning electron microscope (SEM). Using SEM data the nucleation rate for both Zn and Ag is estimated as 10(10) cm(-3) s(-1). The dependence of critical supersaturation on temperature for Zn and Ag measured in this paper as well as Li, Na, Cs, Ag, Mg, and Hg measured elsewhere is analyzed. To this aim the classical nucleation theory is extended by the dependence of surface tension on the nucleus radius. The preexponent in the formula for the vapor nucleation rate is derived using the formula for the work of formation of noncritical embryo [obtained by Nishioka and Kusaka [J. Chem. Phys. 96, 5370 (1992)] and later by Debenedetti and Reiss [J. Chem. Phys. 108, 5498 (1998)

  8. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  9. Flow chamber

    DOEpatents

    Morozov, Victor [Manassas, VA

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  10. Modifications to the Langley 8-foot transonic pressure tunnel for the laminar flow control experiment

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.

    1988-01-01

    Modifications to the NASA Langley 8 Foot Transonic Pressure Tunnel in support of the Lamina Flow Control (LFC) Experiment included the installation of a honeymoon and five screens in the settling chamber upstream of the test section 41-long test section liner that extended from the upstream end of the test section contraction region, through the best section, and into the diffuser. The honeycomb and screens were installed as permanent additions to the facility, and the liner was a temporary addition to be removed at the conclusion of the LFC Experiment. These modifications are briefly described.

  11. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOEpatents

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  12. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    DOEpatents

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  13. Apparatus for purifying exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, A.; Oya, H.

    1980-06-03

    Apparatus for purifying the exhaust gases of internal combustion engines is disclosed that is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a cylindrical shell having an inlet chamber, a catalyst chamber, an outlet chamber, and a monolithic catalyst element in the catalyst chamber. The inlet chamber has inlet ports communicating with the upstream exhaust pipes respectively and axial lines of the inlet ports cross each other in the inlet chamber. In the inlet chamber, a diffusion means is provided to diffuse the exhaust gas for uniformly distributingmore » it to the catalyst element.« less

  14. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual flow lines. The distribution of ICR of gabbros along each flow line is then computed at their final off-axis emplacement as it is now observed in ophiolites. The main result of our model is that the variation of ICR with depth strongly constrains the accretion mode of the oceanic crust. The bimodal distribution of ICR with depth inferred from the crystal size distribution studies of gabbros from the Oman ophiolite (Garrido et al., 2001) can be only reproduced by accretion models with at least two melt lenses. The location of the jump in the bimodal distribution of ICR with depth observed at ca. 4 km above the MTZ in the Oman ophiolite implies that ca. 50% of the oceanic crust is accreted in an upper magma lens, while the 50% lower half is either accreted in one lens located at the MTZ or in several melt lenses with alike melt supply and evenly distributed along the lower half of the plutonic oceanic crust. Garrido, C. J., Kelemen, P. B. & Hirth, G.. G-cubed. 2, doi: 10.1029/2000GC000136 (2001).

  15. Development of a model using the MATLAB System identification toolbox to estimate (222)Rn equilibrium factor from CR-39 based passive measurements.

    PubMed

    Abo-Elmagd, M; Sadek, A M

    2014-12-01

    Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.

    PubMed

    Tillman, Fred D; Smith, James A

    2004-11-01

    To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.

  17. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.

    PubMed

    Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R

    2015-10-01

    A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    PubMed

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  19. Modelling the effect of diffuse light on canopy photosynthesis in controlled environments

    NASA Technical Reports Server (NTRS)

    Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)

    2002-01-01

    A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.

  20. Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.

    1993-01-01

    Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.

  1. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  2. Time dependence of 222Rn, 220Rn and their progenies' distributions in a diffusion chamber

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.; Nikezic, D.

    2017-11-01

    Diffusion chamber with SSNTD (Solid State Nuclear Track Detector) placed inside is a passive detector for measuring the activity of 222Rn and 220Rn (radon and thoron) and their progenies. Calibration from detected alpha particle tracks to progeny activity is often acquired from theoretical models. One common assumption related to these models found in literature is that concentrations of 222Rn and 220Rn at the entrance of a chamber are constant during the exposure. In this paper, concentrations of 222Rn and 220Rn at the entrance of the chamber are taken to be variable with time, which is actually the case in reality. Therefore, spatial distributions of 222Rn and 220Rn and their progenies inside the diffusion chamber should be time dependent. Variation of 222Rn and 220Rn concentrations on the entrance of the chamber was modeled on the basis of true measurements. Diffusion equations in cylindrical coordinates were solved using FDM (Finite Difference Method) to obtain spatial distributions as functions of time. It was shown that concentrations of 222Rn, 220Rn and their progenies were not homogeneously distributed in the chamber. Due to variable 222Rn and 220Rn concentrations at the entrance of the chamber, steady state (the case when concentration of 222Rn, 220Rn and their progenies inside the chamber remains unchanged with time) could not be reached. Deposition of progenies on the chamber walls was considered and it was shown that distributions of deposited progenies were not uniform over walls' surface.

  3. Minimizing Artifacts and Biases in Chamber-Based Measurements of Soil Respiration

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K.

    2001-05-01

    Soil respiration is one of the largest and most important fluxes of carbon in terrestrial ecosystems. The objectives of this paper are to review concerns about uncertainties of chamber-based measurements of CO2 emissions from soils, to evaluate the direction and magnitude of these potential errors, and to explain procedures that minimize these errors and biases. Disturbance of diffusion gradients cause underestimate of fluxes by less than 15% in most cases, and can be partially corrected for with curve fitting and/or can be minimized by using brief measurement periods. Under-pressurization or over-pressurization of the chamber caused by flow restrictions in air circulating designs can cause large errors, but can also be avoided with properly sized chamber vents and unrestricted flows. Somewhat larger pressure differentials are observed under windy conditions, and the accuracy of measurements made under such conditions needs more research. Spatial and temporal heterogeneity can be addressed with appropriate chamber sizes and numbers and frequency of sampling. For example, means of 8 randomly chosen flux measurements from a population of 36 measurements made with 300 cm2 chambers in tropical forests and pastures were within 25% of the full population mean 98% of the time and were within 10% of the full population mean 70% of the time. Comparisons of chamber-based measurements with tower-based measurements of total ecosystem respiration require analysis of the scale of variation within the purported tower footprint. In a forest at Howland, Maine, the differences in soil respiration rates among very poorly drained and well drained soils were large, but they mostly were fortuitously cancelled when evaluated for purported tower footprints of 600-2100 m length. While all of these potential sources of measurement error and sampling biases must be carefully considered, properly designed and deployed chambers provide a reliable means of accurately measuring soil respiration in terrestrial ecosystems.

  4. Solute source depletion control of forward and back diffusion through low-permeability zones

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2016-10-01

    Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence.

  5. Solute source depletion control of forward and back diffusion through low-permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2016-10-01

    Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  7. Metasurfaced Reverberation Chamber.

    PubMed

    Sun, Hengyi; Li, Zhuo; Gu, Changqing; Xu, Qian; Chen, Xinlei; Sun, Yunhe; Lu, Shengchen; Martin, Ferran

    2018-01-25

    The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.

  8. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation

    USGS Publications Warehouse

    Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, David A.; Rogie, J.D.; Shuster, D.L.

    2001-01-01

    Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22Ne. Published by Elsevier Science B.V.

  9. Conduit Stability and Collapse in Explosive Volcanic Eruptions: Coupling Conduit Flow and Failure Models

    NASA Astrophysics Data System (ADS)

    Mullet, B.; Segall, P.

    2017-12-01

    Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including cessation of eruption.

  10. The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation

    DOE PAGES

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...

    2016-07-06

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  11. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  12. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  13. Restricted exchange microenvironments for cell culture.

    PubMed

    Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F

    2018-03-01

    Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.

  14. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in undisturbed free troposphere, but is also influenced by the Planetary Boundary Layer (PBL) especially in summer. The probability of Saharan Dust Events (SDE) at the Jungfraujoch is usually high from March to July (Collaud Coen et al., 2004). Two campaigns have been performed during this period in order to investigate the influence of a SDE on the IN number concentration and properties: PINC II took place from February 23rd to March 16th, 2009 and PINC III from June 3rd to 17th, 2009. The operating conditions inside the chamber during both campaigns were -31°C with relative humidities with respect to ice and water of 127% and 91%, respectively. During the first campaign, no SDE were detected and the average number concentration of IN was <10 particles/liter. Two SDE of different intensity occurred during the second campaign on June 15th and 16th where significantly higher IN number concentrations have been observed. We found that the larger the particles are, the more efficient they are as IN especially during SDE. References: Collaud Coen M., Weingartner E., Schaub D., Hueglin C., Corrigan C., Henning S., Schwikowski M., and Baltensperger U. (2004). Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos. Chem. Phys., 4, 2465-2480, 2004 Rogers, D. C. (1988), Development of a Continuous Flow Thermal Gradient Diffusion Chamber for Ice Nucleation Studies, Atmos. Res. 22:149-181. Stetzer, O., Baschek, B., Lueoend, F., Lohmann, U. (2008), The Zurich Ice Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmospheric Ice Formation, Aerosol Science and Technology, 42:64-74, 2008

  15. Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1957-01-01

    Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

  16. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  17. Automation of Vapor-Diffusion Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hamrick, David T.; Bray, Terry L.

    2005-01-01

    Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.

  18. Electrocapturing flow cell

    DOEpatents

    Morozov, Victor [Manassas, VA

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  19. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  20. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  1. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  2. Gravity influence on the clustering of charged particles in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  3. Analysis of flow field characteristics in IC equipment chamber based on orthogonal design

    NASA Astrophysics Data System (ADS)

    Liu, W. F.; Yang, Y. Y.; Wang, C. N.

    2017-01-01

    This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.

  4. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  5. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  6. Flow Cell Design for Effective Biosensing

    PubMed Central

    Pike, Douglas J.; Kapur, Nikil; Millner, Paul A.; Stewart, Douglas I.

    2013-01-01

    The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experimentally using a flow-fluorescence technique. Reduced flow cell efficiency with increasing flow rates was observed for all three designs and was related to the increased importance of diffusion relative to advection, with efficiency being limited by the development of regions of recirculating flow (eddies). However, the onset of eddy development occurred at higher flow rates for the design with the most gradual channel expansion, producing a considerably more efficient flow cell across the range of flow rates considered in this study. It is recommended that biosensor flow cells be designed to minimize the tendency towards, and be operated under conditions that prevent the development of flow recirculation. PMID:23344373

  7. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  8. Nucleation of rotating crystals by Thiovulum majus bacteria

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Libchaber, A.

    2018-01-01

    Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63+/- 6 s before escaping to the bulk fluid. The diffusion coefficient {D}{{eff}}=7.98 +/- 0.1 μ {{{m}}}2 {{{s}}}-1 of these 8.5 μ {{m}} diameter cells corresponds to a temperature of (4.16+/- 0.05)× {10}4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 ± 0.2 μm of each other.

  9. Influence of heat and particle fluxes nonlocality on spatial distribution of plasma density in two-chamber inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Serditov, K. Yu.

    2012-07-01

    This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.

  10. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. III. Diffusion of photo-produced H2 as a function of temperature

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.

    2016-06-01

    Context. Hydrogenated amorphous carbon (a-C:H) has been proposed as one of the carbonaceous solids detected in the interstellar medium. Energetic processing of the a-C:H particles leads to the dissociation of the C-H bonds and the formation of hydrogen molecules and small hydrocarbons. Photo-produced H2 molecules in the bulk of the dust particles can diffuse out to the gas phase and contribute to the total H2 abundance. Aims: We have simulated this process in the laboratory with plasma-produced a-C:H and a-C:D analogs under astrophysically relevant conditions to investigate the dependence of the diffusion as a function of temperature. Methods: Experimental simulations were performed in a high-vacuum chamber, with complementary experiments carried out in an ultra-high-vacuum chamber. Plasma-produced a-C:H and a-C:D analogs were UV-irradiated using a microwave-discharged hydrogen flow lamp. Molecules diffusing to the gas-phase were detected by a quadrupole mass spectrometer, providing a measurement of the outgoing H2 or D2 flux. By comparing the experimental measurements with the expected flux from a one-dimensional diffusion model, a diffusion coefficient D could be derived for experiments carried out at different temperatures. Results: Dependence on the diffusion coefficient D with the temperature followed an Arrhenius-type equation. The activation energy for the diffusion process was estimated (ED(H2) = 1660 ± 110 K, ED(D2) = 2090 ± 90 K), as well as the pre-exponential factor (D0(H2) = 0.0007 cm2 s-1, D0(D2) = 0.0045 cm2 s-1). Conclusions: The strong decrease of the diffusion coefficient at low dust particle temperatures exponentially increases the diffusion times in astrophysical environments. Therefore, transient dust heating by cosmic rays needs to be invoked for the release of the photo-produced H2 molecules in cold photon-dominated regions, where destruction of the aliphatic component in hydrogenated amorphous carbons most probably takes place.

  11. History and overview of the in vivo diffusion chamber (D. C. ) culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carsten, A.L.

    The development of the modern diffusion chamber system has been traced from the nearly 100 year old concept for in vivo growth of isolated cells in a semi-permeable container to the modern systems consisting of single and multiple chambers with differing wall materials. Various applications of the system and methods of analysis are discussed. The many advantages and disadvantages of this system are considered as compared with other available culture systems.

  12. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  13. Dual diaphragm tank with telltale drain

    NASA Technical Reports Server (NTRS)

    Tuthill, Wallace C., Jr. (Inventor)

    1991-01-01

    A fluid storage and expulsion system comprising a tank with an internal flexible diaphragm assembly of dual diaphragms in back-to-back relationship, at least one of which is provided with a patterned surface having fine edges such that the diaphragms are in contact along said edges without mating contact of surface areas to thereby form fluid channels which extend outwardly to the peripheral edges of the diaphragms is described. The interior wall of the tank at the juncture of tank sections is formed with a circumferential annular recess comprising an outer annular recess portion which forms a fluid collection chamber and an inner annular recess portion which accommodates the peripheral edge portions of the diaphragms and a sealing ring in clamped sealing relation therebetween. The sealing ring is perforated with radially extending passages which allow any fluid leaking or diffusing past a diaphragm to flow through the fluid channels between the diaphragms to the fluid collection chamber. Ports connectable to pressure fittings are provided in the tank sections for admission of fluids to opposite sides of the diaphragm assembly. A drain passage through the tank wall to the fluid collection chamber permits detection, analysis and removal of fluids in the collection chamber.

  14. Chamber measurement of surface-atmosphere trace gas exchange: Numerical evaluation of dependence on soil, interfacial layer, and source/sink properties

    NASA Astrophysics Data System (ADS)

    Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.

    2000-04-01

    We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.

  15. Chamber measurement of surface-atmosphere trace gas exchange--Numerical evaluation of dependence on soil interfacial layer, and source/sink products

    USGS Publications Warehouse

    Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.

    2000-01-01

    We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.

  16. Numerical evaluation of static-chamber measurements of soil-atmospheric gas exchange--Identification of physical processes

    USGS Publications Warehouse

    Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.

    1996-01-01

    The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.

  17. From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator

    NASA Technical Reports Server (NTRS)

    Cary, Ron

    1992-01-01

    The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.

  18. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  19. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  20. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  1. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  2. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  3. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  4. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  5. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    NASA Astrophysics Data System (ADS)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  6. Methane, Ethane, And Ethylene Laminar Counterflow Diffusion Flames At Elevated Pressures: Experimental And Computational Investigations Up To 2.0MPa

    DTIC Science & Technology

    2013-08-27

    surrounded by annular shrouds that provide an inert curtain flow to minimize the influence of ambient gas on the reaction zone. The products of combustion...thermo- couple was mounted on an XY-stage that is controlled by stepper motors inside the pressure chamber. The probe is programmed to move vertically at...covering a total traverse dis- tance of 7 mm. The probe then approaches the flame from the top in a similar manner. This method was used to rule out

  7. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  8. Thin-channel electrospray emitter

    DOEpatents

    Van Berkel, Gary J.

    2004-08-31

    An electrospray device includes a high voltage electrode chamber. The high voltage electrode chamber includes an inlet for receiving a fluid to be ionized and for directing the fluid into the chamber and at least one electrode having an exposed surface within the chamber. A flow channel directs fluid over a surface of the electrode and out of the chamber. The length of the flow channel over the electrode is greater than the height of the flow channel over the electrode, thereby producing enhanced mass transport to the working electrode resulting in improved electrolysis efficiency. An outlet is provided for transmitting the fluid out from the electrode chamber. A method of creating charged droplets includes flowing a fluid over an electrode where the length over the electrode is greater than the height of the fluid flowing over the electrode.

  9. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  10. Confinement regulates complex biochemical networks: initiation of blood clotting by "diffusion acting".

    PubMed

    Shen, Feng; Pompano, Rebecca R; Kastrup, Christian J; Ismagilov, Rustem F

    2009-10-21

    This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.

  11. The fluid mechanics of continuous flow electrophoresis in perspective

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  12. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Diffusion-Controlled Apparatus for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A semi-permeable plug or fuse at the center controls the rate at which a precipitant diffuses from the reservoir chamber into the solution chamber , thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.

  13. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    PubMed Central

    Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe

    2006-01-01

    Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051

  14. Biases in field measurements of ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Voigtländer, J.; Kulkarni, G.; Stratmann, F.; Cziczo, D. J.

    2015-12-01

    Ice nuclei (IN) play an important role in the climate system by influencing cloud properties, precipitation, and radiative transfer. Despite their importance, there are significant uncertainties in estimating IN concentrations because of the complexities of atmospheric ice nucleation processes. Field measurements of IN concentrations with Continuous Flow Diffusion Chamber (CFDC) IN counters have been vital to constrain IN number concentrations and have led to various parameterizations of IN number vs. temperature and particle concentration. These parameterizations are used in many global climate models, which are very sensitive to the treatment of cloud microphysics. However, due to non-idealities in CFDC behavior, especially at high relative humidity, many of these measurements are likely biased too low. In this study, the extent of this low bias is examined with laboratory experiments at a variety of instrument conditions using the SPectrometer for Ice Nucleation, a commercially-available CFDC-style chamber. These laboratory results are compared to theoretical calculations and computational fluid dynamics models to map the variability of this bias as a function of chamber temperature and relative humidity.

  15. Experimental determination of turbulence in a GH2-GOX rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Tou, P.; Russell, R.; Ohara, J.

    1974-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.

  16. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  17. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  18. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  19. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  20. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  1. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  2. Design, fabrication and delivery of a prototype saturator for ACPL

    NASA Technical Reports Server (NTRS)

    Keyser, G.; Rogers, C. F.; Squires, P.

    1979-01-01

    The design configuration and performance characteristics of a saturator developed to provide ground-based simulation for some of the experiments for ACPL-1 first flights of Spacelab are described, some difficulties encountered with the apparatus are discussed, and recommendations concerning testing of this type of instrument are presented. The saturators provide a means of accurately fixing the water vapor mixing ratio of an aerosol sample. Dew point temperatures from almost freezing to ambient room temperatures can be attained with high precision. The instruments can accommodate aerosol flow rates approaching 1000 cc/s. Provisions were made to inject aerosols upstream of these saturators, although downstream injection can be accomplished as well. A device of this type will be used in the ACPL-1 to condition various aerosols delivered concurrently to a CFD, expansion chamber, and static diffusion chamber used in zero gravity cloud-forming experiments. The saturator was designed to meet the requirements projected for the flight instrument.

  3. Counterflow diffusion flames of hydrogen, and hydrogen plus methane, ethylene, propane, and silane vs. air - Strain rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. Burton; Wilson, L. G.

    1991-01-01

    Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.

  4. In-line electrochemical reagent generation coupled to a flow injection biamperometric system for the determination of sulfite in beverage samples.

    PubMed

    de Paula, Nattany T G; Barbosa, Elaine M O; da Silva, Paulo A B; de Souza, Gustavo C S; Nascimento, Valberes B; Lavorante, André F

    2016-07-15

    This work reports an in-line electrochemical reagent generation coupled to a flow injection biamperometric procedure for the determination of SO3(2-). The method was based on a redox reaction between the I3(-) and SO3(2-) ions, after the diffusion of SO2 through a gas diffusion chamber. Under optimum experimental conditions, a linear response ranging from 1.0 to 12.0 mg L(-1) (R=0.9999 and n=7), a detection and quantification limit estimated at 0.26 and 0.86 mg L(-1), respectively, a standard deviation relative of 0.4% (n=10) for a reference solution of 4.0 mg L(-1) SO3(2-) and sampling throughput for 40 determinations per hour were achieved. Addition and recovery tests with juice and wine samples were performed resulting in a range between 92% and 110%. There were no significant differences at a 95% confidence level in the analysis of eight samples when comparing the new method with a reference procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Low pressure drop, multi-slit virtual impactor

    DOEpatents

    Bergman, Werner

    2002-01-01

    Fluid flow is directed into a multiplicity of slit nozzles positioned so that the fluid flow is directed into a gap between the nozzles and (a) a number of receiving chambers and (b) a number of exhaust chambers. The nozzles and chambers are select so that the fluid flow will be separated into a first particle flow component with larger and a second particle flow component with the smaller particles.

  6. Dynamics of model blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Callens, Natacha; Minetti, Christophe; Coupier, Gwennou; Dubois, Frank; Misbah, Chaouqi

    The dynamics of a vesicle suspension in shear flow was investigated by digital holographic microscopy [1] in parabolic flights and in the MASER 11 sounding rocket. Vesicles are lipid membranes which mimic the mechanical behaviour of cells, such as red blood cells in flow. In a simple shear flow between parallel walls, a lift force of purely viscous origin pushes vesicles away from walls. Our parabolic flight experiments [2] reveal that the lift velocity in a dilute suspen-sion is well described by theoretical predictions by Olla. As vesicles gather near the center of the flow chamber due to lift forces from both walls, one expects hydrodynamic interactions of pairs of vesicles to result in shear induced diffusion in the suspension. The BIOMICS experi-ment in the MASER 11 sounding rocket revealed a complex spatial structure of a polydisperse vesicle suspension due to the interplay between lift forces from the walls and hydrodynamic interactions. These phenomena have a strong impact on the structure and rheology of blood in small vessels, and a precise knowledge of the dynamics of migration and diffusion of soft particles in flow can lead to alternative ways to separate and sort blood cells. 1. Dubois, F., Schockaert, C., Callens, N., Yourrassowsky, C., "Focus plane detection criteria in digital holography microscopy by amplitude analysis", Opt. Express, Vol. 14, pp 5895-5908, 2006 2. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C., Podgorski, T., "Hydrodynamics lift of vesicles under shear flow in microgravity", Europhys. Lett., Vol. 83, p. 24002, 2008

  7. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  8. [Application of laminar air flow techniques in burn treatment].

    PubMed

    Chen, Hua-de; Lai, Wen; Zheng, Shao-yi; Gao, Hui; Xiong, Bing; Bian, Hui-ning; Liu, Zuo-An; Wei, Li-jun

    2005-12-01

    To evaluate the value of laminar flow in the treatment of burns. The air in the laminar flow chamber and the wound tissues of the patients were sampled for bacterial detection. The number and stains of bacterial colony from different classes of laminar air flow chambers at different time points were inspected and compared. The bacterial number was 0 in the laminar flow chamber of 1000 grade, which was obviously different from that in the public area. The mortality was obviously decreased in the laminar air flow chamber with shorter treatment time and hospitalization. No wound infection occurred and the wounds healed smoothly in all these patients. The application of laminar air flow can be helpful for the treatment of severe burns.

  9. The importance of hyporheic sediment respiration in several mid-order Michigan rivers: Comparison between methods in estimates of lotic metabolism

    USGS Publications Warehouse

    Uzarski, D.G.; Stricker, C.A.; Burton, T.M.; King, D. K.; Steinman, A.D.

    2004-01-01

    Metabolism was measured in four Michigan streams, comparing estimates made using a flow-through chamber designed to include the hyporheic zone to a 20 cm depth and a traditional closed chamber that enclosed to a 5 cm depth. Mean levels of gross primary productivity and community respiration were consistently greater in the flow-through chamber than the closed chamber in all streams. Ratios of productivity to respiration (P/R) were consistently greater in the closed chambers than the flow-through chambers. P/R ratios were consistently <1 in all streams when estimated with flow-through chambers, suggesting heterotrophic conditions. Maintenance of stream ecosystem structure and function therefore is dependent on subsidies either from the adjacent terrestrial system or upstream sources. Our results suggest that stream metabolism studies that rely on extrapolation of closed chambers to the whole reach will most likely underestimate gross primary productivity and community respiration.

  10. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.

  11. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    PubMed

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  12. Pressure atomizer having multiple orifices and turbulent generation feature

    DOEpatents

    VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane

    2002-01-01

    A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.

  13. Stagnation point reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Weksler, Yoav (Inventor)

    2008-01-01

    A method for combusting a combustible fuel includes providing a vessel having an opening near a proximate end and a closed distal end defining a combustion chamber. A combustible reactants mixture is presented into the combustion chamber. The combustible reactants mixture is ignited creating a flame and combustion products. The closed end of the combustion chamber is utilized for directing combustion products toward the opening of the combustion chamber creating a reverse flow of combustion products within the combustion chamber. The reverse flow of combustion products is intermixed with combustible reactants mixture to maintain the flame.

  14. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  15. Equations of motion for the variable mass flow-variable exhaust velocity rocket

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1972-01-01

    An equation of motion for a one dimensional rocket is derived as a function of the mass flow rate into the acceleration chamber and the velocity distribution along the chamber, thereby including the transient flow changes in the chamber. The derivation of the mass density requires the introduction of the special time coordinate. The equation of motion is derived from both classical force and momentum approaches and is shown to be consistent with the standard equation expressed in terms of flow parameters at the exit to the acceleration chamber.

  16. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2014-12-01

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  17. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  18. Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    PubMed Central

    Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325

  19. A Contemporary Concept of the Blood-Aqueous Barrier

    PubMed Central

    Freddo, Thomas F.

    2012-01-01

    This review traces the evolution of the concept of the blood-aqueous barrier (BAB) during the past 20 years. The classical model simply stipulated that the tight junctions of the iris vasculature and ciliary epithelium excluded plasma proteins from the aqueous humor (AH). It failed to reconcile the presence of AH protein levels equal to 1% of that found in plasma. Moreover, models of barrier kinetics assumed that the processes of AH secretion and plasma protein entry were directly linked. Thus, elevations of AH protein levels could only be explained by a pathological breakdown of the BAB. Over the last 20 years it has been shown that the plasma proteins in normal AH by-pass the posterior chamber entirely. Instead, these proteins diffuse from the capillaries of ciliary body stroma, into the iris stroma and then into the anterior chamber. This creates a reservoir of plasma-proteins in the iris stroma that is not derived from the iris vessels. This reservoir is prevented from diffusing posteriorly by tight junctions in the posterior iris epithelium. The one-way valve created by the pupil resting on the anterior lens capsule, combined with the continuous, forward flow of AH through the pupil, prevents protein reflux into the posterior chamber. Importantly, in the new paradigm, secretion of AH and the entry of plasma proteins into AH, are semi-independent events. This opens the possibility that AH protein levels could increase in the absence of breakdown of the BAB. Clinical consequences of this new paradigm of the BAB are discussed. PMID:23128417

  20. A contemporary concept of the blood-aqueous barrier.

    PubMed

    Freddo, Thomas F

    2013-01-01

    This review traces the evolution of the concept of the blood-aqueous barrier (BAB) during the past 20 years. The Classical model simply stipulated that the tight junctions of the iris vasculature and ciliary epithelium excluded plasma proteins from the aqueous humor (AH). It failed to reconcile the presence of AH protein levels equal to 1% of that found in plasma. Moreover, models of barrier kinetics assumed that the processes of AH secretion and plasma protein entry were directly linked. Thus, elevations of AH protein levels could only be explained by a pathological breakdown of the BAB. Over the last 20 years it has been shown that the plasma proteins in normal AH by-pass the posterior chamber entirely. Instead, these proteins diffuse from the capillaries of ciliary body stroma, into the iris stroma and then into the anterior chamber. This creates a reservoir of plasma-proteins in the iris stroma that is not derived from the iris vessels. This reservoir is prevented from diffusing posteriorly by tight junctions in the posterior iris epithelium. The one-way valve created by the pupil resting on the anterior lens capsule, combined with the continuous, forward flow of AH through the pupil, prevents protein reflux into the posterior chamber. Importantly, in the new paradigm, secretion of AH and the entry of plasma proteins into AH, are semi-independent events. This opens the possibility that AH protein levels could increase in the absence of breakdown of the BAB. Clinical consequences of this new paradigm of the BAB are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Diffusion of protein through the human cornea.

    PubMed

    Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N

    2012-01-01

    To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.

  2. Design and performance of a dynaniic gas flux chamber.

    PubMed

    Reichman, Rivka; Rolston, Dennis E

    2002-01-01

    Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.

  3. Soap film gas flowmeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measuredmore » using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.« less

  4. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  5. Confinement Regulates Complex Biochemical Networks: Initiation of Blood Clotting by “Diffusion Acting”

    PubMed Central

    Shen, Feng; Pompano, Rebecca R.; Kastrup, Christian J.; Ismagilov, Rustem F.

    2009-01-01

    Abstract This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da2, was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as “diffusion acting”, which is distinct from “diffusion sensing”. The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological “on” and “off” processes that are controlled by thresholds. PMID:19843446

  6. Determination of molecular contamination performance for space chamber tests

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1973-01-01

    The limitations of chamber tests with regard to the molecular contamination of a spacecraft undergoing vacuum test were examined. The molecular flow conditions existing in the chamber and the parameters dictating the degree of contamination were analyzed. Equations and graphs were developed to show the fraction of molecules returning to the spacecraft out of those emitted and to show other chamber flow parameters as a function of chamber and spacecraft surface molecular pumping and geometric configuration. Type and location of instruments required to measure the outgassing, the degree of contamination, and the returning flows are also discussed.

  7. Ion flow experiments in a multipole discharge chamber

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Frisa, L. E.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. Ion flow measurements in a multipole discharge chamber have shown that this assumption is not true. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions.

  8. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    NASA Astrophysics Data System (ADS)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  9. Vortex flows with suspended separation regions and long-range untwisted central jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovich, G.N.; Trofimov, R.S.

    1988-05-01

    A study is made of possible physicoaerodynamic configurations of vortical flow with suspended separation regions and untwisted central jets. Such flows are encountered in power plants (heat exchangers, combustion chambers, and chemical reactors) and in nature (tornadoes). The basic configurations of several flows of this type are described, including the structure of a flow formed by coaxial cocurrent twisted jets, the flow in a conical swirl chamber with the formation of an untwisted long-range axial jet, the flow pattern in a gas turbine engine chamber, and some considerations regarding the aerodynamics of a tornado.

  10. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  11. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    PubMed

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-06-12

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.

  12. Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Kawai, R.; Kagawa, N.; Kakiuchi, T.; Takahara, K.

    1984-01-01

    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers.

  13. Microgravity

    NASA Image and Video Library

    1997-07-01

    Astronaut James D. Halsell, Jr., mission commander, uses a Hi-8mm camcorder to videotape the Hand Held Diffusion Test Cells (HHDTC), in the Spacelab Science Module aboard the Earth-orbiting Space Shuttle Columbia (STS-94). Each test cell has three chambers containing a protein solution, a buffer solution and a precipitant solution chamber. Using the liquid-liquid diffusion method, the different fluids are brought into contact but not mixed. Over a period of time, the fluids will diffuse into each other through the random motion of molecules. The gradual increase in concentration of the precipitant within the protein solution causes the proteins to crystallize.

  14. Microgravity

    NASA Image and Video Library

    1993-04-06

    The COS consists of a specially designed (VDA) Vapor Diffusion Apparatus tray with 6 chambers, a video camera for each chamber, a lighting system, and associated hardware. By observing the crystal growth in each chamber, researchers can identify which conditions and concentrations of proteins and precipitants are best for promoting the crystal growth to a particular protein.

  15. Characteristics of an aerosol photometer while automatically controlling chamber dilution-air flow rate.

    PubMed

    O'Shaughnessy, P T; Hemenway, D R

    2000-10-01

    Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1963-01-01

    Smokeless flame juts from the diffuser of a unique vacuum chamber in which the upper stage rocket engine, the hydrogen fueled J-2, was tested at a simulated space altitude in excess of 60,000 feet. The smoke you see is actually steam. In operation, vacuum is established by injecting steam into the chamber and is maintained by the thrust of the engine firing through the diffuser. The engine was tested in this environment for start, stop, coast, restart, and full-duration operations. The chamber was located at Rocketdyne's Propulsion Field Laboratory, in the Santa Susana Mountains, near Canoga Park, California. The J-2 engine was developed by Rocketdyne for the Marshall Space Flight Center.

  17. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick [Bromley, GB

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  18. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  19. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  20. Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2013-01-01

    In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

  1. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2015-03-01

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  2. Three dimensional drop tracking flow chamber for coalescence studies

    DOE PAGES

    Grillet, Anne M.; Brooks, Carlton F.; Bourdon, Chris J.; ...

    2007-09-12

    Here, we have developed a novel flow chamber which imposes a controlled axisymmetric stagnation flow to enable the study of external flow effects on coalescence dynamics. This system allows for the first time the precise positioning of a drop in a three dimensional flow and additionally enforces a highly symmetric flow around the drop. We focus on the study of a single drop approaching a stationary flat plane as this is analogous to two drops approaching each other. A single drop is created and then guided along the unsteady center line of a stagnation flow. The real time computer controlmore » algorithm analyzes video images of the drop in two orthogonal planes and manipulates flow restricting valves along the four outlets of the flow. We demonstrate using particle image velocimetry that the computer control not only controls the drop position but also ensures a symmetric flow inside the flow chamber. Finally, this chamber will enable a detailed investigation of the drainage of the thin film between the drop and the lower surface in order to probe the effect of external flow on coalescence.« less

  3. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    NASA Astrophysics Data System (ADS)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  4. Two-step rocket engine bipropellant valve concept

    NASA Technical Reports Server (NTRS)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  5. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany

  6. EVALUATION OF RADON EMANATION FROM SOIL WITH VARYING MOISTURE CONTENT IN A SOIL CHAMBER

    EPA Science Inventory

    The paper describes measurements to quantitatively identify the extent to which moisture affects radon emanation and diffusive transport components of a sandy soil radon concentration gradient obtained in the EPA test chamber. The chamber (2X2X4 m long) was constructed to study t...

  7. A novel approach to predict the stability limits of combustion chambers with large eddy simulation

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Magagnato, F.; Gabi, M.

    2010-06-01

    Lean premixed combustion, which allows for reducing the production of thermal NOx, is prone to combustion instabilities. There is an extensive research to develop a reduced physical model, which allows — without time-consuming measurements — to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum, combustion chamber). For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out. In these investigations the flow in the combustion chamber is isotherm, non-reacting and excited with a sinusoidal mass flow rate. Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated. In this paper the results of additional investigations of the single resonator are presented. The flow in the combustion chamber was investigated without excitation at the inlet. It was detected, that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent. The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber. This result sheds light on a very important source of self-excited combustion instabilities. Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.

  8. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  9. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  10. Taking Yellowstone's Temperature: a New Clinopyroxene Geothermometer to Improve Timescales of Pre-eruptive Events

    NASA Astrophysics Data System (ADS)

    Brugman, K. K.; Till, C. B.

    2017-12-01

    The goal of our research is to quantify the time period between events in the magma chamber and eruption for the Scaup Lake rhyolite lava, as it erupted after a period of quiescence similar to what Yellowstone is experiencing today. The overarching goal of studies such as this that focus on past eruptions is to provide context and statistics that will ultimately improve volcano monitoring at different types of active volcanoes. The Scaup Lake flow contains zoned minerals (e.g., feldspar, zircon, clinopyroxene) that record multiple magma injection events shortly before they were erupted. Our previous work using nano-scale elemental concentration profiles from zoned clinopyroxene (cpx) as a diffusion dating tool reinforced our hypothesis that different minerals may not record the same series of pre-eruptive events, and that cpx crystal rims record older events in the Scaup Lake flow (on the order of 100s of years prior to eruption [Brugman et al., AGU OSPA talk, 2016]) than do feldspar rims (< 10 months and 10-40 years prior to eruption [Till et al., Geology, 2015]). In light of new temperature data, we have updated our diffusion dating results to better quantify pre-eruption timescales at Yellowstone.

  11. Comparison of ammonia emissions determined using different sampling methods

    USDA-ARS?s Scientific Manuscript database

    Dynamic, flow-through flux chambers are sometimes used to estimate ammonia emissions from livestock operations; however, ammonia emissions from the surfaces are affected by many factors which can be affected by the chamber. Ammonia emissions estimated using environmental flow-through chambers may be...

  12. HHDTC - Cmdr Halsell photographs hardware

    NASA Image and Video Library

    2016-08-12

    STS083-313-012 (4-8 April 1997) --- Astronaut James D. Halsell, Jr., mission commander, uses a Hi-8mm camcorder to videotape the Hand Held Diffusion Test Cells (HHDTC), in the Spacelab Module aboard the Earth-orbiting Space Shuttle Columbia. Each test cell has three chambers containing a protein solution, a buffer solution and a precipitant solution chamber. Using the liquid-liquid diffusion method, the different fluids are brought into contact but not mixed. Over a period of time, the fluids will diffuse into each other through the random motion of molecules. The gradual increase in concentration of the precipitant within the protein solution causes the proteins to crystallize.

  13. Supersonic Free-Jet Combustion in a Ramjet Burner

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III

    2010-01-01

    A new dual-mode ramjet combustor concept intended for operation over a wide flight Mach number range is described. Subsonic combustion mode is similar to that of a traditional ram combustor which allows operation at higher efficiency, and to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle. The maximum flight Mach number of this scheme is governed largely by the same physics as its classical counterpart. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated. Given the parallel nature of the present scheme, overall flowpath length is less than that of present dual-mode configurations. Cycle analysis was done to define the flowpath geometry for computational fluid dynamics (CFD) analysis, and then to determine performance based on the CFD results. CFD results for Mach 5, 8, and 12 flight conditions indicate stable supersonic free-jet formation and nozzle reattachment, thereby establishing the basic feasibility of the concept. These results also reveal the structure of, and interactions between the free-jet and recirculating combustion chamber flows. Performance based on these CFD results is slightly less than that of the constant-pressure-combustion cycle analysis primarily due to these interactions. These differences are quantified and discussed. Additional CFD results at the Mach 8 flight condition show the effects of nozzle throat area variation on combustion chamber pressure, flow structure, and performance. Calculations with constant temperature walls were also done to evaluate heat flux and overall heat loads. Aspects of the concept that warrant further study are outlined. These include diffuser design, ramjet operation, mode transition, loss mechanisms, and the effects of secondary flow for wall cooling and combustion chamber pressurization. Also recommended is an examination of system-level aspects such as weight, thermal management and rocket integration as well as alternate geometries and variable geometry schemes.

  14. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  15. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1988-01-01

    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  16. Introduction for Diffusion Chamber Culture Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carsten, A. L.

    The diffusion-chamber system has been applied to studies of cell kinetics, progenitor cell quantitation, humoral effects, immunological effects, cytogenetics, organogenesis, and the cellular effects of drugs and physical factors such as radiation, hypoxia, etc. Chamber contents have been analyzed by clot dissolution with measuring of cell content, limiting dilution evaluation, radionuclide utilization (tritiated thymidine labeling), growth of colony number, size and type, CFU-S or CFU-C content, or proliferation by secondary culture in mice or in vitro systems, and chromosome changes. Cell types ranging from embryonal tissues to adult normal and neoplastic tissues have been grown in hosts across species barriers.more » Advantages and disadvantages of this system are discussed.« less

  17. Immersion Freezing of Total Ambient Aerosols and Ice Residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar

    This laboratory study reports pre-activation measurements of the size-selected un-activated ambient or total aerosols at the temperature range from -26 to -34°C using two continuous-flow diffusion chamber style ice nucleation chambers. Two different experiments (A and B) were performed in immersion freezing mode. In experiment A, frozen fraction of total aerosol was measured, whereas in experiment B frozen fraction of ice residuals (IR) obtained through sublimation of nucleated ice crystals was measured. Frozen fractions at respective temperatures from experiment B were observed to be higher than A, and therefore it was concluded that ambient particles show pre-activation phenomenon. Furthermore, single-particlemore » elemental composition analyses of the total aerosols showed that majority of the particles are dust particles coated by organic matter. In general, this study suggests that such internally mixed complex total aerosols are efficient ice nucleating particles (INPs) and motivates further research to examine the physio-chemical properties of IR particles to explain the phenomenon of pre-activation.« less

  18. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney

    NASA Astrophysics Data System (ADS)

    Gu, Ye; Miki, Norihisa

    2009-06-01

    We present a multilayered microfilter for use as a dialyzer of a wearable artificial kidney separating metabolic wastes such as urea, uric acid and creatinine from blood. The microfilter device is assembled by alternately bonding chamber layers made of Ti by wet etching and semipermeable polymeric membranes made of polyethersulfone (PES) by the wet phase inversion method. The PES membranes sandwiched between each two chamber layers act as barriers to molecules larger than 1.7 nm. The multilayered microfilter was geometrically optimized with respect to our theoretical equations and experimental results in order to obtain kidney-competitive performance. Each diffusing unit of our device, which is only 24 × 24 × 0.4 mm3 in size, was proved experimentally to be capable of allowing a flow rate of up to 1 ml min-1 under an input pressure of only 10 kPa, which is the hydrostatic pressure in human renal arteries, while having a urea removal rate of 18 µg min-1.

  19. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  20. Multiphase flow modeling in centrifugal partition chromatography.

    PubMed

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.

  2. Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.; Meyer, Michael L.

    1996-01-01

    In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.

  3. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    PubMed

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.

  4. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  5. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  6. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  7. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  8. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  9. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  10. (TES) Thermal Enclosure System with (COS) Crystal Observation System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The COS consists of a specially designed (VDA) Vapor Diffusion Apparatus tray with 6 chambers, a video camera for each chamber, a lighting system, and associated hardware. By observing the crystal growth in each chamber, researchers can identify which conditions and concentrations of proteins and precipitants are best for promoting the crystal growth to a particular protein.

  11. Conductive heat transfer from an isothermal magma chamber and its application to the measured heat flow distribution from mount hood, Oregon

    USGS Publications Warehouse

    Nathenson, Menuel; Tilling, Robert I.; ,

    1993-01-01

    A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.

  12. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  13. Study of low speed flow cytometry for diffraction imaging with different chamber and nozzle designs.

    PubMed

    Sa, Yu; Feng, Yuanming; Jacobs, Kenneth M; Yang, Jun; Pan, Ran; Gkigkitzis, Ioannis; Lu, Jun Q; Hu, Xin-Hua

    2013-11-01

    Achieving effective hydrodynamic focusing and flow stability at low speed presents a challenging design task in flow cytometry for studying phenomena such as cell adhesion and diffraction imaging of cells with low-cost cameras. We have developed different designs of flow chamber and sheath nozzle to accomplish the above goal. A 3D computational model of the chambers has been established to simulate the fluid dynamics in different chamber designs and measurements have been performed to determine the velocity and size distributions of the core fluid from the nozzle. Comparison of the simulation data with experimental results shows good agreement. With the computational model significant insights were gained for optimization of the chamber design and improvement of the cell positioning accuracy for study of slow moving cells. The benefit of low flow speed has been demonstrated also by reduced blurring in the diffraction images of single cells. Based on these results, we concluded that the new designs of chamber and sheath nozzle produce stable hydrodynamic focusing of the core fluid at low speed and allow detailed study of cellular morphology under various rheological conditions using the diffraction imaging method. © 2013 International Society for Advancement of Cytometry.

  14. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  15. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  16. Multi-chamber electroosmosis using textile reinforced agar membranes--A promising concept for the future of hemodialysis.

    PubMed

    Kofler, Markus; Lenninger, Margit; Mayer, Gert; Neuwirt, Hannes; Grimm, Michael; Bechtold, Thomas

    2016-01-20

    Renal replacement therapy options are limited to hemodialysis and peritoneal dialysis (70% of US patients) or renal transplantation. Diffusion processes are the main physico-chemical principle behind hemodialysis. An alternative way to achieve liquid flow through membranes bases on the electroosmotic flow which is observed as electrokinetic phenomenon in porous membranes which bear surface charges. Agar consists of the non-ionic agarose and the negatively charged agaropectine thus an electroosmotic flux is observed in analytical electrophoresis. In this study the potential electroosmosis on textile reinforced agar membranes as separation method was investigated. Using a five-chamber electrolysis cell and an agar membrane/cellulose fabric composite an intensive electroosmotic flow of 1-2 ml cm(2) h(-1) at 100 mA cell current could be observed. The movement of cations in the negatively charged agar structure led to an intensive electroosmotic flux, which also transported uncharged molecules such as urea, glucose through the membrane. Separation of uncharged low molecular weight molecules is determined by the membrane characteristic. The transport of ions (K(+), PO4(3-), creatinine) and uncharged molecules (urea, glucose) in electroosmotic separation experiments was monitored using a pH 5.5 phosphate electrolyte with the aim to assess the overall transport processes in the electrochemical cell. The results demonstrate the potential of the method for filtration of biological fluids in the absence of external pressure or high shear rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  18. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  19. 8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). BOX FLUME DROPS SLIGHTLY INTO CHAMBER ON LEFT SIDE. CHAMBER IS A SERIES OF BAFFLES DESIGNED TO SLOW THE FLOW OF WATER. FLOW IS REDUCED TO ALLOW PARTICULATES TO SETTLE TO THE BOTTOM. TWO SCREENS (NOT SHOWN) FILTER LARGER DEBRIS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  20. Characteristics of Perforated Diffusers at Free-Stream Mach Number 1.90

    DTIC Science & Technology

    1950-05-08

    deg) Subscripts: 0 free stream 1 inlet entrance 2 Inlet throat 3 pitot -static rake in simulated combustion chamber 4 outlet of simulated...consisted of a 40-tube pitot -static survey rake located 0.55 combust Ion-chamber diameter downstream of the outlet of the subsonic diffuser (fig. 8(b...The rake was so designed that eaoh pitot -static tube was located at the oentroid of one of the forty equal area segments Into which the combustion

  1. [Proliferative activity of cells in dyshormonal fibroadenomatosis of the human breast].

    PubMed

    Gudim-Levkovich, K A; Iakhimovich, L V; Slinchak, S M; Kaminskaia, L P; Kovbasiuk, S A

    1981-11-01

    Fibroadenomatous tissue of the human mammary gland was cultivated in diffuse chambers implanted into mice. On day 6 of culture the growing cells were subjected to morphological and autoradiographic analysis. The index of 3H-thymidine labeling of cell nuclei was found to correlate with the morphological pattern of dyshormonal fibroadenomatosis of the mammary gland. It is discussed whether it is desirable to use the culture in diffuse chambers for screening the actively proliferating forms human mammary gland dyshormonal dysplasias prone to malignancy.

  2. Experimental determination of the turbulence in a liquid rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Hara, J.; Smith, L. O.; Partus, F. P.

    1972-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.

  3. LeRC NATR Free-Jet Development

    NASA Technical Reports Server (NTRS)

    Long-Davis, M.; Cooper, B. A.

    1999-01-01

    The Nozzle Acoustic Test Rig (NATR) was developed to provide additional test capabilities at Lewis needed to meet HSR program goals. The NATR is a large f ree-jet facility (free-jet diameter = 53 in.) with a design Mach number of 0.3. It is located inside a geodesic dome, adjacent to the existing Powered Lift Facility (PLF). The NATR allows nozzle concepts to be acoustically assessed for far-field (approximately 50 feet) noise characteristics under conditions simulating forward flight. An ejector concept was identified as a means of supplying the required airflow for this free-jet facility. The primary stream is supplied through a circular array of choked nozzles and the resulting low pressure in the constant, annular- area mixing section causes a "pumping" action that entrains the secondary stream. The mixed flow expands through an annular diffuser and into a plenum chamber. Once inside the plenum, the flow passes over a honeycomb/screen combination intended to remove large disturbances and provide uniform flow. The flow accelerates through an elliptical contraction section where it achieves a free-jet Mach number of up to 0.3.

  4. Gas Exchange Models for a Flexible Insect Tracheal System.

    PubMed

    Simelane, S M; Abelman, S; Duncan, F D

    2016-06-01

    In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.

  5. Orthotropic and time-dependent moisture diffusion measurements in polymer matrix composites using nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Pilli, Siva P.

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of composites. The objective of this dissertation was to understand the basic concepts of moisture transport in polymeric composites. Humidity test chambers were used in combination with D2O water to characterize the diffusion of D2O using Nuclear Reaction Analysis (NRA). Moisture content was measured as a function of through-thickness depth using NRA. In this study a novel method to measure the orthotropic diffusivities of polymer matrix composites has been demonstrated. This was achieved by soaking the samples in D2O vapor and subsequently characterizing the diffusion of D2O at all edges of the coupon using NRA. The diffusivity through the surface was 3½ times higher than the diffusivity through the edges. A direct comparison of experimental data with models using orthotropic diffusivities was in relatively good agreement. Surface moisture content was also measured as a function of time using NRA. It was shown that the surface concentration reaches an intermediate value of 79% Mm very rapidly and is followed by a slow linear increase to the saturation level (Mm). This research also interrogates the effect of pressure on diffusion. Test chambers were built to maintain a constant relative humidity of 80% at 60°C at three different pressures (0.101 MPa, 0.517 MPa and 1.034 MPa) including a liquid water immersion test chamber at 60°C. In this study it was observed that the time to saturation increased with increasing chamber pressure. This was primarily due to the increased maximum moisture content at higher pressures. Liquid immersion of the test samples provided the upper bound for maximum moisture content and a lower bound for time to saturation. The effects of material systems and layups on humidity measurements were also studied using two different polymer composite material systems, Cycom and Toray. Diffusivity results were identical for different layups whereas differences were observed for different material systems. Finally three-dimensional numeric models were developed, using ANSYS, to compare with the measured moisture content. Models incorporating the time-dependent and 3-D diffusion have shown an improved correlation with experiments.

  6. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  7. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  8. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  9. Cold-Flow Testing of a Proposed Integrated Center-Body Diffuser/Steam Blocker Concept for Plum Brook Station's B-2 Test Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.; Weaver, Harold F; Kastner, Carl E., Jr.

    2009-01-01

    The center-body diffuser (CBD) steam blocker (SB) system is a concept that incorporates a set of secondary drive nozzles into the envelope of a CBD, such that both nozzle systems (i.e., the rocket engine and the steam blocking nozzles) utilize the same supersonic diffuser, and will operate either singularly or concurrently. In this manner, the SB performs as an exhaust system stage when the rocket engine is not operating, and virtually eliminates discharge flow on rocket engine shutdown. A 2.25-percent scale model of a proposed SB integrated into a diffuser for the Plum Brook B-2 facility was constructed and cold-flow tested for the purpose of evaluating performance characteristics of various design options. These specific design options addressed secondary drive nozzle design (method of steam injection), secondary drive nozzle location relative to CBD throat, and center-body throat length to diameter (L/D) ratios. The objective of the test program is to identify the desired configuration to carry forward should the next phase of design proceed. The tested scale model can provide data for various pressure ratios; however, its design is based on a proposed B-2 spray chamber (SC) operating pressure of 4.0 psia and a steam supply pressure of 165 psia. Evaluation of the test data acquired during these tests indicate that either the discrete axial or annular nozzle configuration integrated into a CBD, with an annular throat length of 1.5 L/D at the nominal injection position, would be suitable to carry forward from the SB's perspective. Selection between these two then becomes more a function of constructability and implementation than performance. L/D also has some flexibility, and final L/D selection can be a function of constructability issues within a limited range.

  10. CALUTRON CONTROL DEVICE

    DOEpatents

    Baldwin, L.W.

    1959-08-25

    Several interlock and control circuits for a calutron are described. In one of the arrangements, the ton source cooling water flow is interlocked with the current supply to the heaters assoctated with the charge chamber, arc chamber, and electrode structure. When the ion source coolant flow rate exceeds a predetermined level, the heater associated with the charge chamber is energized. After the charge chamber has reached a predetermined temperature, the arc chamber heater is energized. Thereafter, the electrode structure heater is energized and the ion source is ready to have the operating voltages applied.

  11. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  12. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  13. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  14. A study of amplifying the response of an LR115 solid state track detector by combining it with electret.

    PubMed

    Nikezić, D; Krstić, D

    1995-12-01

    Radon progeny are positively charged immediately after formation. A negatively charged electret collects radon progeny atoms which are produced in the diffusion chamber. The detector sensitivity may be increased by using an electret in front of solid state nuclear track detector. Dependence of detection sensitivity on distance between electret and detector LR115 II is studied theoretically and experimentally in this paper. A relatively small fraction of 218Po atoms that formed in the diffusion chamber are collected by the electret. We estimated that the attracted fraction of 218Po was 17% while the attracted fraction of 214Bi-214Po is considerably larger and amounted to approximately 60%. These results confirm previous finding that 218Po atoms discharge quickly after their formation. The comparative radon measurements using diffusion chambers with and without electrets were performed. The amplification of detector sensitivity due to the electret amounted to approximately 80%.

  15. Qualitative Flow Visualization of a 110-N Hydrogen/Oxygen Laboratory Model Thruster

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; McGuire, Thomas J.; Schneider, Steven J.

    1997-01-01

    The flow field inside a 110 N gaseous hydrogen/oxygen thruster was investigated using an optically accessible, two-dimensional laboratory test model installed in a high altitude chamber. The injector for this study produced an oxidizer-rich core flow, which was designed to fully mix and react inside a fuel-film sleeve insert before emerging into the main chamber section, where a substantial fuel film cooling layer was added to protect the chamber wall. Techniques used to investigate the flow consisted of spontaneous Raman spectra measurements, visible emission imaging, ultraviolet hydroxyl spectroscopy, and high speed schlieren imaging. Experimental results indicate that the oxygen rich core flow continued to react while emerging from the fuel-film sleeve, suggesting incomplete mixing of the hydrogen in the oxygen rich core flow. Experiments also showed that the fuel film cooling protective layer retained its integrity throughout the straight section of the combustion chamber. In the converging portion of the chamber, however, a turbulent reaction zone near the wall destroyed the integrity of the film layer, a result which implies that a lower contraction angle may improve the fuel film cooling in the converging section and extend the hardware lifetime.

  16. Microgravity

    NASA Image and Video Library

    1994-02-16

    These Vapor Diffusion Apparatus (VDA) trays were first flown in the Thermal Enclosure System (TES) during the USMP-2 (STS-62) mission. Each tray can hold 20 protein crystal growth chambers. Each chamber contains a double-barrel syringe; one barrel holds protein crystal solution and the other holds precipitant agent solution. During the microgravity mission, a torque device is used to simultaneously retract the plugs in all 20 syringes. The two solutions in each chamber are then mixed. After mixing, droplets of the combined solutions are moved onto the syringe tips so vapor diffusion can begin. During the length of the mission, protein crystals are grown in the droplets. Shortly before the Shuttle's return to Earth, the experiment is deactivated by retracting the droplets containing protein crystals, back into the syringes.

  17. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T. Tazwell; Keller, Jay O.

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  18. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  19. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.

    1981-04-30

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  20. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.

    1982-01-01

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  1. Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1982-01-01

    The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.

  2. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates

    DOEpatents

    Mahan, Archie Harvin; Molenbroek, Edith C.; Gallagher, Alan C.; Nelson, Brent P.; Iwaniczko, Eugene; Xu, Yueqin

    2002-01-01

    A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

  3. Design and Installation of a Field Ionization Test Chamber for Ion Thrusters

    DTIC Science & Technology

    2011-12-01

    where F is thrust, m& is the mass flow rate of the propellant, and go is the standard acceleration due to gravity at sea level [1]. It provides a...only one graphene wall, and multi- walled CNT ( MWCNT ), which consist of multiple, concentric walls of graphene (Figure 9). One of the most unique...ionization chamber to ensure the mass flow rate going into the chamber matches the mass flow rate leaving it. 46 B. FIELD EMISSION AND FIELD

  4. Corrosion test cell for bipolar plates

    DOEpatents

    Weisbrod, Kirk R.

    2002-01-01

    A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.

  5. Validation of the flow-through chamber (FTC) and steady-state (SS) methods for clearance rate measurements in bivalves

    PubMed Central

    Larsen, Poul S.; Riisgård, Hans Ulrik

    2012-01-01

    Summary To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the ‘flow-through chamber method’ (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate ‘chamber geometry’ as hitherto adapted in many studies. For the ‘steady-state method’ (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal ‘chamber geomety’. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given ‘chamber geometry’. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations. PMID:23213362

  6. Cleaning of a thermal vacuum chamber with shrouds in place

    NASA Technical Reports Server (NTRS)

    Bond, William R.

    1992-01-01

    In February, 1991, a failure of a rotary booster pump caused the diffusion pumps to backstream into a 10 ft x 15 ft thermal vacuum chamber. Concerns existed about the difficulty of removing and reinstalling the shrouds without causing leaks. The time required for the shroud removal was also of concern. These concerns prompted us to attempt to clean the chamber without removing the shrouds.

  7. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  8. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  9. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  10. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  11. Shock-Induced Heating In A Rocket Engine

    NASA Technical Reports Server (NTRS)

    Lagnado, Ronald R.; Raiszadeh, Farhad

    1989-01-01

    Misalignments give rise to hotspots on walls. Report discusses numerical simulation of flow in and near small, ringlike cavity in wall of Space Shuttle main engine at junction of main combustion chamber and nozzle. Purpose to study effects of misalignments between combustion chamber and nozzle on transfer of heat into surfaces chamber, cavity, and nozzle. Depending on specific misalignment flow encounters forward-or backward-facing step leaving chamber and entering nozzle. Results in serious losses of performance and excessive heating of walls.

  12. Advanced Expander Test Bed Program

    DTIC Science & Technology

    1991-04-01

    CHAMBER COOLANT DP 503. CHAMBER COOLANT DT 896. ETA C* 0.993 CHAMBER Q 12371. ENGINE STATION CONDITIONS FUEL SYSTEM CONDITIONS STATION PRESS TEMP FLOW...1597.3 452.5 7.44 1507.1 0.62 CHAMBER 1500.0 * OXYGEN SYSTEM CONDITIONS STATION PRESS TEMP FLOW ENTHALPY DENSITY ENGINE INLET 70.0 163.0- 44.64 61.2...FUEL SYSTEM CONOITIONS PRESS TEMP FLOM ENTHALPY OENSITY STATION (PSIA) (DEG R) (LB/SEC) [(BTU/LB) (LB/FT31 ENGINE INLET 73.0 38.0 7.440 -104.8 4.389

  13. Diffusion of antimicrobials in multispecies biofilms evaluated in a new biofilm model.

    PubMed

    van der Waal, S V; de Almeida, J; Krom, B P; de Soet, J J; Crielaard, W

    2017-04-01

    To describe the application of a newly-developed in vitro model in which the diffusion of antimicrobials in oral biofilms can be studied. In a flow chamber consisting of three parallel feeding channels connected with each other by eight perpendicular side channels, multispecies biofilms were grown from saliva of a single donor for 48 h. The dimensions of the side channels were 100 μm × 100 μm × 5130 μm (H × W × L). When one or more side channels were filled with biofilm, the biofilms were stained with fluorescent stains. Then, one side-channel biofilm was selected and treated with phosphate buffered saline, 2% sodium hypochlorite (NaOCl), 17% ethylenediaminetetra-acetic acid (EDTA) or modified salt solution (MSS). Diffusion of the irrigants was observed by acquiring fluorescence images at 10× objective every 15 s for 30 min. It was possible to culture biofilms in the narrow (100 μm) channels. The biofilms varied in phenotype. In this model, no diffusion of NaOCl into the biofilms was seen after its application. Seventeen-percentage EDTA only diffused into the biofilm up to 200 μm in 30 min. MSS did diffuse in the biofilm over a distance of 450 μm within 2 min after a single application. This new model enables the investigation of the diffusion of antimicrobials in biofilms. Other applications to improve our understanding of the characteristics of biofilms are now possible. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. An extended CFD model to predict the pumping curve in low pressure plasma etch chamber

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu

    2014-12-01

    Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.

  15. Turbulence in a gaseous hydrogen-liquid oxygen rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Lebas, J.; Tou, P.; Ohara, J.

    1975-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a LOX-GH2 rocket combustion chamber was determined from experimental measurements of tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and a numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber, and an exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the value of the intensity of turbulence reaches a maximum of 14% at a location about 7" downstream from the injector. The Lagrangian correlation coefficient associated with this value is given by the above exponential expression where alpha = 10,000/sec.

  16. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.

  17. Method and apparatus to characterize ultrasonically reflective contrast agents

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  18. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  19. Modeling the drug transport in the anterior segment of the eye.

    PubMed

    Avtar, Ram; Tandon, Deepti

    2008-10-02

    The aim of the present work is the development of a simple mathematical model for the time course concentration profile of topically administered drugs in the anterior chamber aqueous humor and investigation of the effects of various model parameters on the aqueous humor concentration of lipophilic and hydrophilic drugs. A simple pharmacokinetic model for the transient drug transport in the anterior segment has been developed by using the conservation of mass in the precorneal tear film, Fick's law of diffusion and Michaelis-Menten kinetics of drug metabolism in cornea, and the conservation of mass in the anterior chamber. An analytical solution describing the drug concentration in the anterior chamber has been obtained. The model predicts that an increase in the drug metabolic (consumption) rate in the corneal epithelium reduces the drug concentration in the anterior chamber for both lipophilic and hydrophilic molecules. A decrease in the clearance rate and distribution volume of the drug in the anterior chamber raises the aqueous humor concentration significantly. It is also observed that decay rate of drug concentration in the anterior chamber is higher for lipophilic molecules than that for hydrophilic molecules. The bioavailability of drugs applied topically to the eye may be improved by a rise in the precorneal tear volume, diffusion coefficient in corneal epithelium and distribution coefficient across the endothelium anterior chamber interface, and by reducing the drug metabolism, drug clearance rate and distribution volume in anterior chamber.

  20. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOEpatents

    Woodward, Jonathan

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  1. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOEpatents

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  2. Fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Ostrach, S.

    1978-01-01

    The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.

  3. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system.

    PubMed

    Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F

    2009-04-01

    Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.

  4. Degassing procedure for ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Moore, B. C.

    1979-01-01

    Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.

  5. PIV measurements in a compact return diffuser under multi-conditions

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Lu, W. G.; Shi, W. D.

    2013-12-01

    Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.

  6. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1039:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  7. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1030:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  8. A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.

    PubMed

    Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F

    2009-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  9. A Study of the Coriolis Effect on the Fluid Flow Profile in a Centrifugal Bioreactor

    PubMed Central

    Detzel, Christopher J.; Thorson, Michael R.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2011-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR) which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This paper focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. PMID:19455639

  10. Joule heating induced stream broadening in free-flow zone electrophoresis.

    PubMed

    Dutta, Debashis

    2018-03-01

    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  12. Vacuum chamber with a supersonic flow aerodynamic window

    DOEpatents

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  13. Cooling system for three hook ring segment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang

    2014-08-26

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in themore » midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.« less

  14. Vacuum chamber with a supersonic-flow aerodynamic window

    DOEpatents

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  15. Characterization of a Head-Only Aerosol Exposure System for Nonhuman Primates

    DTIC Science & Technology

    2010-01-01

    Alicat Scientific). The flow used provided isokinetic sampling, assuming the presence of laminar flow at the filter inlet, so that the chamber...airflow measured at the chamber inlet using a Gilibrator flow meter (Sensidyne LP) was 29.79±0.88L/min (n= 10; CV=2.97%). With both the aerosol

  16. Helium retention and Hydrogen absorption in FLiRE

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin

    2005-10-01

    The FLiRE (Flowing Lithium Retention Experiment) facility consists of a flow loop which contains a two sections to observe flow along ramps in an upper chamber. As the Li exits the upper chamber it makes a vacuum seal isolation of the upper chamber from a lower one where thermal desporption spectroscopy can take place. By applying an ion beam or a plasma pulse to the open-channel Li flow on the ramp, studies can be made of He and H retention by measuring the partial pressure of He in the lower TDS chamber. Previous studies have shown about a 1% to 2% retention of He over a time scale sufficient to exit a potential flowing Li-walled reactor. The significance of such a result is very high and needs to be verified. It is possible that He implanted in the ramp before flow was initiated was absorbed leading to the observed increase. The experiment has been altered to address this and other concerns. Research on hydrogen absorption in liquid lithium exposed to hydrogen plasma has also been conducted. Overall results and their implications towards large scale fusion reactors are given.

  17. Heat treatment furnace

    DOEpatents

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  18. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  19. Biomimetic Unidirectional Capillary Action

    NASA Astrophysics Data System (ADS)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  20. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott; Turner, James (Technical Monitor)

    2001-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity, but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to-diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer and one fuel orifices) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme as Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 92%, can be obtained. MSFC and the U.S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RPM) system has been derived from the one for the gel propellant.

  1. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  2. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  3. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    PubMed

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  4. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  5. Methods for improved growth of group III nitride semiconductor compounds

    DOEpatents

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  6. Numerical Investigation of Different Radial Inlet Forms for Centrifugal Compressor and Influence of the Deflectors Number by Means of Computational Fluid Dynamics Methods with Computational Model Validation

    NASA Astrophysics Data System (ADS)

    Kozhukhov, Y. V.; Yun, V. K.; Reshetnikova, L. V.; Prokopovich, M. V.

    2015-08-01

    The goal of this work is numerical experiments for five different types of the centrifugal compressor's inlet chambers with the help of CFD-methods and comparison of the computational results with the results of the real experiment which was held in the Nevskiy Lenin Plant in Saint-Petersburg. In the context of one of the chambers the influence of deflectors on its characteristics was investigated. The objects of investigation are 5 inlet chambers of different types which differ from each other by deflectors’ existence and by its number. The comparative analyze of the results of numerical and real experiments was held by means of comparison of relative velocity and static pressure coefficient distribution on hub and shroud region, and also by means of loss coefficient values change for all five chambers. As a result of the numerical calculation the quantitative and qualitative departure of CFD- calculations results and real experiment were found out. The investigation of the influence of the number of deflectors on flow parameters was carried out. The results of the study prove that the presence of the deflectors on flow path significantly increases the probability of the flow separations and reversed flows appearance on them. At the same time, the complete absence of the deflectors in the chamber significantly increases circumferential distortion of the flow; however the loss coefficient decreases anyway, the high values of which are caused by the shock flow existence. Thus, the profiling of the deflectors of the inlet chamber should be given a special attention.

  7. Reciprocating free-flow isoelectric focusing device for preparative separation of proteins.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; Wang, Yi; Li, Guo-Qing; Li, Shan; Xiao, Hua; Fan, Liu-Yin; Liu, Shao-Rong; Cao, Cheng-Xi

    2015-11-27

    The traditional recycling free-flow isoelectric focusing (RFFIEF) suffered from complex structure, tedious operations and poor extensibility as well as high cost. To address these issues, a novel reciprocating free-flow isoelectric focusing device (ReFFIEF) was developed for proteins or peptides pre-fractionation. In the new device, a reciprocating background flow was for the first time introduced into free flow electrophoresis (FFE) system. The gas cushion injector (GCI) used in the previous continuous free-flow electrophoresis (CFFE) was redesigned for the reciprocating background flow. With the GCI, the reciprocating background flow could be achieved between the GCI, separation chamber and transient self-balance collector (tSBC). In a run, process fluid flowed to and from, forming a stable reciprocating fluid flow in the separation chamber. A pH gradient was created within the separation chamber, and at the same time proteins were focused repeatedly when passing through the chamber under perpendicular electric field. The ReFFIEF procedure was optimized for fractionations of three model proteins, and the optimized method was further used for pre-fractionation of model human serum samples. As compared with the traditional RFFIEF devices developed about 25 years ago, the new ReFFIEF system showed several merits, such as simple design and structure, user-friendly operation and easy to extend as well as low cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G [Augusta, GA; Rossabi, Joseph [Aiken, SC; Riha, Brian D [Augusta, GA

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  9. Apparatus for passive removal of subsurface contaminants and volume flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining volume flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the volume flow rate to be determined through the retrofitted Baroball valve.

  10. Use of cryopumps on large space simulation systems

    NASA Technical Reports Server (NTRS)

    Mccrary, L. E.

    1980-01-01

    The need for clean, oil free space simulation systems has demanded the development of large, clean pumping systems. The assurance of optically dense liquid nitrogen baffles over diffusion pumps prevents backstreaming to a large extent, but does not preclude contamination from accidents or a control failure. Turbomolecular pumps or ion pumps achieve oil free systems but are only practical for relatively small chambers. Large cryopumps were developed and checked out which do achieve clean pumping of very large chambers. These pumps can be used as the original pumping system or can be retrofitted as a replacement for existing diffusion pumps.

  11. Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes

    DTIC Science & Technology

    2009-07-13

    Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping

  12. High-throughput separation of cells by dielectrophoresis enhanced with 3D gradient AC electric field.

    PubMed

    Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira

    2017-11-01

    We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.

  13. Electrochemical cell apparatus having an exterior fuel mixer nozzle

    DOEpatents

    Reichner, Philip; Doshi, Vinod B.

    1992-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.

  14. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOEpatents

    Gorlov, Alexander M.

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  15. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine

    NASA Astrophysics Data System (ADS)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.

    2018-01-01

    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  16. Effect of high negative incidence on the performance of a centrifugal compressor stage with conventional vaned diffusers

    NASA Astrophysics Data System (ADS)

    Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari

    2011-06-01

    Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.

  17. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages.more » The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet removes this sensitivity.« less

  18. Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics [review article

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Stahl, H.; Gust, G.; Müller, V.; Arning, U.; Andersson, H.; Hall, P. O. J.

    2004-01-01

    The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u ∗) , and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u ∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u ∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u ∗ were found to correlate according to the following empirical formula: DBL=76.18(u ∗) -0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u ∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m -2 day -1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.

  19. Two-statge sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  20. Apparatus for diffusion controlled dialysis under microgravity conditions

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    Apparatus for implementing crystal growth by allowing mixing of solutions under microgravity conditions includes a housing within which a number of pairs of chambers are formed. The chambers of each pair are aligned and a rotary valve is positioned between the chambers of each pair. When the valve is in a first position one chamber of each pair may communicate with the other chamber. A separate valve is provided for each pair of chambers so that each pair of chambers may be activated independently of the others and sequentially at selected intervals. Protein solution may be located within a small cavity in a cap which closes one of the chambers of a pair, and the cavity in the cap is closed by a dialysis membrane. The length of certain pairs of chambers may differ from the length of other pairs of chambers to optimize conditions for various dialysis productions, and wicking material may be incorporated into selected chambers for controlling the critical approach to supersaturation.

  1. The Effect of the Air-Delivery Method on Parameters of the Precessing Vortex Core in a Hydrodynamic Vortex Chamber

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.

    2018-03-01

    The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.

  2. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  3. A Computational Study of the Hydrodynamics in the Nasal Region of a Hammerhead Shark (Sphyrna tudes): Implications for Olfaction

    PubMed Central

    Rygg, Alex D.; Cox, Jonathan P. L.; Abel, Richard; Webb, Andrew G.; Smith, Nadine B.; Craven, Brent A.

    2013-01-01

    The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area. PMID:23555780

  4. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Christensen, Ulrich R.

    2008-12-01

    We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.

  5. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  6. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  7. Nitrate measurement in droplet flow: gas-mediated crosstalk and correction.

    PubMed

    Nightingale, Adrian M; Hassan, Sammer-Ul; Evans, Gareth W H; Coleman, Sharon M; Niu, Xize

    2018-06-07

    In droplet microfluidics, droplets have traditionally been considered discrete self-contained reaction chambers, however recent work has shown that dissolved solutes can transfer into the oil phase and migrate into neighbouring droplets under certain conditions. The majority of reports on such inter-droplet "crosstalk" have focused on surfactant-driven mechanisms, such as transport within micelles. While trialling a droplet-based system for quantifying nitrate in water, we encountered crosstalk driven by a very different mechanism: conversion of the analyte to a gaseous intermediate which subsequently diffused between droplets. Importantly we found that the crosstalk occurred predictably, could be experimentally quantified, and measurements rationally post-corrected. This showed that droplet microfluidic systems susceptible to crosstalk such as this can nonetheless be used for quantitative analysis.

  8. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    NASA Astrophysics Data System (ADS)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  9. On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments.

    PubMed

    Aminzadeh, Reza; Thielens, Arno; Bamba, Aliou; Kone, Lamine; Gaillot, Davy Paul; Lienard, Martine; Martens, Luc; Joseph, Wout

    2016-07-01

    For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 μW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  11. Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Unverferth, John; Longcope, Dana

    2018-06-01

    Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.

  12. Engine flow visualization using a copper vapor laser

    NASA Technical Reports Server (NTRS)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  13. Numerical investigation of air flow in a supersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Drozdov, S. M.; Rtishcheva, A. S.

    2017-11-01

    In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.

  14. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George [Palm City, FL

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  15. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  16. Natural oscillations of a gas in an elongated combustion chamber

    NASA Astrophysics Data System (ADS)

    Nesterov, S. V.; Akulenko, L. D.; Baydulov, V. G.

    2017-02-01

    For the analysis of the frequencies and shapes of the natural oscillations of a gas in an elongated rectilinear combustion chamber, this chamber can be treated as a kind of an organ pipe that has the following specific features: 1. the chamber has an inlet and outlet nozzles; 2. a gas mixture burns in the combustion chamber; 3. the combustion materials flow out from the outlet nozzle; 4. the gas flows in such a way that its velocity in the larger part (closer to the outlet nozzle) of the chamber exceeds the speed of sound (Mach number M > 1). There are only separate domains (one or several), where M < 1. The excitation of the natural oscillations of the gas and an increase in the amplitude of such oscillations can lead to instability of the combustion process [1].

  17. Two stage sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  18. Flow directing means for air-cooled transformers

    DOEpatents

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  19. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less

  20. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  1. Electrowinning apparatus and process

    DOEpatents

    Buschmann, Wayne E [Boulder, CO

    2012-06-19

    Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.

  2. Visualization of vortex structures and analysis of frequency of PVC

    NASA Astrophysics Data System (ADS)

    Gesheva, E. S.; Shtork, S. I.; Alekseenko, S. V.

    2018-03-01

    The paper presents the results of the study of large-scale vortex structures in a model chamber. Methods of forming quasi-stationary vortices of various shapes by changing the geometric parameters of the chamber have been proposed. In the model chamber with a tangential swirl of the flow, a rectilinear vortex, single helical and double helical vortices were obtained. The double helical structure of the vortex is unique due to its immovability around the axis of the chamber. The resulting structures slowly oscillate around their own axes, which is called the vortex core precession; while the oscillation frequency depends linearly on the liquid flow rate. The use of stationary vortex structures in power plants will increase the efficiency of combustion chambers and reduce slagging.

  3. High performance spiral wound microbial fuel cell with hydraulic characterization.

    PubMed

    Haeger, Alexander; Forrestal, Casey; Xu, Pei; Ren, Zhiyong Jason

    2014-12-01

    The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m(2)/m(3), and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m(3) based on total volume and 170W/m(3) based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  5. CFD analyses of combustor and nozzle flowfields

    NASA Astrophysics Data System (ADS)

    Tsuei, Hsin-Hua; Merkle, Charles L.

    1993-11-01

    The objectives of the research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustion processes. A Computational Fluid Dynamic (CFD) technique is employed to model the flowfields within the combustor, nozzle, and near plume field. The computational modeling of the rocket engine flowfields requires the application of the complete Navier-Stokes equations, coupled with species diffusion equations. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an ongoing experimental program at NASA LeRC. The numerical procedure is performed on both time-marching and time-accurate algorithms, using an LU approximate factorization in time, flux split upwinding differencing in space. The integrity of fuel film cooling along the wall, its effectiveness in the mixing with the core flow including unsteady large scale effects, the resultant impact on performance and the assessment of the near plume flow expansion to finite pressure altitude chamber are addressed.

  6. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  7. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The rangesmore » of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.« less

  8. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadroy, Y.; Horbett, T.A.; Hanson, S.R.

    1989-04-01

    To study mechanisms of complex thrombus formation in vivo, and to compare the relative antithrombotic effects of anticoagulants and antiplatelet agents, a model was developed in baboons. Segments of collagen-coated tubing followed by two sequentially placed expansion chambers exhibiting disturbed flow patterns were exposed to native blood under laminar flow conditions. The device was incorporated for 1 hour into an exteriorized arteriovenous shunt in baboons under controlled blood flow (20 ml/min). Morphologic evaluation by scanning electron microscopy showed that thrombi associated with collagen were relatively rich in platelets but thrombi in the chambers were rich in fibrin and red cells.more » Deposition of indium 111-labeled platelets was continuously measured with a scintillation camera. Platelet deposition increased in a linear (collagen-coated segment) or exponential (chambers 1 and 2) fashion over time, with values after 40 minutes averaging 24.1 +/- 3.3 x 10(8) platelets (collagen segment), 16.7 +/- 3.4 x 10(8) platelets (chamber 1), and 8.4 +/- 2.4 x 10(8) platelets (chamber 2). Total fibrinogen deposition after 40 minutes was determined by using iodine 125-labeled baboon fibrinogen and averaged 0.58 +/- 0.14 mg in the collagen segment, 1.51 +/- 0.27 mg in chamber 1, and 0.95 +/- 0.25 mg in chamber 2. Plasma levels of beta-thromboglobulin (beta TG), platelet-factor 4 (PF4), and fibrinopeptide A (FPA) increased fourfold to fivefold after 60 minutes of blood exposure to the thrombotic device. Platelet deposition onto the collagen segment, chamber 1, and chamber 2 was linearly dependent on the circulating platelet count. Platelet accumulation in chamber 1 and chamber 2 was also dependent on the presence of the proximal collagen segment.« less

  9. Inverse design of centrifugal compressor vaned diffusers in inlet shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangeneh, M.

    1996-04-01

    A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called ``Secondary Flow Approximation`` in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniformmore » inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton`s three-dimensional inviscid Euler solver and Dawes` three-dimensional Navier-Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.« less

  10. Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Hilley, G. E.

    2014-09-01

    One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June-October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24-25 October soil CO2 flux surveys were 165, 172, and 231 t d- 1, respectively. The average (June-October) CO2 emission rate estimated for this area was 123 t d- 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time-frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July-August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d- 1, which may suggest that emissions returned to 1998-2009 levels, following an increase from 2009 to 2011.

  11. Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Hilley, George E.

    2014-01-01

    One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June–October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24–25 October soil CO2 flux surveys were 165, 172, and 231 t d− 1, respectively. The average (June–October) CO2 emission rate estimated for this area was 123 t d− 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time–frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July–August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d− 1, which may suggest that emissions returned to 1998–2009 levels, following an increase from 2009 to 2011.

  12. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    NASA Astrophysics Data System (ADS)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  13. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  14. Model investigation of inlet plenum flow straightening techniques for altitude test facility

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Linke, H. G.

    1976-01-01

    An investigation was conducted to evaluate and improve the quality of the airflow to be supplied to the engine in altitude test chambers 3 and 4 of the Propulsion Systems Laboratory at the Lewis Research Center. One-twentieth-scale models of the inlet plenum chamber of the two test chambers were used in the investigation to minimize time and cost. It was possible to reduce the velocity spread in the inlet plenum from approximately 100 m/sec (330 ft/sec) to approximately 10 m/sec (30 ft/sec) through the combined use of flow diverters, multiple spaced screens, flow straighteners, and turning vanes.

  15. Electrochemical mercerization, souring, and bleaching of textiles

    DOEpatents

    Cooper, J.F.

    1995-10-10

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.

  16. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  17. Electrochemical mercerization, souring, and bleaching of textiles

    DOEpatents

    Cooper, John F.

    1995-01-01

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.

  18. In-situ measurements of ice nucleating particles with FINCH (Fast Ice Nucleus Chamber)

    NASA Astrophysics Data System (ADS)

    Kohl, Rebecca; Frank, Fabian; Curtius, Joachim; Rose, Diana

    2017-04-01

    Ice nucleating particles (INPs), which are a small fraction of the total aerosol population, are capable of triggering ice formation under atmospheric conditions. Since INPs play an important role for the radiative properties of clouds as well as for the formation of precipitation it is important to get quantitative information on the ice activity of various atmospheric aerosol species. With the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) the number concentration of INP is determined at different freezing temperatures and supersaturations. In contrast to other commonly used INP counters, i.e., continuous flow diffusion chambers (CFDCs, DeMott et al., 2011), in FINCH the supersaturation is reached by mixing the sample flow of ambient aerosol with a warm moist as well as a cold dry airflow. By changing the flow rates and temperatures of the individual airflows the freezing temperature (down to -50°C) and supersaturation (up to above water saturation) can be varied relatively quickly. Particles that are ice active at the prescribed freezing temperature and supersaturation grow to crystals and are counted by a home-built optical particle counter (OPC) mounted below the chamber (Bundke et al., 2010). FINCH was operated during the four-week INUIT-BACCHUS-ACTRIS field campaign in Cyprus in April 2016. The measuring site was the location of the Cyprus Atmospheric Observatory (CAO) at Agia Marina Xyliatou, which is typically influenced by dust from the Sahara and the Middle East, an aerosol that is known to have relatively good ice nucleating ability. First results from this campaign will be presented. Acknowledgements: The authors thank the entire INUIT-BACCHUS-ACTRIS campaign team for their cooperation and support. The INUIT-2 project is financed by the German Research Foundation DFG (FOR 1525). The INUIT-Cyprus campaign is a cooperation with the EU-funded project BACCHUS and is also funded by ACTRIS-TNA. References: Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H.: The fast Ice Nucleus chamber FINCH, Atmos. Res., 90, 180-186, 10.1016/j.atmosres.2008.02.008, 2008. Bundke, U., Reimann, B., Nillius, B., Jaenicke, R., and Bingemer, H.: Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH, Atmos. Meas. Tech., 3, 263-271, doi:10.5194/amt-3-263-2010, 2010. DeMott, P. J., Moehler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M. D., Murakami, M., Leisner, T., Bundke, U., Klein, H., Kanji, Z. A., Cotton, R., Jones, H., Benz, S., Brinkmann, M., Rzesanke, D., Saathoff, H., Nicolet, M., Saito, A., Nillius, B., Bingemer, H., Abbatt, J., Ardon, K., Ganor, E., Georgakopoulos, D. G., and Saunders, C.: Resurgence in ice nuclei measurement research, Bulletin of the American Meteorological Society, 92, 1623-1635, 10.1175/bams-d-10-3119.1, 2011.

  19. Osmotic phenomena in application for hyperbaric oxygen treatment.

    PubMed

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.

  20. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  1. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  2. Estimation of Instantaneous Gas Exchange in Flow-Through Respirometry Systems: A Modern Revision of Bartholomew's Z-Transform Method

    PubMed Central

    Pendar, Hodjat; Socha, John J.

    2015-01-01

    Flow-through respirometry systems provide accurate measurement of gas exchange over long periods of time. However, these systems have limitations in tracking rapid changes. When an animal infuses a metabolic gas into the respirometry chamber in a short burst, diffusion and airflow in the chamber gradually alter the original signal before it arrives at the gas analyzer. For single or multiple bursts, the recorded signal is smeared or mixed, which may result in dramatically altered recordings compared to the emitted signal. Recovering the original metabolic signal is a difficult task because of the inherent ill conditioning problem. Here, we present two new methods to recover the fast dynamics of metabolic patterns from recorded data. We first re-derive the equations of the well-known Z-transform method (ZT method) to show the source of imprecision in this method. Then, we develop a new model of analysis for respirometry systems based on the experimentally determined impulse response, which is the response of the system to a very short unit input. As a result, we present a major modification of the ZT method (dubbed the ‘EZT method’) by using a new model for the impulse response, enhancing its precision to recover the true metabolic signals. The second method, the generalized Z-transform (GZT) method, was then developed by generalizing the EZT method; it can be applied to any flow-through respirometry system with any arbitrary impulse response. Experiments verified that the accuracy of recovering the true metabolic signals is significantly improved by the new methods. These new methods can be used more broadly for input estimation in variety of physiological systems. PMID:26466361

  3. Fuel cell generator

    DOEpatents

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  4. Liquid Jet Cavitation via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ashurst, W. T.

    1997-11-01

    A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).

  5. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    NASA Astrophysics Data System (ADS)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  6. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    NASA Astrophysics Data System (ADS)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  7. Flow Field Analysis of Micromixer Powered by Ciliary Motion of Vorticella

    NASA Astrophysics Data System (ADS)

    Hayasaka, Yo; Nagai, Moeto; Matsumoto, Nobuyoshi; Kawashima, Takahiro; Shibata, Takayuki

    We demonstrate the observation of a flow field generated by ciliary motion of Vorticella in a microfluidic chamber. We applied the property that Vorticella vibrates its cilia and create a flow field to a micromixer. The stability and mixing performance of Vorticella were measured by PIV (Particle Image Velocimetry). One cell of Vorticella mixed the half area of the microchamber. We revealed that the flow field of a single cell in a chamber was more stable than that of multiple cells.

  8. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Alex M.; Gülder, Ömer L.

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminarmore » diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.« less

  9. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Technical Reports Server (NTRS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-01-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  10. Device for precision measurement of speed of sound in a gas

    DOEpatents

    Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.

    2004-11-30

    A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.

  11. Polymer Coatings Reduce Electro-osmosis

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  12. Assembly for directing combustion gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charron, Richard C.; Little, David A.; Snyder, Gary D.

    2016-04-12

    An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row ofmore » blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.« less

  13. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  14. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  15. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  16. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    EPA Science Inventory

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  17. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    EPA Science Inventory

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  18. Impairment of aminopyrine clearance in aspirin-damaged canine gastric mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, T.A.; Henagan, J.M.; Loy, T.M.

    Using an in vivo canine chambered stomach preparation, the clearance of (/sup 14/C)aminopyrine across mucosa when intravenously infused and the back-diffusion of this substance from gastric lumen to mucosa when topically applied to gastric epithelium were evaluated in aspirin-damaged gastric epithelium. In mucosa damaged by either 20 mM or 40 mM aspirin, the recovery of (/sup 14/C)aminopyrine, when topically mixed with acid (pH . 1.1) perfusate solution, was not significantly different from nondamaged control mucosa. In addition, the degree of ''trapping'' of this substance from back-diffusion was not different in damaged mucosa from that observed in nondamaged epithelium. In contrast,more » when (/sup 14/C)aminopyrine was intravenously infused, its clearance was significantly impaired in aspirin-damaged mucosa when compared with control studies, as evidenced by the increased ''trapping'' of this substance in injured epithelium. These findings indicate that movement of aminopyrine from plasma to gastric lumen is impaired in damaged epithelium, making the aminopyrine clearance technique an unreliable method to accurately measure absolute gastric blood flow in this experimental setting.« less

  19. Effects of Multiple Nozzles on Asymmetric Ejector Performance

    NASA Technical Reports Server (NTRS)

    Lineberry, D.; Landrum, B.

    2005-01-01

    This paper presents a comparison of a single nozzle and a dual nozzle strut based ejector. The results are focused on the fluid properties in the ejector duct. The research focused on choking mechanisms, mass flow entrainment, and mixing duct pressure distributions. The two ejectors were tests at equivalent primary mass flow rates. This corresponds to chamber pressures ranging from 100 psi to 900 psi in the single nozzle strut and 50 psi to 450 psi in the dual nozzle strut. Secondary flow was drawn from the lab at atmospheric pressure, and was not controlled. The secondary flow was found to choke at a value of 2.3 lb/s for a primary mass flow rate at approximately 2.1 lb/s for both ejectors. This choke was believed to be a mass addition choke rather than a traditional aerodynamic choke. The mixing duct pressure distribution exhibited two distinct trends at "low pressure" trend and at "high pressure" trend. For the low pressure trend, the mixing length for the ejectors remained fixed around 20 inches, regardless of the chamber pressure. For the higher pressure trend, the mixing length was considerably longer and increased with increasing chamber pressure. At high chamber pressures (high mass flow rates), a supersonic core flow was present at the exit of the duct. For these cases, the two streams did not have time to mix by the end of the duct.

  20. Turbine stator vane segment having internal cooling circuits

    DOEpatents

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  1. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  2. Pressure Characteristics of a Diffuser in a Ram RDE Propulsive Device

    DTIC Science & Technology

    2017-07-21

    Continuous detonation Rotating-detonation- engine Ethylene-air Diffuser Pressure feedback Modeling and simulation Office of Naval Research 875 N. Randolph...RDE PROPULSIVE DEVICE INTRODUCTION This report focuses on the diffuser of a ram Rotating Detonation Engine (RDE) device. A ram RDE is a ramjet with...the constant pressure combustion chamber replaced with a Rotating Detonation Engine combustor to accomplish pressure gain combustion. A ram engine

  3. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 2: a Study of Low Frequency Combustion Instability in Rocket Engine Preburners Using a Heterogeneous Stirred Tank Reactor Model. Final Report M.S. Thesis - Aug. 1987

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.

    1988-01-01

    During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.

  4. Small hydrogen/oxygen rocket flowfield behavior from heat flux measurements

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    The mixing and heat transfer phenomena in small rocket flow fields with fuel film cooling is not well understood. An instrumented, water-cooled chamber with a gaseous hydrogen/gaseous oxygen injector was used to gather steady-state inner and outer wall temperature profiles. The chamber was tested at 414 kPa (60 psia) chamber pressure, from mixture ratios of 3.41 to 8.36. Sixty percent of the fuel was used for film cooling. These temperature profiles were used as boundary conditions in a finite element analysis program, MSC/NASTRAN, to calculate the local radial and axial heat fluxes in the chamber wall. The normal heat fluxes were then calculated and used as a diagnostic of the rocket's flow field behavior. The normal heat fluxes determined were on the order of 1.0 to 3.0 MW/meters squared (0.6 to 1.8 Btu/sec-inches squared). In the cases where mixture ratio was 5 or above, there was a sharp local heat flux maximum in the barrel section of the chamber. This local maximum seems to indicate a reduction or breakdown of the fuel film cooling layer, possibly due to increased mixing in the shear layer between the film and core flows. However, the flow was thought to be completely laminar, as the throat Reynolds numbers were below 50,000 for all the cases. The increased mixing in the shear layer in the higher mixture ratio cases appeared not to be due to the transition of the flow from laminar to turbulent, but rather due to increased reactions between the hydrogen film and oxidizer-rich core flows.

  5. Method for measurement of radon diffusion and solubility in solid materials

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  6. The Effect of Upstream Vane Wakes on Annular Diffuser Flows

    NASA Astrophysics Data System (ADS)

    Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John

    2008-11-01

    Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.

  7. Suppression of tonal noise in a centrifugal fan using guide vanes

    NASA Astrophysics Data System (ADS)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  8. Establishing repeatable operation of a centrifugal compressor research facility for aerodynamic investigations

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew Philip

    The objective of this research has been to analyze the steady state performance of a new centrifugal compressor research facility. The CSTAR (Centrifugal STage for Aerodynamic Research) compressor has been designed to be placed as the last stage in an axial compressor and its performance in this flow regime was measured. Because the compressor was designed as a research vehicle, unique instrumentation throughout the flow path provides a detailed look at its steady state performance. Rakes at the inlet and deswirl section quantify the overall performance but other instrumentation is used to understand the component performance. Static pressure taps along the shroud, within the diffuser, and through the turn-to-axial show the static pressure rise. Additionally, rakes at the inlet and exit of diffuser also characterize the performance of the wedge diffuser and the impeller. Additionally, capacitance probes located at the knee and exducer of the impeller non-intrusively measure the size of the tip clearance during facility operation. An investigation into these measurements resulted in a standard procedure for in-situ calibration and installation to produce repeatable and accurate clearance measurements. Finally, the feasibility of future Laser Doppler Velocimetry measurements acquired through the shroud window was tested and was found to be achievable with the use of beam translators to ensure that measurement volumes are created after beam refraction through the windows. Inlet conditions of the facility have been investigated and fluctuations of the ambient conditions have been mitigated with a large settling chamber to ensure repeatable and stable operation. The current instrumentation was utilized to determine the compressor performance. Measurements of the steady performance parameters along with those of the internal flowfield are documented.

  9. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  10. Numerical analysis of the transient flow in a scroll refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi

    2017-08-01

    In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.

  11. Flow interaction in the combustor-diffusor system of industrial gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A.K.; Kapat, J.S.; Yang, T.

    1996-05-01

    This paper presents an experimental/computational study of cold flow in the combustor-diffuser system of industrial gas turbines to address issues relating to flow interactions and pressure losses in the pre- and dump diffusers. The present configuration with can annular combustors differs substantially from the aircraft engines which typically use a 360 degree annular combustor. Experiments were conducted in a one-third scale, annular 360-degree model using several can combustors equispaced around the turbine axis. A 3-D computational fluid dynamics analysis employing the multidomain procedure was performed to supplement the flow measurements. The measured data correlated well with the computations. The airflowmore » in the dump diffuser adversely affected the prediffuser flow by causing it to accelerate in the outer region at the prediffuser exit. This phenomenon referred to as the sink-effect also caused a large fraction of the flow to bypass much of the dump diffuser and go directly from the prediffuser exit to the bypass air holes on the combustor casing, thereby, rendering the dump diffuser ineffective in diffusing the flow. The dump diffuser was occupied by a large recirculation region which dissipated the flow kinetic energy. Approximately 1.2 dynamic head at the prediffuser inlet was lost in the combustor-diffuser system; much of it in the dump diffuser where the fluid passed through the narrow gaps and pathways. Strong flow interactions in the combustor-diffuser system indicate the need for design modifications which could not be addressed by empirical correlations based on simple flow configurations.« less

  12. Transport of Brownian spheroidal nanoparticles in near-wall vascular flows for cancer therapy

    NASA Astrophysics Data System (ADS)

    Lin, Tiras Y.; Shah, Preyas N.; Smith, Bryan R.; Shaqfeh, Eric S. G.

    2016-11-01

    The microenvironment local to a tumor is characterized by a leaky vasculature induced by angiogenesis from tumor growth. Small pores form in the blood vessel walls, and these pores provide a pathway for cancer-ameliorating nanoparticle drug carriers. Using both simulations and microfluidics experiments, we investigate the extravasation of nanoparticles through pores. Using Brownian dynamics simulations, we evolve the stochastic equations for both point particles and finite-size spheroids of varying aspect ratio. We investigate the effect of wall shear flow and pore suction flow (Sampson flow) on the extravasation process. We consider pores of two types: physiologically relevant short pores with a length equal to the particle size and long pores which are relevant to diffusion through membranes. Additionally, we perform microfluidics experiments in which the extravasation rates of various nanoparticles tagged with fluorescent dye through pores are measured. In particular, using fluorometry we measure the flux of nanoparticles across a track-etched membrane, which separates two chambers. Our preliminary results indicate that the flux measured from experiment agrees reasonably with the simulations done with long pores, and we discuss the effect of pore length on extravasation. T.Y.L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  13. Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation

    NASA Technical Reports Server (NTRS)

    Robinson, N. F.; Scott, W. T.

    1981-01-01

    A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.

  14. Sea spray as a source of ice nucleating particles - results from the AIDA Ocean03 campaign

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Ickes, L.; Adams, M.; Bierbauer, S.; Bilde, M.; Christiansen, S.; Ekman, A.; Gorokhova, E.; Höhler, K.; Kiselev, A. A.; Leck, C.; Mohr, C.; Mohler, O.; Murray, B. J.; Porter, G.; Ullrich, R.; Wagner, R.

    2017-12-01

    Clouds and their radiative effects are one of the major influences on the radiative fluxes in the atmosphere, but at the same time they remain the largest uncertainty in climate models. This lack of understanding is especially pronounced in the high Arctic. Summertime clouds can persist over long periods in this region, which is difficult to replicate in models based on our current understanding. The clouds most often encountered in the summertime high Arctic consist of a mixture of ice crystals and super-cooled water droplets, so-called mixed-phase clouds. This cloud type is sensitive to the availability of aerosol particles, which can act as cloud condensation nuclei and ice nuclei. However, since the high Arctic is a pristine region, aerosol particles are not very abundant, and the hypothesis of open leads in the Arctic as a potentially important source of cloud and ice nucleating particles via bubble bursting has emerged. In this context, we have conducted a series of experiments at the AIDA chamber at KIT, designed to investigate the mechanisms linking marine biology, seawater chemistry and aerosol physics/potential cloud impacts. During this campaign, two marine diatom species (Melosira arctica and Skeletonema marinoi) as well as sea surface microlayer samples collected during several Arctic Ocean research cruises were investigated. To aerosolize the samples, a variety of methods were used including a sea spray simulation chamber to mimic the process of bubble-bursting. The ice nucleating efficiency (mixed-phase cloud regime) of the samples was determined either directly in the AIDA chamber during adiabatic expansions, or using the INKA continuous flow diffusion chamber, or a cold stage. Results from the campaign along with the potential implications are presented.

  15. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  16. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  17. Urine collection device

    NASA Technical Reports Server (NTRS)

    Michaud, R. B. (Inventor)

    1981-01-01

    A urine collection device for females is described. It is comprised of a collection element defining a urine collection chamber and an inlet opening into the chamber and is adapted to be disposed in surrounding relation to the urethral opening of the user. A drainage conduit is connected to the collection element in communication with the chamber whereby the chamber and conduit together comprise a urine flow pathway for carrying urine generally away from the inlet. A first body of wicking material is mounted adjacent the collection element and extends at least partially into the flow pathway. The device preferably also comprise a vaginal insert element including a seal portion for preventing the entry of urine into the vagina.

  18. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  20. Evidence for water-mediated mechanisms in coral–algal interactions

    PubMed Central

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  1. Continuous Measurement of Methane Ebullition Flux from a Northern Peatland using a Fast Methane Analyzer

    NASA Astrophysics Data System (ADS)

    Zhongjie, Y.; Schafer, K. V.; Slater, L. D.; Varner, R. K.; Amante, J.; Comas, X.; Reeve, A. S.; Alcivar, W.; Gonzalez, D.

    2012-12-01

    Northern peatlands are an important source of methane (CH4) release to the atmosphere, estimated at between 20 and 50 Tg/yr. Recent work on CH4 emissions from peatlands has demonstrated that ebullition can be a more important emission pathway than previously assumed. However, accurate quantification of the atmospheric CH4 burden due to ebullition is still very limited because ebullition exhibits high spatiotemporal variability such that sudden episodic events are difficult to capture and quantify with existing experimental methods. We have initiated a novel measurement program to better quantify the spatiotemporal variability in CH4 flux in peatlands, and to examine potential effects of vegetation and environmental factors, e.g. atmospheric pressure, water table, etc on these releases. A flow-through system was designed, consisting of a closed static chamber and a fast methane analyzer (FMA) (LI-COR model 7700) that has been employed at both the field and laboratory scale. The CH4 concentration in the air flowing through the chamber is continuously measured by the analyzer and used to reconstruct continuous CH4 emission fluxes. The high sampling rate of the FMA makes it sensitive to both ebullition and diffusion of gaseous CH4, capturing short duration, episodic ebullition fluxes. Non-steady static chamber measurements were also conducted to cross-validate the continuous measurements. Results acquired during summer 2011 show that episodic ebullition occurred more frequently at the pool site where previous studies indicate extensive wood layers at depth and the vegetation was a mix of Sphagnum and wooded heath. During a 3 day period of continuous measurements captured the passage of a tropical storm Irene, where short term episodic releases of CH4, ranging from 113 mg CH4/m2/d to 202 mg CH4/m2/d, were observed at the time of lowest atmospheric pressure, providing new evidence that atmospheric pressure is an important factor to controlling CH4 ebullition from peatlands. While traditional techniques, e.g. static chamber measurement can only occasionally detect the occurrence of ebullition, the continuous measurement by using a flow-through system is able to resolve spatiotemporal complexity of episodic CH4 ebullition events. These continuous CH4 measurements provide new insights into the timing of CH4 ebullition from peatlands to the atmosphere as climate changes and the role of environmental variables in regulating these CH4 releases.

  2. Evaluation of Carbon Dioxide Dissipation within a Euthanasia Chamber

    PubMed Central

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P

    2014-01-01

    CO2 euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO2 to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO2 levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO2 dropped to below 10% CO2 within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO2 dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO2 dissipation. We recommend that users allow 2 min for CO2 to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate. PMID:25199098

  3. Evaluation of carbon dioxide dissipation within a euthanasia chamber.

    PubMed

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P-

    2014-07-01

    CO₂ euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO₂ to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO₂ levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO₂ dropped to below 10% COv within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO₂ dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO₂ dissipation. We recommend that users allow 2 min for CO₂ to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate.

  4. Hydrogenated amorphous carbon coatings on implants drastically reduce biofilm formation and water permeation

    NASA Astrophysics Data System (ADS)

    Bernsmann, Falk; Laube, Norbert; Baldsiefen, Gerhard; Castellucci, Mattia

    2014-11-01

    Inflammations and crystalline bacterial biofilms (encrustations) remain a major complication in long-term artificial urinary tract drainage. To solve this problem we present urological implants with coatings made of amorphous hydrogenated carbon (a-C:H) that show excellent protection from encrustation in-vitro as well as in-vivo. Part of the success of a-C:H coatings is attributed to their ability to act as a diffusion barrier between an implant and the body, which prevents leaching of solvents from polymeric implants. To further enhance their barrier properties a-C:H coatings are combined with parylene coatings to develop diffusion-barrier multilayer coatings with a total thickness between 0.2 μm and 0.8 μm. The combination of the two types of coatings leads to a reduction of water diffusion by a factor of up to ten with respect to uncoated 25 μm thick polyimide sub-strates. The diffusion of water vapour from a controlled atmospheric pressure chamber through coated foils to a vacuum chamber is measured in a custom-built device.

  5. Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium

    NASA Technical Reports Server (NTRS)

    Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.

    1992-01-01

    Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.

  6. The surface roughness effect on the performance of supersonic ejectors

    NASA Astrophysics Data System (ADS)

    Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.

    2017-07-01

    The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.

  7. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio (LD). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer orifices and one fuel orifice) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme an Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 9295, can be obtained. MSFC and the U. S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.

  8. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    PubMed

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  9. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities

    PubMed Central

    Campbell, Barbara J.; Polson, Shawn W.; Zeigler Allen, Lisa; Williamson, Shannon J.; Lee, Charles K.; Wommack, K. Eric; Cary, S. Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments. PMID:23898323

  10. A new passive radon-thoron discriminative measurement system.

    PubMed

    Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M

    2010-10-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.

  11. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  12. Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber

    DTIC Science & Technology

    2002-10-18

    try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison

  13. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow.

    PubMed

    Repetto, Rodolfo; Pralits, Jan O; Siggers, Jennifer H; Soleri, Paolo

    2015-05-01

    Phakic intraocular lenses (pIOLs) are used for correcting vision; in this paper we investigate the fluid dynamical effects of an iris-fixated lens in the anterior chamber. In particular, we focus on changes in the wall shear stress (WSS) on the cornea and iris, which could be responsible for endothelial and pigment cell loss, respectively, and also on the possible increase of the intraocular pressure, which is known to correlate with the incidence of secondary glaucoma. We use a mathematical model to study fluid flow in the anterior chamber in the presence of a pIOL. The governing equations are solved numerically using the open source software OpenFOAM. We use an idealized standard geometry for the anterior chamber and a realistic geometric description of the pIOL. We consider separately the main mechanisms that produce fluid flow in the anterior chamber. The numerical simulations allow us to obtain a detailed description of the velocity and pressure distribution in the anterior chamber, and indicated that implantation of the pIOL significantly modifies the fluid dynamics in the anterior chamber. However, lens implantation has negligible influence on the intraocular pressure and does not produce a significant increase of the shear stress on the cornea, while the shear stress on the iris, although increased, is not enough to cause detachment of cells. We conclude that alterations in the fluid dynamics in the anterior chamber as a result of lens implantation are unlikely to be the cause of medical complications associated with its use.

  14. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  15. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  16. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  17. Orbital transfer vehicle 3000 LBF thrust chamber assembly hot fire test program

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Hayden, Warren R.

    1988-01-01

    The Aerojet Orbital Transfer Vehicle (OTV) Thrust Chamber Assembly (TCA) concept consists of a hydrogen cooled chamber, and annular injector, and an oxygen cooled centerbody. The hot fire testing of a heat sink version of the chamber with only the throat section using hydrogen cooling is documented. Hydraulic performance of the injector and cooled throat were verified by water flow testing prior to TCA assembly. The cooled throat was proof tested to 3000 psia to verify the integrity of the codeposited EF nickel-cobalt closeout. The first set of hot fire tests were conducted with a heat sink throat to obtain heat flux information. After demonstration of acceptable heat fluxes, the heat sink throat was replaced with the LH2 cooled throat section. Fourteen tests were conducted with a heat sink chamber and throat at chamber pressures of 85 to 359 psia. The injector face was modified at this time to add more face coolant flow. Ten tests were then conducted at chamber pressures of 197 to 620 psia. Actual heat fluxes at the higher chamber pressure range were 23 percent higher than the average of 10 Btu/in 2 predicted.

  18. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2017-08-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  19. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  20. Tornado type wind turbines

    DOEpatents

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  1. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.

    PubMed Central

    Munn, L L; Melder, R J; Jain, R K

    1994-01-01

    The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2. Images FIGURE 1 FIGURE 2 PMID:7948702

  2. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  3. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  4. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  5. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  6. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  7. Toward microscale flow control using non-uniform electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran

    2018-02-01

    We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.

  8. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  9. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  10. Flow field investigation in a bulb turbine diffuser

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2017-04-01

    An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.

  11. Regression rate study of porous axial-injection, endburning hybrid fuel grains

    NASA Astrophysics Data System (ADS)

    Hitt, Matthew A.

    This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration. Results from the model suggested that both kinetic and diffusion processes could be relevant to the combustion depending on the chamber pressure.

  12. Quantitation of nanoparticle accumulation in flow using optimized microfluidic chambers

    PubMed Central

    Kusunose, J.; Gagnon, M. K. J.; Seo, J. W.; Ferrara, K. W.

    2014-01-01

    Background The vascular cell adhesion molecule-1 (VCAM-1) targeting peptide sequence, VHPKQHR, is a promising moiety for targeting atherosclerosis through incorporation into nanoparticles such as dendrimers and liposomes. Purpose We aim to develop VCAM-1-targeted nanoparticles that effectively accumulate on the endothelium under shear conditions and to develop robust microfluidic chambers able to house sufficient cells for flow cytometric measurements. Methods Carboxyfluorescein-labeled monomeric VHP-peptide, tetrameric VHP-dendrimers (bisbidentate or radial architecture, with or without N-terminal acetylation) and VHP-peptide liposomes were prepared. Human umbilical vein endothelial cells were treated with nano-particles under 0 or 2.9 dyne/cm2 shear, and particle binding was quantified. Flow chambers cured at various temperatures, with or without glass backings were fabricated, characterized for deformation and applied in experiments. Results Although liposomes accumulated with highest efficiency, dendrimers also demonstrated specific binding. N-terminal acetylation significantly reduced dendrimer binding, and despite shorter movement range, bisbidentate dendrimers outperformed radial dendrimers, suggesting multiple epitope presence within its estimated arm-span of 57 Å. Under shear, while liposome binding increased 300%, dendrimer binding to cells decreased 65%. Through higher temperature curing and glass backing insertion, polydimethylsiloxane flow chambers maintaining rectangular cross-section with aspect-ratio as low as 1:111 were achieved. Conclusion Optimized dendrimers and liposomal nanocarriers specifically accumulated onto cells within microfluidic chambers. PMID:24079404

  13. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  14. Polyport atmospheric gas sampler

    DOEpatents

    Guggenheim, S. Frederic

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  15. Proposal for a zero-gravity toilet facility for the space station

    NASA Technical Reports Server (NTRS)

    Fleri, Edgar L., Jr.; Galliano, Paul A.; Harrison, Mark E.; Johnson, William B.; Meyer, Gregory J.

    1989-01-01

    This proposed toilet facility has a straightforward design. It has few moving parts and is easily maintained. Air and water flow provide sanitary movement of the waste. The toilet's chambers are coated with Teflon which, along with the water flow, makes it self-cleaning. An added disinfectant called Betadiene kills any bacteria that may form on the chamber walls. The chair is contoured to take into account the neutral body position and the necessary strain position for defecation. Restraints at the ankles, knees, and midsection hold the body in the chair. The waste is stored in discs of Gortex material which are inside a replaceable storage chamber. This chamber can be removed, capped and stored until eventual return to earth.

  16. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  17. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  18. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  19. The effect of carbon dioxide flow rate on the euthanasia of laboratory mice.

    PubMed

    Moody, C M; Chua, B; Weary, D M

    2014-10-01

    Laboratory rodents are commonly euthanized by exposure to gradually increasing concentrations of carbon dioxide (CO2). Current recommended flow rates range between 10 and 30% chamber vol/min and result in insensibility before exposure to painful concentrations (<40%). However, this method causes dyspnea, indicated by deep, rapid breathing. In humans dyspnea is associated with a negative affective experience. Sensations of dyspnea may explain why rodents find CO2 concentrations >3% aversive. This study aimed to assess the effect of CO2 flow rates on time between the onset of dyspnea and various measures of insensibility (recumbency, loss of the righting reflex and loss of the pedal withdrawal reflex) to identify flow rates that minimize the potential experience of dyspnea. The results of this study indicate that a flow rate of 50% chamber vol/min, while holding the CO2 cage concentration just below 40%, minimizes the interval between the onset of labored breathing and recumbency. Using a 50% flow rate this interval averaged (± SE) 30.3 ± 2.9 s versus 49.7 ± 2.9 s at 20% chamber vol/min (F3,22 = 7.83, P = 0.0013). Similarly, the interval between the onset of labored breathing and loss of the righting reflex averaged 38.2 ± 2.4 s at a flow rate of 50% versus 59.2 ± 2.4 s at 20% chamber vol/min of CO2 (F3,22 = 13.62, P < 0.0001). We conclude that higher flow rates reduce the duration of dyspnea, but even at the highest flow rate mice experience more than 30 s between the onset of dyspnea and the most conservative estimate of insensibility. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets

    NASA Astrophysics Data System (ADS)

    Long, Shen; Lau, Timothy C. W.; Chinnici, Alfonso; Tian, Zhao Feng; Dally, Bassam B.; Nathan, Graham J.

    2017-10-01

    We present a joint experimental and numerical study of the flow structure within a cylindrical chamber generated by planar-symmetric isothermal jets, under conditions of relevance to a wide range of practical applications, including the Hybrid Solar Receiver Combustor (HSRC) technology. The HSRC features a cavity with a coverable aperture to allow it to be operated as either a combustion chamber or a solar receiver, with multiple burners to direct a flame into the chamber and a heat exchanger that absorbs the heat from both energy sources. In this study, we assess the cases of two or four inlet jets (simulating the burners), configured in a planar-symmetric arrangement and aligned at an angle to the axis (αj) over the range of 0°-90°, at a constant inlet Reynolds number of ReD = 10 500. The jets were positioned in the same axial plane near the throat and interact with each other and the cavity walls. Measurements obtained with particle image velocimetry were used together with numerical modeling employing Reynolds-averaged Navier-Stokes methods to characterize the large-scale flow field within selected configurations of the device. The results reveal a significant dependence of the mean flow-field on αj and the number of inlet jets (Nj). Four different flow regimes with key distinctive features were identified within the range of αj and Nj considered here. It was also found that αj has a controlling influence on the extent of back-flow through the throat, the turbulence intensity, the flow stability, and the dominant recirculation zone, while Nj has a secondary influence on the turbulence intensity, the flow stability, and the transition between each flow regime.

  1. Modeling and simulation of flow field in giant magnetostrictive pump

    NASA Astrophysics Data System (ADS)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  2. Investigation of inner aerodynamics of the four-vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Shadrin, E. Yu; Sharypov, O. V.

    2018-03-01

    The internal aerodynamics of a perspective vortex furnace chamber of a pulverized coal boiler with a diagonal arrangement of burners is studied using the non-contact optical method of flow diagnostics. The results of laser Doppler anemometry, characterizing the complex spatial structure of a swirling flow in an isothermal laboratory model of the furnace device, are presented. The velocity distribution in the vortex chamber volume is obtained, and the flow structure in the form of four conjugate closed vortices with curved axes is visualized.

  3. Downhole steam generator with improved preheating, combustion and protection features

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

  4. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  5. The role of viscous fluid flow in active cochlear partition vibration

    NASA Astrophysics Data System (ADS)

    Svobodny, Thomas

    2001-11-01

    Sound transduction occurs via the forcing of the basilar membrane by a traveling wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number (because of the tiny size). The actual transduction occurs through the mechanism of stereocilia of hair cells. Analysis and simulation of the interaction between the microhydrodynamical flow and the basilar membrane vibration will be presented in this talk. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection.

  6. Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang

    2014-12-01

    In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.

  7. Pulse thermal energy transport/storage system

    DOEpatents

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  8. Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes.

    PubMed

    Stone, Victoria N; Baldock, Sara J; Croasdell, Laura A; Dillon, Leonard A; Fielden, Peter R; Goddard, Nick J; Thomas, C L Paul; Treves Brown, Bernard J

    2007-07-06

    An injection moulded free flow isotachophoresis (FFITP) microdevice with integrated carbon fibre loaded electrodes with a separation chamber of 36.4mm wide, 28.7 mm long and 100 microm deep is presented. The microdevice was completely fabricated by injection moulding in carbon fibre loaded polystyrene for the electrodes and crystal polystyrene for the remainder of the chip and was bonded together using ultrasonic welding. Two injection moulded electrode designs were compared, one with the electrode surface level with the separation chamber and one with a recessed electrode. Separations of two anionic dyes, 0.2mM each of amaranth and acid green and separations of 0.2mM each of amaranth, bromophenol blue and glutamate were performed on the microdevice. Flow rates of 1.25 ml min(-1) for the leading and terminating electrolytes were used and a flow rate of 0.63 ml min(-1) for the sample. Electric fields of up to 370 V cm(-1) were applied across the separation chamber. Joule heating was not found to be significant although out-gassing was observed at drive currents greater than 3 mA.

  9. Finding the best windows: An apparent environmental threshold determines which diffuse flows are dominated by subsurface microbes

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.

    2014-12-01

    Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.

  10. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.

    PubMed

    Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat

    2015-05-01

    In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period.

  11. Laminar flow burner system with infrared heated spray chamber and condenser.

    PubMed

    Hell, A; Ulrich, W F; Shifrin, N; Ramírez-Muñoz, J

    1968-07-01

    A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.

  12. SSME thrust chamber simulation using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.

  13. Technique for predicting high-frequency stability characteristics of gaseous-propellant combustors

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Jefferson, Y. S. Y.

    1973-01-01

    A technique for predicting the stability characteristics of a gaseous-propellant rocket combustion system is developed based on a model that assumes coupling between the flow through the injector and the oscillating chamber pressure. The theoretical model uses a lumped parameter approach for the flow elements in the injection system plus wave dynamics in the combustion chamber. The injector flow oscillations are coupled to the chamber pressure oscillations with a delay time. Frequency and decay (or growth) rates are calculated for various combustor design and operating parameters to demonstrate the influence of various parameters on stability. Changes in oxidizer design parameters had a much larger influence on stability than a similar change in fuel parameters. A complete description of the computer program used to make these calculations is given in an appendix.

  14. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  15. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  16. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  17. A tentative protocol for measurement of radon availability from the ground

    USGS Publications Warehouse

    Tanner, A.B.

    1988-01-01

    A procedure is being tested in order to determine its suitability for assessing the intrinsic ability of the ground as a particular site to supply 222Rn to a basement structure to be built on the site. Soil gas is sucked from a borehold probe through an alpha scintillation chamber and flow meter by a pump. The permeability of the soil is calculated from the flow rate and the pressure difference between the atmosphere and the borehold at the intake point. The diffusion coefficient is estimated from the water fraction in the soil pores. The upward migration distance for radon in such soil during one mean life is computed for an arbitrary steady pressure difference. This mean migration distance, multiplied by the measured radon concentration, gives the 'radon availability number'. Measurements at sites of known indoor radon concentration suggest that numbers below 2 kBq ?? m-2 indicate little chance of elevated indoor radon and above 20 kBq ?? m-2 indicate that elevated indoor radon is likely. The range of uncertainty and the point-to-point and seasonal variations to be expected are under investigation.

  18. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  19. Single-Layer graphene growth on crystalline Ni(111) and Ni(110) and the fate of Carbon on crystalline Ni(100).

    NASA Astrophysics Data System (ADS)

    Araujo, Paulo; Mafra, Daniela; Reina, Alfonso; Shin, Young Cheol; Kim, Ki Kang; Dresselhaus, Mildred; Kong, Jing

    The growth of large area single-layer graphene (1-LG) is studied using ambient pressure CVD on single crystal Ni(111), Ni(110) and Ni(100). By varying both the furnace temperature in the range of 700 - 1100oC and the gas flow through the growth chamber, a uniform growth of high-quality 1-LG is obtained for Ni(111) and Ni(110), but only multilayer graphene (M-LG) growth could be obtained for Ni(100). The experimental results are interpreted to obtain the optimum combination of temperature and gas flow, and the results reported in this manuscript are interpreted through different thermodynamic mechanisms, such as diffusion, segregation and adsorption, which dictate the formation of different carbon structures over the different crystallographic directions of Ni. Characterization with optical microscopy, Raman spectroscopy and optical transmission accordingly support the experimental findings. DOE Award Number DE-SC0001088, College of Arts and Sciences at the University of Alabama, NRF Award Number 2015R1C1A1A02037083 and NSF-DMR 1507806.

  20. Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.

    PubMed

    Kumar, Deept; Little, John C

    2003-09-01

    Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.

  1. Detailed flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1994-07-01

    Hot-wire anemometer measurements have been made in the vaneless diffuser of a 1-m-dia low-speed backswept centrifugal compressor using a phase lock loop technique. Radial, tangential, and axial velocity measurements have been made on eight measurement planes through the diffuser. The flow field at the diffuser entry clearly shows the impeller jet-wake flow pattern and the blade wakes. The passage wake is located on the shroud side of the diffuser and mixes out slowly as the flow moves through the diffuser. The blade wakes, on the other hand, distort and mix out rapidly in the diffuser. Contours of turbulent kinetic energymore » are also presented on each of the measurement stations, from which the regions of turbulent mixing can be deduced.« less

  2. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  3. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  4. Counter-current convection in a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Robinson, Marguerite

    2018-05-01

    Volcanoes of Strombolian type are able to maintain their semi-permanent eruptive states through the constant convective recycling of magma within the conduit leading from the magma chamber. In this paper we study the form of this convection using an analytic model of degassing two-phase flow in a vertical channel. We provide solutions for the flow at small Grashof and large Prandtl numbers, and we suggest that permanent steady-state counter-current convection is only possible if an initial bubbly counter-current flow undergoes a régime transition to a churn-turbulent flow. We also suggest that the magma in the chamber must be under-pressured in order for the flow to be maintained, and that this compromises the assumed form of the flow.

  5. A dynamic soil chamber system coupled with a tunable diode laser for online measurements of delta-13C, delta-18O, and efflux rate of soil respired CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Heath H; Mcdowell, Nate; Hanson, David

    2009-01-01

    High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar tomore » measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high temporal frequency.« less

  6. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    compreusor fabrication costs. Hybrid Radial Compresscr Diffuser - Combining both the radial and axial sections of a standard diffuser into a single cascade...compressor diffuser by using a single mixed-flow diffuser instead of the separate radial and axial diffuser stator rows. The proposed mixed-flow diffuser...to an axial diffuser. A cost analyses of the hybrid radial diffuser was made and compared to baseline configuration ( radial and axial diffusers). The

  7. Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases

    NASA Astrophysics Data System (ADS)

    Snell, H. S. K.; Robinson, D.; Midwood, A. J.

    2014-12-01

    Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil δ13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.

  8. Design and demonstration of a pumpless 14 compartment microphysiological system.

    PubMed

    Miller, Paula G; Shuler, Michael L

    2016-10-01

    We describe a human "Body-on-a-chip" device (or microphysiological system) that could be used to emulate drug distribution, metabolism, and action in the body. It is based upon a physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model, where multiple chambers representing different organs are connected with fluidic channels to mimic multi-organ interactions within the body. Here we describe a pumpless 14 chamber (13 organs) microfluidic cell culture device that provides a separation between barrier and nonbarrier types of cell cultures. Our barrier chamber layer (skin, GI tract, and lung) allows for direct access and/or exposures to chemical or biological reagents forcing these reagents to pass through a barrier of cells established on a microfabricated membrane before exposing the nonbarrier tissue chambers (fat, kidney, heart, adrenal glands, liver, spleen, pancreas, bone marrow, brain, muscle) or entering the microfluidic circulation within the device. Our nonbarrier tissue chambers were created as three-dimensional configurations by resuspending cells in hydrogel (PGMatrix). We used cell lines to represent five of these organs (barrier lines-A549 [lung] and Caco2 [GI]) (nonbarrier lines-HepG2 C3A [liver], Meg01 [bone marrow], and HK2 [kidney]). The dimensions of our straight duct-like channels to each organ chamber were designed to provide the appropriate flow of a culture medium. The organ volumes and organ flow rates that have been reported for an average human male were used to estimate the desired fluid retention times in each organ chamber. The flow through the channels was induced by gravity on a custom programmed rocker platform which enabled pumpless operation and minimized bubble entrapment. The purpose of this paper is to describe the design and operation of a 14 chamber multi-organ system representing 13 tissues/organs with both barrier and nonbarrier tissue chambers and to study the interactive responses among the various cell lines. We demonstrate that five different cell lines survived with high viability (above 85%) for 7 days. We compared the individual observed flow rates to the compartments to the desired or estimated flow rates. This work demonstrates the feasibility of constructing, operating and maintaining a simple, gravity-driven, multi-organ microphysiological system with the capability of measuring cellular functions such as CYP1A1 and CYP3A4 activities, albumin release, urea, maintenance of tight junctions, and presence of surfactant for a sustained period. Biotechnol. Bioeng. 2016;113: 2213-2227. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Thrust chamber performance using Navier-Stokes solution. [space shuttle main engine viscous nozzle calculation

    NASA Technical Reports Server (NTRS)

    Chan, J. S.; Freeman, J. A.

    1984-01-01

    The viscous, axisymmetric flow in the thrust chamber of the space shuttle main engine (SSME) was computed on the CRAY 205 computer using the general interpolants method (GIM) code. Results show that the Navier-Stokes codes can be used for these flows to study trends and viscous effects as well as determine flow patterns; but further research and development is needed before they can be used as production tools for nozzle performance calculations. The GIM formulation, numerical scheme, and computer code are described. The actual SSME nozzle computation showing grid points, flow contours, and flow parameter plots is discussed. The computer system and run times/costs are detailed.

  10. Experimental investigation of a newly designed supersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Wu, J.; Radespiel, R.

    2015-06-01

    The flow characteristics of the tandem nozzle supersonic wind tunnel at the Institute of Fluid Mechanics, Technische Universität Braunschweig, a are investigated. Conventional measurement techniques were utilized. The flow development is examined by pressure sensors installed at various streamwise positions. The temperature is measured in the storage tube and the settling chamber. The influence of flow treatment in the settling chamber on the flow quality is also studied. The flow quality of test section is evaluated by a 6-probe Pitot rake. The pressure fluctuations in the test section are studied by a sharp cone model. Eventually, good agreement between the measurements and numerical simulation of the tunnel design is achieved.

  11. Engine Throat/Nozzle Optics for Plume Spectroscopy

    DTIC Science & Technology

    1991-02-01

    independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy

  12. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.

    PubMed

    Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L

    2012-09-01

    The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Unsteady behavior and control of vortices in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Ohta, Yutaka; Fujisawa, Nobumichi

    2014-10-01

    Two examples of the use of vortex control to reduce noise and enhance the stable operating range of a centrifugal compressor are presented in this paper. In the case of high-flow operation of a centrifugal compressor with a vaned diffuser, a discrete frequency noise induced by interaction between the impeller-discharge flow and the diffuser vane, which appears most notably in the power spectra of the radiated noise, can be reduced using a tapered diffuser vane (TDV) without affecting the performance of the compressor. Twin longitudinal vortices produced by leakage flow passing through the tapered portion of the diffuser vane induce secondary flow in the direction of the blade surface and prevent flow separation from the leading edge of the diffuser. The use of a TDV can effectively reduce both the discrete frequency noise generated by the interaction between the impeller-discharge flow and the diffuser surface and the broadband turbulent noise component. In the case of low-flow operation, a leading-edge vortex (LEV) that forms on the shroud side of the suction surface near the leading edge of the diffuser increases significantly in size and blocks flow in the diffuser passage. The formation of an LEV may adversely affect the performance of the compressor and may cause the diffuser to stall. Using a one-side tapered diffuser vane to suppress the evolution of an LEV, the stable operating range of the compressor can be increased by more than 12 percent, and the pressure-rise characteristics of the compressor can be improved. The results of a supplementary examination of the structure and unsteady behavior of LEVs, conducted by means of detailed numerical simulations, are also presented.

  14. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  15. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage blockage change without the need to define the region of blockage generation (which may incur a certain degree of arbitrariness). This method has been assessed for its applicability and utility.

  16. Effect of elevated atmospheric carbon dioxide and open-top chambers on transpiration in a tallgrass prairie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, D.J.; Ham, J.M.; Owensby, C.E.

    1996-07-01

    Increasing concentrations of atmospheric carbon dioxide (CO{sub 2}) may influence plant-water relations in natural and agricultural ecosystems. A tallgrass prairie near Manhattan, KS, was exposed to elevated atmospheric CO{sub 2} using open-top chambers (OTCs). Heat balance sap flow gauges were used to measure transpiration in ironweed [Vernonia baldwini var. interior (Small) Schub.], aC{sub 3}forb, and on individual grass culms of big bluestem (Andropogan geradii Vitman) and indiangrass [Sorghastrum nutans (L>) Nash], both C{sub 4} grasses, in each of three treatments: (1) CE (chamber enriched, 2x ambient CO{sub 2}); (2) CA (chamber ambient, no CO{sub 2} enrichment); and (3) NC (nomore » chamber, no CO{sub 2} enrichment). Sap flow data were coupled with measurements of stomatal conductance, plant/canopy resistance, and whole-chamber evapotranspiration (ET) to determine the effect of elevated CO{sub 2} on water use at different scales. Because of frequent rainfall during the study, all data were collected under well-watered conditions. Comparisons of CE and CA showed that sap flow was reduced by 33% in ironweed, 18% in big bluestem, and 22% in indiangrass under CO{sub 2} enrichment. Whole-chamber ET was reduced by 23 to 27% under CO{sub 2} enrichment. Comparisons of CA and NC showed that the environmental effect of the OTCs caused a 21 to 24% reduction in transpiration. Stomatal conductance decreased from 7.9 to 3.6 mm s{sup {minus}1} in big bluestem and from 5.3 to 3.2 mm s{sup {minus}1} in indiangrass under CO{sub 2} enrichment. Soil water was consistently highest under elevated CO{sub 2}, reflecting the large reductions in transpiration. During sap flow measurements, whole-plant stomatal resistance to water vapor flux in big bluestem increased from 103 to 194 s m{sup {minus}1} under elevated CO{sub 2}. 23 refs., 7 figs., 4 tabs.« less

  17. Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern

    NASA Astrophysics Data System (ADS)

    Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro

    2009-01-01

    The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.

  18. Biotechnological approach for systemic delivery of membrane Receptor Activator of NF-κB Ligand (RANKL) active domain into the circulation

    PubMed Central

    Cappariello, Alfredo; Paone, Riccardo; Maurizi, Antonio; Capulli, Mattia; Rucci, Nadia; Muraca, Maurizio; Teti, Anna

    2015-01-01

    Deficiency of Receptor Activator of NF-κB Ligand (RANKL) prevents osteoclast formation causing osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metalloproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers, once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells, with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-deficient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine deficiencies. PMID:25678116

  19. Biotechnological approach for systemic delivery of membrane Receptor Activator of NF-κB Ligand (RANKL) active domain into the circulation.

    PubMed

    Cappariello, Alfredo; Paone, Riccardo; Maurizi, Antonio; Capulli, Mattia; Rucci, Nadia; Muraca, Maurizio; Teti, Anna

    2015-04-01

    Deficiency of Receptor Activator of NF-κB Ligand (RANKL) prevents osteoclast formation causing osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metalloproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers, once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells, with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-deficient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine deficiencies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Vortex shedding in bileaflet heart valve prostheses.

    PubMed

    Gross, J M; Shermer, C D; Hwang, N H

    1988-01-01

    A dynamic study of two geometrically similar bileaflet heart valve prostheses (HVP) was performed using a physiologic mock circulatory flow loop. The HVPs studied were the 25 mm St. Jude Medical (SJM) and the 25 mm Carbomedics (CMI) in the aortic position and the 27 mm SJM and 27 mm CMI in the mitral position. All data were collected at a heart rate of 70 beats/min and a cardiac output of 5.0 L/min. Flow visualization was conducted in the transparent flow chambers of the pulsatile mock circulatory flow loop using a 15 mW He-Ne laser light source. A cylindrical lens and optics system converted the incident laser beam into a thin parallel light plane, and 420 microns tracer particles were suspended in the testing fluid to illuminate the flow field at selected planes. Frame-by-frame analysis of the 16 mm high-speed cine provides detailed phasic flow patterns in the vicinity of the HVP. A series of still photographs of flow patterns, taken at approximately 22.5 degrees phase intervals, are sequentially presented for each HVP. In the aortic position, a Karman-like vortex pattern appears downstream of the SJM at the end of the ejection phase. The CMI exhibits a rather symmetrical ejection flow pattern that turns into random motion immediately after the onset of ejection. In the mitral position, the SJM again exhibits a strong core flow during ventricular filling, whereas the CMI produces a more diffuse pattern during the same period. A pair of vortices shed from both the SJM and CMI are clearly visible toward the end of the ventricular filling phase. The vortex mechanisms are discussed in light of leaflet boundary layer formation.

  1. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.

  2. Improved chamber systems for rapid, real-time nitrous oxide emissions from manure and soil

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide (N2O) emission rates have traditionally been measured using non-flow-through, non-steady-state (NFT-NSS) chambers, which rely on measuring the increase in N2O concentration in the sealed chamber headspace over time. These flux measurements are very labor and time intensive, requiring ...

  3. Fire environmental test chamber: its design and development

    Treesearch

    Clifford J. Auvil

    1973-01-01

    The Fire Environmental Test Chamber at the Forest Fire Laboratory, Riverside, California, can duplicate under controlled conditions the key factors that affect the flammability of wildland fuels. Within certain limits, it can produce air flow, solar radiation, temperatures, and relative humidity. First developed in 1962, the test chamber has since then undergoneseveral...

  4. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  5. A review of the in vitro and in vivo valved holding chamber (VHC) literature with a focus on the AeroChamber Plus Flow-Vu Anti-static VHC

    PubMed Central

    Dissanayake, Sanjeeva; Suggett, Jason

    2018-01-01

    Valved holding chambers (VHCs) reduce the need for inhalation-actuation coordination with pressurized metered dose inhalers (pMDIs), reduce oropharyngeal drug deposition and may improve lung deposition and clinical outcomes compared to pMDIs used alone. While VHCs are thus widely advocated for use in vulnerable patient groups within clinical and regulatory guidelines, there is less consensus as to whether the performance differences between different VHCs have clinical implications. This review evaluates the VHC literature, in particular the data pertaining to large- versus small-volume chambers, aerosol performance with a VHC adjunct versus a pMDI alone, charge dissipative/conducting versus non-conducting VHCs, and facemasks, to ascertain whether potentially meaningful differences between VHCs exist. Inconsistencies in the literature are examined and explained, and relationships between in vitro and in vivo data are discussed. A particular focus of this review is the AeroChamber Plus® Flow-Vu® Anti-static VHC, the most recent iteration of the AeroChamber VHC family. PMID:29378477

  6. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Astrophysics Data System (ADS)

    Reed, Brian D.

    1994-03-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  7. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  8. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  9. Design and setup of intermittent-flow respirometry system for aquatic organisms.

    PubMed

    Svendsen, M B S; Bushnell, P G; Steffensen, J F

    2016-01-01

    Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short periods of closed-chamber oxygen consumption measurements with regular flush periods, accurate oxygen uptake rate measurements can be made without the accumulation of waste products, particularly carbon dioxide, which may confound results. Automating the procedure with easily available hardware and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry (e.g. chamber size, flush rate, flush time, chamber mixing, measurement periods and temperature control). Finally, recent advances in oxygen probe technology and open source automation software will be discussed in the context of assembling relatively low cost and reliable measurement systems. © 2015 The Fisheries Society of the British Isles.

  10. The STREON Recirculation Chamber: An Advanced Tool to Quantify Stream Ecosystem Metabolism in the Benthic Zone

    NASA Astrophysics Data System (ADS)

    Brock, J. T.; Utz, R.; McLaughlin, B.

    2013-12-01

    The STReam Experimental Observatory Network is a large-scale experimental effort that will investigate the effects of eutrophication and loss of large consumers in stream ecosystems. STREON represents the first experimental effort undertaken and supported by the National Ecological Observatory Network (NEON).Two treatments will be applied at 10 NEON sites and maintained for 10 years in the STREON program: the addition of nitrate and phosphate to enrich concentrations by five times ambient levels and electrical fields that exclude top consumers (i.e., fish or invertebrates) of the food web from the surface of buried sediment baskets. Following a 3-5 week period, the sediment baskets will be extracted and incubated in closed, recirculating metabolic chambers to measure rates of respiration, photosynthesis, and nutrient uptake. All STREON-generated data will be open access and available on the NEON web portal. The recirculation chamber represents a critical infrastructural component of STREON. Although researchers have applied such chambers for metabolic and nutrient uptake measurements in the past, the scope of STREON demands a novel design that addresses multiple processes often neglected by earlier models. The STREON recirculation chamber must be capable of: 1) incorporating hyporheic exchange into the flow field to ensure measurements of respiration include the activity of subsurface biota, 2) operating consistently with heterogeneous sediments from sand to cobble, 3) minimizing heat exchange from the motor and external environment, 4) delivering a reproducible uniform flow field over the surface of the sediment basket, and 5) efficient assembly/disassembly with minimal use of tools. The chamber also required a means of accommodating an optical dissolved oxygen probe and a means to inject/extract water. A prototype STREON chamber has been designed and thoroughly tested. The flow field within the chamber has been mapped using particle imaging velocimetry (PIV) under various velocity settings. The extent of exchange with the sediment was assessed by means of a saline tracer injection and adjustment using flow-regulating components was explored. Performance under a broad range of temperatures (1 to 30 °C) was assessed. Finally, a novel heat-exchange mechanism meant to minimize warming during operations was evaluated. All prototype assessments demonstrate the applicability of the STREON chamber under a broad range of conditions. Though the STREON recirculation chamber has been designed to satisfy the specific needs of the STREON program, the open-access nature of the NEON network should facilitate scope expansion in the coming decades. The STREON recirculation chamber design and all prototype testing data will be accessible to facilitate chamber use elsewhere. The large number of chamber assemblies required for STREON operations should facilitate the acquisition of units by researchers working outside of the NEON network. Furthermore, the current scope of STREON includes the use of the chambers only once annually, thus a valuable tool for stream ecosystem measurements will be readily available at STREON sites for potential use by researchers interested in such measurements.

  11. Mechanosensation and the Primary Cilium

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Resnick, Andrew

    2010-10-01

    The primary cilium has come under increased scrutiny as a site for mechano- and chemosensation by cells. We have undertaken a program of study using mouse renal cell lines from the cortical collecting duct to quantify how mechanical forces arising from fluid shear are transduced into cellular responses. Fluid flow through a model nephron has been analyzed to determine the in vivo forces. A novel tissue culture flow chamber permitting accurate reproduction of physiologically relevant conditions has been calibrated. We have determined that in vivo conditions can be accurately modeled in our flow chamber.

  12. Diffuse CO2 degassing at Vesuvio, Italy

    NASA Astrophysics Data System (ADS)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido

    2004-10-01

    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  13. Effects of Buoyancy in Hydrogen Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Agrawal, A. K.; Al-Ammar, K.; Gollahalli, S. R.; Griffin, D. W.

    1999-01-01

    This project was carried out to understand the effects of heat release and buoyancy on the flame structure of diffusion flames. Experiments were conducted at atmospheric pressure in both normal gravity and microgravity conditions in the NASA LeRC 2.2 s drop tower. Experiments were also conducted in a variable pressure combustion facility in normal gravity to scale buoyancy and thus, to supplement the drop tower experiments. Pure H2 or H2 mixed with He was used as the jet fluid to avoid the complexities associated with soot formation. Fuel jet burning in quiescent air was visualized and quantified by the Rainbow Schlieren Deflectometry (RSD) to obtain scalar profiles (temperature, oxygen concentration) within the flame. Burner tube diameter (d) was varied from 0.3 to 1.19 mm producing jet exit Reynolds numbers ranging from 40 to 1900, and generating flames encompassing laminar and transitional (laminar to turbulent) flow structure. Some experiments were also complemented with the CFD analysis. In a previous paper, we have presented details of the RSD technique, comparison of computed and measured scalar distributions, and effects of buoyancy on laminar and transitional H2 gas-jet diffusion flames. Results obtained from the RSD technique, variable pressure combustion chamber, and theoretical models have been published. Subsequently, we have developed a new drop rig with improved optical and image acquisition. In this set up, the schlieren images are acquired in real time and stored digitally in RAM of an onboard computer. This paper deals with laminar diffusion flames of pure H2 in normal and microgravity.

  14. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  15. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    NASA Astrophysics Data System (ADS)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  16. Development of a sorption rate technique for single zeolite crystals using an electrodynamic balance

    NASA Astrophysics Data System (ADS)

    Welegala, Mark Joseph

    Conventional means for evaluating intracrystalline diffusion in zeolites are complicated by extracrystalline mass transport resistances, crystallite size distribution, sorption heat effects, and finite instrument response times. A potentially direct means of overcoming these problems is to study sorption uptake on a single crystal suspended within a flowing gas stream in an electrodynamic balance (EDB). The objectives of this research were to design, build and investigate the viability of using such a device for obtaining diffusion coefficients from simple sorbate/zeolite systems, by computing the sorption uptake curve from the levitation voltage as a function of time. The initial electronic cell design was strongly influenced by flow mixing considerations. Accordingly, the conventional bihyperboloid electrode configuration was discarded in favor of novel four-ring (4R), and later two-ring/two-screen (2R/2S) designs with cylindrical interior geometries. A detailed numerical model based on the Method of Discrete Charges (MDC) was developed and used to aid in the design and operational understanding of these cells. Several 2R/2S designs were built and tested, including teflon/mica composite and ceramic cells capable of withstanding up to 750oF, for in situ activation of the zeolites. The diffusion of carbon dioxide in zeolite A was selected for testing due to the large differential weight change (10-20%) which occurs at ambient conditions and the availability of reliable experimental diffusion results (Yucel and Ruthven, 1980a). In addition to the carbon dioxide sorbate, water on zeolite 4A and a system relatively immune to atmospheric contamination, CO2 on activated carbon were also studied. Laboratory 4A crystals of up to 45 μm were grown using Charnell's method. These large solid particles were captured using a dry charging technique, and held during elevated temperature dehydration. Preliminary experimentation introduced externally dried crystals to the cell chamber in 0.5-3 minutes. Only minimal desorption results with carbon dioxide and later, adsorption for water vapor, were obtained. Further experiments revealed that crystal contamination from laboratory air can be considerable in less than one minute, thereby preadsorbing airborne water vapor. The experimental methodology was changed to include in situ heating. Subsequent attempts to circumvent laser heating of the particle had limited success. Particle loss, (due to excessive charge loss) and cell material degradation limited the process to null point temperatures of approximately 260oC, which is insufficient for complete zeolite dehydration. Early, it was demonstrated that gas compositions could be switched while flowing without losing the particle. However, the resulting concentration transient imposes an ultimate limitation on the technique for application to rapidly diffusing systems. Also, the fact that the technique is gravimetric requires that the diffusing species must be appreciably adsorbed at ambient conditions. Thus the single crystal sorption apparatus based on the electrodynamic containment device would appear to have use primarily for strongly adsorbed and slowly diffusing species. (Abstract shortened by UMI.)

  17. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step.

    PubMed

    Haidekker, M A; White, C R; Frangos, J A

    2001-10-01

    Endothelial cells in blood vessels are exposed to bloodflow and thus fluid shear stress. In arterial bifurcations and stenoses, disturbed flow causes zones of recirculation and stagnation, which are associated with both spatial and temporal gradients of shear stress. Such gradients have been linked to the generation of atherosclerotic plaques. For in-vitro studies of endothelial cell responses, the sudden-expansion flow chamber has been widely used and described. A two-dimensional numerical simulation of the onset phase of flow through the chamber was performed. The wall shear stress action on the bottom plate was computed as a function of time and distance from the sudden expansion. The results showed that depending on the time for the flow to be established, significant temporal gradients occurred close to the second stagnation point of flow. Slowly ramping the flow over 15 s instead of 200 ms reduces the temporal gradients by a factor of 300, while spatial gradients are reduced by 23 percent. Thus, the effects of spatial and temporal gradients can be observed separately. In experiments on endothelial cells, disturbed flow stimulated cell proliferation only when flow onset was sudden. The spatial patterns of proliferation rate match the exposure to temporal gradients. This study provides information on the dynamics of spatial and temporal gradients to which the cells are exposed in a sudden-expansion flow chamber and relates them to changes in the onset phase of flow.

  18. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  19. Gas turbine combustor exit piece with hinged connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60)more » of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.« less

  20. Evaluation of Heat Recuperation in a Concentric Hydrogen Reduction Reactor

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Hegde, Uday

    2012-01-01

    Heat recuperation in an ISRU reactor system involves the recovery of heat from a reacted regolith batch by transferring this energy into a batch of fresh regolith. One concept for a hydrogen reduction reactor is a concentric chamber design where heat is transferred from the inner, reaction chamber into fresh regolith in the outer, recuperation chamber. This concept was tested and analyzed to define the overall benefit compared to a more traditional single chamber batch reactor. Data was gathered for heat-up and recuperation in the inner chamber alone, simulating a single chamber design, as well as recuperation into the outer chamber, simulating a dual chamber design. Experimental data was also used to improve two analytical models, with good agreement for temperature behavior during recuperation, calculated mass of the reactor concepts, and energy required during heat-up. The five tests, performed using JSC-1A regolith simulant, also explored the effectiveness of helium gas fluidization, hydrogen gas fluidization, and vibrational fluidization. Results indicate that higher hydrogen volumetric flow rates are required compared to helium for complete fluidization and mixing, and that vibrational fluidization may provide equivalent mixing while eliminating the need to flow large amounts of excess hydrogen. Analysis of the total energy required for heat-up and steady-state operations for a variety of conditions and assumptions shows that the dual-chamber concept requires the same or more energy than the single chamber concept. With no clear energy savings, the added mass and complexity of the dual-chamber makes it unlikely that this design concept will provide any added benefit to the overall ISRU oxygen production system.

Top