Science.gov

Sample records for flow distribution test

  1. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  2. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  3. Development, testing and application of DrainFlow: A fully distributed integrated surface-subsurface flow model for drainage study

    NASA Astrophysics Data System (ADS)

    Shokri, Ali; Bardsley, William Earl

    2016-06-01

    Hydrological and hydrogeological investigation of drained land is a complex and integrated procedure. The scale of drainage studies may vary from a high-resolution small scale project through to comprehensive catchment or regional scale investigations. This wide range of scales and integrated system behaviour poses a significant challenge for the development of suitable drainage models. Toward meeting these requirements, a fully distributed coupled surface-subsurface flow model titled DrainFlow has been developed and is described. DrainFlow includes both the diffusive wave equation for surface flow components (overland flow, open drain, tile drain) and Richard's equation for saturated/unsaturated zones. To overcome the non-linearity problem created from switching between wet and dry boundaries, a smooth transitioning technique is introduced to buffer the model at tile drains and at interfaces between surface and subsurface flow boundaries. This gives a continuous transition between Dirichlet and Neumann boundary conditions. DrainFlow is tested against five well-known integrated surface-subsurface flow benchmarks. DrainFlow as applied to some synthetic drainage study examples is quite flexible for changing all or part of the model dimensions as required by problem complexity, problem scale, and data availability. This flexibility enables DrainFlow to be modified to allow for changes in both scale and boundary conditions, as often encountered in real-world drainage studies. Compared to existing drainage models, DrainFlow has the advantage of estimating actual infiltration directly from the partial differential form of Richard's equation rather than through analytical or empirical infiltration approaches like the Green and Ampt equation.

  4. Interpreting Variations in Groundwater Flows from Repeated Distributed Thermal Perturbation Tests.

    PubMed

    Hausner, Mark B; Kryder, Levi; Klenke, John; Reinke, Richard; Tyler, Scott W

    2016-07-01

    To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber-optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30-m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS-based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.

  5. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  6. Airflow Model Testing to Determine the Distribution of Hot Gas Flow and O/F Ratio Across the Space Shuttle Main Engine Main Injector Assembly

    NASA Technical Reports Server (NTRS)

    Mahorter, L.; Chik, J.; McDaniels, D.; Dill, C.

    1990-01-01

    Engine 0209, the certification engine for the new Phase 2+ Hot Gas Manifold (HGM), showed severe deterioration of the Main Combustion Chamber (MCC) liner during hot fire tests. One theory on the cause of the damage held that uneven local distribution of the fuel rich hot gas flow through the main injector assembly was producing regions of high oxidizer/fuel (O/F) ratio near the wall of the MCC liner. Airflow testing was proposed to measure the local hot gas flow rates through individual injector elements. The airflow tests were conducted using full scale, geometrically correct models of both the current Phase 2 and the new Phase 2+ HGMs. Different main injector flow shield configurations were tested for each HGM to ascertain their effect on the pressure levels and distribution of hot gas flow. Instrumentation located on the primary faceplate of the main injector measured hot gas flow through selected injector elements. These data were combined with information from the current space shuttle main engine (SSME) power balances to produce maps of pressure, hot gas flow rate, and O/F ratio near the main injector primary plate. The O/F distributions were compared for the different injector and HGM configurations.

  7. Reversing Flow Test Facility

    NASA Astrophysics Data System (ADS)

    Roach, P. D.

    1986-04-01

    The Reversing Flow Test Facility (RFTF) is intended for the study of fluid flow and heat transfer under the reversing-flow conditions that occur in Stirling engines. The facility consists of four major parts: (1) Mechanical Drive - two cylinders with cam-driven pistons which generate the reversing gas flow, (2) Test Section - a U-shaped section containing instrumented test pieces, (3) Instruments -l high-speed transducers for measuring gas pressure and temperature, piston positions, and other system parameters, and (4) Data Acquisition System - a computer-based system able to acquire, store, display and analyze the data from the instruments. The RFTF can operate at pressures up to 8.0 MPa, hot-side temperatures to 800 deg. C, and flow-reversal frequencies to 50 Hz. Operation to data has used helium as the working gas at pressures of 3.0 and 6.0 MPa, at ambient temperature, and at frequencies from 1 to 50 Hz. The results show that both frictional and inertial parts of the pressure drop are significant in the heater, coolers and connecting tubes; the inertial part is negligible in the regenerators. In all cases, the frictional part of the pressure drop is nearly in phase with the mass flow.

  8. Fetal-maternal erythrocyte distribution blood test

    MedlinePlus

    Kleihauer-Betke stain; Flow cytometry - fetal-maternal erythrocyte distribution; Rh incompatibility - erythrocyte distribution ... slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your doctor ...

  9. Planar measurements of instantaneous species and temperature distributions in reacting flows - A novel approach to ground testing instrumentation

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Davis, Steven J.; Donohue, Karen

    1990-07-01

    This paper describes the technique and instrumentation for the simultaneous acquisition of the instantaneous distribution of temperature and the OH radical in high temperature reacting flowfields. The technique is based on Planar Laser-Induced Fluorescence (PLIF). Tunable, pulsed radiation derived from two Nd:YAG-pumped dye laser systems is focused by a common cylindrical telescope across a plane in the flow. The cylindrical telescope transforms the beams into twin sheets which are adjusted to overlap in space but are separated in time by approximately 1 microsecond. The laser wavelengths are tuned to two isolated absorption lines of OH and the resulting fluorescence is imaged onto two intensified CCD-array camera systems. The ratio of the two images is used to infer gas-phase temperature while one of the images is used for OH number density. The resulting images constitute instantaneous, two-dimensional measurements of the distribution of temperature and an important reactive intermediate in the flowfield plane.

  10. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  11. Debris Flow Distributed Propagation Model

    NASA Astrophysics Data System (ADS)

    Gregoretti, C.

    The debris flow distributed propagation model is a DEM-based model. The fan is dis- cretized by square cells and each cell is assigned an altitude on the sea level. The cells of the catchment are distinguished in two categories: the source cells and the stripe cells. The source cells receive the input hydograph: the cells close to the torrent which are flooded by the debris flow overflowing the torrent embankment are source cells. The stripes cells are the cells flooded by debris flow coming from the surrounding cells. At the first time step only the source cells are flooded by debris flow coming from the torrent. At the second time step a certain number of cells are flooded by de- bris flow coming from the source cells. These cells constitute a stripe of cells and are assigned order two. At the third time step another group of cells are flooded by the debris flow coming from the cells whose order is two. These cells constitute another stripe and are assigned order three. The cell order of a stripe is the time step number corresponding to the transition from dry to flooded state. The mass transfer or mo- mentum exchange between cells is governed by two different mechanisms. The mass transfer is allowed only by a positive or equal to zero flow level difference between the drained cell and the receiving cell. The mass transfer is limited by a not negative final flow level difference between the drained cell and the receiving cells. This limitation excludes the case of possible oscillations in the mass transfer. Another limitation is that the mass drained by a cell should be less than the available mass in that cell. This last condition provides the respect of mass conservation. The first mechanism of mass transfer is the gravity. The mass in a cell is transferred to the neighbouring cells with lower altitude and flow level according to an uniform flow law: The second mecha- nism of mass transfer is the broad crested weir. The mass in a cell is transferred to the

  12. Testing reveals proppant distribution

    SciTech Connect

    Crump, J.B. ); Ekstrand, B.B. ); Almond, S.W. )

    1988-10-31

    Sand distribution tests, undertaken to answer inquiries from a producing company, have shown that proppant placed during a hydraulic fracture treatment is evenly distributed into the perforated interval. Therefore, for planning purposes, a good assumption is that all perforations will pass essentially equal volumes of proppant, provided perforation quality is uniform, perforations are open, and bottom hole treating pressure is constant across the interval. Under simulated conditions, a fluid viscosity of 30 cp (511 sec/sup -1/) allowed 20/40 sand to ''turn to corner'' and pass through perforations with minimal stratification. This finding refutes the theory held by some that the bottom perforation is ''slugged'' with heavier concentration of sand than the upper perforations, and the theory's logical extension that after the bottom perforation is filled, it plugs and the perforation just above becomes the next bottom until the entire perforated interval is screened out. Tests described in this article were part of a program implemented to analyze causes of screen outs encountered in fracturing operations.

  13. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  14. Probability distribution of flood flows in Tunisia

    NASA Astrophysics Data System (ADS)

    Abida, H.; Ellouze, M.

    2008-05-01

    L (Linear) moments are used in identifying regional flood frequency distributions for different zones Tunisia wide. 1134 site-years of annual maximum stream flow data from a total of 42 stations with an average record length of 27 years are considered. The country is divided into two homogeneous regions (northern and central/southern Tunisia) using a heterogeneity measure, based on the spread of the sample L-moments among the sites in a given region. Then, selection of the corresponding distribution is achieved through goodness-of-fit comparisons in L-moment diagrams and verified using an L moment based regional test that compares observed to theoretical values of L-skewness and L-kurtosis for various candidate distributions. The distributions used, which represent five of the most frequently used distributions in the analysis of hydrologic extreme variables are: (i) Generalized Extreme Value (GEV), (ii) Pearson Type III (P3), (iii) Generalized Logistic (GLO), (iv) Generalized Normal (GN), and (v) Generalized Pareto (GPA) distributions. Spatial trends, with respect to the best-fit flood frequency distribution, are distinguished: Northern Tunisia was shown to be represented by the GNO distribution while the GNO and GEV distributions give the best fit in central/southern Tunisia.

  15. Probability distribution of flood flows in Tunisia

    NASA Astrophysics Data System (ADS)

    Abida, H.; Ellouze, M.

    2007-04-01

    L (Linear) moments are used in identifying regional flood frequency distributions for different zones Tunisia wide. 893 site-years of annual maximum stream flow data from a total of 37 stations with an average record length of 24.14 years are considered. The country is divided into two homogeneous regions (northern and central/southern Tunisia) using a heterogeneity measure, based on the spread of the sample L-moments among the sites in a given region. Then, selection of the corresponding distribution is achieved through goodness-of-fit comparisons in L-moment diagrams and verified using an L-moment based regional test that compares observed to theoretical values of L-skewness and L-kurtosis for various candidate distributions. The distributions used, which represent five of the most frequently used distributions in the analysis of hydrologic extreme variables are: (i) Generalized Extreme Value (GEV), (ii) Pearson Type III (P3), (iii) Generalized Logistic (GLO), (iv) Generalized Normal (GN), and (v) Generalized Pareto (GPA) distributions. Spatial trends, with respect to the best-fit flood frequency distribution, are distinguished: Northern Tunisia was shown to be represented by the GEV distribution while the GLO distribution gives the best fit in central/southern Tunisia.

  16. Distributed Data Flow Signal Processors

    NASA Astrophysics Data System (ADS)

    Eggert, Jay A.

    1982-12-01

    Near term advances in technology such as VHSIC promise revolutionary progress in programmable signal processor capabilities. However, meeting projected signal processing requirements for radar, sonar and other high throughput systems requires effective multi-processor networks. This paper describes a distributed signal processor architecture currently in development at Texas Instruments that is designed to meet these high through-put, multi-mode system requirements. The approach supports multiple, functionally spe-cialized, autonomous nodes (processors) interconnected via a flexible, high speed communication network. A common task scheduling mechanism based upon "data flow" concepts provides an efficient high level programming and simulation mechanism. The Ada syntax compatible task level programming and simulation software support tools are also described.

  17. Asynchronous Distributed Flow Control Algorithms.

    DTIC Science & Technology

    1984-10-01

    SCHEDULE IS. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. I?. DISTRIBUTION STATEMENT (of the abstract...model for asynchronous computation developed by Bertsekas [14] to get some results relating to general-asynchronous distributed algo- rithms with update...to get some results relating to general asynchronous distributed algorithms with update protocols. These results are used to give an alternate proof of

  18. Cold Flow Propulsion Test Complex Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Kris

    2016-01-01

    When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.

  19. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  20. Effects of flow separation and cove leakage on pressure and heat-transfer distributions along a wing-cove-elevon configuration at Mach 6.9. [Langley 8-ft high temperature tunnel test

    NASA Technical Reports Server (NTRS)

    Deveikis, W. D.

    1983-01-01

    External and internal pressure and cold-wall heating-rate distributions were obtained in hypersonic flow on a full-scale heat-sink representation of the space shuttle orbiter wing-elevon-cove configuration in an effort to define effects of flow separation on cove aerothermal environment as a function of cove seal leak area, ramp angle, and free-stream unit Reynolds number. Average free-stream Mach number from all tests was 6.9; average total temperature from all tests was 3360 R; free-stream dynamic pressure ranged from about 2 to 9 psi; and wing angle of attack was 5 deg (flow compression). For transitional and turbulent flow separation, increasing cove leakage progressively increased heating rates in the cove. When ingested mass flow was sufficient to force large reductions in extent of separation, increasing cove leakage reduced heating rates in the cove to those for laminar attached flow. Cove heating-rate distributions calculated with a method that assumed laminar developing channel flow agreed with experimentally obtained distributions within root-mean-square differences that varied between 11 and 36 percent where cove walls were parallel for leak areas of 50 and 100 percent.

  1. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids

    SciTech Connect

    Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

    2016-11-21

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.

  2. Cold Flow Verification Test Facility

    SciTech Connect

    Shamsi, A.; Shadle, L.J.

    1996-12-31

    The cold flow verification test facility consists of a 15-foot high, 3-foot diameter, domed vessel made of clear acrylic in two flanged sections. The unit can operate up to pressures of 14 psig. The internals include a 10-foot high jetting fluidized bed, a cylindrical baffle that hangs from the dome, and a rotating grate for control of continuous solids removal. The fluid bed is continuously fed solids (20 to 150 lb/hr) through a central nozzle made up of concentric pipes. It can either be configured as a half or full cylinder of various dimensions. The fluid bed has flow loops for separate air flow control for conveying solids (inner jet, 500 to 100000 scfh) , make-up into the jet (outer jet, 500 to 8000 scfh), spargers in the solids removal annulus (100 to 2000 scfh), and 6 air jets (20 to 200 scfh) on the sloping conical grid. Additional air (500 to 10000 scfh) can be added to the top of the dome and under the rotating grate. The outer vessel, the hanging cylindrical baffles or skirt, and the rotating grate can be used to study issues concerning moving bed reactors. There is ample allowance for access and instrumentation in the outer shell. Furthermore, this facility is available for future Cooperative Research and Development Program Manager Agreements (CRADA) to study issues and problems associated with fluid- and fixed-bed reactors. The design allows testing of different dimensions and geometries.

  3. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  4. Probability Distribution for Flowing Interval Spacing

    SciTech Connect

    S. Kuzio

    2004-09-22

    Fracture spacing is a key hydrologic parameter in analyses of matrix diffusion. Although the individual fractures that transmit flow in the saturated zone (SZ) cannot be identified directly, it is possible to determine the fractured zones that transmit flow from flow meter survey observations. The fractured zones that transmit flow as identified through borehole flow meter surveys have been defined in this report as flowing intervals. The flowing interval spacing is measured between the midpoints of each flowing interval. The determination of flowing interval spacing is important because the flowing interval spacing parameter is a key hydrologic parameter in SZ transport modeling, which impacts the extent of matrix diffusion in the SZ volcanic matrix. The output of this report is input to the ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, the analysis of data and development of a data distribution reported herein is used to develop the uncertainty distribution for the flowing interval spacing parameter for the SZ transport abstraction model. Figure 1-1 shows the relationship of this report to other model reports that also pertain to flow and transport in the SZ. Figure 1-1 also shows the flow of key information among the SZ reports. It should be noted that Figure 1-1 does not contain a complete representation of the data and parameter inputs and outputs of all SZ reports, nor does it show inputs external to this suite of SZ reports. Use of the developed flowing interval spacing probability distribution is subject to the limitations of the assumptions discussed in Sections 5 and 6 of this analysis report. The number of fractures in a flowing interval is not known. Therefore, the flowing intervals are assumed to be composed of one flowing zone in the transport simulations. This analysis may overestimate the flowing interval spacing because the number of fractures that contribute to a flowing interval cannot be

  5. Statistical Distribution of Inflation on Lava Flows: Analysis of Flow Surfaces on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Glazel, L. S.; Anderson, S. W.; Stofan, E. R.; Baloga, S.

    2003-01-01

    -dominated terrestrial flows can be identified. Since tumuli form by the injection of lava beneath a crust, the distribution of tumuli on a flow should represent the distribution of thermally preferred pathways beneath the surface of the crust. That distribution of thermally preferred pathways may be a function of the evolution of a basaltic lava flow. As a longer-lived flow evolves, initially broad thermally preferred pathways would evolve to narrower, more well-defined tube-like pathways. The final flow morphology clearly preserves the growth of the flow over time, with inflation features indicating pathways that were not necessarily contemporaneously active. Here, we test using statistical analysis whether this final flow morphology produces distinct distributions that can be used to readily determine the distribution of thermally preferred pathways beneath the surface of the crust.

  6. Particle Distribution in Suspension Shear Flow

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W. (Technical Monitor)

    1994-01-01

    An earlier proposed constitutive relation for normal stresses originated by random particle fluctuations is used to describe a joint effect of thermal and shear-induced fluctuations on concentrational distributions in suspension flow. Averaged products of components of the fluctuation velocity are evaluated on a basis of the rational mechanics approach combined with a simple kinematic consideration. The equation of momentum conservation of the dispersed phase of a suspension closed with this constitutive relation is applied to unidirectional shear flow in the gravity field and to rotational Couette flow. Coupling of the thermal and shear-induced fluctuations results in that the ability of shear flow to suspend particles has a minimum at a certain particle size, all other things being equal. The developed model provides also for a reasonable explanation of particle distributions observed in Couette flow. The approach based on the consideration of momentum balance for the dispersed phase is proved to lead to an effective equation of convective diffusion of the suspended particles. Coefficients of mutual diffusion due to both thermal and shear-induced fluctuations are drastically different from corresponding self-diffusivities as regards both their scaling and their concentrational dependence.

  7. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    SciTech Connect

    Dionne, B.; Tzanos, C. P.

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  8. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  9. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    DTIC Science & Technology

    2004-01-01

    lubricants PDB polyethylene diffusion bag PVC polyvinyl chloride RPD relative percentage difference TCE trichloroethene USGS U.S. Geological Survey VOA...PDB and low-flow sample results was only 1.2 µg/L. The average relative percentage difference (RPD) between PDB and low- flow sample results for

  10. Inspiratory flow and intrapulmonary gas distribution

    SciTech Connect

    Rehder, K.; Knopp, T.J.; Brusasco, V.; Didier, E.P.

    1981-01-01

    The effect of flow of inspired gas on intrapulmonary gas distribution was examined by analysis of regional pulmonary /sup 133/Xe clearances and of total pulmonary /sup 133/Xe clearance measured at the mouth after equilibration of the lungs with /sup 133/Xe. Five awake healthy volunteers (24 to 40 yr of age) and another 5 healthy, anesthetized-paralyzed volunteers (26 to 28 yr of age) were studied while they were in the right lateral decubitus position. The awake subjects were studied at 3 inspiratory flows (0.4, 0.7, and 1.0 L/s) and the anesthetized-paralyzed subjects at 4 inspiratory flows (0.2, 0.5, 1.1, and 1.6 L/s). Interregional differences in /sup 133/Xe clearances along the vertical axis were significantly less during anesthesia-paralysis and mechanical ventilation than during spontaneous breathing in the awake state. No differences in the regional or total pulmonary /sup 133/Xe clearances were detected at these different flows in either of the two states, i.e., the difference between the awake and anesthetized-paralyzed states persisted.

  11. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  12. Calculation of flow distribution in large radius ratio stages of axial flow turbines and comparison of theory and experiment

    NASA Technical Reports Server (NTRS)

    Herzog, J.

    1974-01-01

    A method of calculating stage parameters and flow distribution of axial turbines is described. The governing equations apply to space between the blade rows and are based on the assumption of rotationally symmetrical, compressible, adiabatic flow conditions. Results are presented for stage design and flow analysis calculations. Theoretical results from the calculation system are compared with experimental data from low pressure steam turbine tests.

  13. Quasi parton distributions and the gradient flow

    DOE PAGES

    Monahan, Christopher; Orginos, Kostas

    2017-03-22

    We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernelmore » that relates the smeared quasi PDF and the light-front PDF.« less

  14. The Density Distribution in Turbulent Bistable Flows

    NASA Astrophysics Data System (ADS)

    Gazol, Adriana; Kim, Jongsoo

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n <~ 0.6 cm-3), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ~0.2 to ~5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n >~ 7.1 cm-3) goes from ~1.1 to ~16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  15. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    SciTech Connect

    Gazol, Adriana; Kim, Jongsoo E-mail: jskim@kasi.re.kr

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  16. Distributed Apertures in Laminar Flow Laser Turrets.

    DTIC Science & Technology

    1981-09-01

    STANDARDS lq63 A LEYE &i 00 NPS 67-81-014 A--q NAVAL POSTGRADUATE SCHOOL 00 oMonterey, California THESIS Distributed Apertures in Laminar Flow Laser...diameter, m DA individual aperture diameter in the array, m F array factor h altitude, km H scale height, km I irradiance on the target, watts m- 2 Io ...and the argument of J, are con. red. This yields Iii at that point; I is stored ,, -:ray. Those grid points within "the Bucket" contriZv,.t io the

  17. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI.

    PubMed

    Jarvis, Kelly; Schnell, Susanne; Barker, Alex J; Garcia, Julio; Lorenz, Ramona; Rose, Michael; Chowdhary, Varun; Carr, James; Robinson, Joshua D; Rigsby, Cynthia K; Markl, Michael

    2016-10-01

    Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9-21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9-100], IVC to LPA: 54% ± 28 [4-98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R(2)=0.50, P=0.02; SVC to LPA: R(2)=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability.

  18. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  19. Powder Flow Testing: Judicious Choice of Test Methods.

    PubMed

    Tay, Justin Yong Soon; Liew, Celine Valeria; Heng, Paul Wan Sia

    2016-11-14

    Flow property of pharmaceutical powders can be assessed by various flow testers and test methods. In this study, eight commercially available lactose grades were sourced and tested for angles of repose, tapping studies, shear cell measurements, stirred powder rheometry, and avalanching powder measurements. The relationships between various flow parameters and particle size were analyzed. Deviations from the general trend could be attributed to either the insensitivity of the test or differences in particle shape. The basic flowability energy of the powder rheometer was unable to reconcile the effects of shape and particle size on powder flowability. Avalanche time of the revolving drum powder analyzer and angle of repose exhibited good correlation with each other (r = 0.92) but experienced poor resolution for samples of smaller particle sizes due to powder cohesiveness and the propensity for agglomerative flow. Flow test parameters could be categorized into three broad types, based on their relationship with particle size: (i) linear relationship, (ii) test parameter more sensitive to smaller sized particles, and (iii) test parameter more sensitive to larger sized particles. Choice of test parameters used to represent powder flow should be dependent on the sensitivity of the selected flow test methods to the sample types.

  20. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  1. Experimental study of flow distribution and pressure loss with circumferential inlet and outlet manifolds

    NASA Technical Reports Server (NTRS)

    Dittrich, R. T.

    1972-01-01

    Water flow tests with circumferential inlet and outlet manifolds were conducted to determine factors affecting fluid distribution and pressure losses. Various orifice sizes and manifold geometries were tested over a range of flow velocities. With inlet manifolds, flow distribution was related directly to orifice discharge coefficients. A correlation indicated that nonuniform distribution resulted when the velocity head ratio at the orifice was not in the range of constant discharge coefficient. With outlet manifolds, nonuniform flow was related to static pressure variations along the manifold. Outlet manifolds had appreciably greater pressure losses than comparable inlet manifolds.

  2. A test facility for hypervelocity rarefied flows

    NASA Astrophysics Data System (ADS)

    Macrossan, M. N.; Chiu, H.-H.; Mee, D. J.

    2001-08-01

    This paper describes a rarefied hypervelocity test facility producing gas speeds greater than 7 km/s. The X1 expansion tube at The University of Queensland has been used to produce nitrogen flows at 8.9 and 9.5 km/s with test flow durations of 50 and 40 μs respectively. Rarefied flow is indicated by values of the freestream breakdown parameter >0.1 (Cheng's rarefaction parameter <10) and freestream Knudsen numbers up to 0.038, based on a model size of 9 mm. To achieve this, the test gas is expanded from the end of the acceleration tube into a dump tank. Nominal conditions in the expansion are derived from CFD predictions. Measured bar gauge (Pitot) pressures show that the flow is radially uniform when the Pitot pressure has decreased by a factor ten. The measured bar gauge pressures are an increasing fraction of the expected Pitot pressure as the rarefaction parameters increase.

  3. Distributed flow sensing using optical hot -wire grid.

    PubMed

    Chen, Tong; Wang, Qingqing; Zhang, Botao; Chen, Rongzhang; Chen, Kevin P

    2012-04-09

    An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

  4. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  5. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  6. Test of Taylor's Hypothesis with Distributed Temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Gentine, P.; Sayde, C.; Tanner, E.; Ochsner, T. E.; Dong, J.

    2016-12-01

    Taylor's hypothesis[Taylor, 1938] assumes that mean wind speed carries the spatial pattern of turbulent motion past a fixed point in a "frozen" way, which has been widely used to relate streamwise wavenumber and angular frequency . Experiments[Fisher, 1964; Tong, 1996] have shown some deviation from Taylor's hypothesis at highly turbulent intensity flows and at high wavenumbers. However, the velocity or scalar measurements have always been fixed at a few spatial points rather than distributed in space. This experiment was designed for the first time to directly compare the time and spatial spectrum of temperature to test Taylor's hypothesis, measuring temperature with high resolution in both time and space by Distributed Temperature Sensing utilizing the attenuation difference of Raman scattering in the optic fiber at the MOISST site Oklahoma. The length of transact is 233 meters along the dominant wind direction. The temperature sampling distance is 0.127m and sampling time frequency is 1 Hz. The heights of the 4 fiber cables parallel to ground are 1m, 1.254m, 1.508m and 1.762m respectively. Also, eddy covariance instrument was set up near the Distributed Temperature Sensing as comparison for temperature data. The temperature spatial spectrum could be obtained with one fixed time point, while the temperature time spectrum could be obtained with one fixed spatial point in the middle of transact. The preliminary results would be presented in the AGU fall meeting. Reference Fisher, M. J., and Davies, P.O.A.L (1964), Correlation measurements in a non-frozen pattern of turbulence, Journal of fluid mechanics, 18(1), 97-116. Taylor, G. I. (1938), The spectrum of turbulence, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 164(919), 476-490. Tong, C. (1996), Taylor's Hypothesis and Two-point Coherence Measurements, Boundary-Layer Meteorology, 81(3), 399-410.

  7. Testing Mixed Distributions when the Mixing Distribution Is Known

    NASA Astrophysics Data System (ADS)

    Pommeret, Denys

    In this paper we present smooth goodness of fit tests for testing the mixture distribution of a sequence of i.i.d. random variables. We consider mixture models when the mixing distribution is known. We adapt a Schwarz’s criteria initiated by Ledwina (J Am Stat Assoc 89:1000-1005, 1994) and inspired by the Neyman (Skandinavian Aktuarial 20:149-199, 1937) smooth test procedure. A Monte Carlo study is provided in order to assess the performance of the test.

  8. Columbia University flow instability experimental program: Volume 6. Single annulus tests, transient test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1 to 2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. This report presents the experimental results for the transient portion of the single annulus test program. The test program was designed to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a ribless heater and a ribbed heater under steady state as well as transient conditions. The ribbed heater testing is currently underway and will be reported separately. The steady state portion of this test program with ribless heater was completed and reported in report No. CU-HTRF-T3A. The present report presents transient test results obtained from a ribless, uniform annulus test section. A total of thirty five transients were conducted with six cases in which flow excursion occurred. No unstable conditions resulted for tests in which the steady state Q{sub ratio} OFI limit was not exceeded.

  9. Boundary layer effects in turbulent flow testing

    SciTech Connect

    Turgoose, S.; Dawson, J.L.; Palmer, J.W.; Rizk, T.

    1995-10-01

    Flow accelerated corrosion under turbulent flow is a complex process with enhanced mass transport, development of concentration gradients and film formation all influencing the corrosion rate. Published data from well established hydrodynamic correlations of mass transfer and flow, and shear stress and flow, are first compared to illustrate the relative magnitudes of the various parameters for different flow geometries. The results of these empirical studies are also compared with the universal velocity profile concept. The analysis shows that any lack of correspondence between corrosion data obtained with different, well characterize, flow apparatus, such as pipe loop, rotating cylinder electrode (RCE) or jet impingement rig, cannot be ascribed to any fundamental difference in correlations between mass transfer and shear stress. The corrosion system of carbon steel in CO{sub 2} containing brine is then used to demonstrate that the developing concentration profiles are a major factor in flow enhanced corrosion under turbulent conditions. Leading edge effects on electrodes have a significant influence not anticipated from fully developed flow data. The study indicates that the RCE provides baseline corrosion data comparable with that from an infinitely long pipeline. Test loop electrodes are usually of short length and experience conditions comparable to jet impingement. It is shown that local rates of mass transfer are significantly greater on short electrodes than on ``long`` electrodes and hence higher corrosion rates are expected. Also, the local ferrous ion concentrations will be lower (at a given corrosion rate) on short electrodes, thereby reducing the tendency to form protective films.

  10. Load flow and state estimation algorithms for three-phase unbalanced power distribution systems

    NASA Astrophysics Data System (ADS)

    Madvesh, Chiranjeevi

    Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.

  11. Improving flow distribution in influent channels using computational fluid dynamics.

    PubMed

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  12. High Stakes Testing and Distributive Justice

    ERIC Educational Resources Information Center

    Schrag, Francis K.

    2004-01-01

    Evaluation of high stakes testing regimes must consider not simply mean test scores, but their distribution among students. Taking high school graduation tests and black and white student populations to illustrate the argument, I identify two criteria of success: a larger proportion of black high school graduates and a narrower gap between the two…

  13. Asymptotic Distributions for Tests of Combined Significance.

    ERIC Educational Resources Information Center

    Becker, Betsy Jane

    This paper discusses distribution theory and power computations for four common "tests of combined significance." These tests are calculated using one-sided sample probabilities or p values from independent studies (or hypothesis tests), and provide an overall significance level for the series of results. Noncentral asymptotic sampling…

  14. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  15. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  16. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  17. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  18. Resource Prospector Propulsion System Cold Flow Testing

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  19. Gas-Liquid Two-Phase Flow Distribution Using Phase Separation Method

    NASA Astrophysics Data System (ADS)

    Zhang, B. D.; Liu, D.; Wang, D.

    2010-03-01

    A method for gas-liquid two-phase flow distribution is proposed in this study, which can be called the phase separation method. The advantage of the new method is that it converts two-phase flow distribution into single-phase distribution, which overcomes the problem of phase splitting in the distribution process of two-phase flow radically, and an equal quality distribution is guaranteed. At first, separate the mixture of gas and liquid into single or near single phase fluids by enhancing phase splitting in distributor, then distribute the single gas and liquid flow respectively as required, finally recombine each couple of gas and liquid stream respectively to form a two phase stream exiting a branch. Experiments were conducted in an air-water multiphase flow test loop. The flow pattern in the experiments included stratified flow, wave flow, slug flow and a part of annular flow. The experimental results show that the phase separation method and apparatus could be feasible to make an equal quality distribution and the deviation of stream quality among the branches is less than 1.6%.

  20. Distributing Radiant Heat in Insulation Tests

    NASA Technical Reports Server (NTRS)

    Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.

    1986-01-01

    Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.

  1. Conducting distributed exercises: coordinated design and testing

    NASA Astrophysics Data System (ADS)

    Sottilare, Robert A.

    1995-06-01

    This paper provides a basis for planning, designing, and testing distributed exercises and experiments. Lessons learned from the Synthetic Theater of War--Europe (STOW-E) exercise conducted in November 1994 are incorporated to provide system engineers/integrators areas of consideration in the design and testing of distributed interactive simulation (DIS) exercises and experiments. Issues involving DIS compliance in accordance with IEEE 1278.1, and interoperability and compatibility testing measures are also discussed. Design and test issues for live, virtual, and constructive simulations are considered. This paper assumes basic knowledge of DIS principles.

  2. 1987 Seagull Shoreline System flow test

    SciTech Connect

    Not Available

    1988-04-01

    The American Gas Association (AGA) employed Pipeline Hydraulics Engineering, Inc. (PHE) to conduct a flow test of the Seagull Shoreline System (SSS) and Enron's associated gas gathering system. The purpose of the flow test was to obtain field pressure drop and holdup data from a large diameter gas condensate pipeline. The validity of various two-phase correlations either proposed in the open literature or under development is generally established based upon comparison with field and/or laboratory measurements. Since accessible large diameter data is limited, most of these comparisons have been made with small diameter pipes. The application of the resulting correlations to actual large diameter pipelines has proven less than satisfactory in many cases particularly as regards holdup prediction. PHE carried out the flow test of the SSS/Enron system on November 3--4, 1987. Actually, PHE was allowed only to observe and record data during a normal SSS operation, i.e. pigging of the system. This report presents the data along with its interpretation. In addition, comparisons are made with calculated results using PHE's two-phase flow computer program and associated correlations.

  3. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  4. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  5. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  6. A flow path model for regional water distribution optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.

    2009-09-01

    We develop a flow path model for the optimization of a regional water distribution system. The model simultaneously describes a water distribution system in two parts: (1) the water delivery relationship between suppliers and receivers and (2) the physical water delivery network. In the first part, the model considers waters from different suppliers as multiple commodities. This helps the model clearly describe water deliveries by identifying the relationship between suppliers and receivers. The physical part characterizes a physical water distribution network by all possible flow paths. The flow path model can be used to optimize not only the suppliers to each receiver but also their associated flow paths for supplying water. This characteristic leads to the optimum solution that contains the optimal scheduling results and detailed information concerning water distribution in the physical system. That is, the water rights owner, water quantity, water location, and associated flow path of each delivery action are represented explicitly in the results rather than merely as an optimized total flow quantity in each arc of a distribution network. We first verify the proposed methodology on a hypothetical water distribution system. Then we apply the methodology to the water distribution system associated with the Tou-Qian River basin in northern Taiwan. The results show that the flow path model can be used to optimize the quantity of each water delivery, the associated flow path, and the water trade and transfer strategy.

  7. Traffic Flow Density Distribution Based on FEM

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Cui, Jianming

    In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.

  8. Bilateral Trade Flows and Income Distribution Similarity

    PubMed Central

    2016-01-01

    Current models of bilateral trade neglect the effects of income distribution. This paper addresses the issue by accounting for non-homothetic consumer preferences and hence investigating the role of income distribution in the context of the gravity model of trade. A theoretically justified gravity model is estimated for disaggregated trade data (Dollar volume is used as dependent variable) using a sample of 104 exporters and 108 importers for 1980–2003 to achieve two main goals. We define and calculate new measures of income distribution similarity and empirically confirm that greater similarity of income distribution between countries implies more trade. Using distribution-based measures as a proxy for demand similarities in gravity models, we find consistent and robust support for the hypothesis that countries with more similar income-distributions trade more with each other. The hypothesis is also confirmed at disaggregated level for differentiated product categories. PMID:27137462

  9. Bilateral Trade Flows and Income Distribution Similarity.

    PubMed

    Martínez-Zarzoso, Inmaculada; Vollmer, Sebastian

    2016-01-01

    Current models of bilateral trade neglect the effects of income distribution. This paper addresses the issue by accounting for non-homothetic consumer preferences and hence investigating the role of income distribution in the context of the gravity model of trade. A theoretically justified gravity model is estimated for disaggregated trade data (Dollar volume is used as dependent variable) using a sample of 104 exporters and 108 importers for 1980-2003 to achieve two main goals. We define and calculate new measures of income distribution similarity and empirically confirm that greater similarity of income distribution between countries implies more trade. Using distribution-based measures as a proxy for demand similarities in gravity models, we find consistent and robust support for the hypothesis that countries with more similar income-distributions trade more with each other. The hypothesis is also confirmed at disaggregated level for differentiated product categories.

  10. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  11. Declarative flow control for distributed instrumentation

    SciTech Connect

    Parvin, Bahram; Taylor, John; Fontenay, Gerald; Callahan, Daniel

    2001-06-01

    We have developed a 'microscopy channel' to advertise a unique set of on-line scientific instruments and to let users join a particular session, perform an experiment, collaborate with other users, and collect data for further analysis. The channel is a collaborative problem solving environment (CPSE) that allows for both synchronous and asynchronous collaboration, as well as flow control for enhanced scalability. The flow control is a declarative feature that enhances software functionality at the experimental scale. Our testbed includes several unique electron and optical microscopes with applications ranging from material science to cell biology. We have built a system that leverages current commercial CORBA services, Web Servers, and flow control specifications to meet diverse requirements for microscopy and experimental protocols. In this context, we have defined and enhanced Instrument Services (IS), Exchange Services (ES), Computational Services (CS), and Declarative Services (DS) that sit on top of CORBA and its enabling services (naming, trading, security, and notification) IS provides a layer of abstraction for controlling any type of microscope. ES provides a common set of utilities for information management and transaction. CS provides the analytical capabilities needed for online microscopy. DS provides mechanisms for flow control for improving the dynamic behavior of the system.

  12. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  13. Ensemble distribution for immiscible two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Savani, Isha; Bedeaux, Dick; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex

    2017-02-01

    We construct an ensemble distribution to describe steady immiscible two-phase flow of two incompressible fluids in a porous medium. The system is found to be ergodic. The distribution is used to compute macroscopic flow parameters. In particular, we find an expression for the overall mobility of the system from the ensemble distribution. The entropy production at the scale of the porous medium is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. We test numerically some of the central theoretical results.

  14. CFD study on electrolyte distribution in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Bortolin, S.; Toninelli, P.; Maggiolo, D.; Guarnieri, M.; Del, D., Col

    2015-11-01

    The most important component in a redox flow battery (RFB) cell is the MEA (membrane electrode assembly), a sandwich consisting of two catalyzed electrodes with an interposed polymeric membrane. In order to allow electrolyte flow toward the electroactive sites, the electrodes have a porous structure that can be obtained with carbon base materials such as carbon felts. The RFB cell is closed by two plates containing the distribution flow channels. Considering that a uniform electrolyte distribution in the reaction region is a prerequisite for high-efficiency operation, the flow pattern is an important parameter to be investigated for the optimization of the cell. In the present work, the effect of different channels patterns on the electrolyte distribution and on the pressure drop is numerically investigated. Three-dimensional simulations have been carried out with ANSYS Fluent code and four different layouts have been considered. Calculations have been performed both in the distribution channels and in the felt porous region.

  15. On Hypothesis Testing in Distributed Sensor Networks.

    DTIC Science & Technology

    1987-11-01

    Sadjadi [3], extended % the results of [2] to the case of N decentralized sensors and M hypotheses. Lauer and Sandell [4], considered the Bayesian...Electronic Systems, Vol. AES 17, pp. 501-509, 1986. [3] Sadjadi , F. A., "Hypothesis Testing in Distributed Environment," IEEE Trans. on Aerospace and

  16. Distributed energy storage: Time-dependent tree flow design

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Ziaei, S.; Lorente, S.

    2016-05-01

    This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.

  17. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  18. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  19. A generalized flow path model for water distribution optimization

    NASA Astrophysics Data System (ADS)

    Hsu, N.; Cheng, W.; Yeh, W. W.

    2008-12-01

    A generalized flow path model is developed for optimizing a water distribution system. The model simultaneously describes a water distribution system in two parts: (1) the water delivery relationships between suppliers and receivers and (2) the physical water delivery system. In the first part, the model considers waters from different suppliers as multiple commodities. This helps the model to clearly describe water deliveries by identifying the relationships between suppliers and receivers. The second part characterizes a physical water distribution network by all possible flow paths. The advantages of the proposed model are that: (1) it is a generalized methodology to optimize water distribution, delivery scheduling, water trade, water transfer, and water exchange under existing reservoir operation rules, contracts, and agreements; (2) it can consider water as multiple commodities if needed; and (3) no simplifications are made for either the physical system or the delivery relationships. The model can be used as a tool for decision making for scheduling optimization. The model optimizes not only the suppliers to each receiver but also their associated flow paths for supplying water. This characteristic leads to the optimum solution that contains the optimal scheduling results and detailed information of water distribution in the physical system. That is, the water right owner, water quantity and its associated flow path of each delivery action are represented explicitly in the results rather than merely an optimized total flow quantity in each arc of a distribution network. The proposed model is first verified by a hypothetical water distribution system. Then, the model is applied to the water distribution system of the Tou-Qian River Basin in northern Taiwan. The results show that the flow path model has the ability to optimize the quantity of each water delivery, the associated flow paths of the delivery, and the strategies of water transfer while considering

  20. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  1. Testing the Markov hypothesis in fluid flows

    NASA Astrophysics Data System (ADS)

    Meyer, Daniel W.; Saggini, Frédéric

    2016-05-01

    Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence, and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that depending on the heterogeneity level, Markov models work well above a certain scale of interest for media with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity dynamics of the different media considered.

  2. Quantitative velocity distributions via nuclear magnetic resonance flow metering

    NASA Astrophysics Data System (ADS)

    O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  3. Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin

    2017-03-01

    The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.

  4. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  5. Interconnection Testing of Distributed Resources: Preprint

    SciTech Connect

    Kroposki, B.; Basso, T.; DeBlasio, R.

    2004-02-01

    With the publication of IEEE 1547-2003(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems, the electric power industry has a need to develop tests and procedures to verify that interconnection equipment meets 1547 technical requirements. A new standard, IEEE P1547.1(TM), is being written to give detailed tests and procedures for confirming that equipment meets the interconnection requirements. The National Renewable Energy Laboratory has been validating test procedures being developed as part of IEEE P1547.1. As work progresses on the validation of those procedures, information and test reports are passed on to the working group of IEEE P1547.1 for future revisions.

  6. Steady shear flow thermodynamics based on a canonical distribution approach.

    PubMed

    Taniguchi, Tooru; Morriss, Gary P

    2004-11-01

    A nonequilibrium steady-state thermodynamics to describe shear flow is developed using a canonical distribution approach. We construct a canonical distribution for shear flow based on the energy in the moving frame using the Lagrangian formalism of the classical mechanics. From this distribution, we derive the Evans-Hanley shear flow thermodynamics, which is characterized by the first law of thermodynamics dE=TdS-Qdgamma relating infinitesimal changes in energy E, entropy S, and shear rate gamma with kinetic temperature T. Our central result is that the coefficient Q is given by Helfand's moment for viscosity. This approach leads to thermodynamic stability conditions for shear flow, one of which is equivalent to the positivity of the correlation function for Q. We show the consistency of this approach with the Kawasaki distribution function for shear flow, from which a response formula for viscosity is derived in the form of a correlation function for the time-derivative of Q. We emphasize the role of the external work required to sustain the steady shear flow in this approach, and show theoretically that the ensemble average of its power W must be non-negative. A nonequilibrium entropy, increasing in time, is introduced, so that the amount of heat based on this entropy is equal to the average of W. Numerical results from nonequilibrium molecular-dynamics simulation of two-dimensional many-particle systems with soft-core interactions are presented which support our interpretation.

  7. Pulmonary blood flow distribution after banding of pulmonary artery.

    PubMed Central

    Samánek, M; Fiser, B; Ruth, C; Tůma, S; Hucín, B

    1975-01-01

    Radioisotope lung scanning was used to investigate the distribution of pulmonary blood flow after banding of the pulmonary artery in children with a left-to-right shunt and pulmonary hypertension. An abnormal distribution of blood flow in the lung on the side of the operation approach was observed in all patients in the first three weeks following surgery. Abnormalities were still observed in 17 of 21 children 10 months to more than 8 years after the banding operation. There was no significant relation between the occurrence of these abnormalities and time after surgery. Diminished flow to the zones of the right lung was observed less frequently. The incidence of abnormalities in flow distribution was also high preoperatively. Respiratory complications in infants with large left-to-right shunts were considered to be responsible for most of the abnormal blood flow distributions observed. Radioactive lung scanning was found to be a valuable diagnostic method in the early and late postoperative period in infants and small children. It was more sensitive than the other techniques used in revealing deviation of blood flow from one lung in those cases with shifting of the applied band. Images PMID:1111558

  8. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    NASA Astrophysics Data System (ADS)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-08-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  9. Secondary flow and heat transfer coefficient distributions in the developing flow region of ribbed turbine blade cooling passages

    NASA Astrophysics Data System (ADS)

    Forsyth, Peter; McGilvray, Matthew; Gillespie, David R. H.

    2017-01-01

    This paper reports an experimental and numerical study of the development and coupling of aerodynamic flows and heat transfer within a model ribbed internal cooling passage to provide insight into the development of secondary flows. Static instrumentation was installed at the end of a long smooth passage and used to measure local flow features in a series of experiments where ribs were incrementally added upstream. This improves test turnaround time and allows higher-resolution heat transfer coefficient distributions to be captured, using a hybrid transient liquid crystal technique. A composite heat transfer coefficient distribution for a 12-rib-pitch passage is reported: notably the behaviour is dominated by the development of the secondary flow in the passage throughout. Both the aerodynamic and heat transfer test data were compared to numerical simulations developed using a commercial computational fluid dynamics solver. By conducting a number of simulations it was possible to interrogate the validity of the underlying assumptions of the experimental strategy; their validity is discussed. The results capture the developing size and strength of the vortical structures in secondary flow. The local flow field was shown to be strongly coupled to the enhancement of heat transfer coefficient. Comparison of the experimental and numerical data generally shows excellent agreement in the level of heat transfer coefficient predicted, though the numerical simulations fail to capture some local enhancement on both the ribbed and smooth surfaces. Where this was the case, the coupled flow and heat transfer measurements were able to identify missing velocity field characteristics.

  10. Final report for the flow excursion follow-on testing

    SciTech Connect

    Nash, C.A.; Walters, T.W.

    1992-08-05

    The purpose of the Mark 22 Flow Excursion Follow-On testing was to investigate the theory that approximately 15% of the flow bypassed the primary flow channels in previous testing, whereas the design called for only a 3% bypass. The results of the follow-on tests clearly confirmed this theory. The testing was performed in two phases. During the first phase, characterization tests performed during the earlier test program were repeated.

  11. Testing different tracers for stream flow monitoring with UAS

    NASA Astrophysics Data System (ADS)

    Fortunato Dal Sasso, Silvano; Manfreda, Salvatore; Pizarro, Alonso; Mita, Leonardo

    2017-04-01

    In hydrological applications flow monitoring with high spatial and temporal resolution is crucial to understand the interactions between flow dynamics and infrastructures as well as to estimate streamflow discharges during extreme events. In this context, the use of Unmanned Aerial Systems (UASs) combined with particle tracking techniques provide one of the greatest potential for hydraulic monitoring allowing to measure surface 2D velocity fields based on video acquisitions. The measurement equipment consists of an action-cam installed on a low-cost quadrocopter and floating particle tracers. Particles have been distributed manually on the water surface in order to obtain an optimal spread able to cover the entire cross-section. In the present study, several experiments in laboratory and on natural streams have been carried out using different tracers in different hydraulic configurations. Thereafter, acquired videos have been processed with Particle Tracking Velocimetry (PTV) optical technique to derive free surface velocity fields. The image processing is very sensitive to the tracer characteristics, water color, river bed material, and flow velocity. The aim of the study is to describe the optimal tracer for stream flow monitoring and parameter setting for each configuration. The obtained results provide flow velocity fields with high resolution in time and space with relatively good accuracy in comparison with benchmark velocity values measured by conventional current meters and radar techniques. The tested methodology, allowing a non-intrusive monitoring of watercourses, have great potential applicability in monitoring any river system at large scale and also in difficult-to-access environments.

  12. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon

    2017-08-01

    Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.

  13. Hot Flow Testing of Multiple Nozzle Exhaust Eductor Systems

    DTIC Science & Technology

    1979-09-01

    NAVAL POSTGRADUATE SCHOOL 00 Monterey, California 1mLEVEL’ DDC THESIS r HOT FLOW TESTING OF MULTIPLE NOZZLE EXHAUST EDUCTOR SYSTEMS by SJames Allan...Hill September 1979 Thesis Advisor: P.F. Pucci Approved for public release; distribution unlimited. , , ,. . .~ 4 .- 7" 12 19CUmPUT CLSAIIINVCATON, OF...TWOI VAOG I’llbu Do* B _________________ EUPOR DOCUMNTATMO PAGU ______________CAPam a.~~~~~~ 1L.~e~~m~ .-- ot lo st of <iple Nozzle’ astar’s Thesis

  14. An in-well heat-tracer-test method for evaluating borehole flow conditions

    NASA Astrophysics Data System (ADS)

    Sellwood, Stephen M.; Hart, David J.; Bahr, Jean M.

    2015-12-01

    An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

  15. Estimating and Modeling Gene Flow for a Spatially Distributed Species

    DTIC Science & Technology

    1991-01-01

    AD-A238 221/I1 Estimating and modeling gene flow for a spatially distributed species JUL1 7 1961T. Burr 1 and T. V. Kurien 2 Department of Statistics...modeling gene flow for a spatially distributed species. By T. Burr and T. V. Kurien Departmeii Of Statistics Florida State University Abstract This...chromosome (referred to as a locus) is a meaningful string of several hundred symbols called a gene . Typ- ically there are many loci on a chromosome. The

  16. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  17. Liquid flow and distribution in unsaturated porous media

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan

    2004-01-01

    Flow and transport in permeable or porous media and microchannels occurs in a variety of situations in micro- and reduced-gravity environments, many of them associated with environmental control and life support systems. While the role of gravity is limited, due to the typically small size scales associated permeable media, gravity, at the very least, affects the overall disposition of fluid in a macroscopic system. This presentation will discuss examples where the absence of gravity affects flow and phase distribution in selected examples of unsaturated flow and transport of heat and mass in porous media and microchannels that are pertinent to spacecraft systems.

  18. Liquid flow and distribution in unsaturated porous media

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan

    2004-01-01

    Flow and transport in permeable or porous media and microchannels occurs in a variety of situations in micro- and reduced-gravity environments, many of them associated with environmental control and life support systems. While the role of gravity is limited, due to the typically small size scales associated permeable media, gravity, at the very least, affects the overall disposition of fluid in a macroscopic system. This presentation will discuss examples where the absence of gravity affects flow and phase distribution in selected examples of unsaturated flow and transport of heat and mass in porous media and microchannels that are pertinent to spacecraft systems.

  19. Concentration distribution for pollutant dispersion in a reversal laminar flow

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Chen, G. Q.

    2017-08-01

    Pollutant transport in reversal laminar flows gains its significance in various coastal regions. Since oscillation in the flow introduces much complexity into the transport process, little progress has been made to illustrate the evolution of concentration distribution. In this work, the first order expansion of the generalized dispersion model, as a simplified applicable method based on the previously proposed Aris-Gill expansion (Wang and Chen, 2016b,c), is applied to analytically study the pollutant dispersion in an open channel reversal laminar flow. This method is conveniently used to accurately predict the two-dimensional concentration evolution characteristic of peak concentration position and duration. The vertical concentration difference is determined to be tremendous and vary periodically, and the peak concentration appears at the freesurface or bottom depending on the reversal amplitude. The approach for vertical concentration to uniformity in the dispersion process lasts longer remarkably in reversal flows than that in steady flows.

  20. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  1. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    PubMed Central

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288

  2. Two-dimensional automatic measurement for nozzle flow distribution using improved ultrasonic sensor.

    PubMed

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-10-16

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.

  3. 4D Flow MRI in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity

    PubMed Central

    Lorenz, R.; Bock, J.; Barker, A. J.; von Knobelsdorff-Brenkenhoff, F.; Wallis, W.; Korvink, J. G.; Bissell, M. M.; Schulz-Menger, J.; Markl, M.

    2013-01-01

    Purpose Changes in aortic geometry or presence of aortic valve disease can result in substantially altered aortic hemodynamics. Dilatation of the ascending aorta or aortic valve abnormalities can result in an increase in helical flow. Methods 4D flow MRI was used to test the feasibility of quantitative helicity analysis using equidistantly distributed 2D planes along the entire aorta. The evaluation of the method included three parts: 1) the quantification of helicity in 12 healthy subjects, 2) an evaluation of observer variability and test-retest reliability, and 3) the quantification of helical flow in 16 patients with congenitally altered bicuspid aortic valves. Results Helicity quantification in healthy subjects revealed consistent directions of flow rotation along the entire aorta with high clockwise helicity in the aortic arch and an opposite rotation sense in the ascending and descending aorta. The results demonstrated good scan-rescan and inter- and intra-observer agreement of the helicity parameters. Helicity quantification in patients revealed a significant increase of absolute peak relative helicity during systole and a considerably greater heterogeneous distribution of mean helicity in the aorta. Conclusion The method has the potential to serve as a reference distribution for comparisons of helical flow between healthy subjects and patients or between different patient groups. PMID:23716466

  4. Distribution of melt during Poiseuille flow of partially molten rocks

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Dillman, Amanda; Kohlstedt, David

    2016-04-01

    The mechanisms of melt extraction from the Earth's partially molten mantle are a key factor in the chemical and physical evolution of our planet and therefore are the topic of intense research. Since such processes cannot be observed directly, most of our understanding of the dynamics of partially molten rock relies on numerical models. Laboratory experiments are important for testing the validity of models at scales that we can observe. We designed a set of experiments to investigate the role of viscous anisotropy on melt segregation in partially molten rocks through Poiseuille flow. Partially molten rock samples composed of forsterite plus a few percent melt of different composition (anorthite, albite or lithium silicate) were prepared from high-purity nano-powders and taken to T = 1300oC at P = 0.1 MPa. The melt composition was varied in order to vary its viscosity. The partially molten samples were then extruded through a channel of circular cross section under a fixed pressure gradient. Different extrusion assemblies and consequently different flow geometries were explored. The melt distribution in the channel was subsequently mapped using image analysis on backscattered electron microscopy images and energy dispersive x-ray spectroscopy maps. In all experiments, melt segregates from the center toward the outer radius of the channel with the melt fraction at the outer radius increasing to at least twice that at the center. Furthermore, melt enriched areas are also observed in the center of the channel. The shape of the melt distribution depends on the extrusion geometry and on the melt viscosity. The segregation of melt toward the outer radius of the channel is consistent with the base-state melt segregation as predicted by viscous anisotropy theory developed by Takei and Holtzman (2009) and Takei and Katz (2014). However, the melt distribution profiles observed in our experiments have steeper gradients than the base-state melt segregation profiles described

  5. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  6. Variable parameter McCarthy-Muskingum flow transport model for compound channels accounting for distributed non-uniform lateral flow

    NASA Astrophysics Data System (ADS)

    Swain, Ratnakar; Sahoo, Bhabagrahi

    2015-11-01

    In this study, the fully volume conservative simplified hydrodynamic-based variable parameter McCarthy-Muskingum (VPMM) flow transport model advocated by Perumal and Price in 2013 is extended to exclusively incorporate the distributed non-uniform lateral flow in the routing scheme accounting for compound river channel flows. The revised VPMM formulation is exclusively derived from the combined form of the de Saint-Venant's continuity and momentum equations with the spatiotemporally distributed lateral flow which is solved using the finite difference box scheme. This revised model could address the earlier model limitations of: (i) non-accounting non-uniformly distributed lateral flow, (ii) ignoring floodplain flow, and (iii) non-consideration of catchment dynamics of lateral flow generation restricting its real-time application. The efficacy of the revised formulation is tested to simulate 16 years (1980-1995) river runoff from real-time storm events under scarce morpho-hydrological data conditions in a tropical monsoon-type 48 km Bolani-Gomlai reach of the Brahmani River in eastern India. The spatiotemporally distributed lateral flows generated in real-time is computed by water balance approach accounting for catchment characteristics of normalized network area function, land use land cover classes, and soil textural classes; and hydro-meteorological variables of precipitation, soil moisture, minimum and maximum temperatures, wind speed, relative humidity, and solar radiation. The multiple error measures used in this study and the simulation results reveal that the revised VPMM model has a greater practical utility in estimating the event-based and long-term meso-scale river runoff (both discharge and its stage) at any ungauged site, enhancing its application for real-time flood estimation.

  7. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of...

  8. Pressure Distribution over Thick Airfoils - Model Tests

    NASA Technical Reports Server (NTRS)

    Norton, F H; Bacon, D L

    1923-01-01

    This investigation was undertaken to study the distribution of loading over thick wings of various types. The unloading on the wing was determined by taking the pressure at a number of holes on both the upper and lower surfaces of a model wing in the wind tunnel. The results from these tests show, first, that the distribution of pressure over a thick wing of uniform section is very little different from that over a thin wing; second, that wings tapering either in chord or thickness have the lateral center of pressure, as would be expected, slightly nearer the center of the wings; and, third, that wings tapering in plan form and with a section everywhere proportional to the center section may be considered to have a loading at any point which is proportional to the chord when compared to a wing with a similar constant section. These tests confirm the belief that wings tapering both in thickness and plan form are of considerable structural value because the lateral center of pressure is thereby moved toward the center of the span.

  9. Two-phase choked flow of subcooled nitrogen through a slit. [flow rate and pressure distribution

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1974-01-01

    Two-phase choked flow rate and pressure distribution data are reported for subcooled nitrogen flowing through a slit. The slip was a narrow rectangular passage of equal length and width. The inlet stagnation pressure ranged from slightly above saturation to twice the thermodynamic critical pressure. Four stagnation isotherms were investigated covering a range which spanned the critical temperature. The results suggested a uniform two-phase flow pattern with vaporization occurring at or near the exit in most cases. The results compared favorably with the theory of Henry for nonequilibrium subcooled two-phase choked flow in long tubes.

  10. Vibrational population distributions in nonequilibrium nozzle expansion flows

    NASA Technical Reports Server (NTRS)

    Watt, W. S.; Rich, J. W.

    1971-01-01

    Experimental measurements and theoretical calculations of the vibrational population distribution in nonequilibrium nozzle expansion flows of gas mixtures are reported. These studies were directed toward determining whether vibrational energy exchange pumping could lead to laser action on the vibrational bands of a diatomic molecule. Three different types of experiments were conducted. These showed (1) that vibrational energy was preferentially transferred from N2 to CO in supersonic nozzle flows containing these gases; (2) that under some conditions this vibrational energy exchange pumping mechanism created population inversions in the vibrational levels of CO; and (3) that at large expansion ratios the magnitude of these population inversions was sufficient to sustain lasing in the nozzle. A theoretical model was developed to calculate vibrational state population distributions in gas dynamic expansions of a mixture of diatomic gases. Although only isothermal calculations have been completed, these data indicate that population inversions are predicted for conditions similar to those obtained in the nozzle expansion flows.

  11. Mathematical modelling of flow distribution in the human cardiovascular system

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.

  12. Mathematical modelling of flow distribution in the human cardiovascular system

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.

  13. Hillslope permeability architecture controls on subsurface transit time distribution and flow paths

    NASA Astrophysics Data System (ADS)

    Ameli, A. A.; Amvrosiadi, N.; Grabs, T.; Laudon, H.; Creed, I. F.; McDonnell, J. J.; Bishop, K.

    2016-12-01

    Defining the catchment transit time distribution remains a challenge. Here, we used a new semi-analytical physically-based integrated subsurface flow and advective-dispersive particle movement model to assess the subsurface controls on subsurface water flow paths and transit time distributions. First, we tested the efficacy of the new model for simulation of the observed groundwater dynamics at the well-studied S-transect hillslope (Västrabäcken sub-catchment, Sweden). This system, like many others, is characterized by exponential decline in saturated hydraulic conductivity and porosity with soil depth. The model performed well relative to a tracer-based estimate of transit time distribution as well as observed groundwater depth-discharge relationship within 30 m of the stream. Second, we used the model to assess the effect of changes in the subsurface permeability architecture on flow pathlines and transit time distribution in a set of virtual experiments. Vertical patterns of saturated hydraulic conductivity and porosity with soil depth significantly influenced hillslope transit time distribution. Increasing infiltration rates significantly decreased mean groundwater age, but not the distribution of transit times relative to mean groundwater age. The location of hillslope hydrologic boundaries, including the groundwater divide and no-flow boundary underlying the hillslope, changed the transit time distribution less markedly. These results can guide future decisions on the degree of complexity that is warranted in a physically-based rainfall-runoff model to efficiently and explicitly estimate time invariant subsurface pathlines and transit time distribution.

  14. Flow-Induced Stress Distribution in Porous Scaffolds

    NASA Astrophysics Data System (ADS)

    Papavassiliou, Dimitrios; Voronov, Roman; Vangordon, Samuel; Sikavitsas, Vassilios

    2010-11-01

    Flow-induced stresses help the differentiation and proliferation of mesenchymal cells cultured in porous scaffolds within perfusion bioreactors. The distribution of stresses in a scaffold is thus important for understanding the tissue growth process in such reactors. Computational results for flow through Poly-L-Lactic Acid porous scaffolds that have been produced with salt-leaching techniques, and for scaffolds that have been constructed with nonwoven fibers, indicate that the probability density function (pdf) of the wall stress, when normalized with the mean and the standard deviation of the pdf, appears to follow a single type of pdf. The scaffolds were imaged with micro-CT and the simulations were run with lattice Boltzmann methods. The parameters of the distribution can be obtained using Darcy's law and the Blake-Kozeny-Carman equation. Experimental results available in the literature appear to corroborate the computational findings, leading to the conclusion that stresses in high-porosity porous materials follow a single distribution.

  15. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint

    SciTech Connect

    Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

    2016-09-01

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.

  16. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  17. Flow field study in the T-313 wind-tunnel test section for M = 7

    NASA Astrophysics Data System (ADS)

    Zapryagaev, V. I.; Mazhul, I. I.; Maksimov, A. I.

    2013-06-01

    Results of a numerical and experimental study of flow-field characteristics in the test section of the T-313 supersonic blow-down wind tunnel of ITAM SB RAS at Mach number M = 7 are reported. The distributions of local Mach numbers, stagnation temperatures, static pressures, angles of flow deflection from the test-section axis were analyzed. For comparison, distributions of Mach numbers across the flow at several stations at M = 5 and 6 are reported as well. We show that, in the T-313 wind tunnel, two-dimensional nozzle inserts can be used to perform experiments at M = 7.

  18. ON THE DISTRIBUTION THEORY FOR SOME CONSTRAINED LIFE TESTING EXPERIMENTS.

    DTIC Science & Technology

    RELIABILITY, *TEST METHODS, * DISTRIBUTION THEORY , MATHEMATICAL MODELS, STATISTICAL DISTRIBUTIONS, MULTIVARIATE ANALYSIS, DECISION THEORY, LIFE EXPECTANCY(SERVICE LIFE), EXPONENTIAL FUNCTIONS, THESES.

  19. Numerical Modelling of Vegetation Flow Interaction: the Wienfluss Test Case

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Yagci, O.; Rauch, H.; Stoesser, T.

    2003-04-01

    We apply a three-dimensional computational fluid dynamics code based on a finite-volume discretisation to a 170m test reach of the a river in Vienna. One of the primary aims of this paper is to test various methods for representing the flow resistance of natural vegetation. The two approaches considered vary in complexity and could be practically implemented and applied within 2D and 3D flood modelling tools. The first approach uses empirical relationships derived from the laboratory data and modifies the existing friction term in the momentum equations. While the second approach introduces a drag related sink term in addition to the bed friction term. The roughness closure models considered do not modify the turbulence model (in this case the k-e model) and hence do not require re-calibration for each application. The test reach is straight and comprises an asymmetrical compound channel that is vegetated on the floodplain by willows and unvegetated within the main channel. The development of the willows has been monitored over a four year period and plant parameters which characterise the dimensions of individual trees and their distribution have been quantified. Further, streamwise velocity data of high-spatial resolution has been collected at one cross-section for a series of flood events. The performance of each approach is quantified in terms of its ability to reproduce the streamwise velocity distribution in a partially vegetated channel. Different parameter tests are conducted to allow the sensitivity of the computed velocities against mesh resolution, and other important plant properties to be examined. For both flow resistance approaches, reasonable agreement is found between the measured and computed floodplain velocities.

  20. LPT. EBOR (TAN646) reactor vessel, flow distribution tank. Outlet nozzle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR (TAN-646) reactor vessel, flow distribution tank. Outlet nozzle on side of vessel will be connected to coolant duct. Photographer: Lowin. Date: January 20, 1965. INEEL negative no. 65-237 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Thermographic analysis of flow distribution in compact heat exchangers for a Formula 1 car

    NASA Astrophysics Data System (ADS)

    Caffagni, E.; Levoni, P.; Piraccini, M.; Muscio, A.; Corticelli, M. A.; Barozzi, G. S.

    2007-01-01

    A non-intrusive approach is investigated to calculate the internal flow distribution in heat exchangers. In particular, the liquid flow rate can be determined in each tube of an air-liquid finned-tube heat exchanger. A purposely designed test bench impresses a sudden change of temperature of the liquid flowing through the heat exchanger. The thermal transient that follows is monitored by a thermographic camera. This measures the rise of surface temperature along each tube. The temperature evolution pattern is then correlated to the flow rate in the tube by simple mathematical processing. The heat exchanger is tested in still air. Modification is not required. The approach is tested on heat exchangers for a F1 race car, with encouraging results.

  2. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  3. Model for Understanding Flow Processes and Distribution in Rock Rubble

    NASA Astrophysics Data System (ADS)

    Green, R. T.; Manepally, C.; Fedors, R.; Gwo, J.

    2006-12-01

    Recent studies of the potential high-level nuclear waste repository at Yucca Mountain, Nevada, suggest that degradation of emplacement drifts may be caused by either persistent stresses induced by thermal decay of the spent nuclear fuel disposed in the drifts or seismic ground motion. Of significant interest to the performance of the repository is how seepage of water onto the engineered barriers in degraded emplacement drifts would be altered by rubble. Difficulty arises because of the uncertainty associated with the heterogeneity of the natural system complicated by the unknown fragment size and distribution of the rock rubble. A prototype experiment was designed to understand the processes that govern the convergence and divergence of flow in the rubble. This effort is expected to provide additional realism in the corresponding process models and performance assessment of the repository, and to help evaluate the chemistry of water contacting the waste as well as conditions affecting waste package corrosion in the presence of rubble. The rubble sample for the experiment was collected from the lower lithophysal unit of the Topopah Spring (Tptpll) unit in the Enhanced Characterization of the Repository Block Cross Drift and is used as an approximate analog. Most of the potential repository is planned to be built in the Tptpll unit. Sample fragment size varied from 1.0 mm [0.04 in] to 15 cm [6 in]. Ongoing experiments use either a single or multiple sources of infiltration at the top to simulate conditions that could exist in a degraded drift. Seepage is evaluated for variable infiltration rates, rubble particle size distribution, and rubble layering. Comparison of test results with previous bench-scale tests performed on smaller-sized fragments and different geological media will be presented. This paper is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of NRC. The NRC staff views expressed herein are preliminary

  4. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  5. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt

  6. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    NASA Technical Reports Server (NTRS)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  7. Analysis of Flow Angularity Repeatability Tests in the NTF

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2006-01-01

    An extensive data base of flow angularity repeatability measurements from four NTF check standard model tests is analyzed for statistical consistency and to characterize the results for prediction of angle-of-attack uncertainty for customer tests. A procedure for quality assurance for flow angularity measurements during customer tests is also presented. The efficacy of the procedure is tested using results from a customer test.

  8. Catchment travel time distributions and water flow in soils

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Beven, K. J.; Bertuzzo, E.; Nicotina, L.; Davies, J.; Fiori, A.; Russo, D.; Botter, G.

    2011-07-01

    Many details about the flow of water in soils in a hillslope are unknowable given current technologies. One way of learning about the bulk effects of water velocity distributions on hillslopes is through the use of tracers. However, this paper will demonstrate that the interpretation of tracer information needs to become more sophisticated. The paper reviews, and complements with mathematical arguments and specific examples, theory and practice of the distribution(s) of the times water particles injected through rainfall spend traveling through a catchment up to a control section (i.e., "catchment" travel times). The relevance of the work is perceived to lie in the importance of the characterization of travel time distributions as fundamental descriptors of catchment water storage, flow pathway heterogeneity, sources of water in a catchment, and the chemistry of water flows through the control section. The paper aims to correct some common misconceptions used in analyses of travel time distributions. In particular, it stresses the conceptual and practical differences between the travel time distribution conditional on a given injection time (needed for rainfall-runoff transformations) and that conditional on a given sampling time at the outlet (as provided by isotopic dating techniques or tracer measurements), jointly with the differences of both with the residence time distributions of water particles in storage within the catchment at any time. These differences are defined precisely here, either through the results of different models or theoretically by using an extension of a classic theorem of dynamic controls. Specifically, we address different model results to highlight the features of travel times seen from different assumptions, in this case, exact solutions to a lumped model and numerical solutions of the 3-D flow and transport equations in variably saturated, physically heterogeneous catchment domains. Our results stress the individual characters of the

  9. Elliptic flow in small systems due to elliptic gluon distributions?

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2017-08-01

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the 'elliptic flow' parameter v2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  10. Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow.

    PubMed

    Henderson, A Cortney; Levin, David L; Hopkins, Susan R; Olfert, I Mark; Buxton, Richard B; Prisk, G Kim

    2006-08-01

    Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30 degrees head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 +/- 0.06 pretilt, 1.09 +/- 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.

  11. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    SciTech Connect

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  12. Optimal Power Flow for Distribution Systems under Uncertain Forecasts

    SciTech Connect

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-29

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  13. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  14. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1990-02-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  15. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1994-01-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  16. Mass flow velocity distribution in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Tripp, D. A.

    1981-01-01

    A study of chromospheric lines (those of Si-II and Si-III) was made using the data from high resolution telescope and spectrograph (HRTS). The optically thick line profiles such as lambda 1206 due to Si-III and lambda 1265 and lambda 1533 due to Si-II were to be investigated in detail using the techniques of spectrum synthesis in an attempt to model the mass flow velocity distribution in the region of the solar atmosphere.

  17. Stokes flow in a pipe with distributed regions of slip

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Stone, Howard A.

    2002-11-01

    Steady pressure-driven Stokes flow in a circular pipe is investigated analytically in the case where the pipe surface contains periodically distributed transverse regions of zero surface shear stress. One physical motivation for this problem is the recent experimental observation of nanobubbles on smooth hydrophobic surfaces (Ishida et al. (2000) Langmuir vol. 16, Tyrrell and Attard (2001) Phys. Rev. Lett. vol. 87) while a second motivation is the possible presence of bubbles trapped on rough surfaces. The bubbles may provide a zero shear stress boundary condition for the flow and modify considerably the friction generated by the solid boundary. In the spirit of experimental studies probing apparent slip at solid surfaces, the effective slip length of the resulting macroscopic flow is evaluated numerically and asymptotically as a function of the relative width of the no-slip and no-shear stress regions and their distribution along the pipe. Comparison of the model with experimental studies of pressure-driven flow in capillaries and microchannels is made and a possible interpretation of the results is offered which is consistent with a large number of nano-size and micron-size bubbles coating the solid surface. Finally, an explanation for the seemingly paradoxical behavior of the measured slip length increasing with system size reported by Watanabe et al. (1999) (J. Fluid Mech. vol. 381) is proposed and the possibility of a shear-dependent effective slip length is suggested.

  18. Intrarenal blood flow distribution during endotoxemia in dogs.

    PubMed

    Neiberger, R E; Passmore, J C

    1978-01-01

    Intrarenal blood flow distribution during the stages of endotoxemia in the dog was studied using radioactive inert gas washout. Intrarenal blood flow distribution was determined: a) at control, b) 0.5 hours following injection of a lethal dose (3 mg/kg) of E coli endotoxin, and c) 2.5 hours following endotoxin injection in control dogs and dogs pretreated with 4 mg/kg of phenoxybenzamine. One-half hour following endotoxin injection, components I and II of the inert gas washout curve fused. Presumably this fusion occurred because component I flow decreased to a level indistinguishable from that of component II. Following 2.5 hours of endotoxemia, components I and II were both present. Pretreatment with phenoxybenzamine completely prevented the fusion of components I and II, although the mean arterial blood pressure was substantially lower than in dogs not pretreated with phenoxybenzamine. After 2.5 hours of endotoxemia, four of the five phenoxybenzamine pretreated dogs still had two clearly defined washout components. It is concluded that the renal cortical vascular response in endotoxemia is similar to that reported following hemorrhage and that the alpha-adrenergic nervous system plays a major role in decreasing renal cortical blood flow.

  19. Distribution system power flow analysis; A rigid approach

    SciTech Connect

    Chen, T.H.; Chen, M.S.; Hwang, K.J. . Energy Systems Research Center); Kotas, P.; Chebli, E.A. )

    1991-07-01

    This paper introduces a rigid approach to three-phase distribution power flow analysis for large-scale distribution systems. This approach is oriented toward applications in distribution system operational analysis rather than planning analysis. This difference should be properly emphasized, otherwise, the misuse of the planning-type method to analyze the operational behavior of the system will distort the explanation of the calculated results and lead to incorrect conclusions. The solution method is the optimally ordered triangular factorization Y{sub Bus} Method (implicit Z{sub Bus} Gauss Method) which not only takes advantage of the sparsity of system equations but also has very good convergence characteristics on distribution problems. Detailed component models and suitable solution techniques are the essence of an accurate simulation. Detailed component models, therefore, are needed for all system components in the simulation. Utilizing the phase frame representation for all network elements, a program, entitled Generalized Distribution Analysis Systems - GDAS, with a number of features and capabilities not found in existing packages has been developed for large-scale distribution system simulations. The system being analyzed can be balanced or unbalanced and can be a radial, network, or mixed type distribution system. Furthermore, because the individual phase representation is employed for both system and component models, the system can comprise single, double, and three-phase systems simultaneously. Additionally, with detailed component models, the program can also perform system loss and contingency analyses.

  20. Oscillating flow loss test results in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

    1990-01-01

    The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

  1. Distribution of the Transit Flow in the Rotor of a Gas Centrifuge

    NASA Astrophysics Data System (ADS)

    Aleksandrov, O. E.

    2016-09-01

    The present work is devoted to computation of the distribution of the transit flow in the rotor of a separation gas centrifuge. The existing transit-flow models have been considered, the equation to find the transit flow has been obtained, and the basic properties of the transit flow have been analyzed. The general equation for the transit-flow distribution has been obtained, and the transit-flow distribution for a simplified scheme of feed supply, extraction, and waste has been calculated.

  2. 10 CFR 431.198 - Enforcement testing for distribution transformers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Enforcement testing for distribution transformers. 431.198... COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Compliance and Enforcement § 431.198 Enforcement testing for distribution transformers. (a) Test notice. Upon receiving information in...

  3. Oscillating-flow regenerator test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. G.; Gedeon, D. R.

    1994-01-01

    This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.

  4. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  5. NASA Flight Tests Explore Supersonic Laminar Flow

    NASA Image and Video Library

    In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Center’s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

  6. Altitude Compensating Nozzle Cold Flow Test Results

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; McDaniels, D. M.

    2002-01-01

    A suite of four altitude compensating nozzle (ACN) concepts were evaluated by NASA MSFC in the Nozzle Test Facility. The ACN concepts were a dual bell, a dual expander, an annular plug nozzle and an expansion deflection nozzle. Two reference bell nozzles were also tested. Axial thrust and nozzle wall static pressures were measured for each nozzle over a wide range of nozzle pressure ratios. The nozzle hardware and test program are described. Sample test results are presented.

  7. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  8. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  9. Quantification of hepatic flow distribution using particle tracking for patient specific virtual Fontan surgery

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Vignon-Clementel, Irene; Troianowski, Guillaume; Shadden, Shawn; Mohhan Reddy, V.; Feinstein, Jeffrey; Marsden, Alison

    2010-11-01

    The Fontan surgery is the third and final stage in a palliative series to treat children with single ventricle heart defects. In the extracardiac Fontan procedure, the inferior vena cava (IVC) is connected to the pulmonary arteries via a tube-shaped Gore-tex graft. Clinical observations have shown that the absence of a hepatic factor, carried in the IVC flow, can cause pulmonary arteriovenous malformations. Although it is clear that hepatic flow distribution is an important determinant of Fontan performance, few studies have quantified its relation to Fontan design. In this study, we virtually implanted three types of grafts (T-junction, offset and Y-graft) into 5 patient specific models of the Glenn (stage 2) anatomy. We then performed 3D time-dependent simulations and systematically compared the IVC flow distribution, energy loss, and pressure levels in different surgical designs. A robustness test is performed to evaluate the sensitivity of hepatic distribution to pulmonary flow split. Results show that the Y-graft design effectively improves the IVC flow distribution, compared to traditional designs and that surgical designs could be customized on a patient-by-patient basis.

  10. Testing the CDF distributed computing framework

    SciTech Connect

    Bartsch, Valeria; Baranovski, Andrew; Belforte, Stefano; Burgon-Lyon, Morag; Garzoglio, Gabriele; Herber, Randolph; Illingworth, Robert; Kennedy, Rob; Kerzel, Ulrich; Kreymer, Art; Leslie, Matt; Loebel-Carpenter, Lauri; Lueking, Lee; Lyon, Adam; Merritt, Wyatt; Ratnikov, Fedor; Sill, Alan; St. Denis, Richard; Stonjek, Stefan; Terekhov, Igor; Trumbo, Julie; /Fermilab /Oxford U. /INFN, Trieste /Glasgow U. /Karlsruhe U. /Rutgers U., Piscataway /Texas Tech.

    2004-12-01

    A major source of CPU power for CDF (Collider Detector at Fermilab) is the CAF (Central Analysis Farm) [1] at Fermilab. The CAF is a farm of computers running Linux with access to the CDF data handling system and databases to allow CDF collaborators to run batch analysis jobs. Beside providing CPU power it has a good monitoring tool. The CAF software is a wrapper around a batch system, either fbsng [3] or condor, to submit jobs in a uniform way. So the submission to the CAF clusters inside and outside Fermilab from many computers with kerberos authentification is possible. It is mainly used to access datasets which comprise a large amount of files and analyze the data. Up to now the DCache system has been used to access the files. In autumn 2004 some of the important datasets will only be readable with the help of the data handling system SAM (Sequential Access to data via Metadata) [2]. This will be done in order to switch to using only one data handling system at Fermilab and on the remote sites. SAM has been used in run II to store, manage, deliver and track the processing of all data. It is designed to copy data to remote sites with remote analysis in mind. To prove CAF and SAM could provide the required CPU power and Data Handling, stress tests of the combined system were carried out. A second goal of CDF is to distribute computing. In 2005 50% of the computing shall be located outside of Fermilab. For this purpose CDF will use the DCAF (Decentralized CDF Analysis Farms) in combination with SAM. To achieve user friendliness the SAM station environment has to be common to all stations and adaptations to the environment have to be made.

  11. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  12. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  13. Arcjets for Aerodynamic and Materials Testing: Flow Characterization

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Fletcher, Doug; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Potential use of Arcjets as a hypersonic ground test facility for aerodynamic testing of future space vehicles is examined. Since high fidelity simulation of flight freestream conditions is a basic requirement for any useful ground test facility, it is imperative that the Arcjet flow field be thoroughly investigated in a systematic and orderly manner. At the same time we must know how and to what extent an inaccurate simulation of the flight freestream will effect the test data. The paper after discussing these two topics, describes various experimental techniques for Arcjet flow characterization. Results from an on-going Arcjet flow characterization program are also presented.

  14. Arcjets for Aerodynamic and Materials Testing: Flow Characterization

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Fletcher, Doug; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Potential use of Arcjets as a hypersonic ground test facility for aerodynamic testing of future space vehicles is examined. Since high fidelity simulation of flight freestream conditions is a basic requirement for any useful ground test facility, it is imperative that the Arcjet flow field be thoroughly investigated in a systematic and orderly manner. At the same time we must know how and to what extent an inaccurate simulation of the flight freestream will effect the test data. The paper after discussing these two topics, describes various experimental techniques for Arcjet flow characterization. Results from an on-going Arcjet flow characterization program are also presented.

  15. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    SciTech Connect

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

    2016-11-21

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

  16. Pressure Distribution in Nonuniform Two-Dimensional Flow

    NASA Technical Reports Server (NTRS)

    Schwabe, M.

    1943-01-01

    In an attempt to follow the time rate of change of the processes in turbulent flows by quantitative measurements the measurement of the pressure is often beset with insuperable difficulties for the reason that the speeds and hence the pressures to be measured are often very small. On the other hand, the measurement of very small pressures requires, at least, considerable time, so that the follow-up of periodically varying processes is as goad as impossible. In order to obviate these difficulties a method, suggested by Prof. Prandtl, has been developed by which the pressure distribution is simply determined from the photographic flow picture. This method is described and proved on a worked-out example. It was found that quantitatively very satisfactory results can be achieved.

  17. Separate Flow Nozzle Test Status Meeting

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H. (Editor)

    2000-01-01

    NASA Glenn, in partnership with US industry, completed an exhaustive experimental study on jet noise reduction from separate flow nozzle exhaust systems. The study developed a data base on various bypass ratio nozzles, screened quietest configurations and acquired pertinent data for predicting the plume behavior and ultimately its corresponding jet noise. Several exhaust system configurations provided over 2.5 EPNdB jet noise reduction at take-off power. These data were disseminated to US aerospace industry in a conference hosted by NASA GRC whose proceedings are shown in this report.

  18. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  19. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  20. Development and Testing of the Europa Mission's Venturi Flow Meter

    NASA Technical Reports Server (NTRS)

    Diaz, C. E.; McKim, S. A.

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC), in collaboration with NASA's Goddard Space Flight Center (GSFC), Fox Valve Development Corp. and Oxford Lasers, is developing a set of venturi flow meters for use on the Europa Mission's propulsion subsystem. The requirement for the venturi flow meters' throat diameters is approximately 0.040". An early risk reduction activity conducted by MSFC revealed that a venturi flow meter produced by FOX with a throat diameter near 0.040" had much higher pressure loss than venturi flow meters with larger throat diameters and venturis of similar throat diameter size but with no pressure taps (i.e. venturis with a throat length to diameter ratio of zero). In response, a series of venturi flow meters was fabricated and flow tested to gain insight into pressure recovery as it is affected by pressure port diameter, throat length and diffuser angle in an effort to improve the performance of a venturi flow meter. This presentation provides a summary of the venturi flow meter development activity including: a description of the test's objectives, a detailed description of each venturi configuration, a description of the manufacturing processes of the venturis, and observations from the test data. A summary of the current development activities will also be given, as well as the current development path forward. Ultimately, the knowledge gained through the fabrication and testing of these venturis provides guidance to design a flight venturi flow meters with pressure recoveries that is acceptable for the Europa flight application.

  1. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

    SciTech Connect

    Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

    2010-04-30

    Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

  2. Efficient Distributed Test Architectures for Large-Scale Systems

    NASA Astrophysics Data System (ADS)

    de Almeida, Eduardo Cunha; Marynowski, Jõao Eugenio; Sunyé, Gerson; Le Traon, Yves; Valduriez, Patrick

    Typical testing architectures for distributed software rely on a centralized test controller, which decomposes test cases in steps and deploy them across distributed testers. The controller also guarantees the correct execution of test steps through synchronization messages. These architectures are not scalable while testing large-scale distributed systems due to the cost of synchronization management, which may increase the cost of a test and even prevent its execution. This paper presents a distributed architecture to synchronize the test execution sequence. This approach organizes the testers in a tree, where messages are exchanged among parents and children. The experimental evaluation shows that the synchronization management overhead can be reduced by several orders of magnitude. We conclude that testing architectures should scale up along with the distributed system under test.

  3. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  4. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  5. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  6. Blocking and transmission of traveling flow-distributed-oscillation waves in an absolutely unstable flowing medium.

    PubMed

    McGraw, Patrick N; Menzinger, Michael

    2012-08-01

    For a flowing, self-oscillating medium, we study the competition between traveling flow-distributed-oscillation waves excited by periodic driving at the upstream boundary and bulk oscillations originating downstream from the boundary. As previously observed in the case of stationary driving, we find that there is a region in parameter space where boundary-driven traveling waves of sufficiently high amplitude can impose themselves on the entire medium despite the presence of an absolute instability, which otherwise tends to block information from upstream. For sufficiently low flow rates, however, the imposed waves are arrested at a nonlinear blocking transition. Unlike the stationary case, we find that the region of imposed waves extends well into regions where, according to the linear approximation, there should be no traveling waves at all. This suggests that the extinction of the traveling waves is analogous to a subcritical Hopf bifurcation.

  7. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  8. Ambient Test Rig (ATR) flow studies: A laminar flow, reduced entrainment electrostatic precipitator

    SciTech Connect

    1988-10-01

    Results of flow testing on a Reduced Entrainment Precipitator Ambient Test Rig are presented. The Reduced Entrainment Precipitator concept involves drawing a portion of the main precipitator flow through hollow, porous collecting plates. The purposes of flow through porous collecting plates ( side flow'') are to provide a dust layer clamping force, and to reduce turbulence with the precipitator. Achievement of these goals should reduce re-entrainment, and result in increased precipitator efficiency. The increased efficiency should be especially evident at higher precipitator main flow velocities. Flow tests conducted included pilot tube velocity traverses, smoke (turbulence) visualization, and measurements of turbulence and velocity with a (fast-response) hot-wire anemometer. 12 refs., 13 figs.

  9. Flow tests of the Willis Hulin well

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

  10. Spatial distribution of flow and oxygenation in the cerebral venous drainage system.

    PubMed

    De Vis, Jill B; Lu, Hanzhang; Ravi, Harshan; Hendrikse, Jeroen; Liu, Peiying

    2017-08-09

    To investigate the venous oxygenation and flow in the brain, and determine how they might change under challenged states. Eight healthy human subjects (24-37 years) were studied. T2 -relaxation under spin tagging (TRUST) magnetic resonance imaging (MRI) and phase-contrast MRI were performed to measure venous oxygenation and venous blood flow, respectively, in the superior sagittal sinus (SSS), the straight sinus (SS), and the internal jugular veins (IJVs). Venous oxygenation was assessed at room air (0.03%CO2 , 21%O2 ) and under hyperoxia (O%CO2 , 95%O2 , and 5%N2 ) conditions. Venous blood flow was assessed at room air and under hypercapnia (5%CO2 , 21%O2 , and 74%N2 ) conditions. Whole-brain blood flow was also measured at the four feeding arteries of the brain using phase-contrast MRI. The changes in venous oxygenation and blood flow from room air to hyperoxia or hypercapnia conditions were tested using paired t-tests. Venous oxygenation in the SSS, the SS, and the IJVs was 61 ± 4%, 64 ± 4%, and 62 ± 4%, respectively, at room air, and increased to 70 ± 3% (P < 0.01 compared to room air), 71 ± 5% (P = 0.59), and 68 ± 5% (P < 0.05) under hyperoxic condition. The SSS, SS, and IJV drained 46 ± 9%, 16 ± 4%, and 79 ± 1% of whole-brain blood flow, respectively, and this flow distribution did not change under hypercapnic condition (P > 0.5). The results found in this study provide insight into the venous oxygenation and venous flow distribution and its heterogeneity among different venous structures. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  11. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow...

  12. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow...

  13. The Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed concurrent airflows, some materials are more flammable in microgravity than earth. 1.5 cm flame in microgravity that melts a polyethylene cylinder into a liquid ball.

  14. Flow and Reading Comprehension: Testing the Mediating Role of Emotioncy

    ERIC Educational Resources Information Center

    Shahian, Leila; Pishghadam, Reza; Khajavy, Gholam Hassan

    2017-01-01

    Considering the importance of psychological factors in learners' reading abilities, this study examines the relationship between flow, emotioncy, and reading comprehension. To this end, 238 upper-intermediate and advanced English as a Foreign Language (EFL) learners were asked to take four tests of reading comprehension along with flow and…

  15. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  16. Flow-test device fits into restricted access passages

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. J.; Oberschmidt, M.; Rosenbaum, B. J.

    1967-01-01

    Test device using a mandrel with a collapsible linkage assembly enables a fluid flow sensor to be properly positioned in a restricted passage by external manipulation. This device is applicable to the combustion chamber of a rocket motor.

  17. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  18. Simulation-Based Testing of Distributed Systems

    DTIC Science & Technology

    2006-01-01

    represented by a finite state machine (FSM) specification. Surveys by Bochmann and Petrenko [4] and Lai [19] describe many of the algorithms that...accurately, but as pointed out by Bochmann and Petrenko , these extensions are not handled by basic FSM techniques. The greater expressiveness of discrete...USA, May 2005. [4] Gregor Bochmann and Alexandre Petrenko . Protocol testing: review of methods and relevance for software testing. In Proceedings of

  19. Distributed acoustic receptivity in laminar flow control configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter.

  20. VSTOL ground effects testing with flow visualization and image enhancement

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.; Johns, Albert L.

    1991-01-01

    A remotely controlled high-energy fiber-optic light delivery technique is employed to examine the implementation of a laser-light-sheet flow-visualization system. During testing, video data are enhanced in real time using digital image processing techniques. A summary of test results for an advanced VSTOL configuration in ground effect, and techniques for the generation of 3D reconstructions for the flowfield are outlined. The system performed well during all phases of the test and proved to be an extremely useful asset to the overall test program. The most useful application of the flow visualization system was the interactive real-time flow field analysis made during the actual testing.

  1. Asymmetric dipole-flow test in a fractured carbonate aquifer.

    PubMed

    Halihan, Todd; Zlotnik, Vitaly A

    2002-01-01

    In this study, a new method-the asymmetric dipole-flow test-is proposed and tested for characterization of conductive properties and structure of fractured aquifers. Analytical solutions were developed and then used for interpretation of a modification of the dipole-flow test with a single packer at the Bissen Quarry test site (Wisconsin, USA). The asymmetric dipole-flow tests were conducted by packing a well at various elevations, and fluids were pumped from the upper section (chamber) of the well to the lower section (chamber). The head was then monitored at 11 observation points and in both sections of the well, and the conductivities of the well segments were determined. The tests at seven packer elevations in the well were rapid (less than one hour to reach steady state). The asymmetric dipole-flow test demonstrates the potential to quantify heterogeneities of a fractured aquifer and delineate the applicability of the continuum and discrete approaches for conceptualization of ground water flow.

  2. Snow distribution and heat flow in the taiga

    SciTech Connect

    Sturm, M. )

    1992-05-01

    The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increase can be a significant percentage of the total winter energy exchange.

  3. In vitro validation of some flow assumptions for the prediction of the pressure distribution during obstructive sleep apnoea.

    PubMed

    Van Hirtum, A; Pelorson, X; Lagrée, P Y

    2005-01-01

    An adequate description of the pressure distribution exerted by the fluid flow on pharyngeal walls is a first requirement to enhance the understanding, modelling and, consequently, the prediction of airway collapse during obstructive sleep apnoea. From a fluid mechanical point of view, several flow assumptions can be formulated to reduce the governing flow equations. The relevance of some major flow assumptions and the accuracy of the resulting flow description with respect to obstructive sleep apnoea was investigated on a rigid geometrical replica of the pharynx. Special attention was given to the influence of geometrical asymmetry and to the position of the flow separation point. An in vitro experimental and theoretical study of steady pharyngeal fluid flow is presented for different constriction heights and upstream pressures. Pressure and velocity distributions along a rigid in vitro replica of the oro-pharyngeal cavity were compared with different flow predictions based on various assumptions. Fluid flow models were tested for volume flow rates ranging from 5 to 120 1 min(-1) and for minimum apertures between 1.45 and 3.00 mm. Two-dimensional flow models were required and predicted experimental results with an accuracy of 15%. Flow theories classically used in the case of a Starling resistor provided poor agreement.

  4. Turbine Air-Flow Test Rig CFD Results for Test Matrix

    NASA Technical Reports Server (NTRS)

    Wilson, Josh

    2003-01-01

    This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.

  5. A coning motion apparatus for hydrodynamic model testing in a non-planar cross-flow

    NASA Astrophysics Data System (ADS)

    Johnson, David C.

    1989-06-01

    As part of continuing research into the flow about slender bodies of revolution, a coning motion apparatus for hydrodynamic model testing was built and demonstrated. This is the first known use of a rotary balance apparatus for external flow hydrodynamic applications. The vorticity shed by the hull and appendages creates a wake field that interacts with the velocity distribution over the vehicle's surface. This in turn effects the surface pressure distribution and thus, when integrated over the body's surface, the total force on the hull/appendage combination. It is this interaction that prevents a closed-form analytic solution to the problem.

  6. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints

    NASA Technical Reports Server (NTRS)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.

    1992-01-01

    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  7. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints

    NASA Technical Reports Server (NTRS)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.

    1992-01-01

    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  8. Distributed Data-Flow for In-Situ Visualization and Analysis at Petascale

    SciTech Connect

    Laney, D E; Childs, H R

    2009-03-13

    We conducted a feasibility study to research modifications to data-flow architectures to enable data-flow to be distributed across multiple machines automatically. Distributed data-flow is a crucial technology to ensure that tools like the VisIt visualization application can provide in-situ data analysis and post-processing for simulations on peta-scale machines. We modified a version of VisIt to study load-balancing trade-offs between light-weight kernel compute environments and dedicated post-processing cluster nodes. Our research focused on memory overheads for contouring operations, which involves variable amounts of generated geometry on each node and computation of normal vectors for all generated vertices. Each compute node independently decided whether to send data to dedicated post-processing nodes at each stage of pipeline execution, depending on available memory. We instrumented the code to allow user settable available memory amounts to test extremely low-overhead compute environments. We performed initial testing of this prototype distributed streaming framework, but did not have time to perform scaling studies at and beyond 1000 compute-nodes.

  9. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  10. Analysis and testing of compressible flow ejectors with variable area mixing tubes.

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model has been developed to predict the flow behavior within axisymmetric single-nozzle ejectors employing variable-area mixing tubes. The primary flow may be supersonic or subsonic and may have a different stagnation temperature from the subsonic secondary flow. Tests were performed on an ejector with an 800 F supersonic (M = 2.72) primary jet to evaluate the analytical model. Measured velocity profiles, temperature profiles, and wall static pressure distributions are presented and compared to the analytical predictions. Agreement is generally good.

  11. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  12. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Astrophysics Data System (ADS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-08-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  13. ac power control in the Core Flow Test Loop

    SciTech Connect

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

  14. A modification to vertical distribution of tidal flow Reynolds stress in shallow Sea

    NASA Astrophysics Data System (ADS)

    Ni, Zhi-hui; Song, Zhi-yao; Zhang, Xu-jin; Wu, Li-chun; Yi, Jing

    2012-09-01

    Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal flow Reynolds stress deviated from linear distribution. The parabolic distribution of the tidal flow Reynolds stress was proposed by Song et al. (2009). Although the model fills better with field observations and indoor experimental data, it has the lower truncated series expansion of tidal flow Reynolds stress, and the description of the distribution is not very comprehensive. By introducing the motion equation of tidal flow and improving the parabolic distribution established by Song et al. (2009), the cubic distribution of the tidal flow Reynolds stress is proposed. The cubic distribution is verified well by field data (Bowden and Fairbairn, 1952; Bowden et al., 1959; Rippeth et al., 2002) and experimental data (Anwar and Atkins, 1980), is consistent with the numerical model results of Kuo et al. (1996), and is compared with the parabolic distribution of the tidal flow Reynolds stress. It is shown that this cubic distribution is not only better than the parabolic distribution, but also can better reflect the basic features of Reynolds stress deviating from linear distribution downward with the tidal flow acceleration and upward with the tidal flow deceleration, for the foundation of further study on the velocity profile of tidal flow.

  15. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing

    SciTech Connect

    Freifeld, B.; Finsterle, S.

    2010-12-10

    The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

  16. Modified Goodness-of-Fit Tests for the Weibull Distribution

    DTIC Science & Technology

    1993-03-01

    comparison. 1.6 Summary Most of the books about statistics do not include enough information how to choose distributions to model the system bebavior and...the system modelled. If one does not have enough information about how to choose distributions or does not test the distribution cho- sen then the... systems . Because in the litterature and in the real life when using Weibull distribution as a model analysts consider minimum life of product as zero

  17. Concentration distributions of arbitrary shaped particles in microfluidic channel flows

    NASA Astrophysics Data System (ADS)

    Saibaba, Arvind; Shaqfeh, Eric; Darve, Eric

    2009-11-01

    We are interested in the study of the transient and steady state concentration distribution of orientable Brownian particles across channels at low Reynolds numbers. This is important in understanding margination of blood ``particles'' including platelets as well as new drug delivery and cancer nanotechnology particles which are involved in hemostasis as well as delivering drugs to the vascular endothelial cells. Although our formulation is general, the particles we consider are rigid Brownian ``surfboards'' which have been found to be effective in drug delivery since they are resistant to leukocyte attack [1]. The Stokes flow in the channel around the particles, driven by a mean pressure gradient, is computed using the Boundary Element method within the single layer formulation. The particle motion is calculated using rigid body dynamics with a contribution due to Brownian motion that satisfies the Fluctuation-Dissipation theorem. Finite concentrations are considered, and all hydrodynamic interactions are included. The concentration distribution is computed and interpreted as a balance between the concentration dependent variation in the non-equilibrium particle osmotic pressure and the cross stream particle normal stresses. [4pt] [1] J. A. Champion, S. Mitragotri, ``Role of target geometry in phagocytosis'', PNAS 103, 4930-4934, (2006)

  18. Sequential Tests of the Hypergeometric Distribution

    DTIC Science & Technology

    1975-05-31

    If n >nL, increment c* by one and go to step 3. After n* and c* have been determined, the values of the error probabilities can be determined as...for the test, are quite difficult to determine exactly. However, the approximate values B=-/(l-a) (2.5) qiven by Wald (1947) serve the purpose well...The desired error proba- bilities are Ul=0.05, 1=0.10, a2 0.05 and 0.10 We first obtain the values bl=tn(Bl)=Zn(0.05/(l-0.1.)) = -2.89037 al=n(Al)=9

  19. A modified double distribution lattice Boltzmann model for axisymmetric thermal flow

    NASA Astrophysics Data System (ADS)

    Wang, Zuo; Liu, Yan; Wang, Heng; Zhang, Jiazhong

    2017-04-01

    In this paper, a double distribution lattice Boltzmann model for axisymmetric thermal flow is proposed. In the model, the flow field is solved by a multi-relaxation-time lattice Boltzmann scheme while the temperature field by a newly proposed lattice-kinetic-based Boltzmann scheme. Chapman-Enskog analysis demonstrates that the axisymmetric energy equation in the cylindrical coordinate system can be recovered by the present lattice-kinetic-based Boltzmann scheme for temperature field. Numerical tests, including the thermal Hagen-Poiseuille flow and natural convection in a vertical annulus, have been carried out, and the results predicted by the present model agree well with the existing numerical data. Furthermore, the present model shows better numerical stability than the existing model.

  20. Flow tests of the Gladys McCall well

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A. )

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  1. Experiments of Flow Field Influenced by Vegetation Distribution on Floodplain

    NASA Astrophysics Data System (ADS)

    Li, Jin-Fu; Wang, Shun-Chang; Chen, Su-Chin

    2015-04-01

    The vegetation on floodplain can block river flow, raise flood level, and scour riverbed downstream the vegetation region. However, it can also protect the dike, reduce flood velocity, and increase the stability of channel. This experiment analyzed the relationship between vegetation distribution and flow field. We designed three vegetation arrangement pattern of unilateral vegetation, unilateral interval vegetation and no vegetation, respectively. The unilateral vegetation was defined as a 4.9 m length and 0.5 m width with vegetative area in one side of the experiment flume. The unilateral interval vegetation was defined as the same dimension of vegetative area but inserted 2 gaps with 1 m interval, and the vegetative area was separated into 3 blocks. The model of a single plant was assembled with stem and frond. The stem was a woody cylinder with 10 cm height and 2.2 cm in diameter. The other part was plastic frond with 10 cm in height. The flume was 20 m length, 1 m width and 0.7 m height with 2 kinds of bed slopes in 0.001 and 0.002, and 3 different discharges in 0.2 m3/s, 0.145 m3/s and 0.0855 m3/s. The velocity was measured by 2-D electromagnetic velocimeter (ACM2-R2). In addition, water depth was measured by Vernier calipers. The velocity distribution showed that the current were divided into two parts. In the part of inside vegetation area, water level uplifted when flow entering the vegetation area, and it declined until the current leaving vegetation area. Compared with the current in the other half part of flume, the magnitudes of uplift were about 50% in both case of unilateral vegetation and unilateral interval vegetation. Downstream the vegetation area edge, the water level dropped immediately and violently. The water depth was shallower than that in the other half non-vegetation part, and the decline magnitude were 48% and 39% in cases of unilateral vegetation and unilateral interval vegetation, respectively. To explain this phenomenon, we measured

  2. Three-phase Unbalanced Interval Power Flow Calculation of Low-voltage Distribution Network with Distributed PV Power Generation

    NASA Astrophysics Data System (ADS)

    Yuan, Yan; Shunjiang, Lin; Yuan, Lu

    2017-05-01

    Low-voltage distribution network is a three-phase unbalanced system due to the integration of single-phase loads and single-phase distributed PV arrays. In this paper, three-phase unbalanced interval power flow calculation model of three-phase four-wire low voltage distribution network with distributed PV power generation is established. In the model, intensity of illumination and battery temperature which influence the power output of distributed PV power generation is described as intervals. Then, through the affine interval algorithm, the interval power flow problem is transformed into a deterministic power flow problem and two linear optimization problems. By solving the above problems, the interval power flow solution can be obtained. Finally, the proposed algorithm is applied to an actual 22-bus low-voltage distribution network, and the solution of the affine interval algorithm is compared to the solution of the Monte Carlo sampling method, which verifies the correctness and effectiveness of the proposed algorithm.

  3. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  4. Quantization for Distributed Testing of Independence

    DTIC Science & Technology

    2010-07-01

    ρ2 exp ( − 1 2(1− ρ2) (x 2−2ρxy+y2) ) . The two hypothese under test are { H0 : ρ 6= 0 H1 : ρ = 0 (1) i.e., (X,Y ) is bivariate Gaussian and they are...t1 and t2 for ρ = 0.65. Apparently I(U ;V ) achieves its maximum (≈ 0.15) when (t1, t2) = (0, 0). We further conjecture that, this point is actually a...global maxi- mum which is corroborated by extensive numerical re- sults. The difficulty in proving it’s global maximum is −10 −5 0 5 10 −10 −5 0 5 10

  5. Two-dimensional distribution of microbial activity and flow patterns within naturally fractured chalk.

    PubMed

    Arnon, Shai; Ronen, Zeev; Adar, Eilon; Yakirevich, Alexander; Nativ, Ronit

    2005-10-01

    The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.

  6. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  7. Numerical simulation of failure behavior of granular debris flows based on flume model tests.

    PubMed

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na

    2013-01-01

    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  8. Numerical Simulation of Failure Behavior of Granular Debris Flows Based on Flume Model Tests

    PubMed Central

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na

    2013-01-01

    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC3D). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC3D can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow. PMID:23766700

  9. Testing FlowTracker2 Performance and Wading Rod Flow Disturbance in Laboratory Tow Tanks

    NASA Astrophysics Data System (ADS)

    Fan, X.; Wagenaar, D.

    2016-12-01

    The FlowTracker2 was released in February 2016 by SonTek (Xylem) to be a more feature-rich and technologically advanced replacement to the Original FlowTracker ADV. These instruments are Acoustic Doppler Velocimeters (ADVs) used for taking high-precision wading discharge and velocity measurements. The accuracy of the FlowTracker2 probe was tested in tow tanks at three different facilities: the USGS Hydrologic Instrumentation Facility (HIF), the Swiss Federal Institute for Metrology (METAS), and at the SonTek Research and Development facility. Multiple mounting configurations were examined, including mounting the ADV probe directly to the tow carts, and incorporating the two most-used wading rods for the FlowTracker (round and hex). Tow speeds ranged from 5cm/s to 1.5m/s, and different tow tank seeding schemes and wait times were examined. In addition, the performance of the FlowTracker2 probe in low Signal-to-Noise Ratio (SNR) environments was compared to the Original FlowTracker ADV. Results confirmed that the FlowTracker2 probe itself performed well within the 1%+0.25cm/s accuracy specification advertised. Tows using the wading rods created a reduced measured velocity by 1.3% of the expected velocity due to flow disturbance, a result similar to the Original FlowTracker ADV despite the change in the FlowTracker2 probe design. Finally, due to improvements in its electronics, the FlowTracker2's performance in low SNR tests exceeded that of the Original FlowTracker ADV, showing less standard error in these conditions compared to its predecessor.

  10. Specification of Surface Roughness for Hydraulic Flow Test Plates

    SciTech Connect

    Donna Post Guillen; Timothy S. Yoder

    2006-05-01

    A study was performed to determine the surface roughness of the corrosion layer on aluminum clad booster fuel plates for the proposed Gas Test Loop (GTL) system to be incorporated into the Advanced Test Reactor (ATR) at the Idaho National Laboratory. A layer of boehmite (a crystalline, non-porous gamma-alumina hydrate) is typically pre-formed on the surface of the fuel cladding prior to exposure to reactor operation to prevent the uncontrolled buildup of corrosion product on the surface. A representative sample coupon autoclaved with the ATR driver fuel to produce the boehmite layer was analyzed using optical profilometry to determine the mean surface roughness, a parameter that can have significant impact on the coolant flow past the fuel plates. This information was used to specify the surface finish of mockup fuel plates for a hydraulic flow test model. The purpose of the flow test is to obtain loss coefficients describing the resistance of the coolant flow paths, which are necessary for accurate thermal hydraulic analyses of the water-cooled booster fuel assembly. It is recommended that the surface roughness of the boehmite layer on the fuel cladding be replicated for the flow test. While it is very important to know the order of magnitude of the surface roughness, this value does not need to be matched exactly. Maintaining a reasonable dimensional tolerance for the surface finish on each side of the 12 mockup fuel plates would ensure relative uniformity in the flow among the four coolant channels. Results obtained from thermal hydraulic analyses indicate that ±15% deviation from a surface finish (i.e., Ra) of 0.53 ìm would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature.

  11. Fractional flow in fractured chalk; a flow and tracer test revisited.

    PubMed

    Odling, N E; West, L J; Hartmann, S; Kilpatrick, A

    2013-04-01

    A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L(4-n)/T and S(2-n)) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2flow model. In the case illustrated, improved fits to drawdown data are obtained and the resultant transmissivities and storativities are found to be lower by 30% and an order of magnitude respectively, than estimates from classical methods. The revised hydraulic parameters are used in a reinterpretation of a tracer test using an analytical dual porosity model of solute transport incorporating matrix diffusion and modified for fractional flow. Model results show smaller fracture apertures, spacings and dispersivities than those when 2D flow is assumed. The pumping and tracer test results and modeling presented illustrate the importance of recognizing the potential fractional nature of flow generated by partially penetrating boreholes in fractured aquifers in estimating aquifer properties and interpreting tracer breakthrough curves. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Nitric oxide influences blood flow distribution in renovascular hypertension.

    PubMed

    Sigmon, D H; Beierwaltes, W H

    1994-01-01

    Endothelium-derived nitric oxide contributes to the regulation of regional blood flow. Inhibition of endothelium-derived nitric oxide synthesis increases blood pressure and vascular resistance. Using the substrate antagonist N omega-nitro-L-arginine-methyl ester to block endothelium-derived nitric oxide synthesis, we tested the hypothesis that, in two-kidney, one clip renovascular hypertension, endothelium-derived nitric oxide plays an increased role in maintaining blood flow to the nonclipped kidney and other visceral organs compared with normotensive controls. This could be due to increased vascular shear stress, a primary stimulus for endothelium-derived nitric oxide synthesis, after the onset of hypertension. In hypertensive rats with mild renal artery stenosis, basal renal blood flow normalized by kidney weight was similar in the nonclipped and clipped kidneys. Basal blood pressure of controls was 98 +/- 2 mm Hg compared with 145 +/- 3 mm Hg in the two-kidney, one clip hypertensive rats. N omega-nitro-L-arginine-methyl ester increased blood pressure by 20 +/- 2 and 43 +/- 3 mm Hg in control and hypertensive rats, respectively. Compared with normotensive controls, basal resistance was higher in all organ beds in the hypertensive rats including brain, heart, intestine, and kidney. With the exception of the renal circulation, the increase in vascular resistance after N omega-nitro-L-arginine-methyl ester was greater in hypertensive rats compared with normotensive controls. In the hypertensive rats, N omega-nitro-L-arginine-methyl ester caused a similar increase in vascular resistance in both the nonclipped and clipped kidneys, and this was not different from normotensive controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. [Flow field test on the tangential section of polypropylene tubular membrane module annular gap in rotating linear tangential flow].

    PubMed

    Wang, Chengduan; Chen, Wenmei; Li, Jianming; Jiang, Guangming

    2002-07-01

    A new type of polypropylene tubular membrane apparatus of rotating cross flow was designed to study experimentally the flow field characteristics of the tangential section of the membrane annular gap. The authors designed rotary linear tangential flow tubular membrane separator and its test system for the first time. Through the system, the flow field of rotary linear tangential flow with the advanced Particle Image Velocimetry (PIV) was tested for the first time. A lot of streamlines and vorticity maps of the tangential section of separator in different operation conditions were obtained. The velocity distribution characteristics were analyzed quantitatively: 1. At non-vortex area, no matter how the operation parameters change, the velocity near to rotary tangential flow entrance was higher than the velocity far from entrance at the same radial coordinates. At vortex area, generally the flow velocity of inner vortex was lower than the outer vortex. At the vortex center, the velocity was lowest, the tangential velocity were equal to zero generally. At the vortex center zone, the tangential velocity was less than the axial velocity. 2. Under test operations, the tangential velocity and axial velocity of vortices borders are 1-2 times of average axial velocity of membrane module annular gap. The maximum tangential velocity and axial velocity of ellipse vortices were 2-6 times of average axial velocity of membrane module annular gap. 3. The vortices that are formed on the tangential section, there existed mass transfer between inner and outer parts of fluid. Much fluid of outer vortices got into the inner ones, which was able to prevent membrane tube from particles blocking up very soon.

  14. An experimental study of a self-confined flow with ring-vorticity distribution. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Lin, K. M.; Moore, F. K.

    1976-01-01

    A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field.

  15. Mass-Flow-Meter Leak-Testing System

    NASA Technical Reports Server (NTRS)

    Sorensen, Eric B.; Polidori, Andre V.; Heman, Joe R.; Dresser, Holland L.; Hellum, John

    1996-01-01

    Improved leak-testing system incorporates mass-flow meter as primary sensor for measurement of leakage rate. System easier to use and more reliable and enables leak tests to be completed in less time. Produces test data more plentiful, more accurate, and better suited to leak detection and diagnosis. Operates over range of test conditions, including pressures from atmospheric to 1,000 psi, temperatures from 50 to 120 degrees F and volumes from less than 1 in.(sup3) to 22 in.(sup3). Sensitive enough to measure absorbed gas seeping from O-ring seals after test pressure released.

  16. Experimental test of the Gallavotti-Cohen fluctuation theorem in turbulent flows

    NASA Astrophysics Data System (ADS)

    Ciliberto, S.; Garnier, N.; Hernandez, S.; Lacpatia, C.; Pinton, J.-F.; Ruiz Chavarria, G.

    2004-09-01

    We test the fluctuation theorem from measurements in turbulent flows. We study the time fluctuations of the force acting on an obstacle, and we consider two experimental situations: the case of a von Kármán swirling flow between counter-rotating disks and the case of a wind tunnel jet. We first study the symmetries implied by the Gallavotti-Cohen fluctuation theorem (FT) on the probability density distributions of the force fluctuations; we then test the Sinai scaling. We observe that in both experiments the symmetries implied by the FT are well verified, whereas the Sinai scaling is established, as expected, only for long times.

  17. Flight test and numerical simulation of transonic flow around YAV-8B Harrier II wing

    NASA Technical Reports Server (NTRS)

    Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Roberts, Andrew C.; Chow, Chuen-Yen

    1991-01-01

    A computational fluid dynamics (CFD) method is used to study the aerodynamics of the YAV-8B Harrier II wing in the transonic region. A numerical procedure is developed to compute the flow field around the complicated wing-pylon-fairing geometry. The surface definition of the wing and pylons were obtained from direct measurement using theodolite triangulation. A thin-layer Navier-Stokes code with the Chimera technique is used to compute flow solutions. The computed pressure distributions at several span stations are compared with flight test data and show good agreement. Computed results are correlated with flight test data that show the flow is severely separated in the vicinity of the wing-pylon junction. Analysis shows that shock waves are induced by pylon swaybrace fairings, that the flow separation is much stronger at the outboard pylon and that the separation is caused mainly by the crossflow passing the geometry of wing-pylon junction.

  18. Flight test and numerical simulation of transonic flow around YAV-8B Harrier II wing

    NASA Technical Reports Server (NTRS)

    Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Roberts, Andrew C.; Chow, Chuen-Yen

    1991-01-01

    A computational fluid dynamics (CFD) method is used to study the aerodynamics of the YAV-8B Harrier II wing in the transonic region. A numerical procedure is developed to compute the flow field around the complicated wing-pylon-fairing geometry. The surface definition of the wing and pylons were obtained from direct measurement using theodolite triangulation. A thin-layer Navier-Stokes code with the Chimera technique is used to compute flow solutions. The computed pressure distributions at several span stations are compared with flight test data and show good agreement. Computed results are correlated with flight test data that show the flow is severely separated in the vicinity of the wing-pylon junction. Analysis shows that shock waves are induced by pylon swaybrace fairings, that the flow separation is much stronger at the outboard pylon and that the separation is caused mainly by the crossflow passing the geometry of wing-pylon junction.

  19. Derivation of low flow frequency distributions under human activities and its implications

    NASA Astrophysics Data System (ADS)

    Gao, Shida; Liu, Pan; Pan, Zhengke; Ming, Bo; Guo, Shenglian; Xiong, Lihua

    2017-06-01

    Low flow, refers to a minimum streamflow in dry seasons, is crucial to water supply, agricultural irrigation and navigation. Human activities, such as groundwater pumping, influence low flow severely. In order to derive the low flow frequency distribution functions under human activities, this study incorporates groundwater pumping and return flow as variables in the recession process. Steps are as follows: (1) the original low flow without human activities is assumed to follow a Pearson type three distribution, (2) the probability distribution of climatic dry spell periods is derived based on a base flow recession model, (3) the base flow recession model is updated under human activities, and (4) the low flow distribution under human activities is obtained based on the derived probability distribution of dry spell periods and the updated base flow recession model. Linear and nonlinear reservoir models are used to describe the base flow recession, respectively. The Wudinghe basin is chosen for the case study, with daily streamflow observations during 1958-2000. Results show that human activities change the location parameter of the low flow frequency curve for the linear reservoir model, while alter the frequency distribution function for the nonlinear one. It is indicated that alter the parameters of the low flow frequency distribution is not always feasible to tackle the changing environment.

  20. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.

    PubMed

    Nishida, Masahiro; Kosaka, Ryo; Maruyama, Osamu; Yamane, Takashi; Shirasu, Akio; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2017-03-01

    A long-term durability test was conducted on a newly developed axial-flow ventricular assist device (VAD) with hydrodynamic bearings. The mock circulatory loop consisted of a diaphragm pump with a mechanical heart valve, a reservoir, a compliance tank, a resistance valve, and flow paths made of polymer or titanium. The VAD was installed behind the diaphragm pump. The blood analog fluid was a saline solution with added glycerin at a temperature of 37 °C. A pulsatile flow was introduced into the VAD over a range of flow rates to realize a positive flow rate and a positive pressure head at a given impeller rotational speed, yielding a flow rate of 5 L/min and a pressure of 100 mmHg. Pulsatile flow conditions were achieved with the diastolic and systolic flow rates of ~0 and 9.5 L/min, respectively, and an average flow rate of ~5 L/min at a pulse rate of 72 bpm. The VAD operation was judged by not only the rotational speed of the impeller, but also the diastolic, systolic, and average flow rates and the average pressure head of the VAD. The conditions of the mock circulatory loop, including the pulse rate of the diaphragm pump, the fluid temperature, and the fluid viscosity were maintained. Eight VADs were tested with testing periods of 2 years, during which they were continuously in operation. The VAD performance factors, including the power consumption and the vibration characteristics, were kept almost constant. The long-term durability of the developed VAD was successfully demonstrated.

  1. System design description for GCFR-core flow test loop

    SciTech Connect

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  2. A novel approach to the uniform distribution of liquid in multi-channel (electrochemical) flow-through cells.

    PubMed

    Lacina, Karel; Vondál, Jiří; Skládal, Petr

    2012-05-21

    Four-channel flow-through electrochemical cell working in thin-layer regime was designed, fabricated and characterized experimentally and in computational fluid dynamics (CFD) simulations. The new principle of operation allows reproducible splitting of a stream of liquid into multiple flow channels. Systems comprising of 2-, 3-, 4- and 8-channels were tested. The proper function of the cell is given by the ratio of the cross-sections of the fluidic element collecting chamber and the particular flow paths among which the liquid is distributed. Suitable flow rates providing uniform liquid distribution were evaluated and the results were compared to CFD modeling. The flow-through cells designed according to the proposed principle can be simply incorporated in automated routine analysis as only one inlet and one common outlet are required. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model.

    PubMed

    Caine, Marcus; McCafferty, Michael S; McGhee, Scott; Garcia, Pedro; Mullett, Wayne M; Zhang, Xunli; Hill, Martyn; Dreher, Matthew R; Lewis, Andrew L

    2017-02-01

    To investigate material density, flow, and viscosity effects on microsphere distribution within an in vitro model designed to simulate hepatic arteries. A vascular flow model was used to compare distribution of glass and resin surrogates in a clinically derived flow range (60-120 mL/min). Blood-mimicking fluid (BMF) composed of glycerol and water (20%-50% vol/vol) was used to simulate a range of blood viscosities. Microsphere distribution was quantified gravimetrically, and injectate solution was dyed to enable quantification by UV spectrophotometry. Microsphere injection rate (5-30 mL/min) and the influence of contrast agent dilution of injection solution (0%-60% vol/vol) were also investigated. No significant differences in behavior were observed between the glass and resin surrogate materials under any tested flow conditions (P = .182; n = 144 injections). Microspheres tend to align more consistently with the saline injection solution (r2 = 0.5712; n = 144) compared with total BMF flow distribution (r2 = 0.0104; n = 144). The most predictable injectate distribution (ie, greatest alignment with BMF flow, < 5% variation) was demonstrated with > 10-mL/min injection rates of pure saline solution, although < 20% variation with glass microsphere distribution was observed with injection solution containing as much as 30% contrast medium when injected at > 20 mL/min. Glass and resin yttrium-90 surrogates demonstrated similar distribution in a range of clinically relevant flow conditions, suggesting that microsphere density does not have a significant influence on microsphere distribution. Injection parameters that enhanced the mixing of the spheres with the BMF resulted in the most predictable distribution. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  4. Fan Noise Source Diagnostic Test: LDV Measured Flow Field Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary C.; Krupar, Martin J.; Hughes, Christopher E.; Woodward, Richard P.

    2003-01-01

    Results are presented of an experiment conducted to investigate potential sources of noise in the flow developed by two 22-in. diameter turbofan models. The R4 and M5 rotors that were tested were designed to operate at nominal take-off speeds of 12,657 and 14,064 RPMC, respectively. Both fans were tested with a common set of swept stators installed downstream of the rotors. Detailed measurements of the flows generated by the two were made using a laser Doppler velocimeter system. The wake flows generated by the two rotors are illustrated through a series of contour plots. These show that the two wake flows are quite different, especially in the tip region. These data are used to explain some of the differences in the rotor/stator interaction noise generated by the two fan stages. In addition to these wake data, measurements were also made in the R4 rotor blade passages. These results illustrate the tip flow development within the blade passages, its migration downstream, and (at high rotor speeds) its merging with the blade wake of the adjacent (following) blade. Data also depict the variation of this tip flow with tip clearance. Data obtained within the rotor blade passages at high rotational speeds illustrate the variation of the mean shock position across the different blade passages.

  5. Prediction of Parameters Distribution of Upward Boiling Two-Phase Flow With Two-Fluid Models

    SciTech Connect

    Yao, Wei; Morel, Christophe

    2002-07-01

    In this paper, a multidimensional two-fluid model with additional turbulence k - {epsilon} equations is used to predict the two-phase parameters distribution in freon R12 boiling flow. The 3D module of the CATHARE code is used for numerical calculation. The DEBORA experiment has been chosen to evaluate our models. The radial profiles of the outlet parameters were measured by means of an optical probe. The comparison of the radial profiles of void fraction, liquid temperature, gas velocity and volumetric interfacial area at the end of the heated section shows that the multidimensional two-fluid model with proper constitutive relations can yield reasonably predicted results in boiling conditions. Sensitivity tests show that the turbulent dispersion force, which involves the void fraction gradient, plays an important role in determining the void fraction distribution; and the turbulence eddy viscosity is a significant factor to influence the liquid temperature distribution. (authors)

  6. Distributions of Hardy-Weinberg equilibrium test statistics.

    PubMed

    Rohlfs, R V; Weir, B S

    2008-11-01

    It is well established that test statistics and P-values derived from discrete data, such as genetic markers, are also discrete. In most genetic applications, the null distribution for a discrete test statistic is approximated with a continuous distribution, but this approximation may not be reasonable. In some cases using the continuous approximation for the expected null distribution may cause truly null test statistics to appear nonnull. We explore the implications of using continuous distributions to approximate the discrete distributions of Hardy-Weinberg equilibrium test statistics and P-values. We derive exact P-value distributions under the null and alternative hypotheses, enabling a more accurate analysis than is possible with continuous approximations. We apply these methods to biological data and find that using continuous distribution theory with exact tests may underestimate the extent of Hardy-Weinberg disequilibrium in a sample. The implications may be most important for the widespread use of whole-genome case-control association studies and Hardy-Weinberg equilibrium (HWE) testing for data quality control.

  7. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  8. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  9. Reevaluation of vesicle distributions in basaltic lava flows

    USGS Publications Warehouse

    Cashman, K.V.; Kauahikaua, J.P.

    1997-01-01

    A fundamental dichotomy in the study of basaltic lava flows is that observations of active flows are restricted to flow surfaces, yet older flows are often exposed only in vertical cross section. Cross-sectional exposures of an inflated basaltic sheet flow emplaced in Kalapana, Hawaii, from 1990 to 1991 provide an unusual opportunity to merge these two viewpoints, permitting the development of the internal structure of the flow to be viewed in the context of its known emplacement history. We demonstrate that fundamental features of the flow structure - a thick upper vesicular crust that diminishes downward in overall vesicularity, a dense flow interior, and a thin lower vesicular zone - are generated through syn-emplacement cooling of upper and lower flow crusts. Both the inverse correlation of overall vesicularity and vesicle size and the constant relative thickness of the upper vesicular zone are unique to inflated flows and permit a reinterpretation of flows previously interpreted to be ponded (rapidly emplaced). Identification of inflation, in turn, implies near-horizontal paleoslopes and permits estimates of flow duration based on upper flow crust thickness.

  10. Core flow-through apparatus: letter report documenting testing phase

    SciTech Connect

    Viani, B.E.; Martin, S.

    1993-12-01

    As part of the task of developing conceptual, physical and chemical, and performance models of the dynamics of water and dissolved and colloidal radionuclide constituents in the near-field, measurements of flow and transport properties of repository rocks and other near- field components are required. An apparatus has been fabricated that will be used to collect pertinent flow and transport data at temperatures expected in the near-field. Description of the core-flow apparatus (CFA) and preliminary testing results are included in this letter report. The apparatus was designed to study the flow of radionuclide-bearing solutions through fractured or unfractured cylindrical samples of rock and other competent materials (e.g. concrete). Because near-field transport was the goal, the CFA was designed to be operated at elevated temperatures.

  11. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  12. Description of an oscillating flow pressure drop test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary; Miller, Eric L.; Gedeon, David R.; Koester, Gary E.

    1988-01-01

    A test rig designed to generate heat exchanger pressure drop information under oscillating flow conditions is described. This oscillating flow rig is based on a variable stroke and variable frequency linear drive motor. A frequency capability of 120 hertz and a mean test pressure up to 15 mPA (2200 psi) allows for testing at flow conditions found in modern high specific power Stirling engines. An important design feature of this rig is that it utilizes a single close coupled dynamic pressure transducer to measure the pressure drop across the test sample. This eliminates instrumentation difficulties associated with the pressure sensing lines common to differential pressure transducers. Another feature of the rig is that it utilizes a single displacement piston. This allows for testing of different sample lengths and configurations without hardware modifications. All data acquisition and reduction for the rig is performed with a dedicated personal computer. Thus the overall system design efficiently integrates the testing and data reduction procedures. The design methodology and details of the test rig is described.

  13. Numerical and experimental study on the flow distribution in a water manifold

    NASA Astrophysics Data System (ADS)

    Min, Gwansik; Jong Lee, Pil; Kang, Jong Hoon

    2016-03-01

    This study presents water distribution analysis of the device for spraying cooling water through specific nozzles numerically and experimentally. Numerical analysis was performed using the 3-D incompressible, multi-phase flow model, for different Reynolds numbers of 4 × 105, 8 × 105. Experimental analysis was performed at real-size, under the same conditions. The calculated results and the measured results for the distribution of flow were matched relatively well. The distribution of the nozzle flow depends on the Reynolds number.

  14. Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique

    SciTech Connect

    Kanarska, Y

    2010-03-24

    Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. (1999). Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid-body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. (1979) with some modifications using a volume of an overlapping region as an input to the contact forces. The method is flexible enough to handle arbitrary particle shapes and size distributions. A parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library, which allows handling of large amounts of rigid particles and enables local grid refinement. Accuracy and convergence of the presented method has been tested against known solutions for a falling sphere as well as by examining fluid flows through stationary particle beds (periodic and cubic packing). To evaluate code performance and validate particle

  15. Application of a truncated normal failure distribution in reliability testing

    NASA Technical Reports Server (NTRS)

    Groves, C., Jr.

    1968-01-01

    Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.

  16. (NTF) National Transonic Facility Test 213-SFW Flow Control II,

    NASA Image and Video Library

    2012-11-19

    (NTF) National Transonic Facility Test 213-SFW Flow Control II, Fast-MAC Model: The fundamental Aerodynamics Subsonic Transonic-Modular Active Control (Fast-MAC) Model was tested for the 2nd time in the NTF. The objectives were to document the effects of Reynolds numbers on circulation control aerodynamics and to develop and open data set for CFD code validation. Image taken in building 1236, National Transonic Facility

  17. Test experience with multiterminal HVDC load flow and stability programs

    SciTech Connect

    Chapman, D.G.; Davies, J.B. ); McNichol, J.R. ); Gulachenski, E.M.; Doe, S. ); Balu, N.J. )

    1988-07-01

    A powerful new set of load flow and stability programs for the study of HVdc systems has recently been completed. During the development of the programs novel applications of multiterminal HVdc systems were investigated, firstly on a large test system and later on actual utility models. This paper describes the test systems used, the HVdc systems studied and some of the interesting system related aspects of the HVdc system performance.

  18. Cotton-Harvester-Flow Simulator for Testing Cotton Yield Monitor

    USDA-ARS?s Scientific Manuscript database

    An experimental system was developed to simulate the pneumatic flow arrangement found in picker-type cotton harvesters. The simulation system was designed and constructed for testing a prototype cotton yield monitor developed at Mississippi State University. The simulation system was constructed to ...

  19. VERIFICATION TESTING OF WET-WEATHER FLOW TECHNOLOGIES

    EPA Science Inventory

    As part of the USEPA's ETV Program, the Wet-Weather Flow (WWF) Technologies Pilot Program verifies the performance of commercial-ready technologies by generating quality-assured data using test protocols developed with broad-based stakeholder input. The availability of a credible...

  20. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7...

  1. VERIFICATION TESTING OF WET-WEATHER FLOW TECHNOLOGIES

    EPA Science Inventory

    As part of the USEPA's ETV Program, the Wet-Weather Flow (WWF) Technologies Pilot Program verifies the performance of commercial-ready technologies by generating quality-assured data using test protocols developed with broad-based stakeholder input. The availability of a credible...

  2. Parametric distribution approach for flow availability in small hydro potential analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel

    2016-10-01

    Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.

  3. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    PubMed

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  4. Flow and diffusion of high-stakes test scores

    NASA Astrophysics Data System (ADS)

    Marder, M.; Bansal, D.

    2009-10-01

    We apply visualization and modeling methods for convective and diffusive flows to public school mathematics test scores from Texas. We obtain plots that show the most likely future and past scores of students, the effects of random processes such as guessing, and the rate at which students appear in and disappear from schools. We show that student outcomes depend strongly upon economic class, and identify the grade levels where flows of different groups diverge most strongly. Changing the effectiveness of instruction in one grade naturally leads to strongly nonlinear effects on student outcomes in subsequent grades.

  5. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  6. Testing the global flow reconstruction method on coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Plachy, Emese; Kolláth, Zoltán

    2010-03-01

    Irregular behaviour of pulsating variable stars may occur due to low dimensional chaos. To determine the quantitative properties of the dynamics in such systems, we apply a suitable time series analysis, the global flow reconstruction method. The robustness of the reconstruction can be tested through the resultant quantities, like Lyapunov dimension and Fourier frequencies. The latter is specially important as it is directly derivable from the observed light curves. We have performed tests using coupled Rossler oscillators to investigate the possible connection between those quantities. In this paper we present our test results.

  7. Method of Estimating the Incompressible-flow Pressure Distribution of Compressor Blade Sections at Design Angle of Attack

    NASA Technical Reports Server (NTRS)

    Erwin, John R; Yacobi, Laura A

    1953-01-01

    A method was devised for estimating the incompressible-flow pressure distribution over compressor blade sections at design angle of attack. The theoretical incremental velocities due to camber and thickness of the section as an isolated airfoil are assumed proportional to the average passage velocity and are modified by empirically determined interference factors. Comparisons were made between estimated and test pressure distributions of NACA 65-series sections for typical conditions. Good agreement was obtained.

  8. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  9. Review of Test Facilities for Distributed Energy Resources

    SciTech Connect

    AKHIL,ABBAS ALI; MARNAY,CHRIS; KIPMAN,TIMOTHY

    2003-05-01

    Since initiating research on integration of distributed energy resources (DER) in 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) has been actively assessing and reviewing existing DER test facilities for possible demonstrations of advanced DER system integration concepts. This report is a compendium of information collected by the CERTS team on DER test facilities during this period.

  10. 10 CFR 431.198 - Enforcement testing for distribution transformers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nameplate or in marketing materials for a distribution transformer, disclosed pursuant to this part, the... basic model(s) to be selected for testing, the method of selecting the test sample, the date and time at... determination of compliance or noncompliance. (c) Sampling. The determination that a manufacturer's basic model...

  11. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    NASA Astrophysics Data System (ADS)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  12. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  13. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  14. Rapid flow cytometric susceptibility testing of Candida albicans.

    PubMed Central

    Ramani, R; Ramani, A; Wong, S J

    1997-01-01

    A rapid flow cytometric assay for in vitro antifungal drug susceptibility testing was developed by adapting the proposed reference method for broth macrodilution testing of yeasts. Membrane permeability changes caused by the antifungal agent were measured by flow cytometry using propidium iodide, a nucleic acid-binding fluorochrome largely excluded by the intact cell membrane. We determined the in vitro susceptibility of 31 Candida albicans isolates and two quality control strains (Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258) to amphotericin B and fluconazole. Amphotericin B MICs ranged from 0.03 to 2.0 microg/ml, while fluconazole MICs ranged from 0.125 to 128 microg/ml. This method results in clear-cut endpoints that were reproducible. Four-hour incubation was required for fluconazole, whereas a 2-h incubation was sufficient for amphotericin B to provide MICs comparable to the reference macrodilution method developed by the National Committee for Clinical Laboratory Standards Subcommittee on Antifungal Susceptibility Tests. Results of these studies show that flow cytometry provides a rapid and sensitive in vitro method for antifungal susceptibility testing of C. albicans. PMID:9276410

  15. Model-Driven Test Generation of Distributed Systems

    NASA Technical Reports Server (NTRS)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  16. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  17. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  18. Universal Verification Methodology Based Register Test Automation Flow.

    PubMed

    Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu

    2016-05-01

    In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers.

  19. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    SciTech Connect

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A.

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  20. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  1. Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM

    NASA Astrophysics Data System (ADS)

    Liang, Zijun; Lin, Shunjiang; Liu, Mingbo

    2017-05-01

    Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.

  2. Quantifying the impact on hyporheic flow of assuming homogenous hydraulic conductivity distributions within permeameters

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Cooper, D. G.; Everingham, J. M.; Kraciun, M. K.; Stonedahl, F.

    2012-12-01

    Hydraulic conductivity (K) is an important sediment property related to the speed with which water flows through sediments. It affects hyporheic uptake and residence time distributions, which are critical to assessing solute transport and nutrient depletion in streams. In this study we investigated the effect of millimeter-scale K variability on measurements that use one of the simplest in situ measurement techniques, the falling-head permeameter test. In a laboratory setting vertical K values and their variability were calculated for a variety of sands. We created composite systems by layering these sands and measured their respective K values. Spatial head distributions for these composite systems were modeled using the finite difference capability of MODFLOW with inputs of head levels, boundaries, and known localized K values. These head distributions were then used to calculate the volumetric flux through the column, which was used in the Hvorslev constant-head equation to calculate vertical K values. We found that these simulated system K values reproduced the same qualitative trends as the laboratory measurements, and provided a good quantitative match in some cases. We then used the model to select distinct heterogeneous K distributions (i.e. layered, randomly distributed, and systematically increasing) that have the same simulated system K value. These K distributions were used in a two-dimensional dune/ripple-scale pumping model to approximate hyporheic residence time distributions and provide estimates of the error associated with the assumed homogeneity of the K distributions. The results have direct implications for both field studies where hydraulic conductivity is being measured and also for determining the level of detail that should be included in computational models.inite difference model of the constant-head permeameter

  3. Underactuated (bouyancy) control of sensor vehicle distributions in highly stratified flows

    NASA Astrophysics Data System (ADS)

    Meneghello, Gianluca; Bewley, Thomas

    2013-11-01

    Balloons and drifters are useful tools in observation and monitoring of the atmosphere and the ocean. In their simpler configuration, data acquisition is performed while they are passively transported by the flow and no control on their distribution is possible. We present a control strategy employing vertical (buoyancy) actuation only to control both their vertical and horizontal distribution, with application to hurricane monitoring. The desired horizontal distribution is obtained leveraging knowledge of the stratified flow velocity field. The optimal control framework is employed to compute the buoyancy time sequence driving the vehicles to the desired spatial distribution. Uncertainties in both the flow field description and the vehicles position are accounted for.

  4. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  5. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  6. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  7. Advanced material distribution measurement in multiphase flows: A case study

    SciTech Connect

    George, D.L.; Ceccio, S.L.; O`Hern, T.J.; Shollenberger, K.A.; Torczynski, J.R.

    1998-08-01

    A variety of tomographic techniques that have been applied to multiphase flows are described. The methods discussed include electrical impedance tomography (EIT), magnetic resonance imaging (MRI), positron emission tomography (PET), gamma-densitometry tomography (GDT), radiative particle tracking (RDT), X-ray imaging, and acoustic tomography. Also presented is a case study in which measurements were made with EIT and GDT in two-phase flows. Both solid-liquid and gas-liquid flows were examined. EIT and GDT were applied independently to predict mean and spatially resolved phase volume fractions. The results from the two systems compared well.

  8. Degassing and two-phase flow pilot hole test report

    SciTech Connect

    Geller, J.T.; Jarsjoe, J.

    1995-03-01

    A pilot hole test was conducted to support the design of the Degassing of Groundwater and Two-Phase Flow experiments planned for the Hard Rock Laboratory, Aespoe, Sweden. The test consisted of a sequence of constant pressure borehole inflow tests (CPTs) and pressure recovery tests (PRTs) in borehole KA2512A. The test sequence was designed to detect degassing effects from the change in transmissivity, or hydraulic conductivity, and storativity when the borehole pressure is lowered below the groundwater bubble pressure. The entire 37.3m of the borehole section was tested without packers. Flow response to pressure changes in CPTs occurred rapidly. Flowrates fluctuated before attaining a steady trend, probably due to effective stress changes when borehole pressure was reduced for the first time. These factors decreased the sensitivity of type-curve fits to values of specific storage. The relationship between borehole pressure and steady-state flowrates was linear over borehole pressures of 1500 kPa (abs) down to 120 kPa (abs) during testing in December 1994, indicating that processes that may change hydraulic conductivity at low borehole pressures, such as degassing, calcite precipitation or turbulence, did not occur to a measurable degree. Test results during January and February of 1995 suggest that degassing may have occurred. The hydraulic conductivity measured at a borehole pressure equal to 120 kPa (abs) was 20% lower than the hydraulic conductivity measured at a borehole pressure of 1500 kPa (abs); the latter value was 10% lower than the hydraulic conductivity measured in December, 1994. The volumetric gas content measured during this time was 1% v/v. Pressures in monitoring well KA2511A responded to the testing in KA2512A. Step-changes in flowrates coincided with blasting at 3300-3400 m tunnel length. The magnitude of these changes was greater at the lower borehole pressures. Step increases in pressures in KA2511A also coincided with the blasts.

  9. Distribution and directional fabric of ash-flow sheets in the northwestern Mogollon Plateau, New Mexico.

    NASA Technical Reports Server (NTRS)

    Rhodes, R. C.; Smith, E. I.

    1972-01-01

    Individual ash-flow sheets distributed over wide areas in the Mogollon-Datil volcanic province can be delineated and related by flow direction techniques to specific source cauldrons. Two major mid-Tertiary ash flows in the Mogollon Plateau have measurable microscopic directional fabric indicative of primary flow direction imprinted in the ash-flow sheets during late-stage laminar flow. Regional stratigraphic relationships and flow patterns of the ash-flow sheets indicate a late Tertiary origin of the Mogollon Plateau depression. They also show that Basin-Range faulting in southwestern New Mexico was not initiated until after emplacement of the younger ash flow (23 m.y. B.P.). Directional fabric is an inherent property of many calc-alkalic ash-flow sheets and measurement of preferred orientation provides a powerful tool in unravelling the geologic history of complex volcanic terrane.

  10. Facility for cold flow testing of solid rocket motor models

    NASA Astrophysics Data System (ADS)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  11. On-line updating of a distributed flow routing model - River Vistula case study

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Romanowicz, Renata; Napiorkowski, Jaroslaw

    2015-04-01

    This paper presents an application of methods of on-line updating in the River Vistula flow forecasting system. All flow-routing codes make simplifying assumptions and consider only a reduced set of the processes known to occur during a flood. Hence, all models are subject to a degree of structural error that is typically compensated for by calibration of the friction parameters. Calibrated parameter values are not, therefore, physically realistic, as in estimating them we also make allowance for a number of distinctly non-physical effects, such as model structural error and any energy losses or flow processes which occur at sub-grid scales. Calibrated model parameters are therefore area-effective, scale-dependent values which are not drawn from the same underlying statistical distribution as the equivalent at-a-point parameter of the same name. The aim of this paper is the derivation of real-time updated, on-line flow forecasts at certain strategic locations along the river, over a specified time horizon into the future, based on information on the behaviour of the flood wave upstream and available on-line measurements at a site. Depending on the length of the river reach and the slope of the river bed, a realistic forecast lead time, obtained in this manner, may range from hours to days. The information upstream can include observations of river levels and/or rainfall measurements. The proposed forecasting system will integrate distributed modelling, acting as a spatial interpolator with lumped parameter Stochastic Transfer Function models. Daily stage data from gauging stations are typically available at sites 10-60 km apart and test only the average routing performance of hydraulic models and not their ability to produce spatial predictions. Application of a distributed flow routing model makes it possible to interpolate forecasts both in time and space. This work was partly supported by the project "Stochastic flood forecasting system (The River Vistula reach

  12. Testing the shape of distributions of weather data

    NASA Astrophysics Data System (ADS)

    Baccon, Ana L. P.; Lunardi, José T.

    2016-08-01

    The characterization of the statistical distributions of observed weather data is of crucial importance both for the construction and for the validation of weather models, such as weather generators (WG's). An important class of WG's (e.g., the Richardson-type generators) reduce the time series of each variable to a time series of its residual elements, and the residuals are often assumed to be normally distributed. In this work we propose an approach to investigate if the shape assumed for the distribution of residuals is consistent or not with the observed data of a given site. Specifically, this procedure tests if the same distribution shape for the residuals noise is maintained along the time. The proposed approach is an adaptation to climate time series of a procedure first introduced to test the shapes of distributions of growth rates of business firms aggregated in large panels of short time series. We illustrate the procedure by applying it to the residuals time series of maximum temperature in a given location, and investigate the empirical consistency of two assumptions, namely i) the most common assumption that the distribution of the residuals is Gaussian and ii) that the residuals noise has a time invariant shape which coincides with the empirical distribution of all the residuals noise of the whole time series pooled together.

  13. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  14. Experimental Testing of the T-NSTAP in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Kokmanian, Katherine; Hultmark, Marcus

    2016-11-01

    A fast response nanoscale temperature sensor (T-NSTAP) was developed at Princeton University. This novel sensor has been shown to increase both the spatial and the temporal resolutions compared to conventional cold-wire probes, due to its large aspect ratio yet small overall size (100 nm x 2 μm x 200 μm). The T-NSTAP has been tested in various subsonic facilities, however it has not yet been tested under supersonic conditions. Here we will present the first measurements from supersonic flows using the T-NSTAP in Princeton's Low Turbulence Variable Geometry Facility at Mach 3 and later in Princeton's Hypersonic Boundary Layer Facility (HBLF) at Mach 8 in order to enable unfiltered data of the temperature field in high speed flows. Since the HBLF can generate more challenging conditions than these probes have previously been tested in, our attention will be focused on ensuring that the T-NSTAP can withstand these conditions. Assuming that a shock will form at the front edge of the sensor, the total force on the T-NSTAP was calculated to be on the order of μN, which is less than when it was tested in subsonic pressurized conditions. Investigations will be undertaken to ensure that the structural and electrical properties of the sensors are maintained during the tests. Air Force Office of Scientific Research (AFOSR).

  15. Flow quality of NAL two-dimensional transonic wind tunnel. Part 1: Mach number distributions, flow angularities and preliminary study of side wall boundary layer suction

    NASA Technical Reports Server (NTRS)

    Sakakibara, Seizo; Takashima, Kazuaki; Miwa, Hitoshi; Oguni, Yasuo; Sato, Mamoru; Kanda, Hiroshi

    1988-01-01

    Experimental data on the flow quality of the National Aerospace Laboratory two-dimensional transonic wind tunnel are presented. Mach number distributions on the test section axis show good uniformity which is characterized by the two sigma (standard deviation) values of 0.0003 to 0.001 for a range of Mach numbers from 0.4 to 1.0. Flow angularities, which were measured by using a wing model with a symmetrical cross section, remained within 0.04 deg for Mach numbers from 0.2 to 0.8. Side wall boundary layer suction was applied through a pair of porous plates. The variation of aerodynamic properties of the model due to the suction mass flow rate change is presented with a brief discussion. Two dimensionality of the flow over the wing span is expected to be improved by applying the appropriate suction rate, which depends on the Mach number, Reynolds number, and lift coefficient.

  16. Gas flow analysis during thermal vacuum test of a spacecraft.

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1973-01-01

    The pressures indicated by two tubulated ionization gages, one pointing to a spinning spacecraft undergoing thermal vacuum test and the other the walls of the chamber, have been used in a computer program to calculate important parameters of flow kinetics in the vacuum chamber. These parameters calculated as a function of time are: the self-contamination of the spacecraft (defined as the return of outgassed molecules on its critical surfaces either in orbit or while undergoing vacuum test); the spacecraft outgassing including leaks from sealed compartments; and the gas pumping performance of the vacuum chamber. The test indicated the feasibility of this type of evaluation and the improvements in instrumentations and arrangements needed for future tests.

  17. Flow-induced vibration testing of replacement thermowell designs

    NASA Astrophysics Data System (ADS)

    Haslinger, K. H.

    2003-09-01

    Inconel 600 Primary Water Stress Corrosion Cracking (PWSCC) in Nuclear Pressurized Water Reactors (PWRs) has necessitated the repair/replacement of various small bore nozzles. These repairs/replacements must be designed to avoid unwanted vibrations. So, to this end, new RTD-Thermowell-Nozzle replacement designs were developed and subjected to flow testing over a velocity range from 9.14 to 33.53m/s (30-110ft/s), and temperatures ranging from 121°C to 316°C (250-600°F). The replacement nozzles are welded on the pipe OD, rather than on the pipe ID. A split, tapered ferrule is used to support the nozzle tip inside the pipe bore. This maintains high thermowell tip-resonance frequencies with the objective of avoiding self-excitation from vortex shedding that is believed to have caused failures in an earlier design during initial, precritical plant startup testing. The flow testing was complicated by the small size of the thermowell tips (5.08mm or 0.2in ID), which necessitated use of a complement of low temperature and high temperature instrumentation. Since the high temperature device had an internal resonance (750Hz) within the frequency range of interest (0-2500Hz), adequate sensor correlations had to be derived from low temperature tests. The current nozzle/thermowell design was tested concurrently with two slight variations of the replacement design. The acceleration signals were acquired during incremental and continuous flow sweeps, nominally at 5kHz sampling rates and for time domain processing as high as 25kHz. Whereas vortex-shedding frequencies were predicted to prevail between 400 and 1500Hz, no such response was observed at these frequencies. Rather, the thermowell tips responded due to turbulent buffeting with a peak response that was related directly to flow velocity. Lift direction response was always larger than drag direction response. The thermowell tips also responded at their natural tip frequencies in a narrow band random fashion. At the higher

  18. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    SciTech Connect

    Not Available

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  19. Double Flow Bioreactor for In Vitro Test of Drug Delivery.

    PubMed

    Pavia, Francesco Carfì; La Carrubba, Vincenzo; Ghersi, Giulio; Greco, Silvia; Brucato, Valerio

    2017-01-01

    In this work, double-structured polymeric scaffolds were produced, and a double flow bioreactor was designed and set up in order to create a novel system to carry out advanced in vitro drug delivery tests. The scaffolds, consisting of a cylindrical porous matrix, are able to host cells, thus mimicking a three-dimensional tumor mass: moreover, a "pseudo-vascular" structure was embedded into the matrix, with the aim of allowing a flow circulation. The structure that emulates a blood vessel is a porous tubular-shaped scaffold prepared by Diffusion Induced Phase Separation (DIPS), with an internal lumen of 2 mm and a wall thickness of 200 micrometers. The as-prepared vessel was incorporated into a three-dimensional matrix, prepared by Thermally Induced Phase Separation (TIPS), characterized by a high porosity (about 95%) and pore size adequate to accommodate tumor cells and/or mesenchymal cells. The morphology of the multifunctional scaffolds is easy-tunable in terms of pore size, porosity and thickness and therefore adaptable to various cell or tissue types. At the same time, a double flow bioreactor was designed and built up, in order to be able to carry out biological tests on the scaffold under dynamic conditions. The device allows a separate control of the two flows (one for the tubular scaffold, one for the porous matrix) through the scaffolds. Preliminary characterizations and tests carried out suggest the presented system as a candidate to suitably "in vitro" assess the effects of different drugs on various cell populations.

  20. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    SciTech Connect

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  1. Testing green coffee for ochratoxin A, part II: Observed distribution of ochratoxin A test results.

    PubMed

    Vargas, Eugenia Azevedo; Whitaker, Thomas B; dos Santos, Eliene Alves; Slate, Andrew B; Lima, Francisco B; Franca, Regina C A

    2005-01-01

    The suitability of 4 theoretical distributions (normal, lognormal, negative binomial, and gamma) to predict the observed distribution of ochratoxin A (OTA) in green coffee was investigated. One symmetrical and 3 positively skewed theoretical distributions were each fitted to 25 empirical distributions of OTA test results for green coffee beans. Parameters of each theoretical distribution were calculated by using Methods of Moments. The 3 skewed theoretical distributions provided acceptable fits to each of the 25 observed distributions. Because of its simplicity, the lognormal distribution was selected to model OTA test results for green coffee. Using variance equations determined in previous studies, mathematical expressions were developed to calculate the parameters of the log normal distribution for a given OTA lot concentration and test procedure. Observed acceptance probabilities were compared to an operating characteristic curve predicted from the lognormal distribution, and all 25 observed acceptance probabilities were found to lie within the 95% confidence band associated with the predicted operating characteristic curve. The parameters of compound gamma distribution were used to calculate the fraction of OTA contamination beans within a contaminated lot. The percent-contaminated beans were a function of the lot concentration and increased with lot concentration. At a lot concentration of 5 microg/kg, approximately 6 beans per 10,000 beans are contaminated.

  2. Utilization of temperature distribution in expiratory speaking flow as a new parameter for speech production analysis.

    PubMed

    Gomes, G F; Vargas, J V C; Filho, E D M

    2004-01-01

    A new instrument with potential use for speech production analysis is utilized in this study to measure the temperature and velocity of the expiratory speaking flow outside the oral cavity. From a physical point of view, the temperature patterns of individuals with healthy voices are expected to be different from individuals with breathy voices, since their air flow patterns are different: during breathy speech production, the glottis does not close completely, and the leakage of warm air through the glottis increases the extent of the hotter-than-ambient temperature field outside the oral cavity. The instrument is a pipe through which the tested individual breathes out while producing a sustained vowel. A tap water heat exchanger keeps the pipe wall at a temperature level considerably lower than the body temperature. The temperature gradient along the pipe centreline is measured and related to the average air velocity at the oral cavity. The measurements were performed in 30 male and 30 female subjects without vocal complaints. The objective of this initial investigation was to evaluate the possibility of establishing patterns of normality for the temperature distribution outside the oral cavity in expiratory speaking flow. In the experiments, all the temperature measurements increased as the expiratory air flow of the individual increased during speech production, therefore the instrument results agree with the physical behavior predicted by fluid mechanics and heat transfer principles. The collected data allowed for the construction of charts with two distinct normalized temperature distributions outside the oral cavity, for male and female individuals, respectively. These charts have the potential for future utilization in a follow-up study for comparison with similar measurements obtained with individuals with vocal fold pathologies, aiming to eventually produce a reliable new instrument for early detection of vocal problems through a non-invasive procedure.

  3. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  4. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  5. Measurement of energy distribution in flowing hydrogen microwave plasmas

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Morin, T.; Finzel, M.; Hawley, M. C.

    1985-01-01

    An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into kinetic energy of a flowing gas is investigated. A calorimetry system enclosing a microwave plasma system has been developed to accurately measure the energy inputs and outputs of the microwave plasma system. The rate of energy transferred to the gas can be determined to within + or - 1.8 W from an energy balance around the microwave plasma system. The percentage of the power absorbed by the microwave plasma system transferred to the hydrogen gas as it flows through the system is found to increase with the increasing flow rate, to decrease with the increasing pressure, and to be independent of the absorbed power. An upper bound for the hydrogen gas temperature is estimated from the energy content, heat capacity, and flow rate of the gas stream. A lower bound for an overall heat-transfer coefficient is then calculated, characterizing the energy loss from the hydrogen gas stream to the air cooling of the plasma discharge tube wall. The heat-transfer coefficient is found to increase with the increasing flow rate and pressure and to be independent of the absorbed power. This result indicates that a convective-type mechanism is responsible for the energy transfer.

  6. 242A Distributed Control System Year 2000 Acceptance Test Report

    SciTech Connect

    TEATS, M.C.

    1999-08-31

    This report documents acceptance test results for the 242-A Evaporator distributive control system upgrade to D/3 version 9.0-2 for year 2000 compliance. This report documents the test results obtained by acceptance testing as directed by procedure HNF-2695. This verification procedure will document the initial testing and evaluation of the potential 242-A Distributed Control System (DCS) operating difficulties across the year 2000 boundary and the calendar adjustments needed for the leap year. Baseline system performance data will be recorded using current, as-is operating system software. Data will also be collected for operating system software that has been modified to correct year 2000 problems. This verification procedure is intended to be generic such that it may be performed on any D/3{trademark} (GSE Process Solutions, Inc.) distributed control system that runs with the VMSTM (Digital Equipment Corporation) operating system. This test may be run on simulation or production systems depending upon facility status. On production systems, DCS outages will occur nine times throughout performance of the test. These outages are expected to last about 10 minutes each.

  7. HammerCloud: A Stress Testing System for Distributed Analysis

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel C.; Elmsheuser, Johannes; Úbeda García, Mario; Paladin, Massimo

    2011-12-01

    Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).

  8. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  9. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.

    PubMed

    Chen, Yangsheng; Kent, Timothy L; Sharp, M Keith

    2013-03-01

    Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. FishMORPH - An agent-based model to predict salmonid growth and distribution responses under natural and low flows

    PubMed Central

    Phang, S. C.; Stillman, R. A.; Cucherousset, J.; Britton, J. R.; Roberts, D.; Beaumont, W. R. C.; Gozlan, R. E.

    2016-01-01

    Predicting fish responses to modified flow regimes is becoming central to fisheries management. In this study we present an agent-based model (ABM) to predict the growth and distribution of young-of-the-year (YOY) and one-year-old (1+) Atlantic salmon and brown trout in response to flow change during summer. A field study of a real population during both natural and low flow conditions provided the simulation environment and validation patterns. Virtual fish were realistic both in terms of bioenergetics and feeding. We tested alternative movement rules to replicate observed patterns of body mass, growth rates, stretch distribution and patch occupancy patterns. Notably, there was no calibration of the model. Virtual fish prioritising consumption rates before predator avoidance replicated observed growth and distribution patterns better than a purely maximising consumption rule. Stream conditions of low predation and harsh winters provide ecological justification for the selection of this behaviour during summer months. Overall, the model was able to predict distribution and growth patterns well across both natural and low flow regimes. The model can be used to support management of salmonids by predicting population responses to predicted flow impacts and associated habitat change. PMID:27431787

  11. FishMORPH - An agent-based model to predict salmonid growth and distribution responses under natural and low flows.

    PubMed

    Phang, S C; Stillman, R A; Cucherousset, J; Britton, J R; Roberts, D; Beaumont, W R C; Gozlan, R E

    2016-07-19

    Predicting fish responses to modified flow regimes is becoming central to fisheries management. In this study we present an agent-based model (ABM) to predict the growth and distribution of young-of-the-year (YOY) and one-year-old (1+) Atlantic salmon and brown trout in response to flow change during summer. A field study of a real population during both natural and low flow conditions provided the simulation environment and validation patterns. Virtual fish were realistic both in terms of bioenergetics and feeding. We tested alternative movement rules to replicate observed patterns of body mass, growth rates, stretch distribution and patch occupancy patterns. Notably, there was no calibration of the model. Virtual fish prioritising consumption rates before predator avoidance replicated observed growth and distribution patterns better than a purely maximising consumption rule. Stream conditions of low predation and harsh winters provide ecological justification for the selection of this behaviour during summer months. Overall, the model was able to predict distribution and growth patterns well across both natural and low flow regimes. The model can be used to support management of salmonids by predicting population responses to predicted flow impacts and associated habitat change.

  12. Parametric Testing of Chevrons on Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2004-01-01

    A parametric family of chevron nozzles have been studied, looking for relationships between chevron geometric parameters, flow characteristics, and far-field noise. Both cold and hot conditions have been run at acoustic Mach number 0.9. Ten models have been tested, varying chevron count, penetration, length, and chevron symmetry. Four comparative studies were defined from these datasets which show: that chevron length is not a major impact on either flow or sound; that chevron penetration increases noise at high frequency and lowers it at low frequency, especially for low chevron counts; that chevron count is a strong player with good low frequency reductions being achieved with high chevron count without strong high frequency penalty; and that chevron asymmetry slightly reduces the impact of the chevron. Finally, it is shown that although the hot jets differ systematically from the cold one, the overall trends with chevron parameters is the same.

  13. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  14. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  15. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  16. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  17. 21 CFR 211.165 - Testing and release for distribution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Testing and release for distribution. 211.165 Section 211.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  18. Distribution of incompressible flow within interdigitated channels and porous electrodes

    NASA Astrophysics Data System (ADS)

    Kee, Robert J.; Zhu, Huayang

    2015-12-01

    This paper develops a general model with which to evaluate flow uniformity and pressure drop within interdigitated-channel structures, especially in the context of redox flow batteries. The governing equations are cast in dimensionless variables, leading to a set of characteristic dimensionless parameter groups. The systems of governing equations are solved computationally, with the results presented graphically. Because the results are general, the underlying model itself is not needed to apply the quantitative design guidelines. However, the paper presents and discusses all the information required to recreate the model as needed.

  19. Effects of perfluorohexane vapor on relative blood flow distribution in an animal model of surfactant-depleted lung injury

    NASA Technical Reports Server (NTRS)

    Hubler, Matthias; Souders, Jennifer E.; Shade, Erin D.; Polissar, Nayak L.; Bleyl, Jorg U.; Hlastala, Michael P.

    2002-01-01

    OBJECTIVE: To test the hypothesis that treatment with vaporized perfluorocarbon affects the relative pulmonary blood flow distribution in an animal model of surfactant-depleted acute lung injury. DESIGN: Prospective, randomized, controlled trial. SETTING: A university research laboratory. SUBJECTS: Fourteen New Zealand White rabbits (weighing 3.0-4.5 kg). INTERVENTIONS: The animals were ventilated with an FIO(2) of 1.0 before induction of acute lung injury. Acute lung injury was induced by repeated saline lung lavages. Eight rabbits were randomized to 60 mins of treatment with an inspiratory perfluorohexane vapor concentration of 0.2 in oxygen. To compensate for the reduced FIO(2) during perfluorohexane treatment, FIO(2) was reduced to 0.8 in control animals. Change in relative pulmonary blood flow distribution was assessed by using fluorescent-labeled microspheres. MEASUREMENTS AND MAIN RESULTS: Microsphere data showed a redistribution of relative pulmonary blood flow attributable to depletion of surfactant. Relative pulmonary blood flow shifted from areas that were initially high-flow to areas that were initially low-flow. During the study period, relative pulmonary blood flow of high-flow areas decreased further in the control group, whereas it increased in the treatment group. This difference was statistically significant between the groups (p =.02) as well as in the treatment group compared with the initial injury (p =.03). Shunt increased in both groups over time (control group, 30% +/- 10% to 63% +/- 20%; treatment group, 37% +/- 20% to 49% +/- 23%), but the changes compared with injury were significantly less in the treatment group (p =.03). CONCLUSION: Short treatment with perfluorohexane vapor partially reversed the shift of relative pulmonary blood flow from high-flow to low-flow areas attributable to surfactant depletion.

  20. Effects of perfluorohexane vapor on relative blood flow distribution in an animal model of surfactant-depleted lung injury

    NASA Technical Reports Server (NTRS)

    Hubler, Matthias; Souders, Jennifer E.; Shade, Erin D.; Polissar, Nayak L.; Bleyl, Jorg U.; Hlastala, Michael P.

    2002-01-01

    OBJECTIVE: To test the hypothesis that treatment with vaporized perfluorocarbon affects the relative pulmonary blood flow distribution in an animal model of surfactant-depleted acute lung injury. DESIGN: Prospective, randomized, controlled trial. SETTING: A university research laboratory. SUBJECTS: Fourteen New Zealand White rabbits (weighing 3.0-4.5 kg). INTERVENTIONS: The animals were ventilated with an FIO(2) of 1.0 before induction of acute lung injury. Acute lung injury was induced by repeated saline lung lavages. Eight rabbits were randomized to 60 mins of treatment with an inspiratory perfluorohexane vapor concentration of 0.2 in oxygen. To compensate for the reduced FIO(2) during perfluorohexane treatment, FIO(2) was reduced to 0.8 in control animals. Change in relative pulmonary blood flow distribution was assessed by using fluorescent-labeled microspheres. MEASUREMENTS AND MAIN RESULTS: Microsphere data showed a redistribution of relative pulmonary blood flow attributable to depletion of surfactant. Relative pulmonary blood flow shifted from areas that were initially high-flow to areas that were initially low-flow. During the study period, relative pulmonary blood flow of high-flow areas decreased further in the control group, whereas it increased in the treatment group. This difference was statistically significant between the groups (p =.02) as well as in the treatment group compared with the initial injury (p =.03). Shunt increased in both groups over time (control group, 30% +/- 10% to 63% +/- 20%; treatment group, 37% +/- 20% to 49% +/- 23%), but the changes compared with injury were significantly less in the treatment group (p =.03). CONCLUSION: Short treatment with perfluorohexane vapor partially reversed the shift of relative pulmonary blood flow from high-flow to low-flow areas attributable to surfactant depletion.

  1. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  2. Control of vibrational distribution functions in nonequilibrium molecular plasmas and high-speed flows

    NASA Astrophysics Data System (ADS)

    Frederickson, Kraig; Hung, Yi-Chen; Lempert, Walter R.; Adamovich, Igor V.

    2017-01-01

    The control of the vibrational distribution of nitrogen by energy transfer to CO2 is studied in two closely related experiments. In the first experiment, the time-resolved N2(v  =  0-3) vibrational level populations and temperature in the afterglow of a diffuse filament nanosecond pulse discharge are measured using broadband coherent anti-Stokes Raman spectroscopy. The rotational-translational temperature in the afterglow is inferred from the partially rotationally resolved structure of the N2(v  =  0) band. The measurements are performed in nitrogen, dry air, and their mixtures with CO2. N2 vibrational excitation in the discharge occurs by electron impact, with subsequent vibration-vibration (V-V) energy transfer within the N2 vibrational manifold, vibration-translation (V-T) relaxation, and near-resonance V-V‧ energy transfer from the N2 to CO2 asymmetric stretch vibrational mode. The results show that rapid V-V‧ energy transfer to CO2, followed by collisional intramolecular energy redistribution to the symmetric stretch and bending modes of CO2 and their V-T relaxation, accelerate the net rate of energy thermalization and temperature increase in the afterglow. In the second experiment, injection of CO2 into a supersonic flow of vibrationally excited nitrogen demonstrates the effect of accelerated vibrational relaxation on a supersonic shear layer. The nitrogen flow is vibrationally excited in a repetitive nanosecond pulse/DC sustainer electric discharge in the plenum of a nonequilibrium flow supersonic wind tunnel. A transient pressure increase as well as an upward displacement of the shear layer between the supersonic N2 flow and the subsonic CO2 injection flow are detected when the source of N2 vibrational excitation is turned on. CO2 injection leads to the reduction of the N2 vibrational temperature in the shear layer, demonstrating that its displacement is caused by accelerated N2 vibrational relaxation by CO2, which produces a static

  3. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  4. Unsaturated flow in a centrifugal fields--Measurement of hydraulic conductivity and testing of Darcy's Law

    USGS Publications Warehouse

    Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.

    1987-01-01

    A method has been developed to establish steady flow of water in unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameter. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values at low as 7. 6 multiplied by 10** minus **1**1 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content.

  5. Evaluation of pumping induced flow in observation wells during aquifer testing.

    PubMed

    Székely, Ferenc

    2013-01-01

    The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well-face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.

  6. Experiments on confined turbulent jets in cross flow. [longitudinal and transverse distributions of velocity and temperature for jet flow

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Greber, I.

    1974-01-01

    Results are reported of experiments on the effects of an opposite wall on the characteristics of turbulent jets injected into a cross flow, for unheated and heated jets. Longitudinal and transverse distributions of velocity and temperature are presented for single and multiple circular jets, and trajectories are presented for two-dimensional jets. The opposite wall has relatively little effect on a single jet unless the ratio of jet to cross flow momentum flux is large enough for the jet to impinge on the opposite wall. For a row of jets aligned perpendicularly to the cross flow, the opposite wall exerts progressively larger influence as the spacing between jets decreases. Much of the effect of jet and wall proximity can be understood by considering the interaction of the vortex flow which is the major feature of the structure of a single jet in a cross flow. Smoke photographs are shown to elucidate some of the interaction patterns.

  7. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    SciTech Connect

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  8. Testing nonlinear regression parameters under heteroscedastic, normally distributed errors.

    PubMed

    Kimura, D K

    1990-09-01

    Likelihood ratio tests for parameters estimated assuming normally distributed errors are examined under a variety of homoscedastic and heteroscedastic variance assumptions. It is assumed that gamma ij, the jth observation from the ith population, is distributed as N[mu(chi ij, beta i), (sigma i mu(chi ij, beta i)theta i)2]. By varying sigma 2i and theta i, this model contains the most obvious examples of homoscedastic and heteroscedastic variability. Under this model, the null hypothesis of equal beta i's can easily be tested using the likelihood ratio criterion. Also considered is the two-sample chi-square statistic, chi 2t = U'S-1 U, where U is the difference vector of nonlinear least squares parameter estimates and S is an estimate of the covariance matrix of U. Monte Carlo simulation using the von Bertalanffy growth curve as an example is used to evaluate several test statistics for Type I error rates under different sampling assumptions.

  9. Pressure distribution method for ex-situ evaluation of flow distribution in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Haase, S.; Mueller, S.

    2015-04-01

    Fuel cells for automotive applications consist of cells with large active areas. The active area is generally between 150 cm2 and 400 cm2. The reaction gases and the cooling media are distributed via bipolar plates to the reaction zones. Understanding local and cell wide gas distribution within the flow field at high current densities greater than 2.0 A/cm2 is a key factor regarding efficiency at low stoichiometry, lambda less than 2. In this paper a new method is introduced, which can be used as ex-situ evaluation of flow distribution. The gas pressure distribution is mapped with an array of 5 × 12 membrane differential pressure sensors by measuring the static pressure locally against the outlet pressure. Below a differential pressure of 100 mbar the signal measurement accuracy is ±2.5 mbar. This is demonstrated in a flow field with an active area of 250 cm2. The sensors are located next to the micro porous layer of the gas diffusion layer to avoid any impact of dynamic pressure. The effect of the intrusion of gas diffusion layer material into the flow channels on the fluid distribution is evaluated at clamping pressures between 0.6 MPa and 4.2 MPa.

  10. Flow-distributed oscillations: Stationary chemical waves in a reacting flow

    NASA Astrophysics Data System (ADS)

    Kærn, Mads; Menzinger, Michael

    1999-10-01

    A recent prediction of stationary waves in open, reacting flows is experimentally verified. We show that stationary waves are generated by a mechanism whereby the flow carries a time-oscillating subelement, behaving like a batch reactor, through space while a fixed boundary condition at the inflow locks the phase of the oscillation. This mechanism can generate stationary patterns when all diffusion coefficients are equal. The experimental system is the ferroin-catalyzed Belousov-Zhabotinsky reaction in a tubular reactor, fed by the outflow of a continuous flow stirred tank reactor (CSTR). Parameter conditions are such that the concentrations are constant in the CSTR while they oscillate in the flow tube.

  11. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow

  12. Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone

    SciTech Connect

    Kowalsky, Michael B.; Finsterle, Stefan; Rubin, Yoram

    2003-07-01

    Methods for estimating the parameter distributions necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such non-linear inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) methods have proven sensitive to subsurface fluid flow processes and appear promising for such applications. In the present work, an inverse technique is presented which allows for the estimation of flow parameter distributions and the prediction of flow phenomena using GPR and hydrological measurements collected during a transient flow experiment. Specifically, concepts from the pilot point method were implemented in a maximum a posteriori (MAP) framework to allow for the generation of permeability distributions that are conditional to permeability point measurements, that maintain specified patterns of spatial correlation, and that are consistent with geophysical and hydrological data. The current implementation of the approach allows for additional flow parameters to be estimated concurrently if they are assumed uniform and uncorrelated with the permeability distribution. (The method itself allows for heterogeneity in these parameters to be considered, and it allows for parameters of the petrophysical and semivariogram models to be estimated as well.) Through a synthetic example, performance of the method is evaluated under various conditions, and some conclusions are made regarding the joint use of transient GPR and hydrological measurements in estimating fluid flow parameters in the vadose zone.

  13. Gyrotactic swimmer dispersion in pipe flow: testing the theory

    NASA Astrophysics Data System (ADS)

    Croze, Ottavio A.; Bearon, Rachel N.; Bees, Martin A.

    2017-04-01

    Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with P$\\'e$clet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga $\\it Dunaliella\\,salina$, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained $\\it D. salina$ and provide a preliminary comparison with predictions of a nonzero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss implications of our results for algal dispersion in industrial photobioreactors.

  14. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be... compressed-breathing-gas containers are tested, the flow test shall also be made with 3,450 kN/m.2 (500...

  15. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be... compressed-breathing-gas containers are tested, the flow test shall also be made with 3,450 kN/m.2 (500...

  16. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be... compressed-breathing-gas containers are tested, the flow test shall also be made with 3,450 kN/m.2 (500...

  17. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    NASA Technical Reports Server (NTRS)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2001-01-01

    The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."

  18. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    NASA Technical Reports Server (NTRS)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2001-01-01

    The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."

  19. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  20. The nature and distribution of flowing features in a weakly karstified porous limestone aquifer

    NASA Astrophysics Data System (ADS)

    Maurice, L. D.; Atkinson, T. C.; Barker, J. A.; Williams, A. T.; Gallagher, A. J.

    2012-05-01

    SummaryThe nature and distribution of flowing features in boreholes in an area of approximately 400 km2 in a weakly karstic porous limestone aquifer (the Chalk) was investigated using single borehole dilution tests (SBDTs) and borehole imaging. One-hundred and twenty flowing features identified from SBDTs in 24 boreholes have densities which decrease from ∼0.3 m-1 near the water table to ∼0.07 m-1 at depths of more than 40 m below the water table; the average density is 0.20 m-1. There is some evidence of regional lithological control and borehole imaging of three boreholes indicated that most flowing features are associated with marls, hardgrounds and flints that may be developed at a more local scale. Borehole imaging also demonstrated that many flowing features are solutionally enlarged fractures, suggesting that even in carbonate aquifers where surface karst is developed on only a small scale, groundwater flow is still strongly influenced by dissolution. Fully connected solutional pathways can occur over 100s, sometimes 1000s of metres. However, conduits, tubules and fissures may not always be individually persistent along a flowpath, instead being connected together and also connected to unmodified fractures to create a relatively dense network of voids with variable apertures (<0.1 cm to >15 cm). Groundwater therefore moves along flowpaths made up of voids with varying shape and character. Local solutional development of fractures at significant depths below the surface suggests that mixing corrosion and in situ sources of acidity may contribute to solutional enhancement of fractures. The study demonstrates that single borehole dilution testing is a useful method of obtaining a large dataset of flowing features at catchment-regional scales. The Chalk is a carbonate aquifer with small-scale surface karst development and this study raises the question of whether other carbonate aquifers with small-scale surface karst have similar characteristics, and what

  1. A simple diagnostic test for Fanconi anemia by flow cytometry.

    PubMed

    Miglierina, R; Le Coniat, M; Berger, R

    1991-03-01

    A simple diagnostic test for Fanconi anemia (FA) by flow cytometry is proposed. It is based on the cell cycle disturbances of FA cells and their sensitisation by alkylating agents. Following PHA-stimulation of whole blood cell cultures in the presence or absence of nitrogen mustard, the accumulation of cells in G2/M phase was measured. A sharp increase of cells in G2/M was observed in cultures from FA patients when nitrogen mustard was added. This increase allows one to distinguish FA patients from patients with anemias of other origin, healthy controls, and FA heterozygotes, as effectively as chromosome breakage studies. The rapidity of the test and its reliability as demonstrated on the ten FA patients studied, will make the diagnosis of FA easier in centers without cytogenetic laboratory facilities.

  2. PHYTOPLANKTON PRODUCTION AND NUTRIENT DISTRIBUTIONS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF FRESHWATER FLOW

    EPA Science Inventory

    The relationships between phytoplankton productivity, nutrient distributions, and freshwater flow were examined in a seasonal study conducted in Escambia Bay, Florida, USA, located in the northeastern Gulf of Mexico. Five sites oriented along the salinity gradient were sampled 24...

  3. PHYTOPLANKTON PRODUCTION AND NUTRIENT DISTRIBUTIONS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF FRESHWATER FLOW

    EPA Science Inventory

    The relationships between phytoplankton productivity, nutrient distributions, and freshwater flow were examined in a seasonal study conducted in Escambia Bay, Florida, USA, located in the northeastern Gulf of Mexico. Five sites oriented along the salinity gradient were sampled 24...

  4. Compatibility tests of steels in flowing liquid lead-bismuth

    NASA Astrophysics Data System (ADS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  5. The physics of heavy quark distributions in hadrons: Collider tests

    DOE PAGES

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; ...

    2016-12-18

    Here, we present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction—the “intrinsic” quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ/Z/W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsicmore » heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.« less

  6. The physics of heavy quark distributions in hadrons: Collider tests

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.

    2017-03-01

    We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.

  7. The physics of heavy quark distributions in hadrons: Collider tests

    SciTech Connect

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.

    2016-12-18

    Here, we present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction—the “intrinsic” quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ/Z/W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.

  8. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process

    NASA Astrophysics Data System (ADS)

    Hsiao, Kuang-Ting; Devillard, Mathieu; Advani, Suresh G.

    2004-05-01

    In the vacuum assisted resin transfer moulding (VARTM) process, using a flow distribution network such as flow channels and high permeability fabrics can accelerate the resin infiltration of the fibre reinforcement during the manufacture of composite parts. The flow distribution network significantly influences the fill time and fill pattern and is essential for the process design. The current practice has been to cover the top surface of the fibre preform with the distribution media with the hope that the resin will flood the top surface immediately and penetrate through the thickness. However, this approach has some drawbacks. One is when the resin finds its way to the vent before it has penetrated the preform entirely, which results in a defective part or resin wastage. Also, if the composite structure contains ribs or inserts, this approach invariably results in dry spots. Instead of this intuitive approach, we propose a science-based approach to design the layout of the distribution network. Our approach uses flow simulation of the resin into the network and the preform and a genetic algorithm to optimize the flow distribution network. An experimental case study of a co-cured rib structure is conducted to demonstrate the design procedure and validate the optimized flow distribution network design. Good agreement between the flow simulations and the experimental results was observed. It was found that the proposed design algorithm effectively optimized the flow distribution network of the part considered in our case study and hence should prove to be a useful tool to extend the VARTM process to manufacture of complex structures with effective use of the distribution network layup.

  9. Shape Distribution of Fragments from Microsatellite Impact Tests

    NASA Technical Reports Server (NTRS)

    Liou, J.C.; Hanada, T.

    2009-01-01

    Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.

  10. Shape Distribution of Fragments from Microsatellite Impact Tests

    NASA Technical Reports Server (NTRS)

    Liou, J.C.; Hanada, T.

    2009-01-01

    Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.

  11. Detailed computational procedure for design of cascade blades with prescribed velocity distributions in compressible potential flows

    NASA Technical Reports Server (NTRS)

    Costello, George R; Cummings, Robert L; Sinnette, John T , Jr

    1952-01-01

    A detailed step-by-step computational outline is presented for the design of two-dimensional cascade blades having a prescribed velocity distribution on the blade in a potential flow of the usual compressible fluid. The outline is based on the assumption that the magnitude of the velocity in the flow of the usual compressible nonviscous fluid is proportional to the magnitude of the velocity in the flow of a compressible nonviscous fluid with linear pressure-volume relation.

  12. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2014-12-01

    Flow batteries show promise for very large-scale stationary energy storage such as needed for the grid and renewable energy implementation. In recent years, researchers and developers of redox flow batteries (RFBs) have found that electrode and flow field designs of PEM fuel cell (PEMFC) technology can increase the power density and consequently push down the cost of flow battery stacks. In this paper we present a macroscopic model of a typical PEMFC-like RFB electrode-flow field design. The model is a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer). The effects of the inlet volumetric flow rate, permeability of the porous layer, thickness of the porous layer and thickness of the flow channel on the flow penetration into the porous layer are investigated. The maximum current density corresponding to stoichiometry is estimated to be 377 mA cm-2 and 724 mA cm-2, which compares favorably with experiments of ∼400 mA cm-2 and ∼750 mA cm-2, for a single layer and three layers of the carbon fiber paper, respectively.

  13. LEDA RF distribution system design and component test results

    SciTech Connect

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-12-31

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here.

  14. Maximum Flow in Planar Networks with Exponentially Distributed Arc Capacities.

    DTIC Science & Technology

    1984-12-01

    avoid constructing the dual, are described in Itai and Shiloach P 97 91. In this paper, we consider the maximum flow problem in (st) planar networks...use arc e and lies completely below P. If no such path exists we say P(e) - *. An algorithm tc construct P(e) given P and e is described in Itai and...suggested in Ford and Fulkerson [1956], developed in Berge and Ghouila-Houri [1962] and its time complexity is reduced to 0( IVI log IVI ) by Itai and

  15. Pressure distributions and oil-flow patterns for a swept circulation-control wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.; Sanderfer, Dwight T.; Wood, Norman J.

    1987-01-01

    Pressure distributions and photographs of oil flow patterns are presented for a circulation control wing. The model was an aspect ratio four semispan wing mounted on the side wall of the NASA Ames Transonic Wind Tunnel. The airfoil was a 20 percent thick ellipse, modified with circular leading and trailing edges of 4 percent radius, and had a 25.4 cm constant chord. This configuration does not represent a specific wing design, but is generic. A full span, tangetial, rearward blowing, circulation control slot was incorporated ahead of the trailing edge on the upper surface. The wing was tested at Mach numbers from 0.3 to 0.75 at sweep angle of 0 to 45 deg with internal to external pressure ratios of 1.0 to 3.0. Lift and pitching momemt coefficients were obtained from measured pressure distributions at five span stations. When the conventional corrections resulting from sweep angle are applied to the lift and moment of circulation control sections, no additional corrections are necessary to account for changes in blowing efficiency. This is demonstrated for an aft sweep angle of 45 deg. An empirical technique for estimating the downwash distribution of a swept wing was validated.

  16. The role of macropores and multi-resolution soil survey datasets for distributed surface-subsurface flow modeling

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Duffy, Christopher; Baldwin, Doug C.; Lin, Henry

    2014-08-01

    Distributed watershed-scale modeling is often used as a framework for exploring the heterogeneity of runoff response and hydrologic performance of the catchment. The objective of this study is to apply this framework to characterizing the impacts of soil hydraulic properties at multiple scales on moisture storage and distributed runoff generation in a forested catchment. The physics-based and fully-coupled Penn State Integrated Hydrologic Model (PIHM) is employed to test a priori and field-measured properties in the modeling of watershed hydrology. PIHM includes an approximate representation of macropore flow that preserves the water holding capacity of the soil matrix while still allowing rapid flow through the macroporous soil under wet conditions. Both phenomena are critical to the overall hydrologic performance of the catchment. Soils data at different scales were identified: Case I STATSGO soils data (uniform or single soil type), Case II STATSGO soils data with macropore effect, and Case III field-based hydropedologic experiment revised distributed soil hydraulic properties and macropore property estimation. Our results showed that the Case I had difficulties in simulating the timing and peakflow of the runoff responses. Case II performed satisfactorily for peakflow at the outlet and internal weir locations. The distributed soils data in Case III demonstrated the model ability of predicting groundwater levels. The analysis suggests the important role of macropore flow to setting the threshold for recharge and runoff response, while still preserving the water holding capability of the soil and plant water availability. The spatial variability in soil hydraulic properties represented by Case III introduces an additional improvement in distributed catchment flow modeling, especially as it relates to subsurface lateral flow. Comparison of the three cases suggests the value of high-resolution soil survey mapping combined with a macropore parameterization can

  17. Distributed Leadership and High-Stakes Testing: Examining the Relationship between Distributed Leadership and LEAP Scores

    ERIC Educational Resources Information Center

    Boudreaux, Wilbert

    2011-01-01

    Educational stakeholders are aware that school administration has become an incredibly intricate dynamic that is too complex for principals to handle alone. Test-driven accountability has made the already daunting task of school administration even more challenging. Distributed leadership presents an opportunity to explore increased leadership…

  18. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees.

    PubMed

    Ford, Chelcy R; Goranson, Carol E; Mitchell, Robert J; Will, Rodney E; Teskey, Robert O

    2004-09-01

    We monitored the radial distribution of sap flux density (v; g H2O m(-2) s(-1)) in the sapwood of six plantation-grown Pinus taeda L. trees during wet and dry soil periods. Mean basal diameter of the 32-year-old trees was 33.3 cm. For all trees, the radial distribution of sap flow in the base of the stem (i.e., radial profile) was Gaussian in shape. Sap flow occurred maximally in the outer 4 cm of sapwood, comprising 50-60% of total stem flow (F), and decreased toward the center, with the innermost 4 cm of sapwood (11-15 cm) comprising less than 10% of F. The percent of flow occurring in the outer 4 cm of sapwood was stable with time (average CV < 10%); however, the percentage of flow occurring in the remaining sapwood was more variable over time (average CV > 40%). Diurnally, the radial profile changed predictably with time and with total stem flow. Seasonally, the radial profile became less steep as the soil water content (theta) declined from 0.38 to 0.21. Throughout the season, daytime sap flow also decreased as theta decreased; however, nighttime sap flow (an estimate of stored water use) remained relatively constant. As a result, the percentage of stored water use increased as theta declined. Time series analysis of 15-min values of F, theta, photosynthetically active radiation (PAR) and vapor pressure deficit (D) showed that F lagged behind D by 0-15 min and behind PAR by 15-30 min. Diurnally, the relationship between F and D was much stronger than the relationship between F and PAR, whereas no relationship was found between F and theta. An autoregressive moving average (ARIMA) model estimated that 97% of the variability in F could be predicted by D alone. Although total sap flow in all trees responded similarly to D, we show that the radial distribution of sap flow comprising total flow could change temporally, both on daily and seasonal scales.

  19. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2017-08-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  20. Matrix methods for the design of cascades to prescribed surface velocity distributions and for fully compressible flow

    NASA Technical Reports Server (NTRS)

    Silvester, M. E.; Fitch, C. M.

    1974-01-01

    This paper describes matrix methods that have been developed for calculating compressible flow on a blade-to-blade surface of revolution. The methods have been fully tested to date only for the design of plane cascades to prescribed blade surface distributions; the methods will be illustrated here for that problem only. Similar methods are presently being applied to both the direct and indirect problems and for flow on arbitrary surfaces of revolution in annular cascades with stream sheet thickness variations. It is believed that by such methods, both the direct and indirect calculations can be reduced to about 60 to 90 seconds of computing.

  1. A thin film phantom for blood flow simulation and Doppler test.

    PubMed

    McAleavey, S; Hah, Z; Parker, K

    2001-05-01

    The thin film phantom is a new type of ultrasound resolution test object. It consists of a thin planar substrate that is acoustically matched to the surrounding media. Precisely located scatterers on the surface of the substrate generate echo signals. The patterning of scatterers on the substrate allows echogenicity to be controlled as a function of position, which enables the production of a test object with highly reproducible and controllable scattering characteristics. We show that by vibrating the substrate in a suitable manner, an echo signal may be generated that simulates bi-directional flow. We demonstrate that a vibration of low amplitude at frequency f0 produces a Doppler spectral signal at f0 and -f0, within the limits of aliasing. Furthermore, by driving the film with a bandlimited noise signal, we illustrate how a velocity distribution may be simulated. A time-varying flow velocity may be simulated by varying the noise bandwidth with time. Finally, using this technique, we demonstrate a system that simulates an arterial flow pattern, including its characteristic velocity distribution in forward and reverse directions simultaneously.

  2. Modelling of multiphase flow in evaporation tests in concrete columns

    NASA Astrophysics Data System (ADS)

    Chaparro, M. Carme; Saaltink, Maarten W.; Villar, M. Victoria

    2013-04-01

    In order to characterize better the thermo-hydraulic properties and processes in concrete from a Radioactive Waste Disposal Facility at El Cabril (Spain), evaporation tests in columns have been analysed by means of numerical models. The tests consisted of letting water evaporate from the top of the column while monitoring water loss by weighing the column, and monitoring temperature and relative humidity by means of sensors placed within the column. Both non-isothermal (by heating the column with a lamp) and isothermal tests (without heating) were performed. The conceptual model considers unsaturated liquid flow and transport of vapour and heat. Some models also take into account the salinity in order to study its effect on vapour pressure and evaporation. A retention curve has been obtained from relative humidity and gravimetric water content measured after dismantling the columns. The models have been calibrated by fitting permeability and a tortuosity factor for vapour diffusion to the measured water loss, relative humidity and (in the case of the non-isothermal test) temperature. Results show that vapour diffusion is dominant above an evaporation front, and liquid advection is the dominant water transport process underneath this front. The salinity slightly reduces the evaporation with a factor of at most 5%. The tortuosity factor estimated from the isothermal test is lower than that of the non-isothermal test. This can be explained by the evaporation and condensation together with the heat transport that take place at pore scale under non-isothermal conditions, which are not taken into account by the model.

  3. The Measurement of Pressure Through Tubes in Pressure Distribution Tests

    NASA Technical Reports Server (NTRS)

    Hemke, Paul E

    1928-01-01

    The tests described in this report were made to determine the error caused by using small tubes to connect orifices on the surface of aircraft to central pressure capsules in making pressure distribution tests. Aluminum tubes of 3/16-inch inside diameter were used to determine this error. Lengths from 20 feet to 226 feet and pressures whose maxima varied from 2 inches to 140 inches of water were used. Single-pressure impulses for which the time of rise of pressure from zero to a maximum varied from 0.25 second to 3 seconds were investigated. The results show that the pressure recorded at the capsule on the far end of the tube lags behind the pressure at the orifice end and experiences also a change in magnitude. For the values used in these tests the time lag and pressure change vary principally with the time of rise of pressure from zero to a maximum and the tube length. Curves are constructed showing the time lag and pressure change. Empirical formulas are also given for computing the time lag. Analysis of pressure distribution tests made on airplanes in flight shows that the recorded pressures are slightly higher than the pressures at the orifice and that the time lag is negligible. The apparent increase in pressure is usually within the experimental error, but in the case of the modern pursuit type of airplane the pressure increase may be 5 per cent. For pressure-distribution tests on airships the analysis shows that the time lag and pressure change may be neglected.

  4. Testing for bimodality in frequency distributions of data suggesting polymorphisms of drug metabolism--hypothesis testing.

    PubMed Central

    Jackson, P R; Tucker, G T; Woods, H F

    1989-01-01

    1. The theory of methods of hypothesis testing in relation to the detection of bimodality in density distributions is discussed. 2. Practical problems arising from these methods are outlined. 3. The power of three methods of hypothesis testing was compared using simulated data from bimodal distributions with varying separation between components. None of the methods could determine bimodality until the separation between components was 2 standard deviation units and could only do so reliably (greater than 90%) when the separation was as great as 4-6 standard deviation units. 4. The robustness of a parametric and a non-parametric method of hypothesis testing was compared using simulated unimodal distributions known to deviate markedly from normality. Both methods had a high frequency of falsely indicating bimodality with distributions where the components had markedly differing variances. 5. A further test of robustness using power transformation of data from a normal distribution showed that the algorithms could accurately determine unimodality only when the skew of the distribution was in the range 0-1.45. PMID:2611088

  5. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    PubMed

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  6. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model

    PubMed Central

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997

  7. Abnormal distribution of pulmonary blood flow in aortic valve disease

    PubMed Central

    Goodenday, Lucy S.; Simon, George; Craig, Hazel; Dalby, Lola

    1970-01-01

    Wasted ventilatory volume (VD) and its ratio to tidal volume (VD/VT) were measured at rest and during exertion in 17 patients with aortic valve disease. We considered VD/VT to indicate abnormal ventilation: perfusion relations if it did not decrease on exertion, or if the exercising value was greater than 40 per cent. Plain chest radiographs were independently examined for evidence of diversion of pulmonary blood to the upper lobes. There was significant agreement (p<0·05) between radiographic and pulmonary function estimations of abnormality. This suggests that the raised pulmonary venous pressure associated with left ventricular failure creates an abnormal pattern of blood flow through the lung, which is responsible for causing inadequate perfusion with respect to ventilation. Images PMID:5420086

  8. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  9. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin

    2014-07-01

    Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.

  10. In situ potential distribution measurement in an all-vanadium flow battery.

    PubMed

    Liu, Qinghua; Turhan, Ahmet; Zawodzinski, Thomas A; Mench, Matthew M

    2013-07-18

    An experimental method for measurement of local redox potential within multilayer electrodes was developed and applied to all-vanadium redox flow batteries (VRFBs). Through-plane measurement at the positive side reveals several important phenomena including potential distribution, concentration distribution of active species and the predominant reaction location within the porous carbon electrodes.

  11. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  12. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  13. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a qualified...

  14. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    USGS Publications Warehouse

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  15. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  16. Impact of flow pulsatility on arterial drug distribution in stent-based therapy

    PubMed Central

    O’Brien, Caroline C.; Kolachalama, Vijaya B.; Barber, Tracie J.; Simmons, Anne; Edelman, Elazer R.

    2013-01-01

    Drug-eluting stents reside in a dynamic fluid environment where the extent to which drugs are distributed within the arterial wall is critically modulated by the blood flowing through the arterial lumen. Yet several factors associated with the pulsatile nature of blood flow and their impact on arterial drug deposition has not been fully investigated. We employed an integrated framework comprising bench-top and computational models to explore the factors governing the time-varying fluid dynamic environment within the vasculature and their effects on arterial drug distribution patterns. A custom-designed bench-top framework comprising a model of a single drug-eluting stent strut and a poly-vinyl alcohol-based hydrogel as a model tissue bed simulated fluid flow and drug transport under fully apposed strut settings. Bench-top experiments revealed a relative independence between drug distribution and the factors governing pulsatile flow and these findings were validated with the in silico model. Interestingly, computational models simulating suboptimal deployment settings revealed a complex interplay between arterial drug distribution, Womersley number and the extent of malapposition. In particular, for a stent strut offset from the wall, total drug deposition was sensitive to changes in the pulsatile flow environment, with this dependence increasing with greater wall displacement. Our results indicate that factors governing pulsatile luminal flow on arterial drug deposition should be carefully considered in conjunction with device deployment settings for better utilization of drug-eluting stent therapy for various arterial flow regimes. PMID:23541929

  17. Effects of cord compression on fetal blood flow distribution and O/sub 2/ delivery

    SciTech Connect

    Itskovitz, J.; LaGamma, E.F.; Rudolph, A.M.

    1987-01-01

    The authors used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O/sub 2/ delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O/sub 2/ delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O/sub 2/ delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced and the proportion of O/sub 2/ delivery to upper body organs derived from the ductus venosus increased. Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale and constituted the major fraction of the arterial blood supply to the upper body organs. Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O/sub 2/ delivery.

  18. Distributed Model Complexity Versus Radar-Rainfall Input Uncertainty for Flow Simulation

    NASA Astrophysics Data System (ADS)

    Carpenter, T. M.; Georgakakos, K. P.

    2002-05-01

    The NOAA-organized Distributed Model Intercomparison Project (DMIP) has created the opportunity to study the issues pertaining to flow simulation by distributed hydrologic models with varying formulation and complexity. In this study, we examine the response of a given distributed hydrologic model under realistic conditions of uncertainty in radar-rainfall input and parameters. We extend the research reported in Carpenter et al., 2001, by (a) refining the characterization of the input uncertainty, (b) allowing for uncertainty in several soil-model parameters simultaneously, and (c) performing an inter comparison of flow simulations generated by spatially distributed and spatially lumped models to assess the likelihood that a more complex model structure would lead to significantly different flow simulations given the expected model input uncertainty. A Monte Carlo framework is used to perform the sensitivity runs and probabilistic measures are employed to determine significant sensitivities in simulated flow ensembles. The application watersheds include the DMIP basins: the Illinois River in Oklahoma, the Blue River in Oklahoma and the Elk River in Missouri. The sensitivity results are summarized in terms of simulated flow variability and assessed with regard to the basin size, peak flow, and input uncertainty. Reference: Carpenter, T.M., K.P. Georgakakos, and J.A. Sperfslage, 2001: On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use. J. Hydrology, 253, 169-193.

  19. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    EPA Science Inventory

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  20. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    EPA Science Inventory

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  1. Controls on the distribution and isotopic composition of helium in deep ground-water flows

    USGS Publications Warehouse

    Zhao, X.; Fritzel, T.L.B.; Quinodoz, H.A.M.; Bethke, C.M.; Torgersen, T.

    1998-01-01

    The distribution and isotopic composition of helium in sedimentary basins can be used to interpret the ages of very old ground waters. The piston-flow model commonly used in such interpretation, how ever, does not account for several important factors and as such works well only in very simple flow regimes. In this study of helium transport in a hypothetical sedimentary basin, we develop a numerical model that accounts for the magnitude and distribution of the basal helium flux, hydrodynamic dispersion, and complexities in flow regimes such as subregional flow cells. The modeling shows that these factors exert strong controls on the helium distribution and isotopic composition. The simulations may provide a basis for more accurate interpretations of observed helium concentrations and isotopic ratios in sedimentary basins.

  2. Monitoring of inhomogeneous flow distributions using fibre-optic Bragg grating temperature sensor arrays

    NASA Astrophysics Data System (ADS)

    Latka, Ines; Bosselmann, Thomas; Ecke, Wolfgang; Willsch, Michael

    2006-04-01

    Knowledge of the gas flow distributions, their mass velocity and turbulences, in chemical reactors, thermodynamic engines, pipes, and other industrial facilities may help to achieve a more efficient system performance. In our novel approach, optical fibre Bragg grating (FBG) sensors have been used for measuring the temperature of a heated element, adapting the principles of conventional hot-wire-anemometers. Because of the multiplexing capability of FBG sensors, the gas mass flow distribution can be measured along the sensor array. The length of the heated and sensor-equipped element can be easily adapted to the cross section of the gas flow, from <10 cm up to several metres. The number and distances of FBGs distributed over this length defines the spatial resolution and is basically limited by the sensor signal processing. According to FBG sensor lengths < 5 mm, spatial resolutions of gas flow measurements of less than 1 cm can be achieved.

  3. Bacteriological testing of a modified laminar flow microbiological safety cabinet.

    PubMed

    Heidt, P J

    1982-01-01

    A modified microbiological safety cabinet which can be used as a class II and a class III safety cabinet has been bacteriologically tested. This cabinet makes use of a high-speed down-flow air curtain in the front opening to minimize the amount of air escaping over the arms of the operator. By using artificial aerosols and a dummy or a test person placing his arms into the working opening of the cabinet, a transfer from the inside to the environment was detected only when the highest concentration of the test aerosol was used. Since the number of bacteria detected was very low, this is considered to be acceptable. When the cabinet was used as a class III type, with a glove panel mounted in the front opening, leakage from the environment occurred. This could be completely prevented by fixing tape over the hinge of the front panel. The conclusion is drawn that this type of biohazard hood can be safely used as a class II and a class III microbiological safety cabinet, provided the construction of the hinge of the front panel will be adapted to prevent transfer from the environment to the working area.

  4. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks.

    PubMed

    Tiedeman, Claire R; Lacombe, Pierre J; Goode, Daniel J

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  5. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks

    USGS Publications Warehouse

    Tiedeman, Claire R.; Lacombe, Pierre J.; Goode, Daniel J.

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  6. Distributed Application of the Unified Noah LSM with Hydrologic Flow Routing on an Appalachian Headwater Basin

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Kumar, S.; Gochis, D.; Yates, D.; McHenry, J.; Burnet, T.; Coats, C.; Condrey, J.

    2006-05-01

    Collaboration between scientists at UMBC-GEST and NASA-GSFC, the NCAR Research Applications Laboratory (RAL), and Baron Advanced Meteorological Services (BAMS), has produced a modeling framework for the application of traditional land surface models (LSMs) in a distributed hydrologic system which can be used for diagnosis and prediction of routed stream discharge hydrographs. This collaboration is oriented on near-term system implementation across Romania for flood and flash-flood analyses and forecasting as part of the World Bank-funded Destructive Waters Abatement (DESWAT) program. Meteorological forcing from surface observations, model analyses and numerical forecasts are employed in the NASA-GSFC Land Information System (LIS) to drive the Unified Noah LSM with Noah-Distributed components, stream network delineation and routing schemes original to this work. The Unified Noah LSM is the outgrowth of a joint modeling effort between several research partners including NCAR, the NOAA National Center for Environmental Prediction (NCEP), and the Air Force Weather Agency (AFWA). At NCAR, hydrologically-oriented extensions to the Noah LSM have been developed for LSM applications in a distributed domain in order to address the lateral redistribution of soil moisture by surface and subsurface flow processes. These advancements have been integrated into the NASA-GSFC Land Information System (LIS) and coupled with an original framework for hydraulic channel network definition and specification, linkages with the Noah-Distributed overland and subsurface flow framework, and distributed cell- to-cell (or link-node) hydraulic routing. This poster presents an overview of the system components and their organization, as well as results of the first U.S. case study performed with this system under various configurations. The case study simulated precipitation events over a headwater basin in the southern Appalachian Mountains in October 2005 following the landfall of Tropical

  7. Approaches and Applications of Physically-based, Spatially-distributed Integrated surface / subsurface flow modeling

    NASA Astrophysics Data System (ADS)

    Panday, S.; Huyakorn, P. S.

    2004-12-01

    Physically-based, spatially-distributed (PBSD) modeling of integrated surface water and groundwater flow is necessary for evaluating the complex processes of runoff, recharge, evapotranspiration, subsurface flow, and baseflow, to comprehensively manage water resources for diverse and competing needs such as conjunctive use, aquifer storage and recovery, flood protection, wetland restoration and minimum flow evaluation. Some current approaches to PBSD modeling of integrated surface and subsurface flow will be discussed. Challenges to PBSD integrated modeling will be presented, and application case studies will be presented.

  8. Distribution of coalescent histories under the coalescent model with gene flow.

    PubMed

    Tian, Yuan; Kubatko, Laura S

    2016-12-01

    We propose a coalescent model for three species that allows gene flow between both pairs of sister populations. The model is designed for multilocus genomic sequence alignments, with one sequence sampled from each of the three species, and is formulated using a Markov chain representation that allows use of matrix exponentiation to compute analytical expressions for the probability density of coalescent histories. The coalescent history distribution as well as the gene tree topology distribution under this coalescent model with gene flow are then calculated via numerical integration. We analyze the model to compare the distributions of gene tree topologies and coalescent histories for species trees with differing effective population sizes and gene flow rates. Our results suggest conditions under which the species tree and associated parameters are not identifiable from the gene tree topology distribution when gene flow is present, but indicate that the coalescent history distribution may identify the species tree and associated parameters. Thus, the coalescent history distribution can be used to infer parameters such as the ancestral effective population sizes and the rates of gene flow in a maximum likelihood (ML) framework. We conduct computer simulations to evaluate the performance of our method in estimating these parameters, and we apply our method to an Afrotropical mosquito data set (Fontaine et al., 2015). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Time varying feedbacks and coevolution of alluvial channel morphology, flow distribution and vegetation.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose F.; Bayat, Esmaeel; Vahidi, Elham; de Almeida, Gustavo; Gorrick, Sam

    2016-04-01

    Alluvial channel dynamics is the result of the coevolution of channel morphology, flow distribution and vegetation. Even though these processes interact on a variety of time and spatial scales, local detailed analysis can provide valuable insights on mechanisms and feedbacks that can affect the long-term evolution of the system. The three-dimensional, time varying flow distribution can be considered the main driving force, but is affected by the channel geometry as a result of stream curvature, stream width changes and in-stream topographic steering. In-stream vegetation also affects flow distribution in a similar way, either reinforcing or attenuating geometric forcing. But as these systems are the result of coevolution, flow patterns in turn affect sediment transport fluxes, erosion and deposition which eventually modify some aspects of the topography, sediment size distribution and vegetative cover. This contribution presents different studies in which a variety of situations are covered, where the interplay and feedbacks between flow mechanisms are different. We analyse the effects of curvature, width changes and bedform and vegetation steering on sediment transport and sorting and the resulting changes in flow patterns. We study how three-dimensional flow patterns are stage dependent and how that impacts sediment transport and vegetation distribution. We also analyse self-maintenance feedbacks of flow-related features under different time-varying flow conditions. We present cases of straight and meandering reaches, reaches with pools and riffles, and reaches with riparian vegetation within a common framework. We cover both gravel-bed and sand-bed streams.

  10. Stress distribution in composite flatwise tension test specimens

    NASA Technical Reports Server (NTRS)

    Scott, Curtis A.; Pereira, J. Michael

    1993-01-01

    A finite element analysis was conducted to determine the stress distribution in typical graphite/epoxy composite flat wise tension (FWT) specimens under normal loading conditions. The purpose of the analysis was to determine the relationship between the applied load and the stress in the sample to evaluate the validity of the test as a means of measuring the out-of-plane strength of a composite laminate. Three different test geometries and three different material lay ups were modeled. In all cases, the out-of-plane component of stress in the test section was found to be uniform, with no stress concentrations, and very close to the nominal applied stress. The stress in the sample was found to be three-dimensional, and the magnitude of in-plane normal and shear stresses varied with the anisotropy of the test specimen. However, in the cases considered here, these components of stress were much smaller than the out-of-plane normal stress. The geometry of the test specimen had little influence on the results. It was concluded that the flat wise tension test provides a good measure of the out-of-plane strength for the representative materials that were studied.

  11. Preferential flow paths in fractured rock detected by cross-borehole nano-iron tracer test

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Chuang, Po-Yu

    2017-04-01

    Characterization of the preferential flow paths and their hydraulic properties is desirable for developing a hydrogeological conceptual model in fractured rock. However, the heterogeneity and anisotropy of the hydraulic property often make it difficult to understand groundwater flow paths through fractures. In this study, we adopted nanoscale zero-valent iron (nZVI) as a tracer to characterize fracture connectivity and hydraulic properties. A magnet array was placed in an observation well to attract arriving nZVI particles for identifying the location of incoming tracer. This novel approach was developed for the investigation of fracture flow at a hydrogeological research station in central Taiwan. A heat-pulse flowmeter test was performed to delineate the vertical distribution of permeable fractures in two boreholes, making it possible to design a field tracer test. The nZVI slurry was released in the sealed injection well. The arrival of the slurry in the observation well was evidenced by a breakthrough curve recorded by the fluid conductivity sensor as well as the nZVI particles attracted to the magnets. The iron nanoparticles attracted to the magnets provide the quantitative criteria for locating the position of tracer inlet in the observation well. The position of the magnet attracting the maximum weight of iron nanoparticles agrees well with the depth of a permeable fracture zone delineated by the flowmeter. Besides, a conventional saline tracer test was conducted in the field, producing a similar outcome as the nZVI tracer test. Our study results indicate that the nano-iron tracer test could be a promising method for the characterization of the preferential flow paths in fractured rock.

  12. Hybrid laminar flow control tests in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Lund, D. W.; George-Falvy, D.; Nagel, A. L.

    1990-01-01

    The hybrid laminar flow control (HLFC) concept has undergone wind tunnel testing at near full-scale Reynolds number on an infinite wing of 30-deg sweep on which boundary-layer suction was furnished over the first 20 percent of chord of the upper surface. Depending on the external pressure distribution, the HLFC extended the laminarity of the boundary layer as far back as 45 percent of chord; this corresponds to a transition Reynolds number of about 11 million. The maximum chordwise extent of laminar run was found to be insensitive to the suction level over a wide range.

  13. Digital densitometric determination of clinical relative coronary flow distributions

    NASA Astrophysics Data System (ADS)

    ten Brinke, Gerhard A.; Slump, Cornelis H.; Storm, Corstiaan J.

    2006-03-01

    X-ray coronary angiography is widely used to determine the presence of a stenosis. This paper discusses an approach towards the detection of the functional severity of a stenosis using the relative velocity of the contrast agent. The velocity of the contrast is measured using the arrival time at several locations on a coronary artery. This is done by placing multiple Regions Of Interest(ROI) equally spaced on the artery. The location of these ROIs varies in time because of the cardiac motion. Therefore, an artery tracing and tracking algorithm is used to estimate the location of the ROIs in time. The arrival time of the contrast can be estimated by measuring the image intensity in these ROIs. Using the arrival times in several ROIs, a qualitative velocity can be estimated. Altering the velocity of the blood pharmacologically, by inducing hyperemic conditions, results in a qualitative change in velocity detected by the algorithm. No change in velocity may indicate a severe flow limiting stenosis.

  14. Magnetic resonance imaging of flow-distributed oscillations.

    PubMed

    Britton, Melanie M; Sederman, Andy J; Taylor, Annette F; Scott, Stephen K; Gladden, Lynn F

    2005-09-22

    The formation of stationary concentration patterns in a packed-bed reactor (PBR), using a manganese-catalyzed Belousov-Zhabotinsky (BZ) reaction in a mixed sulfuric-phosphoric acid medium, was studied using magnetic resonance imaging (MRI). The PBR was composed of a column filled with glass beads, which was fed by a continuous stirred tank reactor (CSTR). As the reactor is optically opaque, investigation of the three-dimensional (3D) structure of these reaction-diffusion-advection waves is not possible using conventional image capture techniques. MRI has been used to probe this system and the formation, 3D structure, and development of these waves has been studied. At reactor startup, traveling waves were observed. After this initial period the waves stabilized and became stationary. Once fixed, they were found to be remarkably stable. There was significant heterogeneity of the reaction fronts, which were not flat, as would be expected from a plug-flow reactor. Instead, the reaction wave fronts were observed to be conical in shape due to the local hydrodynamics of the bed and specifically the higher velocities and therefore lower residence times close to the wall of the reactor.

  15. Linear Aerospike SR-71 Experiment (LASRE) ground cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this

  16. Mechanistic model for void distribution in flashing flow

    SciTech Connect

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs.

  17. A consistent model for fluid distribution, viscosity distribution, and flow-thermal structure in subduction zone

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shun-suke; Iwamori, Hikaru

    2016-05-01

    Water plays crucial roles in the subduction zone dynamics affecting the thermal-flow structure through the fluid processes. We aim to understand what controls the dynamics and construct a model to solve consistently fluid generation, fluid transport, its reaction with the solid and resultant viscosity, and thermal-flow structure. We highlight the effect of mechanical weakening of rocks associated with hydration. The viscosity of serpentinite (ηserp) in subduction zones critically controls the flow-thermal structure via extent of mechanical coupling between the subducting slab and overlying mantle wedge. When ηserp is greater than 1021 Pa s, the thermal-flow structure reaches a steady state beneath the volcanic zone, and the melting region expands until Cin (initial water content in the subducting oceanic crust) reaches 3 wt %, and it does not expand from 3 wt %. On the other hand, when ηserp is less than 1019 Pa s, the greater water dependence of viscosity (expressed by a larger fv) confines a hot material to a narrower channel intruding into the wedge corner from a deeper part of the back-arc region. Consequently, the overall heat flux becomes less for a larger fv. When ageba (age of back-arc basin as a rifted lithosphere) = 7.5 Ma, the increase in fv weakens but shifts the melting region toward the trench side because of the narrow channel flow intruding into the wedge corner, where as it shuts down melting when ageba=20 Ma. Several model cases (particularly those with ηserp=1020 to 1021 Pa s and a relatively large fv for Cin=2 to 3 wt %) broadly account for the observations in the Northeast Japan arc (i.e., location and width of volcanic chain, extent of serpentinite, surface heat flow, and seismic tomography), although the large variability of surface heat flow and seismic tomographic images does not allow us to constrain the parameter range tightly.

  18. Side information and noise learning for distributed video coding using optical flow and clustering.

    PubMed

    Luong, Huynh Van; Rakêt, Lars Lau; Huang, Xin; Forchhammer, Søren

    2012-12-01

    Distributed video coding (DVC) is a coding paradigm that exploits the source statistics at the decoder side to reduce the complexity at the encoder. The coding efficiency of DVC critically depends on the quality of side information generation and accuracy of noise modeling. This paper considers transform domain Wyner-Ziv (TDWZ) coding and proposes using optical flow to improve side information generation and clustering to improve the noise modeling. The optical flow technique is exploited at the decoder side to compensate for weaknesses of block-based methods, when using motion-compensation to generate side information frames. Clustering is introduced to capture cross band correlation and increase local adaptivity in the noise modeling. This paper also proposes techniques to learn from previously decoded WZ frames. Different techniques are combined by calculating a number of candidate soft side information for low density parity check accumulate decoding. The proposed decoder side techniques for side information and noise learning (SING) are integrated in a TDWZ scheme. On test sequences, the proposed SING codec robustly improves the coding efficiency of TDWZ DVC. For WZ frames using a GOP size of 2, up to 4-dB improvement or an average (Bjøntegaard) bit-rate savings of 37% is achieved compared with DISCOVER.

  19. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    NASA Astrophysics Data System (ADS)

    Farjoud, Alireza; Ahmadian, Mehdi; Mahmoodi, Nima; Zhang, Xinjie; Craft, Michael

    2011-08-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS.

  20. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.

    1993-01-01

    Results from the performance and test section flow calibration of the 80- by 120-Foot Wind Tunnel are presented. Measurements indicating the 80- by 120-ft test section flow quality were obtained throughout the tunnel operational envelope and for atmospheric wind speeds up to approximately 20 knots. Tunnel performance characteristics and a dynamic pressure system calibration were also documented during the process of mapping the test section flow field. Experimental results indicate that the test section flow quality is relatively insensitive to dynamic pressure and the level of atmospheric winds experienced during the calibration. The dynamic pressure variation in the test section is within +/-75 percent of the average. The axial turbulence intensity is less than 0.5 percent up to the maximum test section speed of 100 knots, and the vertical and lateral flow angle variations are within +/-5 deg and +/-7 deg, respectively. Atmospheric winds were found to affect the pressure distribution in the test section only at high ratios of wind speed to test section speed.

  1. An experimental study on refrigerant distribution in a two row/four pass parallel flow minichannel heat exchanger

    NASA Astrophysics Data System (ADS)

    Byun, Ho-Won; Kim, Nae-Hyun

    2016-10-01

    R-410A distribution was experimentally studied for a parallel flow evaporator having two row/four pass configuration. The evaporator has inlet, intermediate and row-crossing headers. Tests were conducted for the mass flux from 70 to 130 kg/m2s with the quality at the inlet of 0.2 and exit superheat 5 °C. Significant heat transfer degradation (13-40 %) was realized for the two row/four pass configuration due to flow mal-distribution. Of the three insert hole sizes, 4.0 mm hole yielded the least heat transfer degradation followed by 6.0 and 2.0 mm holes. At the inlet header, more liquid flowed into upstream channels. At the intermediate headers, more liquid was supplied into downstream channels. Similar flow distribution was obtained before and after the row crossing header. Header pressure drops were obtained by subtracting the flat tube pressure drops and other minor pressure drops from measured pressure drops.

  2. SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    SciTech Connect

    Hodge, Bri-Mathias; Palmintier, Bryan

    2016-03-03

    This presentation provides an overview of full-scale, high-quality, synthetic distribution system data set(s) for testing distribution automation algorithms, distributed control approaches, ADMS capabilities, and other emerging distribution technologies.

  3. Applications of PIV and Holography to Characterize Flow and Particle Distributions in the Ocean

    NASA Astrophysics Data System (ADS)

    Katz, J.; Nayak, A. R.; Talapatra, S.; Hong, J.

    2012-12-01

    This presentation discusses in-situ applications of particle image velocimetry (PIV) and digital holography to characterize the flow and particle distributions in oceanic flows. The PIV measurements focused on the mean flow and turbulence in the inner part of the coastal ocean bottom boundary layer. The stationary submersible system recorded 2D velocity distributions in two 30x30 cm planes, the first aligned with the tidal current, and the second with the dominant wave direction. The orientation of the illuminated planes were controlled remotely and re-adjusted to maintain alignment with the current and waves. Data were transmitted via optical fibers to a ship-board acquisition system. In recent field tests, the system was deployed off New Jersey at a depth of 25 m. Data acquired at 6 Hz (12 frames/s) covered varying velocity, bottom roughness, as well as relative wave-current orientations and magnitude. Sets spanning entire tidal cycles were recorded in multiple 35-60 min subsets, each providing 12,600-21600 velocity distributions. Co-deployed ADV facilitated calculations of Reynolds stresses by filtering out the contribution of wave-induced motion, and a pencil-beam sonar was used to characterize the seabed topography. Sample profiles of mean flow and turbulence parameters will focus on the interaction of currents and waves with the bottom roughness, and will show, e.g., instabilities at the interface between wave and current boundary layers, signature of bottom roughness in the turbulent energy spectra, and variations in velocity profiles across bottom ripples. The particle distributions were measured using a free-drifting, submersible, digital holography system, which maintained a low relative velocity (<1 cm/s) with the local fluid. Consequently, images of the same particles could be observed in multiple frames, enabling us to examine their behavior, as well as directly measure the local profiles of shear strain and dissipation rates form the velocity

  4. Testing contamination source identification methods for water distribution networks

    DOE PAGES

    Seth, Arpan; Klise, Katherine A.; Siirola, John D.; ...

    2016-04-01

    In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less

  5. Testing contamination source identification methods for water distribution networks

    SciTech Connect

    Seth, Arpan; Klise, Katherine A.; Siirola, John D.; Haxton, Terranna; Laird, Carl D.

    2016-04-01

    In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections, and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.

  6. Cinematics and sticking of heart valves in pulsatile flow test.

    PubMed

    Köhler, J; Wirtz, R

    1991-05-01

    The aim of the project was to develop laboratory test devices for studies of the cinematics and sticking behaviour of technical valve protheses. The second step includes testing technical valves of different types and sizes under static and dynamic conditions. A force-deflection balance was developed in order to load valve rims by static radial forces until sticking or loss of a disc (sticking- and clamping-mould point) with computer-controlled force deflection curves. A second deflection device was developed and used for prosthetic valves in the aortic position of a pulsatile mock circulation loop with simultaneous video-cinematography. The stiffness of technical valve rims varied between 0.20 (St. Jude) and about 1.0 N/micron (metal rim valves). The stiffness decreased significantly with increasing valve size. Sticking under pulsatile flow conditions was in good agreement with the static deflection measurements. Hence, valve sticking with increasing danger of thrombus formation is more likely with a less stiff valve rim. In the case of forces acting perpendicularly to the pendulum axis, the clamping mould-point of the valve can be reached, followed by disc dislodgement.

  7. A screening test for unstimulated salivary flow measurement.

    PubMed

    Fontana, Margherita; Zunt, Susan; Eckert, George J; Zero, Domenick

    2005-01-01

    It is well established that saliva is an important factor for the health of both soft and hard tissues in the oral cavity. This study determined: 1) the correlation between unstimulated salivary flow assessed using the Modified Schirmer tear strip Test (MST), with gravimetric and volumetric measurements and 2) the MST value that would allow the most reliable identification of patients with severe (<0.1 ml/minute) and moderate (<0.2 ml/minute) hyposalivation. A retrospective clinical study was conducted using data from 90 patients seen at the Indiana University School of Dentistry. All patients had a sample of unstimulated whole saliva collected by drooling for five minutes for volumetric/gravimetric assessment, followed by placement of the Schirmer strip in the floor of the mouth for three minutes (MST). Results showed a non-linear association between the MST and volumetric/gravimetric methods, with moderate Spearman correlation coefficients (0.67-0.71). Analysis of ROC-curves suggests that a cutoff screening value of 25 mm/three minutes provides high sensitivity (77%) and positive predictive value (71%) without significantly affecting specificity (80%). In conclusion, this study supports use of the MST test as a screening tool for hyposalivation.

  8. Characterization of pore structure and hydraulic property alteration in pressurized unsaturated flow tests

    SciTech Connect

    McGrail, B. Peter; Lindenmeier, Clark W.; Martin, P F.

    1999-12-01

    The pressurized unsaturated flow (PUF) test is a new experimental method for the evaluation of the long-term corrosion behavior of waste forms and other engineered barrier materials. Essentially, the technique provides a means to flow water through a porous bed of test material or materials at elevated temperature and under hydraulically unsaturated conditions. Bulk volumetric content, effluent pH and electrical conductivity are monitored in real time using a computer control and data acquisition system. In previous papers, we have reported on the changes in bulk water content, effluent chemistry, and glass corrosion rates that result from the formation of alteration products during these tests. These measurements are now supplemented through the use of the ultracentrifugation apparatus (UFA) for hydraulic property measurements and high-resolution, x-ray microtomography (XMT) to provide 3-D spatial and temporal imaging of water distribution and pore structure alteration during these tests. Quantitative changes in the water retention characteristic were correlated with the onset of zeolite formation in the tests. Extensive alteration of the glass resulted in cementation of the glass grains near the bottom of the column, which was observed in situ using the XMT.

  9. Characterization of pore structure and hydraulic property alteration in pressurized unsaturated flow tests

    SciTech Connect

    McGrail, B.P.; Lindenmeier, C.W.; Martin, P.F.

    1999-07-01

    The pressurized unsaturated flow (PUF) test is a new experimental method for the evaluation of the long-term corrosion behavior of waste forms and other engineered barrier materials. Essentially, the technique provides a means to flow water through a porous bed of test material or materials at elevated temperature and under hydraulically unsaturated conditions. Bulk volumetric content, effluent pH and electrical conductivity are monitored in real time using a computer control and data acquisition system. In previous papers, the authors have reported on the changes in bulk water content, effluent chemistry, and glass corrosion rates that result from the formation of alteration products during these tests. These measurements are now supplemented through the use of the ultracentrifugation apparatus (UFA) for hydraulic property measurements and high-resolution, x-ray microtomography (XMT) to provide 3-D spatial and temporal imaging of water distribution and pore structure alteration during these tests. Quantitative changes in the water retention characteristic were correlated with the onset of zeolite formation in the tests. Extensive alteration of the glass resulted in cementation of the glass grains near the bottom of the column, which was observed in situ using the XMT.

  10. Vertical Velocity Distribution in Open-Channel Flow with Rigid Vegetation

    PubMed Central

    Zhu, Changjun; Hao, Wenlong; Chang, Xiangping

    2014-01-01

    In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the approaching flow in a rectangular channel. Vertical distributions of time-averaged velocity at various streamwise distances were evaluated using an acoustic Doppler velocimeter (ADV). The results indicate that, in submerged conditions, it is difficult to described velocity distribution along the entire depth using unified function. The characteristic of vertical distribution of longitudinal velocity is the presence of inflection. Under the inflection, the line is convex and groove above inflection. The interaction of high and low momentum fluids causes the flow to fold and creates strong vortices within each mixing layer. Understanding the flow phenomena in the area surrounding the tall vegetation, especially in the downstream region, is very important when modeling or studying the riparian environment. ADV measures of rigid vegetation distribution of the flow velocity field can give people a new understanding. PMID:24883352

  11. Vertical velocity distribution in open-channel flow with rigid vegetation.

    PubMed

    Zhu, Changjun; Hao, Wenlong; Chang, Xiangping

    2014-01-01

    In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the approaching flow in a rectangular channel. Vertical distributions of time-averaged velocity at various streamwise distances were evaluated using an acoustic Doppler velocimeter (ADV). The results indicate that, in submerged conditions, it is difficult to described velocity distribution along the entire depth using unified function. The characteristic of vertical distribution of longitudinal velocity is the presence of inflection. Under the inflection, the line is convex and groove above inflection. The interaction of high and low momentum fluids causes the flow to fold and creates strong vortices within each mixing layer. Understanding the flow phenomena in the area surrounding the tall vegetation, especially in the downstream region, is very important when modeling or studying the riparian environment. ADV measures of rigid vegetation distribution of the flow velocity field can give people a new understanding.

  12. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  13. Flow distribution during infusion of UW and HTK solution in anaesthetised rats.

    PubMed

    Jansson, Leif; Carlsson, Per-Ola; Bodin, Birgitta; Källskog, Orjan

    2011-06-01

    Organ transplantation necessitates the use of preservation solutions to maintain the integrity of the organs during retrieval. The aim of this study was to investigate the flow distribution in abdominal organs in rats during acute infusion of preservation solution. Microspheres were used to estimate the distribution of flow in the pancreas, duodenum, ileum, colon, liver, kidneys and lungs in untreated Wistar-Furth rats and in animals with an opened abdominal cavity and catheterised aorta. Some animals were infused by free flow of 5 ml of UW, HTK or Ringer solution containing microspheres at a pressure of 100 cm H(2)O through an intra-aortic catheter. Opening of the abdominal cavity did not affect any of the organ blood flow values. However, the fraction of total pancreatic blood flow diverted through the islets increased. During infusion of microsphere-containing UW, HTK or Ringer solution, splanchnic and renal organ flow values, represented by microsphere contents, were similar. The fraction of microspheres found in the islets was lower in UW-infused rats. The number of microspheres present in the lungs or liver was very low, suggesting that shunting was negligible. Infusion of HTK and UW solution into anaesthetised rats results in a flow distribution which is similar to that in normal animals in most abdominal organs, but there is a reduction in islet blood perfusion by UW but not HTK solution.

  14. Cost Distribution of Environmental Flow Demands in a Large Scale Multi-Reservoir System

    NASA Astrophysics Data System (ADS)

    Marques, G.; Tilmant, A.

    2014-12-01

    This paper investigates the recovery of a prescribed flow regime through reservoir system reoperation, focusing on the associated costs and losses imposed on different power plants depending on flows, power plant and reservoir characteristics and systems topology. In large-scale reservoir systems such cost distribution is not trivial, and it should be properly evaluated to identify coordinated operating solutions that avoid penalizing a single reservoir. The methods combine an efficient stochastic dual dynamic programming algorithm for reservoir optimization subject to environmental flow targets with specific magnitude, duration and return period, which effects on fish recruitment are already known. Results indicate that the distribution of the effect of meeting the environmental flow demands throughout the reservoir cascade differs largely, and in some reservoirs power production and revenue are increased, while in others it is reduced. Most importantly, for the example system modeled here (10 reservoirs in the Parana River basin, Brazil) meeting the target environmental flows was possible without reducing the total energy produced in the year, at a cost of $25 Million/year in foregone hydropower revenues (3% reduction). Finally, the results and methods are useful in (a) quantifying the foregone hydropower and revenues resulting from meeting a specific environmental flow demand, (b) identifying the distribution and reallocation of the foregone hydropower and revenue across a large scale system, and (c) identifying optimal reservoir operating strategies to meet environmental flow demands in a large scale multi-reservoir system.

  15. Quantum key distribution with prepare-and-measure Bell test

    PubMed Central

    Tan, Yong-gang

    2016-01-01

    The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key generation rate, and easy implementation. However, the detector side channel attacks greatly undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to obtain illegal information without violating quantum principles. It means that she can intervene in the communication without being detected. A prepare-and-measure Bell test protocol will be proposed. By randomly carrying out Bell test at the side of the information receiver, Bob, Eve’s illegal information gain within the detector side channel attack can be well bounded. This protocol does not require any improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD. PMID:27733771

  16. Quantum key distribution with prepare-and-measure Bell test.

    PubMed

    Tan, Yong-Gang

    2016-10-13

    The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key generation rate, and easy implementation. However, the detector side channel attacks greatly undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to obtain illegal information without violating quantum principles. It means that she can intervene in the communication without being detected. A prepare-and-measure Bell test protocol will be proposed. By randomly carrying out Bell test at the side of the information receiver, Bob, Eve's illegal information gain within the detector side channel attack can be well bounded. This protocol does not require any improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD.

  17. Quantum key distribution with prepare-and-measure Bell test

    NASA Astrophysics Data System (ADS)

    Tan, Yong-Gang

    2016-10-01

    The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key generation rate, and easy implementation. However, the detector side channel attacks greatly undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to obtain illegal information without violating quantum principles. It means that she can intervene in the communication without being detected. A prepare-and-measure Bell test protocol will be proposed. By randomly carrying out Bell test at the side of the information receiver, Bob, Eve’s illegal information gain within the detector side channel attack can be well bounded. This protocol does not require any improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD.

  18. Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Chia, Y.; Chuang, P. Y.

    2015-12-01

    Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.

  19. Application of the mobility power flow approach to structural response from distributed loading

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.

  20. On the rapidity distribution of nucleons participating in elliptical flow at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2017-01-01

    The distribution of nucleons participating in elliptical flow is studied for the reactions of 79197Au + 79197Au, 60150Nd + 60150Nd, 50124Sn + 50124Sn, 4496Ru + 4496Ru, 3678Kr + 3678Kr, 2048Ca + 2048Ca and 2040Ca + 2040Ca using isospin-dependent quantum molecular dynamics (IQMD) model for various centrality ranges and over the wide range of intermediate energy. Our findings reveal that the sigma (width) of rapidity distribution obtained varies with mass of colliding system at a given energy. The peak of rapidity distribution decreases with decrease in the mass of colliding nuclei. Transition energy as well as width of rapidity distribution depends on the mass of fragment for a given centrality. Influence of isospin dependent symmetry energy and nucleon-nucleon cross-section can be studied using rapidity distribution. Second transition energy depends on the mass of the fragment. Rotational phenomenon of nucleons can be observed for nucleons participating in elliptical flow.

  1. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the DIII-D tokamak

    SciTech Connect

    Laughon, G.J.; Baxi, C.B.; Campbell, G.L.; Mahdavi, M.A.; Makariou, C.C.; Smith, J.P.; Schaffer, M.J.; Schaubel, K.M.; Menon, M.M.

    1994-06-01

    A liquid helium-cooled cryocondensation pump has been installed in the DIII-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  2. Testing flow diversion in animal models: a systematic review.

    PubMed

    Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E

    2016-04-01

    Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.

  3. A distributed data acquisition system for aeronautics test facilities

    NASA Technical Reports Server (NTRS)

    Fronek, Dennis L.; Setter, Robert N.; Blumenthal, Philip Z.; Smalley, Robert R.

    1987-01-01

    The NASA Lewis Research Center is in the process of installing a new data acquisition and display system. This new system will provide small and medium sized aeronautics test facilities with a state-of-the-art real-time data acquisition and display system. The new data system will provide for the acquisition of signals from a variety of instrumentation sources. They include analog measurements of temperatures, pressures, and other steady state voltage inputs; frequency inputs to measure speed and flow; discrete I/O for significant events, and modular instrument systems such as multiplexed pressure modules or electronic instrumentation with a IEEE 488 interface. The data system is designed to acquire data, convert it to engineering units, compute test dependent performance calculations, limit check selected channels or calculations, and display the information in alphanumeric or graphical form with a cycle time of one second for the alphanumeric data. This paper describes the system configuration, its salient features, and the expected impact on testing.

  4. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  5. The sympathetic release test: a test used to assess thermoregulation and autonomic control of blood flow.

    PubMed

    Tansey, E A; Roe, S M; Johnson, C J

    2014-03-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75°F in cool conditions (environmental temperature: 59-68°F) and rises to 85-95°F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.

  6. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2017-04-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  7. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  8. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  9. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn- around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  10. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2016-08-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  11. Depo-Provera--ethical issues in its testing and distribution.

    PubMed Central

    Potts, M; Paxman, J M

    1984-01-01

    Ethical issues relating to the use of the injectable contraceptive in developed and developing countries alike involve public policy decisions concerning both criteria for testing a new drug and individual choices about using a specific form of contraception approved for national distribution. Drug testing consists of an important but still evolving set of procedures. Depo-Provera is not qualitatively different from any other drug and some unpredictable risks are inevitable, even after extensive animal experiments and clinical trials. In assessing the risks and benefits of Depo-Provera use, epidemiological data from large-scale human use is now beginning to become more important than data from animal experiments and clinical trials. The consumer's best interest is central to any ethically responsible system of drug distribution. Systems of informed choice are needed, even in societies where illiteracy remains common and medical services are weak. In the case of a contraceptive, the risks of non-use leading to unintended pregnancy, which can result in high mortality, are relevant as well as the side-effects of the method. An attempt, therefore, is made here to categorise those issues which are universal and those which are country-specific. PMID:6231379

  12. Test Market Media Relations as a Pilot Test Component in a Nationwide Class Action Settlement Distribution.

    ERIC Educational Resources Information Center

    Pellecchia, Michael

    Results of a pilot test for a public relations campaign to assist in the distribution of funds from the settlement of a nationwide class action suit brought by tenants against the Department of Housing and Urban Development (HUD) are presented in this report. The first chapter presents the background of the case, noting that tenants of Section 236…

  13. Distributed training, testing, and decision aids within one solution

    NASA Astrophysics Data System (ADS)

    Strini, Robert A.; Strini, Keith

    2002-07-01

    Military air operations in the European theater require U.S. and NATO participants to send various mission experts to 10 Combined Air Operations Centers (CAOCs). Little or no training occurs prior to their arrival for tours of duty ranging between 90 days to 3 years. When training does occur, there is little assessment of its effectiveness in raising CAOC mission readiness. A comprehensive training management system has been developed that utilizes traditional and web based distance-learning methods for providing instruction and task practice as well as distributed simulation to provide mission rehearsal training opportunities on demand for the C2 warrior. This system incorporates new technologies, such as voice interaction and virtual tutors, and a Learning Management System (LMS) that tracks trainee progress from academic learning through procedural practice and mission training exercises. Supervisors can monitor their subordinate's progress through synchronous or asynchronous methods. Embedded within this system are virtual tutors, which provide automated performance measurement as well as tutoring. The training system offers a true time management savings for current instructors and training providers that today must perform On the Job Training (OJT) duties before, during and after each event. Many units do not have the resources to support OJT and are forced to maintain an overlap of several days to minimally maintain unit readiness. One CAOC Commander affected by this paradigm has advocated supporting a beta version of this system to test its ability to offer training on-demand and track the progress of its personnel and unit readiness. If successful, aircrew simulation devices can be connected through either Distributed Interactive Simulation or High Level Architecture methods to provide a DMT-C2 air operations training environment in Europe. This paper presents an approach to establishing a training, testing and decision aid capability and means to assess

  14. Particle-Size-Distribution of Nevada Test Site Soils

    SciTech Connect

    Spriggs, G; Ray-Maitra, A

    2007-09-17

    The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

  15. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand...

  16. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand...

  17. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    DTIC Science & Technology

    2015-10-01

    calibration of the flow in the test section of the Research Wind Tunnel at DST Group. The calibration was performed to establish the flow quality and to...of the Flow in the Test Section of the Research Wind Tunnel at DST Group Executive Summary The Defence Science and Technology Group (DST

  18. The Effect of Flow Distribution on the Concentration of NO Produced by Pulsed Arc Discharge

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Bao, Bin; Wang, Heli; Liang, Haiyan; He, Junjia; He, Zhenghao; Li, Jin

    2007-12-01

    As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power. The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO2 could be controlled and the ratio of NO2/NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution.

  19. Oscillating-flow loss test results in rectangular heat exchanger passages

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  20. Unsaturated flow and solute transport through the Chalk: Tracer test and dual permeability modelling

    NASA Astrophysics Data System (ADS)

    Van den Daele, Gerd F. A.; Barker, John A.; Connell, Luke D.; Atkinson, Tim C.; Darling, W. G.; Cooper, J. D.

    2007-08-01

    SummaryA tracer test was carried out in the unsaturated Chalk at the Fleam Dyke research site in Cambridgeshire, UK, to investigate the role of the Chalk fractures and matrix in unsaturated flow and solute transport. The experiment, under natural rainfall conditions, involved distributing deuterated water on a grass-covered lysimeter (a cube of volume 125 m 3) and on an adjacent 4 m × 4 m field plot. Tracer migration was monitored through regular core sampling and collection of lysimeter drainage water. The presence of occasional secondary peaks in sampling of the vertical tracer profile suggested the occurrence of fracture flow, allowing some tracer to bypass the Chalk matrix. However, in the 15 months following application, none of the tracer was detected in the lysimeter drainage at 5 m depth. Modelling of the tracer results was undertaken with the 1-D numerical transient dual permeability model MACRO 5.0, initially developed for macroporous soils. Modelling results showed that MACRO 5.0 could reliably simulate transient recharge through the Chalk. The simulations suggested that fracture flow is important at the site, but that it is only initiated at 1 m depth or deeper. The extent of fracture flow appeared to be highly variable in different layers of the profile, varying between 40% and 85% of the cumulative flux, mainly depending on the saturated hydraulic conductivity of the matrix. Diffusion between the fractures and the matrix tended to equalize solute concentrations in both flow domains, although solute bypass through the fractures occurred in some Chalk strata. Besides diffusive exchange, the modelling stressed the importance of advective exchange of solutes. The results suggest that the Chalk aquifer at the Fleam Dyke site is only moderately vulnerable to pollution, even though for moderate rainfall conditions some bypass flow was possible.

  1. Decadal oscillations and extreme value distribution of river peak flows in the Meuse catchment

    NASA Astrophysics Data System (ADS)

    De Niel, Jan; Willems, Patrick

    2017-04-01

    In flood risk management, flood probabilities are often quantified through Generalized Pareto distributions of river peak flows. One of the main underlying assumptions is that all data points need to originate from one single underlying distribution (i.i.d. assumption). However, this hypothesis, although generally assumed to be correct for variables such as river peak flows, remains somehow questionable: flooding might indeed be caused by different hydrological and/or meteorological conditions. This study confirms these findings from previous research by showing a clear indication of the link between atmospheric conditions and flooding for the Meuse river in The Netherlands: decadal oscillations of river peak flows can (at least partially) be attributed to the occurrence of westerly weather types. The study further proposes a method to take this correlation between atmospheric conditions and river peak flows into account when calibrating an extreme value distribution for river peak flows. Rather than calibrating one single distribution to the data and potentially violating the i.i.d. assumption, weather type depending extreme value distributions are derived and composed. The study shows that, for the Meuse river in The Netherlands, such approach results in a more accurate extreme value distribution, especially with regards to extrapolations. Comparison of the proposed method with a traditional extreme value analysis approach and an alternative model-based approach for the same case study shows strong differences in the peak flow extrapolation. The design-flood for a 1,250 year return period is estimated at 4,800 m3s-1 for the proposed method, compared with 3,450 m3s-1 and 3,900 m3s-1 for the traditional method and a previous study. The methods were validated based on instrumental and documentary flood information of the past 500 years.

  2. EFFECT OF FLOW CHARACTERISTICS ON DO DISTRIBUTION IN A FULL SCALE OXIDATION DITCH WITH DIFFUSED AERATION AND VERTICAL FLOW BOOSTERS

    NASA Astrophysics Data System (ADS)

    Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi

    The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.

  3. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans

    PubMed Central

    Sato, Kohei; Ogoh, Shigehiko; Hirasawa, Ai; Oue, Anna; Sadamoto, Tomoko

    2011-01-01

    Abstract The mechanism underlying the plateau or relative decrease in cerebral blood flow (CBF) during maximal incremental dynamic exercise remains unclear. We hypothesized that cerebral perfusion is limited during high-intensity dynamic exercise due to a redistribution of carotid artery blood flow. To identify the distribution of blood flow among the arteries supplying the head and brain, we evaluated common carotid artery (CCA), internal carotid artery (ICA), external carotid artery (ECA) and vertebral artery (VA) blood flow during dynamic exercise using Doppler ultrasound. Ten subjects performed graded cycling exercise in a semi-supine position at 40, 60 and 80% of peak oxygen uptake () for 5 min at each workload. The ICA blood flow increased by 23.0 ± 4.6% (mean ± SE) from rest to exercise at 60% . However, at 80% , ICA blood flow returned towards near resting levels (9.6 ± 4.7%vs. rest). In contrast, ECA, CCA and VA blood flow increased proportionally with workload. The change in ICA blood flow during graded exercise was correlated with end-tidal partial pressure of CO2 (r = 0.72). The change in ICA blood flow from 60% to 80% was negatively correlated with the change in ECA blood flow (r = −0.77). Moreover, there was a significant correlation between forehead cutaneous vascular conductance and ECA blood flow during exercise (r = 0.79). These results suggest that during high-intensity dynamic exercise the plateau or decrease in ICA blood flow is partly due to a large increase in ECA blood flow, which is selectively increased to prioritize thermoregulation. PMID:21486813

  4. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  5. Simulation of Velocity Distribution for Water Flow in a Vortex-Chamber-Type Sediment Extractor

    NASA Astrophysics Data System (ADS)

    Huang, Tsung-Hsien; Jan, Chyan-Deng

    2013-04-01

    A vortex-chamber-type sediment extractor (VCTSE) system, consisting of a cylindrical chamber, an inflow system, a bottom orifice outflow and an overflow weir, has been used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The efficiency of sediment extraction by a VCTSE is significant dependent on the flow characteristics in the device. The vortex flow in a VCTSE is complicate and it is very difficult if not impossible to measure its velocity distribution by using a direct measurement. This study tries to numerically assess the velocity distribution in a VCTSE by a commercial software named as FLOW-3D under a clear water condition. The VCTSE used in this study has a cylinder of 100 cm in diameter and 30 cm in height. The elevation of the overflow weir is 15 cm above the cylinder bottom. Firstly, the surface lines at the water surface obtained by the simulation of FLOW-3D were compared with the observation in a physical experiment. The comparison shows that the simulated results are quite close to the experimental results, and this confirms that FLOW-3D can be used to simulate the flow characteristics in a VCTSE. The simulated velocity distributions of at the depths of Z = 6.3 cm (the distance from the bottom), 10.3 cm, and 14.3 cm (near the surface layer) were analyzed. The characteristics of tangential velocity (Vt), radial velocity (Vr), and axial velocity (Vz) at these three depths were discussed. The effects of inflow discharge as well as the installation of horizontal deflectors on the velocity distributions are also discussed. Except the velocity distributions, the formation of an air core in the central part of vortex flow was also

  6. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  7. Design of a Water Coupling Bolus with Improved Flow Distribution for Multielement Superficial Hyperthermia Applicators

    PubMed Central

    Arunachalam, Kavitha; Maccarini, Paolo F; Schlorff, Jaime L.; Birkelund, Yngve; Jacobsen, Svein; Stauffer, Paul R.

    2009-01-01

    A water bolus used in superficial hyperthermia couples the electromagnetic (EM) or acoustic energy into the target tissue and cools the tissue surface to minimize thermal hotspots and patient discomfort during treatment. Parametric analyses of the fluid pressure inside the bolus computed using 3D fluid dynamics simulations are used in this study to determine a bolus design with improved flow and surface temperature distributions for large area superficial heat applicators. The simulation results are used in the design and fabrication of a 19×32 cm prototype bolus with dual input-dual output (DIDO) flow channels. Sequential thermal images of the bolus surface temperature recorded for a step change in the circulating water temperature are used to assess steady state flow and surface temperature distributions across the bolus. Modeling and measurement data indicate substantial improvement in bolus flow and surface temperature distributions when changing from the previous single input-single output (SISO) to DIDO configuration. Temperature variation across the bolus at steady state was measured to be less than 0.8°C for the DIDO bolus compared to 1.5°C for the SISO waterbolus. The new DIDO bolus configuration maintains a nearly uniform flow distribution and low variation in surface temperature over a large area typically treated in superficial hyperthermia. PMID:19848618

  8. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Shang, B. S.; Sun, Y. T.; Zhu, Z. G.; Guan, P. F.; Wang, W. H.; Bai, H. Y.

    2016-04-01

    The β-relaxation, which is the source of the dynamics in glass state and has practical significance to relaxation and mechanical properties of glasses, has been an open question for decades. Here, we propose a flow unit perspective to explain the structural origin and evolution of β-relaxation based on experimentally obtained energy distribution of flow units using stress relaxation method under isothermal and linear heating modes. Through the molecular dynamics simulations, we creatively design various artificial metallic glass systems and build a direct relation between β-relaxation behavior and features of flow units. Our results demonstrate that the β-relaxation in metallic glasses originates from flow units and is modulated by the energy distribution of flow units, and the density and distribution of flow units can effectively regulate the β-relaxation behavior. The results provide a better understanding of the structural origin of β-relaxation and also afford a method for designing metallic glasses with obvious β-relaxation and better mechanical properties.

  9. Effect of furosemide on pulmonary blood flow distribution in resting and exercising horses

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Bernard, S. L.; Glenny, R. W.; Fedde, M. R.; Polissar, N. L.; Basaraba, R. J.; Walther, S. M.; Gaughan, E. M.; McMurphy, R.; Hlastala, M. P.

    1999-01-01

    We determined the spatial distribution of pulmonary blood flow (PBF) with 15-micron fluorescent-labeled microspheres during rest and exercise in five Thoroughbred horses before and 4 h after furosemide administration (0.5 mg/kg iv). The primary finding of this study was that PBF redistribution occurred from rest to exercise, both with and without furosemide. However, there was less blood flow to the dorsal portion of the lung during exercise postfurosemide compared with prefurosemide. Furosemide did alter the resting perfusion distribution by increasing the flow to the ventral regions of the lung; however, that increase in flow was abated with exercise. Other findings included 1) unchanged gas exchange and cardiac output during rest and exercise after vs. before furosemide, 2) a decrease in pulmonary arterial pressure after furosemide, 3) an increase in the slope of the relationship of PBF vs. vertical height up the lung during exercise, both with and without furosemide, and 4) a decrease in blood flow to the dorsal region of the lung at rest after furosemide. Pulmonary perfusion variability within the lung may be a function of the anatomy of the pulmonary vessels that results in a predominantly fixed spatial pattern of flow distribution.

  10. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass.

    PubMed

    Lu, Z; Shang, B S; Sun, Y T; Zhu, Z G; Guan, P F; Wang, W H; Bai, H Y

    2016-04-14

    The β-relaxation, which is the source of the dynamics in glass state and has practical significance to relaxation and mechanical properties of glasses, has been an open question for decades. Here, we propose a flow unit perspective to explain the structural origin and evolution of β-relaxation based on experimentally obtained energy distribution of flow units using stress relaxation method under isothermal and linear heating modes. Through the molecular dynamics simulations, we creatively design various artificial metallic glass systems and build a direct relation between β-relaxation behavior and features of flow units. Our results demonstrate that the β-relaxation in metallic glasses originates from flow units and is modulated by the energy distribution of flow units, and the density and distribution of flow units can effectively regulate the β-relaxation behavior. The results provide a better understanding of the structural origin of β-relaxation and also afford a method for designing metallic glasses with obvious β-relaxation and better mechanical properties.

  11. Effect of furosemide on pulmonary blood flow distribution in resting and exercising horses

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Bernard, S. L.; Glenny, R. W.; Fedde, M. R.; Polissar, N. L.; Basaraba, R. J.; Walther, S. M.; Gaughan, E. M.; McMurphy, R.; Hlastala, M. P.

    1999-01-01

    We determined the spatial distribution of pulmonary blood flow (PBF) with 15-micron fluorescent-labeled microspheres during rest and exercise in five Thoroughbred horses before and 4 h after furosemide administration (0.5 mg/kg iv). The primary finding of this study was that PBF redistribution occurred from rest to exercise, both with and without furosemide. However, there was less blood flow to the dorsal portion of the lung during exercise postfurosemide compared with prefurosemide. Furosemide did alter the resting perfusion distribution by increasing the flow to the ventral regions of the lung; however, that increase in flow was abated with exercise. Other findings included 1) unchanged gas exchange and cardiac output during rest and exercise after vs. before furosemide, 2) a decrease in pulmonary arterial pressure after furosemide, 3) an increase in the slope of the relationship of PBF vs. vertical height up the lung during exercise, both with and without furosemide, and 4) a decrease in blood flow to the dorsal region of the lung at rest after furosemide. Pulmonary perfusion variability within the lung may be a function of the anatomy of the pulmonary vessels that results in a predominantly fixed spatial pattern of flow distribution.

  12. Availability and Distribution of Base Flow in Lower Honokohau Stream, Island of Maui

    USGS Publications Warehouse

    Fontaine, Richard A.

    2003-01-01

    Honokohau Stream is one of the few perennial streams in the Lahaina District of West Maui. Current Honokohau water-use practices often lead to conflicts among water users, which are most evident during periods of base flow. To better manage the resource, data are needed that describe the availability and distribution of base flow in lower Honokohau Stream and how base flow is affected by streamflow diversion and return-flow practices. Flow-duration discharges for percentiles ranging from 50 to 95 percent were estimated at 13 locations on lower Honokohau Stream using data from a variety of sources. These sources included (1) available U.S. Geological Survey discharge data, (2) published summaries of Maui Land & Pineapple Company, Inc. diversion and water development-tunnel data, (3) seepage run and low-flow partial-record discharge measurements made for this study, and (4) current (2003) water diversion and return-flow practices. These flow-duration estimates provide a detailed characterization of the distribution and availability of base flow in lower Honokohau Stream. Estimates of base-flow statistics indicate the significant effect of Honokohau Ditch diversions on flow in the stream. Eighty-six percent of the total flow upstream from the ditch is diverted from the stream. Immediately downstream from the diversion dam there is no flow in the stream 91.2 percent of the time, except for minor leakage through the dam. Flow releases at the Taro Gate, from Honokohau Ditch back into the stream, are inconsistent and were found to be less than the target release of 1.55 cubic feet per second on 9 of the 10 days on which measurements were made. Previous estimates of base-flow availability downstream from the Taro Gate release range from 2.32 to 4.6 cubic feet per second (1.5 to 3.0 million gallons per day). At the two principal sites where water is currently being diverted for agricultural use in the valley (MacDonald's and Chun's Dams), base flows of 2.32 cubic feet per

  13. EFFECTS OF TEST TEMPERATURE ON FLOW OF METALLIC GLASSES

    SciTech Connect

    A.S. NOURI; Y. LIU; P. WESSELING; J. LEWANDOWSKI

    2006-04-12

    Micro-hardness experiments were conducted over a range of temperatures using a Nikon QM micro-hardness machine on a number of metallic glass (e.g. Zr-, Fe-, Al-) systems. Although high micro-hardness was exhibited at room temperature, significant hardness reductions were exhibited near the glass transition temperature, T{sub g}. The effects of changes in test temperature on the micro-hardness will be reported. The effects of exposure time on the hardness evolution at a given temperature will also be summarized to illustrate some of the differences in behavior of the systems shown. The extreme softening near T{sub g}, characteristic of bulk metallic glass systems, enables the exploration of novel deformation processing. In order to develop deformation processing windows, the evaluation of bulk metallic glass mechanical properties under quasi-static conditions and the determination of flow properties at different temperatures and strain rates are reported. The use of such information to create layered/composite bulk metallic glasses will be summarized.

  14. Promoting Partner Testing and Couples Testing through Secondary Distribution of HIV Self-Tests: A Randomized Clinical Trial

    PubMed Central

    Napierala Mavedzenge, Sue; Thirumurthy, Harsha

    2016-01-01

    Background Achieving higher rates of partner HIV testing and couples testing among pregnant and postpartum women in sub-Saharan Africa is essential for the success of combination HIV prevention, including the prevention of mother-to-child transmission. We aimed to determine whether providing multiple HIV self-tests to pregnant and postpartum women for secondary distribution is more effective at promoting partner testing and couples testing than conventional strategies based on invitations to clinic-based testing. Methods and Findings We conducted a randomized trial in Kisumu, Kenya, between June 11, 2015, and January 15, 2016. Six hundred antenatal and postpartum women aged 18–39 y were randomized to an HIV self-testing (HIVST) group or a comparison group. Participants in the HIVST group were given two oral-fluid-based HIV test kits, instructed on how to use them, and encouraged to distribute a test kit to their male partner or use both kits for testing as a couple. Participants in the comparison group were given an invitation card for clinic-based HIV testing and encouraged to distribute the card to their male partner, a routine practice in many health clinics. The primary outcome was partner testing within 3 mo of enrollment. Among 570 participants analyzed, partner HIV testing was more likely in the HIVST group (90.8%, 258/284) than the comparison group (51.7%, 148/286; difference = 39.1%, 95% CI 32.4% to 45.8%, p < 0.001). Couples testing was also more likely in the HIVST group than the comparison group (75.4% versus 33.2%, difference = 42.1%, 95% CI 34.7% to 49.6%, p < 0.001). No participants reported intimate partner violence due to HIV testing. This study was limited by self-reported outcomes, a common limitation in many studies involving HIVST due to the private manner in which self-tests are meant to be used. Conclusions Provision of multiple HIV self-tests to women seeking antenatal and postpartum care was successful in promoting partner testing and

  15. Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

    NASA Astrophysics Data System (ADS)

    McGinn, Christopher F.

    2016-12-01

    The flow of the quenched energy in imbalanced dijet events has been previously studied by transverse vector sum of charged particles with the CMS detector, namely the missing pT measurement. The results have led to new theoretical insights to order to explain the wide angle radiation. The missing pT technique has been improved so that it allows the study of angular distribution of the energy flow with respect to the dijet axis. The measurements are performed using different distance parameters R with the anti-kT clustering algorithm, which provide information about how the angular distribution of the quenched energy depends on the jet width.

  16. The pressure distribution on the surface of an ellipsoid in inviscid flow

    NASA Astrophysics Data System (ADS)

    Band, E. G. U.; Payne, P. R.

    1980-02-01

    The classic equations for inviscid flow about an ellipsoid are employed to compute the corresponding static pressure distribution which can then be applied to a number of practical problems. The tension in the skin of a dirigible, the gross pressure distribution around a man in an open ejection seat, the aerodynamic lift on an air cushion vehicle, automobile or high speed boat, the 'squatting' of a ship, are all examples of practical applications. A remarkable result from the theory is that the lowest pressure, that around the equator normal to the flow, is always constant around the equator, no matter how much disparity there is between the semi-axes b and c.

  17. Mass flow rate and pressure distribution of gas through three-dimensional micro-channels

    SciTech Connect

    Jiang, Jianzheng; Fan, Jing

    2014-12-09

    An effective method to predict the mass flow rate and pressure distribution of gas through three dimensional micro-channels with different cross-section shapes has been proposed. For rectangular cross sections often employed in experiment, the present solutions versus measured data of Zohar et al. (2002) show that the side walls significantly affect the mass flow rates as the aspect ratio is smaller than 10, whereas the non-dimensional pressure distributions, mainly determined by the inlet-to-outlet pressure ratio, are insensitive to the aspect ratio.

  18. Small-scale Rainfall Challenges Tested with Semi-distributed and Distributed Hydrological Models

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Tchiguirinskaia, Ioulia; Gires, Auguste; Schertzer, Daniel; Bompard, Philippe

    2016-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Indeed, it helps to better understand the essential interactions between natural and man-made urban environments, both being complex systems. However the integration of this information in hydrological models remains a big challenge. In fact, urban water managers often rely on lumped or semi-distributed models with much coarser data resolution. The scope of this work is to investigate the sensitivity of two hydrological models to small-scale rainfall, and their potential improvements to integrate wholly the small-scale information. The case study selected to perform this study is a small urban catchment (245 ha), located at Val-de-Marne county (southeast of Paris, France). Investigations were conducted using either CANOE model, a semi-distributed conceptual model that is widely used in France for urban modeling, or a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech (www hmco-dev.enpc.fr/Tools-Training/Tools/Multi-Hydro.php). Initially, in CANOE model the catchment was divided into 9 sub-catchments with size ranging from 1ha to 76ha. A refinement process was conduced in the framework of this investigation in order to improve the model resolution by considering higher number of smaller sub-catchments. The new configuration consists of 44 sub-catchments with size ranging from 1ha-14ha. The Multi-Hydro modeling approach consists on rasterizing the catchment information to a regular spatial grid of a resolution chosen by the user. Each pixel is then affected by specific information, e.g., a unique land type per pixel, for which hydrological and physical properties are set. First of all, both models were validated with respect to real flow measurements using three types of rainfall data: (1) point measurement data coming form the Sucy-en-Brie rain gauge; (2) Meteo

  19. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    NASA Astrophysics Data System (ADS)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  20. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a

  1. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a

  2. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  3. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  4. The use of broken power-laws to describe the distributions of daily flow above the mean annual flow across the conterminous U.S.

    Treesearch

    Catalina Segura; Davide Lazzati; Arumugam Sankarasubramanian

    2013-01-01

    A recent study employed a broken power-law (BPL) distribution for understanding the scaling frequency of bankfull discharge in snowmelt-dominated basins. This study, grounded from those findings, investigated the ability of a BPL function to describe the distribution of daily flows above the mean annual flow in 1217 sites across the conterminous U.S. (CONUS). The...

  5. Myocardial Blood Flow Distribution during Ischemia-Induced Coronary Vasodilation in the Unanesthetized Dog

    PubMed Central

    Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.

    1974-01-01

    This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928

  6. Theoretical Evaluation of the Transient Response of Constant Head and Constant Flow-Rate Permeability Tests

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.

    1998-01-01

    A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.

  7. Performance testing of a Savonius windmill rotor in shear flows

    SciTech Connect

    Mojola, O.O.; Onasanya, O.E.

    1981-08-01

    The effects of flow shear and/or unsteadiness on the power-producing performance of a Savonius windmill rotor are discussed. Measurements were made, in two statistically steady shear flows and in the natural wind, of the speed, torque and (hence) power of the rotor at a number of streamwise stations for each of four values of the bucket overlap ratio. 8 refs.

  8. Ground Testing for Hypervelocity Flow, Capabilities and Limitations

    DTIC Science & Technology

    2010-03-29

    but high-enthalpy flows also occur naturally, e. g., when a meteorite enters a planetary atmosphere. The term hypersonic flow is used to describe... Meteorites entering planetary atmospheres typically have a speed of 20 km/s, and proposals for man-made vehicles have considered speeds in the vicinity of

  9. Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation

    SciTech Connect

    Piiper, J.; Pendergast, D.R.; Marconi, C.; Meyer, M.; Heisler, N.; Cerretelli, P.

    1985-06-01

    The distribution of blood flow within the isolated perfused dog gastrocnemius muscle (weight 100-240 g) was studied by intra-arterial injection of radioactively labeled microspheres (diameter 15 micron) at rest and during supramaximal stimulation to rhythmic isotonic tetanic contractions of varied frequency against varied loads. After the experiment the muscle was cut into 180-250 pieces of approximately 0.75 g each, and the blood flow to each muscle piece was determined from its radioactivity. The inhomogeneity of blood flow was represented as the frequency distribution of the ratios of regional specific blood flow, i.e., blood flow per unit tissue weight of the piece, QR, to the overall specific blood flow of the muscle, Q. The QR/Q values for the individual pieces of a muscle were found to vary widely both at rest and during stimulation. With rising work load the frequency distribution had a tendency to broaden and flatten, indicating increasing perfusion inhomogeneity. On the average of the experiments, there was no significant difference in specific blood flow between the three anatomic components of the gastrocnemius (lateral and medial heads of gastrocnemius and flexor digitorum superficialis) nor between the superficial and deep portions within these anatomic components, only the distal third of the muscle was relatively less perfused compared with the proximal two-thirds. The considerable inhomogeneity of blood flow as revealed by microsphere embolization and by other methods is expected to exert important limiting effects on local O/sub 2/ supply, particularly during exercise.

  10. Analytical arrival and persistence time distributions for flow thresholds in seasonally dry climates

    NASA Astrophysics Data System (ADS)

    Dralle, D.; Thompson, S. E.

    2014-12-01

    Seasonally dry ecosystems, which include Mediterranean, tropical monsoonal and tropical savannah climates, cover approximately 30% of the planet's land area and are globally significant biodiversity hotspots. Due to a highly variable climate, the streamflow available for ecosystems and ecosystems services in these regions is typified by large inter-annual variability. Methods to quantify this variability could shed light on stream ecosystem stress, particularly new stresses imposed by human activity or climate change. This study develops a probabilistic framework to examine controls on dry season flow characteristics in seasonally dry climates. Assuming a typical recession pattern, which is conditioned on an initial value that is sampled from the wet season flows [1,2], analytical PDFs for the arrival time of a given dry season flow threshold can be obtained. Below-flow-threshold persistence time distributions are computed as the difference between an (assumed) normally distributed dry season length and the mean flow threshold arrival time. A number of hypotheses are proposed to explain unexpected sources of variability in the empirical arrival time distributions. The ecologic implications of extended low flow persistence, such as the hydrologic fragmentation of lower order watersheds, are discussed. [1] Müller, M. F., D. N. Dralle, and S. E. Thompson (2014), Analytical model for flow duration curves in seasonally dry climates, Water Resour. Res., 50, doi:10.1002/2014WR015301 [2] Botter, G., A. Porporato, I. Rodriguez-Iturbe, and A. Rinaldo (2007), Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response, Water Resour. Res., 43, W02417, doi:10.1029/2006WR005043

  11. Independent test assessment using the extreme value distribution theory.

    PubMed

    Almeida, Marcio; Blondell, Lucy; Peralta, Juan M; Kent, Jack W; Jun, Goo; Teslovich, Tanya M; Fuchsberger, Christian; Wood, Andrew R; Manning, Alisa K; Frayling, Timothy M; Cingolani, Pablo E; Sladek, Robert; Dyer, Thomas D; Abecasis, Goncalo; Duggirala, Ravindranath; Blangero, John

    2016-01-01

    The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been

  12. Testing calibration routines for LISFLOOD, a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Pannemans, B.

    2009-04-01

    Traditionally hydrological models are considered as difficult to calibrate: their highly non-linearity results in rugged and rough response surfaces were calibration algorithms easily get stuck in local minima. For the calibration of distributed hydrological models two extra factors play an important role: on the one hand they are often costly on computation, thus restricting the feasible number of model runs; on the other hand their distributed nature smooths the response surface, thus facilitating the search for a global minimum. Lisflood is a distributed hydrological model currently used for the European Flood Alert System - EFAS (Van der Knijff et al, 2008). Its upcoming recalibration over more then 200 catchments, each with an average runtime of 2-3 minutes, proved a perfect occasion to put several existing calibration algorithms to the test. The tested routines are Downhill Simplex (DHS, Nelder and Mead, 1965), SCEUA (Duan et Al. 1993), SCEM (Vrugt et al., 2003) and AMALGAM (Vrugt et al., 2008), and they were evaluated on their capability to efficiently converge onto the global minimum and on the spread in the found solutions in repeated runs. The routines were let loose on a simple hyperbolic function, on a Lisflood catchment using model output as observation, and on two Lisflood catchments using real observations (one on the river Inn in the Alps, the other along the downstream stretch of the Elbe). On the mathematical problem and on the catchment with synthetic observations DHS proved to be the fastest and the most efficient in finding a solution. SCEUA and AMALGAM are a slower, but while SCEUA keeps converging on the exact solution, AMALGAM slows down after about 600 runs. For the Lisflood models with real-time observations AMALGAM (hybrid algorithm that combines several other algorithms, we used CMA, PSO and GA) came as fastest out of the tests, and giving comparable results in consecutive runs. However, some more work is needed to tweak the stopping

  13. Bypass thresholds for gravity flows: implications for sand distribution in turbidite systems

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.; Amy, L.

    2015-12-01

    The stratigraphic architecture of turbidite and other systems dominated by gravity flows is underpinned by the ability to transport sediment as suspended load. The ability to transport sediment is crucial to concepts of flow efficiency and equilibrium profile. Predominately bypass-erosional flows transport their sediment load downslope to the basin; forming sand-starved slope channels and canyons. In contrast, flows that cannot suspend their sediment are depositional on inbound slopes leading to constructional slope systems with sand-filled slope conduits and potentially sand starved basins. An experimentally validated mathematical model for polydisperse turbulent suspension is used to estimate the critical shear velocity (u*c) for the threshold between depositional and erosional regimes in gravity driven flows. The model shows that the criterion is a function of flow concentration and grain-size distribution increasing as stratification increases within flows: arising from either higher particle concentrations or maximum sizes (increased mean, standard deviation and decreased skew). Predicted values of u*c are as much as two orders of magnitude greater than those derived using standard monodisperse sediment transport models (e.g., Rouse criterion). The results presented better constrain the potential for total sediment bypass on slopes in turbidite systems. Representative values of velocity and density from monitored natural sandy turbidity currents show total sediment bypass or erosion may be typical in the head and body of supercritical flows on average canyon slopes.

  14. The relative distribution of pulmocutaneous blood flow in Rana catesbeiana: effects of pulmonary or cutaneous hypoxia.

    PubMed

    Boutilier, R G; Glass, M L; Heisler, N

    1986-11-01

    The distribution of pulmocutaneous heart output to lungs and skin was determined in non-anaesthetized, fully recovered bullfrogs (Rana catesbeiana) by application of the microsphere method in order to study the modulation of blood flow to different gas exchange sites in amphibians during environmental air and water hypoxia. The relative perfusion of various skin areas was found to be rather heterogeneously distributed with an over-proportionately high blood flow to the ventral body surface. This distribution of flow among different skin areas remained unaffected by any type of environmental hypoxia. The relative perfusion of lungs and skin, however, was significantly affected by the pattern of environmental oxygen partial pressure. The relative lung perfusion (approximately equal to 80% of pulmocutaneous flow in normoxic control conditions) was increased during water hypoxia, and reduced with lowered inspired PO2. This mechanism could be interpreted as a readjustment of blood flow towards the gas exchange site with higher oxygen partial pressure, but may also represent a mechanism to prevent oxygen loss from the body stores at gas exchange sites of low oxygen tension.

  15. Modified FlowCAM procedure for quantifying size distribution of zooplankton with sample recycling capacity.

    PubMed

    Wong, Esther; Sastri, Akash R; Lin, Fan-Sian; Hsieh, Chih-Hao

    2017-01-01

    We have developed a modified FlowCAM procedure for efficiently quantifying the size distribution of zooplankton. The modified method offers the following new features: 1) prevents animals from settling and clogging with constant bubbling in the sample container; 2) prevents damage to sample animals and facilitates recycling by replacing the built-in peristaltic pump with an external syringe pump, in order to generate negative pressure, creates a steady flow by drawing air from the receiving conical flask (i.e. vacuum pump), and transfers plankton from the sample container toward the main flowcell of the imaging system and finally into the receiving flask; 3) aligns samples in advance of imaging and prevents clogging with an additional flowcell placed ahead of the main flowcell. These modifications were designed to overcome the difficulties applying the standard FlowCAM procedure to studies where the number of individuals per sample is small, and since the FlowCAM can only image a subset of a sample. Our effective recycling procedure allows users to pass the same sample through the FlowCAM many times (i.e. bootstrapping the sample) in order to generate a good size distribution. Although more advanced FlowCAM models are equipped with syringe pump and Field of View (FOV) flowcells which can image all particles passing through the flow field; we note that these advanced setups are very expensive, offer limited syringe and flowcell sizes, and do not guarantee recycling. In contrast, our modifications are inexpensive and flexible. Finally, we compared the biovolumes estimated by automated FlowCAM image analysis versus conventional manual measurements, and found that the size of an individual zooplankter can be estimated by the FlowCAM image system after ground truthing.

  16. Testing a random phase approximation for bounded turbulent flow.

    PubMed

    Ulitsky, M; Clark, T; Turner, L

    1999-05-01

    Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =delta(k(1)+k(2)), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The "randomness" of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single

  17. Testing a random phase approximation for bounded turbulent flow

    NASA Astrophysics Data System (ADS)

    Ulitsky, Mark; Clark, Tim; Turner, Leaf

    1999-05-01

    Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =δ(k1+k2), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The ``randomness'' of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single realization.

  18. Smart licensing and environmental flows: Modeling framework and sensitivity testing

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.

    2011-12-01

    Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.

  19. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    EPA Science Inventory

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular Photoreactor

    E. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai1

    1U.S. EPA, National Risk Management Research Laboratory
    Sustainable Technology Division,...

  20. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    EPA Science Inventory

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular Photoreactor

    E. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai1

    1U.S. EPA, National Risk Management Research Laboratory
    Sustainable Technology Division,...

  1. Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants.

    PubMed

    Schibler, A; Hall, G L; Businger, F; Reinmann, B; Wildhaber, J H; Cernelc, M; Frey, U

    2002-10-01

    Small airway disease in infants is characterised by abnormal lung volume and uneven ventilation distribution. An inert tracer gas washin/washout technique using a pulsed ultrasonic flow meter is presented to measure functional residual capacity (FRC) and ventilation distribution in spontaneously breathing and unsedated infants. With a pulsed ultrasound sent through the main stream of the flow meter, flow, volume and MM of the breathing gas can be calculated. Sulphur hexafluoride was used as a tracer gas. In a mechanical lung model (volume range 53-188 mL) and in 12 healthy infants (aged 38.3+/-9.2 days; mean+/-SD) accuracy and reproducibility of the technique was assessed. Indices of ventilation distribution such as alveolar-based mean dilution number (AMDN) and pulmonary clearance delay (PCD) were calculated. Mean error of volume measurement in the lung model was 0.58% (coefficient of variance (CV) 1.3%). FRC was in the low predicted range for normal infants (18.0+/-2.0 mL x kg(-1)) and highly reproducible (5.5+/-1.7% intra-subject CV). AMDN was 1.63+/-0.15 and PCD was 52.9+/-11.1%. Measurement of functional residual capacity and ventilation distribution using a sulphur hexafluoride washin/washout and an ultrasonic flow meter proved to be highly accurate and reproducible in a lung model and in healthy, spontaneously breathing and unsedated infants.

  2. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  3. A disaggregation theory for predicting concentration gradient distributions in heterogeneous flows

    NASA Astrophysics Data System (ADS)

    Le Borgne, Tanguy; Huck, Peter; Dentz, Marco; Villermaux, Emmanuel

    2016-04-01

    Many transport processes occurring in fluid flows depend on concentration gradients, including a wide range of chemical reactions, such as mixing-driven precipitation, and biological processes, such as chemotaxis. A general framework for predicting the distribution of concentration gradients in heterogeneous flow fields is proposed based on a disaggregation theory. The evolution of concentration fields under the combined action of heterogeneous advection and diffusion is quantified from the analysis of the development and aggregation of elementary lamellar structures, which naturally form under the stretching action of flow fields. Therefore spatial correlations in concentrations can be estimated based on the understanding of the lamellae aggregation process that determine the concentration levels at neighboring spatial locations. Using this principle we quantify the temporal evolution of the concentration gradient Probability Density Functions in heterogeneous Darcy fields for arbitrary Peclet numbers. This approach is shown to provide accurate predictions of concentration gradient distributions for a range of flow systems, including turbulent flows and low Reynolds number porous media flows, for confined and dispersing mixtures.

  4. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  5. Powder flow field distribution with different parameters in coaxial laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Yang, Xichen

    2008-03-01

    A numeric model of velocity and concentration distribution of shield gas-metal powder two phases flow field output by nozzle in laser cladding is established, and it is calculated by FLUENT software. In this model, the influences of momentum and mass transmission in the two phases flow are taken into consideration. The analysis on metal powder flow field velocity and concentration distribution with different process parameters (nozzle exit width w, initial gas flow velocity u and initial powder concentration c at nozzle entrance, angle of inward and outward wall of nozzle α, Φ) is conducted. The calculated results show that w mainly affects concentration and velocity magnitude, u mainly affects the focused position and velocity magnitude, c mainly affects concentration magnitude, α and Φ mainly affects the focused position and concentration magnitude. Under the process parameter conditions: w=1mm, c=0.1, u=3m/s,α=82 ° , Φ=68.5°, the same flow field is measured with DPIV technique. The calculated result agrees with the measured result, which indicates that the established model is reliable. The model can be used to understand the influences with different flow field process parameters and further design the nozzle size.

  6. Distribution of flowing fluids in a confined porous medium under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Guo, Boyun; Holder, Donald W.; Carter, Layne

    2004-08-01

    Predicting distribution of flowing fluids in confined porous media under microgravity conditions is vitally important for optimal design of packed bubble column reactors in space stations. Existing correlations have been found inaccurate when applied to microgravity conditions. On the basis of Darcy's law for two-phase flow, a simple mathematical model has been developed in this study. Sensitivity analyses with the model indicate that for a given combination of wetting and nonwetting fluid flow rates, fluid holdups are controlled by relative permeabilities. The effect of gravity on fluid holdup is influenced by the absolute permeability of the porous medium. Fluid distribution is affected by the temperature-dependent fluid properties and wall effect.

  7. Temperature distribution in internally heated walls of heat exchangers composed of nonnuclear flow passages

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Low, George M

    1951-01-01

    In the walls of heat exchangers composed of noncircular passages, the temperature varies in the circumferential direction because of local variations of the heat-transfer coefficients. A prediction of the magnitude of this variation is necessary in order to determine the region of highest temperature and in order to determine the admissible operating temperatures. A method for the determination of these temperature distributions and of the heat-transfer characteristics of a special type of heat exchanger is developed. The heat exchanger is composed of polygonal flow passages and the passage walls are uniformly heated by internal heat sources. The coolant flow within the passages is assumed to be turbulent. The circumferential variation of the local heat-transfer coefficients is estimated from flow measurements made by Nikuradse, postulating similarity between velocity and temperature fields. Calculations of temperature distributions based on these heat-transfer coefficients are carried out and results for heat exchangers with triangular and rectangular passages are presented.

  8. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-02-09

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight-update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  9. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    SciTech Connect

    Anglart, H.; Nylund, O.; Kurul, N.

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  10. Feasibility of optical computerized tomography for measuring the species concentration distribution of flow fields

    NASA Astrophysics Data System (ADS)

    Chen, Yun-yun; Yu, Yang; Chen, Xuan; Zhang, Ying-ying

    2017-08-01

    In this paper, the feasibility of using optical computerized tomography (OCT) methods for measuring the distribution of species concentration for flow fields is analyzed and discussed. First, feasible methods are chosen for two or three objects composed flow fields from the perspective of the measurable principle. Second, both common gas and plasma are chosen as two typical examples for specific analysis and discussion. The results show that the feasibility and applicable range of OCT methods are related to the temperature, pressure, and species composition of the measured flow fields. Finally, the study indicates that OCT methods are more suitable for measuring the distribution of species composition for common gas rather than plasma. In a word, this study could be helpful for extending the applicable range of OCT methods, which are based on the measurement of the refractive index.

  11. Operability test report for 211BA flow proportional sampler

    SciTech Connect

    Weissenfels, R.D.

    1995-01-01

    This operability report will verify that the 211-BA flow proportional sampler functions as intended by design. The sampler was installed by Project W-007H and is part of BAT/AKART for the BCE liquid effluent stream.

  12. Miners' Misconceptions of Flow Distribution Within Circuits as a Factor Influencing Underground Mining Accidents.

    NASA Astrophysics Data System (ADS)

    Passaro, Perry David

    Misconceptions can be thought of as naive approaches to problem solving that are perceptually appealing but incorrect and inconsistent with scientific evidence (Piaget, 1929). One type of misconception involves flow distributions within circuits. This concept is important because miners' conceptual errors about flow distribution changes within complex circuits may be in part responsible for fatal mine disasters. Based on the theory that misconceptions of flow distribution changes within circuits were responsible for underground mine disasters involving mine ventilation circuits, a series of studies was undertaken with mining engineering students, professional mining engineers, as well as mine foremen, mine supervisors, mine rescue members, mine maintenance personnel, mining researchers and working miners to identify these conceptual errors and errors in mine ventilation procedures. Results indicate that misconceptions of flow distribution changes within circuits exist in over 70 percent of the subjects sampled. It is assumed that these misconceptions of flow distribution changes within circuits result in errors of judgment when miners are faced with inferring and changing ventilation arrangements when two or more mine sections are connected. Furthermore, it is assumed that these misconceptions are pervasive in the mining industry and may be responsible for at least two mine ventilation disasters. The findings of this study are consistent with Piaget's (1929) model of figurative and operative knowledge. This model states that misconceptions are in part due to a lack of knowledge of dynamic transformations and how to apply content information. Recommendations for future research include the development of an interactive expert system for training miners with ventilation arrangements. Such a system would meet the educational recommendations made by Piaget (1973b) by involving a hands-on approach that allows discovery, interaction, the opportunity to make mistakes and

  13. Phase Distribution Characteristics of Bubbly Flow in Mini Pipes Under Normal and Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Hazuku, Tatsuya; Takamasa, Tomoji; Hibiki, Takashi

    2015-03-01

    The axial development of the void fraction, interfacial area concentration and Sauter mean bubble diameter profiles of adiabatic air-water bubbly flows in 5.0 and 3.0 mm-diameter pipes were measured using a stereo image processing method under two gravity conditions, vertical upward (normal gravity) and microgravity. The flow measurements were performed at four axial locations. The axial distances from the pipe inlet ( z) normalized by the pipe diameter ( D) were z/ D = 5.5, 34, 72 and 110 for 5.0 mm-diameter pipe and z/ D = 15, 62, 120 and 188 for 3.0 mm-diameter pipe. Data were collected for superficial gas and liquid velocities respectively in the ranges of 0.00434-0.0500 m/s and 0.205-0.754 m/s. The effect of gravity on the radial distribution of bubbles and the axial development of two-phase flow parameters is discussed in detail, based on the obtained database. The phase distributions in pipe cross-sections were classified into 3 basic patterns: core peak, intermediate peak and wall peak distributions, based on two normalized parameters: a normalized void peak position and a normalized void peak intensity. Phase distribution pattern maps under normal and microgravity conditions were generated for bubbly flows in 5.0 and 3.0 mm-diameter pipes. The data obtained in the current experiment are expected to contribute to the benchmarking of CFD simulation of void fraction and interfacial area concentration distribution patterns in forced convective pipe flow under microgravity conditions.

  14. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  15. Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas I.; Parker, Beth L.; Maldaner, Carlos H.; Mondanos, Michael J.

    2015-09-01

    In recent years, wireline temperature profiling methods have evolved to offer new insight into fractured rock hydrogeology. Important advances in wireline temperature logging in boreholes make use of active line source heating alone and then in combination with temporary borehole sealing with flexible impervious fabric liners to eliminate the effects of borehole cross-connection and recreate natural flow conditions. Here, a characterization technique was developed based on combining fiber optic distributed temperature sensing (DTS) with active heating within boreholes sealed with flexible borehole liners. DTS systems provide a temperature profiling method that offers significantly enhanced temporal resolution when compared with conventional wireline trolling-based techniques that obtain a temperature-depth profile every few hours. The ability to rapidly and continuously collect temperature profiles can better our understanding of transient processes, allowing for improved identification of hydraulically active fractures and determination of relative rates of groundwater flow. The advantage of a sealed borehole environment for DTS-based investigations is demonstrated through a comparison of DTS data from open and lined conditions for the same borehole. Evidence for many depth-discrete active groundwater flow features under natural gradient conditions using active DTS heat pulse testing is presented along with high resolution geologic and geophysical logging and hydraulic datasets. Implications for field implementation are discussed.

  16. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  17. Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow

    NASA Technical Reports Server (NTRS)

    Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.

    1978-01-01

    Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.

  18. Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow

    NASA Technical Reports Server (NTRS)

    Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.

    1978-01-01

    Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.

  19. An information flow analysis of a distributed information system for space medical support.

    PubMed

    Zhang, Tao; Aranzamendez, Gina; Rinkus, Susan; Gong, Yang; Rukab, Jamie; Johnson-Throop, Kathy A; Malin, JaneT; Zhang, Jiajie

    2004-01-01

    In this study, we applied the methodology grounded in human-centered distributed cognition principles to the information flow analysis of a highly intensive, distributed and complex environment--the Biomedical Engineer (BME) console system at NASA Johnson Space Center. This system contains disparate human and artificial agents and artifacts. Users and tasks of this system were analyzed. An ethnographic study and a detailed communication pattern analysis were conducted to gain deeper insight and better understanding of the information flow patterns and the organizational memory of the current BME console system. From this study, we identified some major problems and offered recommendations to improve the efficiency and effectiveness of this system. We believe that this analysis methodology can be used in other distributed information systems, such as a healthcare environment.

  20. Cross-flow deep fat frying and its effect on fry quality distribution and mobility.

    PubMed

    van Koerten, K N; Schutyser, M A I; Somsen, D; Boom, R M

    2016-04-01

    Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed of fries. Fluidization of rectangular fries during frying was characterised with a modified Ergun equation. Mixing was visualized by using two coloured layers of fries and quantified in terms of mixing entropy. Smaller fries mixed quickly during frying, while longer fries exhibited much less mixing, which was attributed to the higher minimum fluidization velocity and slower dehydration for longer fries. The cross-flow velocity was found an important parameter for the homogeneity of the moisture content of fries. Increased oil velocities positively affected moisture distribution due to a higher oil refresh rate. However, inducing fluidization caused the moisture distribution to become unpredictable due to bed instabilities.

  1. Influence of furnace cross section on the flow and velocity distribution in tangential firing furnace

    NASA Astrophysics Data System (ADS)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-04-01

    This paper presents an investigation on the influence of different furnace cross sectional configurations on the flow and velocity distribution in a small-scale tangential firing furnace. The flow and combustion of natural gas in three furnaces of different cross section are simulated numerically using CFD. The results show that velocity distribution is non-uniform along the width and depth of the furnace in rectangular furnace while square cross section gives uniform distribution. The effect of furnace cross section on the tangential velocity is more obvious when the length difference of the width and depth of the furnace is larger. The axial velocity is found to be highly influenced by the furnace cross section.

  2. Spatial distribution of pulmonary blood flow in dogs in increased force environments

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. F.; Ritman, E. L.; Chevalier, P. A.; Sass, D. J.; Wood, E. H.

    1978-01-01

    Spatial distribution of pulmonary blood flow during 2- to 3-min exposures to 6-8 Gy acceleration was studied, using radioactive microspheres in dogs, and compared to previously reported 1 Gy control distributions. Isotope distributions were measured by scintiscanning individual 1-cm-thick cross sections of excised, fixed lungs. Results indicate: (1) the fraction of cardiac output traversing left and right lungs did not change systematically with the duration and magnitude of acceleration; but (2) the fraction is strongly affected by the occurrence or absence of fast deep breaths, which cause an increase or decrease, respectively, in blood flow through the dependent lung; and (3) Gy acceleration caused a significant increase in relative pulmonary vascular resistance (PVR) in nondependent and dependent regions of the lung concurrent with a decrease in PVR in the midsagittal region of the thorax.

  3. Planar Array Sensor for High-speed Component Distribution Imaging in Fluid Flow Applications

    PubMed Central

    da Silva, Marco Jose; Sühnel, Tobias; Schleicher, Eckhard; Vaibar, Roman; Lucas, Dirk; Hampel, Uwe

    2007-01-01

    A novel planar array sensor based on electrical conductivity measurements is presented which may be applied to visualize surface fluid distributions. The sensor is manufactured using printed-circuit board fabrication technology and comprises of 64 × 64 interdigital sensing structures. An associated electronics measures the electrical conductivity of the fluid over each individual sensing structure in a multiplexed manner by applying a bipolar excitation voltage and by measuring the electrical current flowing from a driver electrode to a sensing electrode. After interrogating all sensing structures, a two-dimensional image of the conductivity distribution over a surface is obtained which in turn represents fluid distributions over sensor's surface. The employed electronics can acquire up to 2500 frames per second thus being able to monitor fast transient phenomena. The system has been evaluated regarding measurement accuracy and depth sensitivity. Furthermore, the application of the sensor in the investigation of two different flow applications is presented.

  4. Spatial distribution of pulmonary blood flow in dogs in increased force environments

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. F.; Ritman, E. L.; Chevalier, P. A.; Sass, D. J.; Wood, E. H.

    1978-01-01

    Spatial distribution of pulmonary blood flow during 2- to 3-min exposures to 6-8 Gy acceleration was studied, using radioactive microspheres in dogs, and compared to previously reported 1 Gy control distributions. Isotope distributions were measured by scintiscanning individual 1-cm-thick cross sections of excised, fixed lungs. Results indicate: (1) the fraction of cardiac output traversing left and right lungs did not change systematically with the duration and magnitude of acceleration; but (2) the fraction is strongly affected by the occurrence or absence of fast deep breaths, which cause an increase or decrease, respectively, in blood flow through the dependent lung; and (3) Gy acceleration caused a significant increase in relative pulmonary vascular resistance (PVR) in nondependent and dependent regions of the lung concurrent with a decrease in PVR in the midsagittal region of the thorax.

  5. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  6. Using borehole flow logging to optimize hydraulic-test procedures in heterogeneous fractured aquifers

    USGS Publications Warehouse

    Paillet, F.L.

    1995-01-01

    Hydraulic properties of heterogeneous fractured aquifers are difficult to characterize, and such characterization usually requires equipment-intensive and time-consuming applications of hydraulic testing in situ. Conventional coring and geophysical logging techniques provide useful and reliable information on the distribution of bedding planes, fractures and solution openings along boreholes, but it is often unclear how these locally permeable features are organized into larger-scale zones of hydraulic conductivity. New boreholes flow-logging equipment provides techniques designed to identify hydraulically active fractures intersecting boreholes, and to indicate how these fractures might be connected to larger-scale flow paths in the surrounding aquifer. Potential complications in interpreting flowmeter logs include: 1) Ambient hydraulic conditions that mask the detection of hydraulically active fractures; 2) Inability to maintain quasi-steady drawdowns during aquifer tests, which causes temporal variations in flow intensity to be confused with inflows during pumping; and 3) Effects of uncontrolled background variations in hydraulic head, which also complicate the interpretation of inflows during aquifer tests. Application of these techniques is illustrated by the analysis of cross-borehole flowmeter data from an array of four bedrock boreholes in granitic schist at the Mirror Lake, New Hampshire, research site. Only two days of field operations were required to unambiguously identify the few fractures or fracture zones that contribute most inflow to boreholes in the CO borehole array during pumping. Such information was critical in the interpretation of water-quality data. This information also permitted the setting of the available string of two packers in each borehole so as to return the aquifer as close to pre-drilling conditions as possible with the available equipment.

  7. RUNS TEST FOR A CIRCULAR DISTRIBUTION AND A TABLE OF PROBABILITIES

    DTIC Science & Technology

    of the well-known Wald - Wolfowitz runs test for a distribution on a straight line. The primary advantage of the proposed test is that it minimizes the number of assumptions on the theoretical distribution.

  8. Assessment of the debris-flow susceptibility in tropical mountains using clast distribution patterns

    NASA Astrophysics Data System (ADS)

    de Carvalho Faria Lima Lopes, Laís; de Almeida Prado Bacellar, Luís; Amorim Castro, Paulo de Tarso

    2016-12-01

    Channel morphometric parameters and clast distribution patterns in selected basins of the Ferriferous Quadrangle tropical mountains, Brazil, were analyzed in order to assess susceptibility to debris flows. Median bed surface clast size (D50) in the main stream channel of these basins shows a coarsening downstream trend with drainage areas of up to 6 km2, which is attributed to debris flow dominated-channels by some authors. The composition and roundness of the bed load, clast sand, and the presence of allochthonous large boulders throughout the channels also suggest the occurrence of past debris flow in the region. Luminescence Optically Stimulated (LOE) dating points out that debris flow could have occurred as a consequence of climate changes in the Late Pleistocene and Holocene and it can now be triggered by deforestation or extreme rainfall events. There has not been any record of past debris flow in the study area, or in other mountainous regions of Brazil where debris flows have recently occurred. Thus, the adopted approach can be useful to assess debris flow susceptibility in this and other similar areas.

  9. Time-dependent coronary blood flow distribution in left ventricular wall.

    PubMed

    Beyar, R; Sideman, S

    1987-02-01

    A mathematical model of the coronary circulation in the left ventricular (LV) wall, which describes the time-dependent local blood perfusion throughout the myocardium and the coronary flow in the epicardial vessels, is presented. The myocardial perfusion is essentially controlled by the intramyocardial resistance and the coronary pressure driving force, whereas the epicardial arterial flow is dominated by the epicardial and intramyocardial arterial capacitance and the local transmural pressure on the vessels. The temporal and spatial intramural pressure [P im(y,t)], calculated based on a nested-shell spheroidal model of the LV, is used to evaluate the local intramural resistance to flow and the corresponding zero flow pressure. The calculation of the instantaneous flow in each layer is based on a local, time-dependent modification of the back-pressure concept. A function representing the local tonus of the small blood vessels [T wf(y)] is used to adjust the average coronary flow rate to the metabolic demand of each layer. The calculated results are compared with experimental data, and the assumptions of the model are examined against a variety of experimental conditions. The model provides a qualitative tool for comprehending the distributed flow phenomenon within the myocardium and its relation to cardiac mechanics and autoregulation.

  10. Population distribution around the Nevada Test Site, 1984

    SciTech Connect

    Smith, D.D.; Coogan, J.S.

    1984-08-01

    The Environmental Monitoring Systems Laboratory (EMSL-LV) conducts an offsite radiological safety program outside the boundaries of the Nevada Test Site. As part of this program, the EMSL-LV maintains a comprehensive and current listing of all rural offsite residents and dairy animals within the controllable sectors (areas where the EMSL-LV could implement protective or remedial actions that would assure public safety). This report was produced to give a brief overview of the population distribution and information on the activities within the controllable sectors. Obviously the numbers of people in a sector change dependent upon the season of the year, and such diverse information as the price of minerals which relates to the opening and closing of mining operations. Currently, the controllable sectors out to 200 kilometers from the Control Point on the NTS are considered to be the entire northeast, north-northeast, north, north-northwest, west-northwest sectors and portions of the east and east-northeast sectors. The west-southwest and south-southwest sections are considered controllable out to 40 to 80 kilometers. No major population centers or dairy farms lie within these sectors. 7 references, 5 figures, 2 tables.

  11. Effect of nonuniform geometries on flow distributions and heat transfer characteristics for arrays of impinging jets

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Tseng, H. H.

    1984-01-01

    Two-dimensional arrays of circular jets impinging on a surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the impingement surface. Experimental results for the effects of streamwise nonuniform array geometries on streamwise flow distributions and heat transfer characteristics are presented. A flow distribution model for nonuniform arrays is developed and validated by comparison with the measured flow distributions. The model is then employed to compare nonuniform array streamwise resolved heat transfer coefficient data with previously reported uniform array data and with a previously developed correlation based on the uniform array data. It was found that uniform array results can, in general, serve as a satisfactory basis from which to predict heat transfer coefficients at individual spanwise rows of nonuniform arrays. However, significant differences were observed in some cases over the first one or two rows downstream of the geometric transition line of the nonuniform array.

  12. Concentration distribution of environmental dispersion in a wetland flow: Extended solution

    NASA Astrophysics Data System (ADS)

    Jiang, Wei-Quan; Wang, Ping; Chen, G. Q.

    2017-06-01

    Hydrological processes of contaminant transport in wetland flows are characterized by environmental dispersion. For concentration distribution of scalar dispersion, the preliminary estimate of vertical distribution (Wu et al., 2015) on small time scale is rigorously extended to account for high order effects as skewness and kurtosis. Based on a combination of Aris' method of concentration moments and Gill's generalized dispersion model, up to fourth order terms of vertical distribution functions and full-time two-dimensional concentration distribution are derived. The increments of damping factor, mainly representing the density of vegetation in wetlands, is shown to strengthen the mean distribution asymmetry and reduce the longitudinal dispersivity (with respect to skewness and kurtosis), and to increase the non-uniformity of vertical distribution. Therefore, dense vegetation corresponding to a large damping factor will postpone the time when Taylor's dispersion model holds, and the first order approximation becomes rough on small time scale, demanding higher order modifications. The results provide more detailed and more accurate analytical solution for the typical environmental dispersion in wetland flows.

  13. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  14. 10 CFR Appendix C to Subpart C of... - Sampling Plan for Enforcement Testing of Distribution Transformers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Sampling Plan for Enforcement Testing of Distribution Transformers C Appendix C to Subpart C of Part 429 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Testing of Distribution Transformers (a) When testing distribution transformers, the number of units...

  15. 10 CFR Appendix C to Subpart C of... - Sampling Plan for Enforcement Testing of Distribution Transformers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Sampling Plan for Enforcement Testing of Distribution Transformers C Appendix C to Subpart C of Part 429 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Testing of Distribution Transformers (a) When testing distribution transformers, the number of units...

  16. 10 CFR Appendix C to Subpart C of... - Sampling Plan for Enforcement Testing of Distribution Transformers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Sampling Plan for Enforcement Testing of Distribution Transformers C Appendix C to Subpart C of Part 429 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Testing of Distribution Transformers (a) When testing distribution transformers, the number of units...

  17. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  18. Changes in distribution of fine sediments in the hyporheic zone during high flow events

    NASA Astrophysics Data System (ADS)

    Kasahara, T.; Yasuda, Y.; Otsuki, K.

    2013-12-01

    Streambed sediments a