Sample records for flow dynamic environment

  1. High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment

    NASA Technical Reports Server (NTRS)

    Herda, D. A.; Gross, R. S.

    1995-01-01

    The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.

  2. Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms

    NASA Astrophysics Data System (ADS)

    Taylor, Brian Kyle

    The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.

  3. Entanglement revive and information flow within the decoherent environment.

    PubMed

    Shi, Jia-Dong; Wang, Dong; Ye, Liu

    2016-08-10

    In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution.

  4. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    NASA Technical Reports Server (NTRS)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  5. Fisher information due to a phase noisy laser under non-Markovian environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk

    2014-12-15

    More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behaviormore » and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients.« less

  6. Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms

    NASA Astrophysics Data System (ADS)

    Matthews, Megan; Sponberg, Simon

    2017-11-01

    Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.

  7. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    DTIC Science & Technology

    2014-08-06

    dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex

  8. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  9. The dynamic interaction of a marine hydrokinetic turbine with its environment

    NASA Astrophysics Data System (ADS)

    Kolekar, Nitin; Banerjee, Arindam

    2014-11-01

    Unlike wind turbines, marine hydrokinetic and tidal turbines operate in a bounded flow environment where flow is constrained between deformable free surface and fixed river/sea bed. The proximity to free surface modifies the wake dynamics behind the turbine. Further, size & shape of this wake is not constant but depends on multiple factors like flow speed, turbine blade geometry, and rotational speed. In addition, the turbulence characteristics of incoming flow also affects the flow field and hence the performance. The current work aims at understanding the dynamic interaction of a hydrokinetic turbine (HkT) with free surface and flow turbulence through experimental investigations. Results will be presented from experimental study carried out in an open channel test facility at Lehigh University with a three bladed, constant chord, zero twist HkT under various operating conditions. Froude number (ratio of characteristic flow velocity to gravitational wave velocity) is used to characterize the effect of free surface proximity on turbine performance. Experimental results will be compared with analytical models based on blade element momentum theory. Characterization of wake meandering and flow around turbine will be performed using a stereo-Particle Image Velocimetry technique.

  10. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  11. Predicting organic floc transport dynamics in shallow aquatic ecosystems: Insights from the field, the laboratory, and numerical modeling

    USGS Publications Warehouse

    Harvey, Judson W.; Noe, Gregory B.; Larsen, Laurel G.; Crimaldi, John P.

    2009-01-01

    Transport of particulate organic material can impact watershed sediment and nutrient budgets and can alter the geomorphologic evolution of shallow aquatic environments. Prediction of organic aggregate (“floc”) transport in these environments requires knowledge of how hydraulics and biota affect the entrainment, settling, and aggregation of particles. This study evaluated the aggregation and field transport dynamics of organic floc from a low‐gradient floodplain wetland with flow‐parallel ridges and sloughs in the Florida Everglades. Floc dynamics were evaluated in a rotating annular flume and in situ in the field. Under present managed conditions in the Everglades, floc is not entrained by mean flows but is suspended via biological production in the water column and bioturbation. Aggregation was a significant process affecting Everglades floc at high flume flow velocities (7.0 cm s−1) and during recovery from high flow; disaggregation was not significant for the tested flows. During moderate flows when floc dynamics are hydrodynamically controlled, it is possible to model floc transport using a single “operative floc diameter” that accurately predicts fluxes downstream and to the bed. In contrast, during high flows and recovery from high flows, aggregation dynamics should be simulated. When entrained by flow in open‐water sloughs, Everglades floc will be transported downstream in multiple deposition and reentrainment events but will undergo net settling when transported onto ridges of emergent vegetation. We hypothesize that net transport of material from open to vegetated areas during high flows is critical for forming and maintaining distinctive topographic patterning in the Everglades and other low‐gradient floodplains.

  12. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  13. Dynamic switching enables efficient bacterial colonization in flow.

    PubMed

    Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert

    2018-05-22

    Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.

  14. Nonlinear optimal control policies for buoyancy-driven flows in the built environment

    NASA Astrophysics Data System (ADS)

    Nabi, Saleh; Grover, Piyush; Caulfield, Colm

    2017-11-01

    We consider optimal control of turbulent buoyancy-driven flows in the built environment, focusing on a model test case of displacement ventilation with a time-varying heat source. The flow is modeled using the unsteady Reynolds-averaged equations (URANS). To understand the stratification dynamics better, we derive a low-order partial-mixing ODE model extending the buoyancy-driven emptying filling box problem to the case of where both the heat source and the (controlled) inlet flow are time-varying. In the limit of a single step-change in the heat source strength, our model is consistent with that of Bower et al.. Our model considers the dynamics of both `filling' and `intruding' added layers due to a time-varying source and inlet flow. A nonlinear direct-adjoint-looping optimal control formulation yields time-varying values of temperature and velocity of the inlet flow that lead to `optimal' time-averaged temperature relative to appropriate objective functionals in a region of interest.

  15. Ohm's law in the fast lane: general relatiivistic charge dynamics

    NASA Technical Reports Server (NTRS)

    Meier, D.

    2004-01-01

    Fully relativistic and causal equations for the flow of charge in curved spacetime are derived. It is believed that this is the first set of equations to be published that correctly describes the flow of charge, as well as the evolution of the electromagnetic field, in highly dynamical relativistic environments on timescales much shorter than the collapse time (GM/c3).

  16. A Dynamic Process Model for Optimizing the Hospital Environment Cash-Flow

    NASA Astrophysics Data System (ADS)

    Pater, Flavius; Rosu, Serban

    2011-09-01

    In this article is presented a new approach to some fundamental techniques of solving dynamic programming problems with the use of functional equations. We will analyze the problem of minimizing the cost of treatment in a hospital environment. Mathematical modeling of this process leads to an optimal control problem with a finite horizon.

  17. Characterising Tidal Flow Within AN Energetic Tidal Environment

    NASA Astrophysics Data System (ADS)

    Neill, S. P.; Goward Brown, A.; Lewis, M. J.

    2016-02-01

    The Pentland Firth is a highly energetic and complex tidal strait separating the north of Scotland with the Orkney Islands and is a key location for tidal energy exploitation. Topographic features including islands and headlands, combined with bathymetric complexities within the Pentland Firth create turbulent hydrodynamic flows which are difficult to observe. Site selection in tidal energy environments historically focuses on tidal current magnitude. Without consideration for the more complex hydrodynamics of tidal energy environments tidal energy developers may miss the opportunity to tune their devices or create environment specific tidal energy converters in order to harness the greatest potential from site. Fully characterising these tidal energy environments ensures economic energy extraction. Understanding the interaction of energy extraction with the environment will reduce uncertainty in site selection and allow mitigation of any potential environmental concerns. We apply the 3D ROMS model to the Pentland Firth with the aim of resolving uncertainties within tidal energy resource assessment. Flow magnitudes and directions are examined with a focus on tidal phasing and asymmetry and application to sediment dynamics. Using the ROMS model, it is possible to determine the extent to which the tidal resource varies temporally and spatially with tidal energy extraction. Accurately modelling the tidal dynamics within this environment ensures that potential consequences of tidal energy extraction on the surrounding environment are better understood.

  18. sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2014-07-01

    Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).

  19. Assessment of zero-equation SGS models for simulating indoor environment

    NASA Astrophysics Data System (ADS)

    Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.

    2016-12-01

    The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.

  20. A Navier-Stokes phase-field crystal model for colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  1. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  2. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.

    PubMed

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-13

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.

  3. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  4. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  5. In vitro studying corrosion behavior of porous titanium coating in dynamic electrolyte.

    PubMed

    Chen, Xuedan; Fu, Qingshan; Jin, Yongzhong; Li, Mingtian; Yang, Ruisong; Cui, Xuejun; Gong, Min

    2017-01-01

    Porous titanium (PT) is considered as a promising biomaterials for orthopedic implants. Besides biocompatibility and mechanical properties, corrosion resistance in physiological environment is the other important factor affecting the long stability of an implant. In order to investigate the corrosion behavior of porous titanium implants in a dynamic physiological environment, a dynamic circle system was designed in this study. Then a titanium-based implant with PT coating was fabricated by plasma spraying. The corrosion resistance of PT samples in flowing 0.9% NaCl solution was evaluated by electrochemical measurements. Commercial pure solid titanium (ST) disc was used as a control. The studies of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the pores in the PT play a negetive part in corrosion resistance and the flowing electrolyte can increase the corrosive rate of all titanium samples. The results suggest that pore design of titanium implants should pay attention to the effect of dynamic process of a physiological environment on the corrosion behavior of implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  7. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  8. A study of dynamical behavior of space environment

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  9. A spacecraft's own ambient environment: The role of simulation-based research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketsdever, Andrew D.; Gimelshein, Sergey

    2014-12-09

    Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over largemore » pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.« less

  10. Prediction of X-33 Engine Dynamic Environments

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    1999-01-01

    Rocket engines normally have two primary sources of dynamic excitation. The first source is the injector and the combustion chambers that generate wide band random vibration. The second source is the turbopumps, which produce lower levels of wide band random vibration as well as sinusoidal vibration at frequencies related to the rotating speed and multiples thereof. Additionally, the pressure fluctuations due to flow turbulence and acoustics represent secondary sources of excitation. During the development stage, in order to design/size the rocket engine components, the local dynamic environments as well as dynamic interface loads have to be defined.

  11. NetFlow Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet Jr., Thomas F; Beyeler, Walter E; Vanwestrienen, Dirk

    NetFlow Dynamics is a web-accessible analysis environment for simulating dynamic flows of materials on model networks. Performing a simulation requires both the NetFlow Dynamics application and a network model which is a description of the structure of the nodes and edges of a network including the flow capacity of each edge and the storage capacity of each node, and the sources and sinks of the material flowing on the network. NetFlow Dynamics consists of databases for storing network models, algorithms to calculate flows on networks, and a GIS-based graphical interface for performing simulations and viewing simulation results. Simulated flows aremore » dynamic in the sense that flows on each edge of the network and inventories at each node change with time and can be out of equilibrium with boundary conditions. Any number of network models could be simulated using Net Flow Dynamics. To date, the models simulated have been models of petroleum infrastructure. The main model has been the National Transportation Fuels Model (NTFM), a network of U.S. oil fields, transmission pipelines, rail lines, refineries, tank farms, and distribution terminals. NetFlow Dynamics supports two different flow algorithms, the Gradient Flow algorithm and the Inventory Control algorithm, that were developed specifically for the NetFlow Dynamics application. The intent is to add additional algorithms in the future as needed. The ability to select from multiple algorithms is desirable because a single algorithm never covers all analysis needs. The current algorithms use a demand-driven capacity-constrained formulation which means that the algorithms strive to use all available capacity and stored inventory to meet desired flows to sinks, subject to the capacity constraints of each network component. The current flow algorithms are best suited for problems in which a material flows on a capacity-constrained network representing a supply chain in which the material supplied can be stored at each node of the network. In the petroleum models, the flowing materials are crude oil and refined products that can be stored at tank farms, refineries, or terminals (i.e. the nodes of the network). Examples of other network models that could be simulated are currency flowing in a financial network, agricultural products moving to market, or natural gas flowing on a pipeline network.« less

  12. Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling

    NASA Astrophysics Data System (ADS)

    Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.

    2017-12-01

    Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.

  13. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly

    PubMed Central

    Hanski, Ilkka A.

    2011-01-01

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506

  14. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  15. Virtual Environment for Surgical Room of the Future.

    DTIC Science & Technology

    1995-10-01

    Design; 1. wire frame Dynamic Interaction 2. surface B. Acoustic Three-Dimensional Modeling; 3. solid based on radiosity modeling B. Dynamic...infection control of people and E. Rendering and Shadowing equipment 1. ray tracing D. Fluid Flow 2. radiosity F. Animation OBJECT RECOGNITION COMMUNICATION

  16. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA

    Treesearch

    Daniel J. Miller; Kelly M. Burnett

    2008-01-01

    Debris flows are important geomorphic agents in mountainous terrains that shape channel environments and add a dynamic element to sediment supply and channel disturbance. Identification of channels susceptible to debris-flow inputs of sediment and organic debris, and quantification of the likelihood and magnitude of those inputs, are key tasks for characterizing...

  17. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  18. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  19. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  20. Big data analytics : predicting traffic flow regimes from simulated connected vehicle messages using data analytics and machine learning.

    DOT National Transportation Integrated Search

    2016-12-25

    The key objectives of this study were to: 1. Develop advanced analytical techniques that make use of a dynamically configurable connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual environment and examine ...

  1. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  2. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  3. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  4. Spontaneous Contractility-Mediated Cortical Flow Generates Cell Migration in Three-Dimensional Environments

    PubMed Central

    Hawkins, Rhoda J.; Poincloux, Renaud; Bénichou, Olivier; Piel, Matthieu; Chavrier, Philippe; Voituriez, Raphaël

    2011-01-01

    We present a model of cell motility generated by actomyosin contraction of the cell cortex. We identify, analytically, dynamical instabilities of the cortex and show that they yield steady-state cortical flows, which, in turn, can induce cell migration in three-dimensional environments. This mechanism relies on the regulation of contractility by myosin, whose transport is explicitly taken into account in the model. Theoretical predictions are compared to experimental data of tumor cells migrating in three-dimensional matrigel and suggest that this mechanism could be a general mode of cell migration in three-dimensional environments. PMID:21889440

  5. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  6. Negotiating Energy Dynamics through Embodied Action in a Materially Structured Environment

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Flood, Virginia J.; McKagan, Sarah B.; Robertson, Amy D.; Seeley, Lane; Wittmann, Michael C.; Vokos, Stamatis

    2013-01-01

    We provide evidence that a learning activity called Energy Theater engages learners with key conceptual issues in the learning of energy, including disambiguating matter flow and energy flow and theorizing mechanisms for energy transformation. A participationist theory of learning, in which learning is indicated by changes in speech and behavior,…

  7. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  8. Emplacement of Basaltic Lava Flows: the Legacy of GPL Walker

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.

    2005-12-01

    Through his early field measurements of lava flow morphology, G.P.L. Walker established a framework for examination of the dynamics of lava flow emplacement that is still in place today. I will examine this legacy as established by three early papers: (1) his 1967 paper, where he defined a relationship between the thickness of recent Etna lava flows and the slope over which they flowed, a relationship that he ascribed to lava viscosity; (2) his 1971 paper, which defined a relationship between lava flux and the formation of simple and compound flow units that he used to infer high effusion rates for the emplacement of some flood basalt lavas; and (3) his often-cited 1973 paper, which related the length of lava flows to their average effusion rate. These three papers, all similar in their basic approach of using field measurements of lava flow morphology to extract fundamental relationships between eruption conditions (magma flux and rheology) and emplacement style (flow length and thickness), firmly established the relationship between flow morphology and emplacement dynamics that has since been widely applied not only to subaerial lava flows, but also to the interpretation of flows in submarine and planetary environments. Important extensions of these concepts have been provided by improved field observation methods, particularly for analysis of flowing lava, by laboratory measurements of lava rheology, by the application of analog experiments to lava flow dynamics, and by steady improvement of numerical techniques to model the flow of lava over complex terrain. The real legacy of G.P.L. Walker's field measurement approach, however, may lie in the future, as new topographic measurement techniques such as LIDAR hold exciting promise for truly quantitative analysis of lava flow morphologies and their relationship to flow dynamics.

  9. Flow and storage in groundwater systems.

    PubMed

    Alley, William M; Healy, Richard W; LaBaugh, James W; Reilly, Thomas E

    2002-06-14

    The dynamic nature of groundwater is not readily apparent, except where discharge is focused at springs or where recharge enters sinkholes. Yet groundwater flow and storage are continually changing in response to human and climatic stresses. Wise development of groundwater resources requires a more complete understanding of these changes in flow and storage and of their effects on the terrestrial environment and on numerous surface-water features and their biota.

  10. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.

    2018-05-01

    It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.

  11. Local and Global Bifurcations of Flow Fields During Physical Vapor Transport: Application to a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Singh, N. B.; Glicksman, M. E.

    1996-01-01

    The local bifurcation of the flow field, during physical vapor transport for a parametric range of experimental interest, shows that its dynamical state ranges from steady to aperiodic. Comparison of computationally predicted velocity profiles with laser doppler velocimetry measurements shows reasonable agreement in both magnitude and planform. Correlation of experimentally measured crystal quality with the predicted dynamical state of the flow field shows a degradation of quality with an increase in Rayleigh number. The global bifurcation of the flow field corresponding to low crystal quality indicates the presence of a traveling wave for Ra = 1.09 x 10(exp 5). For this Rayleigh number threshold a chaotic transport state occurs. However, a microgravity environment for this case effectively stabilizes the flow to diffusive-advective and provides the setting to grow crystals with optimal quality.

  12. Fiber-Optic/Photoelastic Flow Sensors

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.

    1995-01-01

    Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.

  13. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].

    PubMed

    Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong

    2002-06-01

    Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.

  14. Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton

    PubMed Central

    Barry, Michael T.; Rusconi, Roberto; Guasto, Jeffrey S.; Stocker, Roman

    2015-01-01

    Fluid flow, ubiquitous in natural and man-made environments, has the potential to profoundly impact the transport of microorganisms, including phytoplankton in aquatic habitats and bioreactors. Yet, the effect of ambient flow on the swimming behaviour of phytoplankton has remained poorly understood, largely owing to the difficulty of observing cell–flow interactions at the microscale. Here, we present microfluidic experiments where we tracked individual cells for four species of motile phytoplankton exposed to a spatially non-uniform fluid shear rate, characteristic of many flows in natural and artificial environments. We observed that medium-to-high mean shear rates (1–25 s−1) produce heterogeneous cell concentrations in the form of regions of accumulation and regions of depletion. The location of these regions relative to the flow depends on the cells' propulsion mechanism, body shape and flagellar arrangement, as captured by an effective aspect ratio. Species having a large effective aspect ratio accumulated in the high-shear regions, owing to shear-induced alignment of the swimming orientation with the fluid streamlines. Species having an effective aspect ratio close to unity exhibited little preferential accumulation at low-to-moderate flow rates, but strongly accumulated in the low-shear regions under high flow conditions, potentially owing to an active, behavioural response of cells to shear. These observations demonstrate that ambient fluid flow can strongly affect the motility and spatial distribution of phytoplankton and highlight the rich dynamics emerging from the interaction between motility, morphology and flow. PMID:26538558

  15. Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization

    PubMed Central

    Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.

    2004-01-01

    An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663

  16. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    NASA Astrophysics Data System (ADS)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  17. The more things change

    Treesearch

    Earl Finbar Murphy

    1976-01-01

    It is a truism for the living environment that life cannot sustain itself on its own wastes. The environment has self-cleansing properties which permit the dilution, reconstitution, and reuse by other natural processes of waste. These self-operative properties are what produces the flow of dynamic change that renews what is renewable within nature. The forces for...

  18. Mixing-induced quantum non-Markovianity and information flow

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  19. Flowfield visualization for SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, Robert P.

    1988-01-01

    The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.

  20. Automating Network Node Behavior Characterization by Mining Communication Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    Enterprise networks of scale are complex, dynamic computing environments that respond to evolv- ing business objectives and requirements. Characteriz- ing system behaviors in these environments is essential for network management and cyber security operations. Characterization of system’s communication is typical and is supported using network flow information (NetFlow). Related work has characterized behavior using theoretical graph metrics; results are often difficult to interpret by enterprise staff. We propose a different approach, where flow information is mapped to sets of tags that contextualize the data in terms of network principals and enterprise concepts. Frequent patterns are then extracted and are expressedmore » as behaviors. Behaviors can be com- pared, identifying systems expressing similar behaviors. We evaluate the approach using flow information collected by a third party.« less

  1. MHD Instability and Turbulence in the Tachocline

    NASA Technical Reports Server (NTRS)

    Werne, Joe; Wagner, William J. (Technical Monitor)

    2003-01-01

    The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.

  2. Phloem-sap-dynamics sensor device for monitoring photosynthates transportation in plant shoots

    NASA Astrophysics Data System (ADS)

    Yano, Yuya; Ono, Akihito; Terao, Kyohei; Suzuki, Takaaki; Takao, Hidekuni; Kobayashi, Tsuyoshi; Kataoka, Ikuo; Shimokawa, Fusao

    2018-06-01

    We propose a microscale phloem-sap-dynamics sensor device to obtain the index of an internal plant condition regarding the transportation of primary photosynthates in phloem, which is an essential indicator of stable crop production under controlled-growth environments. In detail, we integrated a conventional Granier sensor with a thermal-flow sensor and devised an improved sensor device to quantify such index, including the information on velocity and direction of the phloem-sap flow using the microelectromechanical systems (MEMS) technology. The experimental results showed that although the proposed sensor device was approximately only 1/10 the size of the conventional Granier sensor, it could generate an output nearly equal to that of the conventional sensor. Furthermore, experiments using mimicked plants demonstrated that the proposed device could measure minute flow velocities in the range of 0–200 µm/s, which are generally known as the phloem-sap flow velocity, and simultaneously detect the flow direction.

  3. Analytical Model For Fluid Dynamics In A Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.

  4. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.

    PubMed

    Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L

    2016-02-01

    The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth.

  5. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng

    2016-11-01

    To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.

  6. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    NASA Technical Reports Server (NTRS)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  7. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  8. Simulation of RCC Crack Growth Due to Carbon Oxidation in High-Temperature Gas Environments

    NASA Technical Reports Server (NTRS)

    Titov, E. V.; Levin, D. A.; Picetti, Donald J.; Anderson, Brian P.

    2009-01-01

    The carbon wall oxidation technique coupled with a CFD technique was employed to study the flow in the expanding crack channel caused by the oxidation of the channel carbon walls. The recessing 3D surface morphing procedure was developed and tested in comparison with the arcjet experimental results. The multi-block structured adaptive meshing was used to model the computational domain changes due to the wall recession. Wall regression rates for a reinforced carbon-carbon (RCC) samples, that were tested in a high enthalpy arcjet environment, were computationally obtained and used to assess the channel expansion. The test geometry and flow conditions render the flow regime as the transitional to continuum, therefore Navier-Stokes gas dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with bare carbon. The predicted channel growth was found to agree with arcjet observations. Local gas flow field results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight.

  9. Generation of Martian chaos and channels by debris flows

    NASA Technical Reports Server (NTRS)

    Nummedal, D.; Prior, D. B.

    1981-01-01

    A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.

  10. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  11. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

  12. Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.

    2007-01-01

    The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.

  13. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  14. CFCC: A Covert Flows Confinement Mechanism for Virtual Machine Coalitions

    NASA Astrophysics Data System (ADS)

    Cheng, Ge; Jin, Hai; Zou, Deqing; Shi, Lei; Ohoussou, Alex K.

    Normally, virtualization technology is adopted to construct the infrastructure of cloud computing environment. Resources are managed and organized dynamically through virtual machine (VM) coalitions in accordance with the requirements of applications. Enforcing mandatory access control (MAC) on the VM coalitions will greatly improve the security of VM-based cloud computing. However, the existing MAC models lack the mechanism to confine the covert flows and are hard to eliminate the convert channels. In this paper, we propose a covert flows confinement mechanism for virtual machine coalitions (CFCC), which introduces dynamic conflicts of interest based on the activity history of VMs, each of which is attached with a label. The proposed mechanism can be used to confine the covert flows between VMs in different coalitions. We implement a prototype system, evaluate its performance, and show that our mechanism is practical.

  15. 4D-SFM Photogrammetry for Monitoring Sediment Dynamics in a Debris-Flow Catchment: Software Testing and Results Comparison

    NASA Astrophysics Data System (ADS)

    Cucchiaro, S.; Maset, E.; Fusiello, A.; Cazorzi, F.

    2018-05-01

    In recent years, the combination of Structure-from-Motion (SfM) algorithms and UAV-based aerial images has revolutionised 3D topographic surveys for natural environment monitoring, offering low-cost, fast and high quality data acquisition and processing. A continuous monitoring of the morphological changes through multi-temporal (4D) SfM surveys allows, e.g., to analyse the torrent dynamic also in complex topography environment like debris-flow catchments, provided that appropriate tools and procedures are employed in the data processing steps. In this work we test two different software packages (3DF Zephyr Aerial and Agisoft Photoscan) on a dataset composed of both UAV and terrestrial images acquired on a debris-flow reach (Moscardo torrent - North-eastern Italian Alps). Unlike other papers in the literature, we evaluate the results not only on the raw point clouds generated by the Structure-from- Motion and Multi-View Stereo algorithms, but also on the Digital Terrain Models (DTMs) created after post-processing. Outcomes show differences between the DTMs that can be considered irrelevant for the geomorphological phenomena under analysis. This study confirms that SfM photogrammetry can be a valuable tool for monitoring sediment dynamics, but accurate point cloud post-processing is required to reliably localize geomorphological changes.

  16. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  17. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  18. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  19. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE PAGES

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; ...

    2016-02-04

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  20. Drop "impact" on an airfoil surface.

    PubMed

    Wu, Zhenlong

    2018-06-01

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Unsteady bio-fluid dynamics in flying and swimming

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  2. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.

  3. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  4. Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Borrelli, Salvatore

    2011-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.

  5. Aerothermodynamics of blunt body entry vehicles

    NASA Astrophysics Data System (ADS)

    Hollis, Brian R.; Borrelli, Salvatore

    2012-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of computational fluid dynamics (CFD) code predictions.

  6. Computations of unsteady multistage compressor flows in a workstation environment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.

    1992-01-01

    High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.

  7. Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)

    1981-01-01

    Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.

  8. NOW: A Workflow Language for Orchestration in Nomadic Networks

    NASA Astrophysics Data System (ADS)

    Philips, Eline; van der Straeten, Ragnhild; Jonckers, Viviane

    Existing workflow languages for nomadic or mobile ad hoc networks do not offer adequate support for dealing with the volatile connections inherent to these environments. Services residing on mobile devices are exposed to (temporary) network failures, which should be considered the rule rather than the exception. This paper proposes a nomadic workflow language built on top of an ambient-oriented programming language which supports dynamic service discovery and communication primitives resilient to network failures. Our proposed language provides high level workflow abstractions for control flow and supports rich network and service failure detection and handling through compensating actions. Moreover, we introduce a powerful variable binding mechanism which enables dynamic data flow between services in a nomadic environment. By adding this extra layer of abstraction on top of an ambient-oriented programming language, the application programmer is offered a flexible way to develop applications for nomadic networks.

  9. Predictions of Bedforms in Tidal Inlets and River Mouths

    DTIC Science & Technology

    2016-07-31

    that community modeling environment. APPROACH Bedforms are ubiquitous in unconsolidated sediments . They act as roughness elements, altering the...flow and creating feedback between the bed and the flow and, in doing so, they are intimately tied to erosion, transport and deposition of sediments ...With this approach, grain-scale sediment transport is parameterized with simple rules to drive bedform-scale dynamics. Gallagher (2011) developed a

  10. Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.

    2001-01-01

    NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.

  11. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  12. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.

  13. Integrated analysis of numerical weather prediction and computational fluid dynamics for estimating cross-ventilation effects on inhaled air quality inside a factory

    NASA Astrophysics Data System (ADS)

    Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide

    2017-10-01

    Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.

  14. Computational Pollutant Environment Assessment from Propulsion-System Testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif

    1996-01-01

    An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.

  15. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors andmore » the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.« less

  16. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  17. A Formalisation of Adaptable Pervasive Flows

    NASA Astrophysics Data System (ADS)

    Bucchiarone, Antonio; Lafuente, Alberto Lluch; Marconi, Annapaola; Pistore, Marco

    Adaptable Pervasive Flows is a novel workflow-based paradigm for the design and execution of pervasive applications, where dynamic workflows situated in the real world are able to modify their execution in order to adapt to changes in their environment. In this paper, we study a formalisation of such flows by means of a formal flow language. More precisely, we define APFoL (Adaptable Pervasive Flow Language) and formalise its textual notation by encoding it in Blite, a formalisation of WS-BPEL. The encoding in Blite equips the language with a formal semantics and enables the use of automated verification techniques. We illustrate the approach with an example of a Warehouse Case Study.

  18. Competitive Dynamics in MSTd: A Mechanism for Robust Heading Perception Based on Optic Flow

    PubMed Central

    Layton, Oliver W.; Fajen, Brett R.

    2016-01-01

    Human heading perception based on optic flow is not only accurate, it is also remarkably robust and stable. These qualities are especially apparent when observers move through environments containing other moving objects, which introduce optic flow that is inconsistent with observer self-motion and therefore uninformative about heading direction. Moving objects may also occupy large portions of the visual field and occlude regions of the background optic flow that are most informative about heading perception. The fact that heading perception is biased by no more than a few degrees under such conditions attests to the robustness of the visual system and warrants further investigation. The aim of the present study was to investigate whether recurrent, competitive dynamics among MSTd neurons that serve to reduce uncertainty about heading over time offer a plausible mechanism for capturing the robustness of human heading perception. Simulations of existing heading models that do not contain competitive dynamics yield heading estimates that are far more erratic and unstable than human judgments. We present a dynamical model of primate visual areas V1, MT, and MSTd based on that of Layton, Mingolla, and Browning that is similar to the other models, except that the model includes recurrent interactions among model MSTd neurons. Competitive dynamics stabilize the model’s heading estimate over time, even when a moving object crosses the future path. Soft winner-take-all dynamics enhance units that code a heading direction consistent with the time history and suppress responses to transient changes to the optic flow field. Our findings support recurrent competitive temporal dynamics as a crucial mechanism underlying the robustness and stability of perception of heading. PMID:27341686

  19. Hindered bacterial mobility in porous media flow enhances dispersion

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2017-11-01

    Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.

  20. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.

    PubMed

    Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C

    2018-06-01

    Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Stem sap flow and water consumption of Tamarix ramosissima in hinterland of Taklimakan Desert].

    PubMed

    Xu, Hao; Zhang, Xi-Ming; Yan, Hai-Long; Yao, Shi-Jun

    2007-04-01

    From April to November 2005, the stem sap flow and water consumption of Tamarix ramosissima in the hinterland of Taklimakan Desert was measured by Flow-32 System. The results showed that, in the extremely arid hinterland of Taklimakan Desert and under enough water supply, the average daily water consumption of T. ramosissima with a stem diameter of 3.5 cm and 2.0 cm was 6.322 kg and 1.179 kg, respectively in one growth season. The stem sap flow of T. ramosissima presented a single-peaked curve, with an obvious day and night variation rhythm and fluctuated with environment factors. Under enough water supply, the environmenal factors such as total radiation, wind speed and air temperature were the main factors affecting the stem sap flow, and the dynamics of stem sap flow could be predicted by the liner regression model based on total radiation and wind speed. Because of the extremely arid environment and enough water supply, T. ramosissima had a relatively higher stem sap flow rate and a great water consumption.

  2. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  3. Effects of g-Jitter on Diffusion in Binary Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1999-01-01

    The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.

  4. Fluid mechanics of spinner-flask bioreactors

    NASA Astrophysics Data System (ADS)

    Sucosky, Philippe; Neitzel, G. Paul

    2000-11-01

    The dynamic environment within bioreactors used for in vitro tissue growth has been observed to affect the development of mammalian cells. Many studies have shown that moderate mechanical stress enhances growth of some tissues whereas high shear levels and turbulence seem to damage cells. In order to optimize the design and the operating conditions of bioreactors, it is important to understand the fluid-dynamic characteristics and to control the stress levels within these devices. The present research focuses on the characterization of the flow field within a spinner-flask bioreactor. The dynamic properties of the flow are investigated experimentally using particle-image velocimetry with a refractive-index-matched model. Phase-locked ensemble-averaging is employed to provide some information on the turbulence characteristics of the model culture medium in the vicinity of a model tissue construct.

  5. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Mitrano, Denise M; Bornhöft, Nikolaus A; Scheringer, Martin; Hungerbühler, Konrad; Nowack, Bernd

    2017-03-07

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental emissions. Material flow models (MFA) have been used to provide predicted environmental emissions but most current nano-MFA models consider neither the rapid development of ENM production nor the fact that a large proportion of ENM are entering an in-use stock and are released from products over time (i.e., have a lag phase). Here we use dynamic probabilistic material flow modeling to predict scenarios of the future flows of four ENM (nano-TiO 2 , nano-ZnO, nano-Ag and CNT) to environmental compartments and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. In these scenarios, we estimate likely future amounts if the use and distribution of ENM in products continues along current trends (i.e., a business-as-usual approach) and predict the effect of hypothetical trends in the market development of nanomaterials, such as the emergence of a new widely used product or the ban on certain substances, on the flows of nanomaterials to the environment in years to come. We show that depending on the scenario and the product type affected, significant changes of the flows occur over time, driven by the growth of stocks and delayed release dynamics.

  6. Multiscale Simulation of Moist Global Atmospheric Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabowski, Wojciech W.; Smolarkiewicz, P. K.

    The overarching goal of this award was to include phase changes of the water substance and accompanying latent heating and precipitation processes into the all-scale nonhydrostatic atmospheric dynamics EUlerian/LAGrangian (EULAG) model. The model includes fluid flow solver that is based on either an unabbreviated set of the governing equations (i.e., compressible dynamics) or a simplified set of equations without sound waves (i.e., sound-proof, either anelastic or pseudo-incompressible). The latter set has been used in small-scale dynamics for decades, but its application to the all-scale dynamics (from small-scale to planetary) has never been studied in practical implementations. The highlight of themore » project is the development of the moist implicit compressible model that can be run by applying time steps, as long as the anelastic model is limited only by the computational stability of the fluid flow and not by the speed of sound waves that limit the stability of explicit compressible models. Applying various versions of the EULAG model within the same numerical framework allows for an unprecedented comparison of solutions obtained with various sets of the governing equations and straightforward evaluation of the impact of various physical parameterizations on the model solutions. The main outcomes of this study are reported in three papers, two published and one currently under review. These papers include comparisons between model solutions for idealized moist problems across the range of scales from small to planetary. These tests include: moist thermals rising in the stable-stratified environment (following Grabowski and Clark, J. Atmos. Sci. 1991) and in the moist-neutral environment (after Bryan and Fritsch, Mon. Wea. Rev. 2002), moist flows over a mesoscale topography (as in Grabowski and Smolarkiewicz, Mon. Wea. Rev. 2002), deep convection in a sheared environment (following Weisman and Klemp, Mon. Wea. Rev. 1982), moist extension of the baroclinic wave on the sphere of Jablonowski and Williamson (Q. J. R. Met. Soc. 2006), and moist extension of the Held-Suarez idealized climate benchmark (Held and Suarez, Bull. Amer. Met. Soc., 1994).« less

  7. Coupling Radar Rainfall to Hydrological Models for Water Abstraction Management

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; MacDonald, Ken

    2015-04-01

    The impacts of climate change and growing water use are likely to put considerable pressure on water resources and the environment. In the UK, a reform to surface water abstraction policy has recently been proposed which aims to increase the efficiency of using available water resources whilst minimising impacts on the aquatic environment. Key aspects to this reform include the consideration of dynamic rather than static abstraction licensing as well as introducing water trading concepts. Dynamic licensing will permit varying levels of abstraction dependent on environmental conditions (i.e. river flow and quality). The practical implementation of an effective dynamic abstraction strategy requires suitable flow forecasting techniques to inform abstraction asset management. Potentially the predicted availability of water resources within a catchment can be coupled to predicted demand and current storage to inform a cost effective water resource management strategy which minimises environmental impacts. The aim of this work is to use a historical analysis of UK case study catchment to compare potential water resource availability using modelled dynamic abstraction scenario informed by a flow forecasting model, against observed abstraction under a conventional abstraction regime. The work also demonstrates the impacts of modelling uncertainties on the accuracy of predicted water availability over range of forecast lead times. The study utilised a conceptual rainfall-runoff model PDM - Probability-Distributed Model developed by Centre for Ecology & Hydrology - set up in the Dove River catchment (UK) using 1km2 resolution radar rainfall as inputs and 15 min resolution gauged flow data for calibration and validation. Data assimilation procedures are implemented to improve flow predictions using observed flow data. Uncertainties in the radar rainfall data used in the model are quantified using artificial statistical error model described by Gaussian distribution and propagated through the model to assess its influence on the forecasted flow uncertainty. Furthermore, the effects of uncertainties at different forecast lead times on potential abstraction strategies are assessed. The results show that over a 10 year period, an average of approximately 70 ML/d of potential water is missed in the study catchment under a convention abstraction regime. This indicates a considerable potential for the use of flow forecasting models to effectively implement advanced abstraction management and more efficiently utilize available water resources in the study catchment.

  8. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  9. Analysis of Aerospike Plume Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.

  10. Tests of dynamic Lagrangian eddy viscosity models in Large Eddy Simulations of flow over three-dimensional bluff bodies

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.

    2004-11-01

    Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.

  11. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow.

    PubMed

    Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.

  12. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow

    PubMed Central

    Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957

  13. Non-Markovianity hinders Quantum Darwinism.

    PubMed

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-20

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  14. Non-Markovianity hinders Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  15. Non-Markovianity hinders Quantum Darwinism

    PubMed Central

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857

  16. Leveraging Social Networking Technologies: An Analysis of the Knowledge Flows Facilitated by Social Media and the Potential Improvements in Situational Awareness, Readiness, and Productivity

    DTIC Science & Technology

    2010-09-01

    articulating perception, interpretation and actionable prediction in an operational environment . BCKS’ success with digital storytelling has far...podcasts; wikis and other collaborative spaces; social networks such as Facebook and LinkedIn; other user generated content; virtual social environments ...study of Xerox’s knowledge management systems noting that 80% of its IT was focused on adapting to the social dynamics of its workplace environment

  17. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  18. Coherent-fields, their responsive colloids, and life's origins.

    NASA Astrophysics Data System (ADS)

    Mitra-Delmotte, G.; Mitra, A. N.

    2015-10-01

    In living systems, evolvable sequence-encoded constraints control the incoming energy-matter flows, and are also sustained by their embedded flows/ processes. What's more, in such dynamic-organized liquid-state media, the flows can also produce novel materials/mechanisms. Thus, embedded processes of such media enable its spatiotemporal resilience via turnovers, as well as functional 'takeovers'. Further, the responsiveness of such constrained media to their environment enables adaptations, as they can mediate feedback between the changing environment & their embedded flows/processes. Now, the complexity of the constituent functional materials, make it very likely that they themselves emerged/got selected thanks to the creative properties of such dynamically constrained media. We have asked if such Maxwelldemon- like scenario could not be mimicked using other plausible ingredients to achieve similar ways of dissipative sustenance and coherent functioning. In particular, the potential of organizing coherent fields and their responsive anisotropic colloids to enhance the probability of life's emergence—akin to an adaptive transition—to a new way of evolving, seems promising. Note that pattern-sustenance in liquid state requires presence of the specific source that enabled it (c.f. spontaneously formed patterns). For example, external coherent heterogeneous fields (e.g. magnetic rocks) can act as sources both of 1) aperiodic information, and 2) useful energy, for inducing and sustaining (specific) structures of superparamagnetic mineral colloids (via their Brownianrotation) away-from-equilibrium, to access 3-way coupling between energy-information-matter in liquid-medium. Such dynamic functioning structures seem ideal for stable containment of bottom-up chemical systems; and similar scenario in the nanoscience engineering area can help in design/tests.

  19. Efficient ecologic and economic operational rules for dammed systems by means of nondominated sorting genetic algorithm II

    NASA Astrophysics Data System (ADS)

    Niayifar, A.; Perona, P.

    2015-12-01

    River impoundment by dams is known to strongly affect the natural flow regime and in turn the river attributes and the related ecosystem biodiversity. Making hydropower sustainable implies to seek for innovative operational policies able to generate dynamic environmental flows while maintaining economic efficiency. For dammed systems, we build the ecological and economical efficiency plot for non-proportional flow redistribution operational rules compared to minimal flow operational. As for the case of small hydropower plants (e.g., see the companion paper by Gorla et al., this session), we use a four parameters Fermi-Dirac statistical distribution to mathematically formulate non-proportional redistribution rules. These rules allocate a fraction of water to the riverine environment depending on current reservoir inflows and storage. Riverine ecological benefits associated to dynamic environmental flows are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, we apply nondominated sorting genetic algorithm II (NSGA-II) to an ensemble of non-proportional and minimal flow redistribution rules in order to generate the Pareto frontier showing the system performances in the ecologic and economic space. This fast and elitist multiobjective optimization method is eventually applied to a case study. It is found that non-proportional dynamic flow releases ensure maximal power production on the one hand, while conciliating ecological sustainability on the other hand. Much of the improvement in the environmental indicator is seen to arise from a better use of the reservoir storage dynamics, which allows to capture, and laminate flood events while recovering part of them for energy production. In conclusion, adopting such new operational policies would unravel a spectrum of globally-efficient performances of the dammed system when compared with those resulting from policies based on constant minimum flow releases.

  20. Characterization of return flow pathways during flood irrigation

    NASA Astrophysics Data System (ADS)

    Claes, N.; Paige, G. B.; Parsekian, A.; Gordon, B. L.; Miller, S. N.

    2015-12-01

    With a decline in water resources available for private consumption and irrigation, the importance of sustainable water management practices is increasing. Local management decisions, based on models may affect the availability of water both locally and downstream, causing a ripple effect. It is therefore important that the models that these local management decisions are based on, accurately quantify local hydrological processes and the timescales at which they happen. We are focusing on return flow from flood irrigation, which can occur via different pathways back to the streams: overland flow, near-surface return flow and return flow via pathways below the vadose zone. The question addressed is how these different pathways each contribute to the total amount of return flow and the dynamics behind them. We used time-lapse ERT measurements in combination with an ensemble of ERT and seismic lines to answer this question via (1) capturing the process of gradual fragmentation of aqueous environments in the vadose zone during drying stages at field scale; (2) characterization of the formation of preferential flow paths from infiltrating wetting fronts during wetting cycles at field scale. The time-lapse ERT provides the possibility to capture the dynamic processes involved during the occurrence of finger flow or macro-pores when an intensive wetting period during flood irrigation occurs. It elucidates the dynamics of retention in the vadose zone during drying and wetting periods at field scale. This method provides thereby a link to upscale from laboratory experiments to field scale and watershed scale for finger flow and preferential flow paths and illustrates the hysteresis behavior at field scale.

  1. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    USGS Publications Warehouse

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  2. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4) Comparison of the experimental turbine exit flow environment to the environment calculated for the ATD HPOTP.

  3. Exploiting Non-Markovianity for Quantum Control.

    PubMed

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  4. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  5. Dynamics of Supercritical Flows

    DTIC Science & Technology

    2012-08-26

    to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi

  6. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  8. Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant

    PubMed Central

    Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.

    2018-01-01

    This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954

  9. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  10. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  11. Freshwater for resilience: a shift in thinking.

    PubMed Central

    Folke, Carl

    2003-01-01

    Humanity shapes freshwater flows and biosphere dynamics from a local to a global scale. Successful management of target resources in the short term tends to alienate the social and economic development process from its ultimate dependence on the life-supporting environment. Freshwater becomes transformed into a resource for optimal management in development, neglecting the multiple functions of freshwater in dynamic landscapes and its fundamental role as the bloodstream of the biosphere. The current tension of these differences in worldview is exemplified through the recent development of modern aquaculture contrasted with examples of catchment-based stewardship of freshwater flows in dynamic landscapes. In particular, the social and institutional dimension of catchment management is highlighted and features of social-ecological systems for resilience building are presented. It is concluded that this broader view of freshwater provides the foundation for hydrosolidarity. PMID:14728796

  12. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Sun, Huaiwei; Zeng, Fanjiang; Feng, Xinlong

    2017-12-01

    Agriculture and the eco-environment are increasingly competing for water. The extension of intensive farmland for ensuring food security has resulted in excessive water exploitation by agriculture. Consequently, this has led to a lack of water supply in natural ecosystems. This paper proposes a trade-off framework to coordinate the water-use conflict between agriculture and the eco-environment, based on economic compensation for irrigation stakeholders. A hybrid Bayesian network (HBN) is developed to implement the framework, including: (a) agricultural water shortage assessments after meeting environmental flows; (b) water-use tradeoff analysis between agricultural irrigation and environmental flows using the HBN; and (c) quantification of the agricultural economic compensation for different irrigation stakeholders. The constructed HBN is computed by dynamic discretization, which is a more robust and accurate propagation algorithm than general static discretization. A case study of the Qira oasis area in Northwest China demonstrates that the water trade-off based on economic compensation depends on the available water supply and environmental flows at different levels. Agricultural irrigation water extracted for grain crops should be preferentially guaranteed to ensure food security, in spite of higher economic compensation in other cash crops' irrigation for water coordination. Updating water-saving engineering and adopting drip irrigation technology in agricultural facilities after satisfying environmental flows would greatly relieve agricultural water shortage and save the economic compensation for different irrigation stakeholders. The approach in this study can be easily applied in water-stressed areas worldwide for dealing with water competition.

  13. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  14. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  15. Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.

    PubMed

    Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh

    2011-01-01

    We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input. © 2011 IEEE Published by the IEEE Computer Society

  16. Fluid-structural dynamics of ground-based and microgravity caloric tests

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  17. Fluid-structural dynamics of ground-based and microgravity caloric tests.

    PubMed

    Kassemi, M; Oas, J G; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  18. Hydrodynamics experiments with soap films and soap bubbles: A short review of recent experiments

    NASA Astrophysics Data System (ADS)

    Kellay, H.

    2017-11-01

    In this short review, I focus on recent experiments that benefit from the advantages offered by the two-dimensionality of the flow in suspended thin liquid films to reconsider hydrodynamics problems which have resisted a full understanding. The first problem discussed here concerns friction drag in channel flows. The use of turbulent channel flows, using thin liquid films, allows measurements of friction drag as well as mean velocity profiles for flows with different spectral exponents. Is there a link between the spectral properties of the turbulence and the mean velocity profiles or the frictional drag? This is the first question considered. The second issue examined considers the long time dynamics of large scale vortices. These are obtained in half bubbles rendered "turbulent" through thermal convection. These vortices, which live in a quasi two-dimensional environment, have a long time dynamics where their vorticity goes through what seems to be a well-defined cycle with generic features.

  19. Influence of georeference for saturated excess overland flow modelling using 3D volumetric soft geo-objects

    NASA Astrophysics Data System (ADS)

    Izham, Mohamad Yusoff; Muhamad Uznir, Ujang; Alias, Abdul Rahman; Ayob, Katimon; Wan Ruslan, Ismail

    2011-04-01

    Existing 2D data structures are often insufficient for analysing the dynamism of saturation excess overland flow (SEOF) within a basin. Moreover, all stream networks and soil surface structures in GIS must be preserved within appropriate projection plane fitting techniques known as georeferencing. Inclusion of 3D volumetric structure of the current soft geo-objects simulation model would offer a substantial effort towards representing 3D soft geo-objects of SEOF dynamically within a basin by visualising saturated flow and overland flow volume. This research attempts to visualise the influence of a georeference system towards the dynamism of overland flow coverage and total overland flow volume generated from the SEOF process using VSG data structure. The data structure is driven by Green-Ampt methods and the Topographic Wetness Index (TWI). VSGs are analysed by focusing on spatial object preservation techniques of the conformal-based Malaysian Rectified Skew Orthomorphic (MRSO) and the equidistant-based Cassini-Soldner projection plane under the existing geodetic Malaysian Revised Triangulation 1948 (MRT48) and the newly implemented Geocentric Datum for Malaysia (GDM2000) datum. The simulated result visualises deformation of SEOF coverage under different georeference systems via its projection planes, which delineate dissimilar computation of SEOF areas and overland flow volumes. The integration of Georeference, 3D GIS and the saturation excess mechanism provides unifying evidence towards successful landslide and flood disaster management through envisioning the streamflow generating process (mainly SEOF) in a 3D environment.

  20. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  1. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent flight experiments, by the P.I. through collaboration with the Canadian Space Agency (STS-85, August 1997), aimed at determining the stability of the interface between two miscible liquids inside an enclosure show that a long liquid column (5 cm) under microgravity isolation conditions can be stable, i.e. the interface remains sharp and vertical over a short time scale; thus transport occurs by molecular mass diffusion. On the other hand, when the two liquids were excited from a controlled vibration source (Microgravity Vibration Isolation Mount) two to four mode large amplitude quasi-stationary waves were observed. The data was limited to CCD recording of the dynamics of the interface between the two fluids. We propose to carry out flight experiments to quantify the dynamics of the flow field using Stereo Imaging Velocimetry and measure the concentration field using laser fluorescence. The results will serve as a basis to understand effects of g-jitter on transport phenomena, in this case mass diffusion. As the measurement of the kinematics of the flow field will shed light on the instability mechanism. The research will allow measurement of the flow field in microgravity environment to prove two hypotheses: (1) Maxwell's hypothesis: finite convection always exists in diffusing systems, and (2) Quasi-stationary waves inside a bounded enclosure in a microgravity environment is generated by Kelvin-Helmholtz instability; resonance of the interface which produces incipient mixing is due to Rayleigh-Taylor instability. The first hypothesis can be used as a benchmark experiment to illustrate diffusive mixing. The second hypothesis will lead to the understanding of g-jitter effects on buoyancy driven flow fields which occur in many situations involving materials processing, and other basic fluid physics phenomena. In addition, the second hypothesis will also provide insight in how Rayleigh-Taylor and Kelvin-Helmholtz instabilities propagate concentration fronts during mixing. Measurement of the flow field using SIV is important because it is the flow field which causes instability at the interface between the two fluids. Mixing driven by buoyancy induced flow fields will be addressed both experimentally and computationally. The experimental effort will address the kinematics of mixing: stretching, transport and chaos. Quantification of the mechanisms of mixing will consists of measuring the flow field using the SIV system at Glenn and capturing the dynamics of the interface, to measure mass transport, using a CCD camera. These experiments will be carried out within the framework of Earth's gravity and g-jitter microgravity acceleration as in a Space Shuttle environment or the International Space Station. The g-jitter will be induced and controlled using a tunable vibration isolation platform to isolate against vibration as well as input periodic and random vibration to the system. The parametric range of the microgravity experiment will be extended from the experiments on STS-85 to investigate higher mode quasi-stationary waves (8 to 12), as well as resonance regions which leads to chaos and turbulence. Ground-based experiments will focus on effects of vibration on stably stratified fluid layers in order to scale for possible scenarios in a microgravity environment. These vibrations will be subjected perpendicular to the concentration field on the ground since the parallel case can only be carried out in a microgravity environment. The concept of dynamical similarity will be applied to tune the experiments as closely as possible to a Space Shuttle environment or the International Space Station. The computational effort will take advantage of the Computational Laboratory at Glenn to corroborate the experimental findings with predictions of the dynamics of the flow field using the codes FLUENT (finite difference based) and FIDAP (finite element based). We will investigate two important cases, single-fluid model to address dilute systems with negligible jump in viscosity and the more general two-fluid model which accounts for finite jump in viscosity. Apart from its microgravity relevance, this experiment is well suited to study dynamics in nonlinear systems.

  2. Report on the Program "Fluid-mediated particle transport in geophysical flows" at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    NASA Astrophysics Data System (ADS)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-01

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  3. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  4. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  5. 4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Zickus, Vytautas; Taylor, Jonathan M.

    2018-02-01

    Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.

  6. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  7. sedFlow - a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2015-01-01

    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015).

  8. Dynamics of core accretion

    DOE PAGES

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass M pl = 10M ⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providingmore » spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or isentropic treatments, any cooling that does affect the envelope material will have limited consequences for the dynamics, since the flow quickly carries cooled material out of the core's environment entirely. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time-scales of days to months near the core and on time-scales a few years at distances comparable to the Hill radius. The dynamical activity contrasts with the largely static behaviour typically assumed within the framework of the core accretion model for Jovian planet formation. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Shorter durations are not observable in our work due to the limits of our resolution. Peak temperatures in these events range from T ~ 1000 K to as high as T ~ 3–4000 K, with densities ρ ~ 10 -9 to 10 -8 gcm -3. These time-scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model. Finally, we therefore propose that dynamical activity in the Jovian planet formation environment could be responsible for the production of chondrules and other annealed silicates in the solar nebula.« less

  9. Dynamics of core accretion

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew F.; Ruffert, Maximilian

    2013-02-01

    We perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the `Piecewise Parabolic Method' with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either `locally isothermal' or `locally isentropic') and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or isentropic treatments, any cooling that does affect the envelope material will have limited consequences for the dynamics, since the flow quickly carries cooled material out of the core's environment entirely. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time-scales of days to months near the core and on time-scales a few years at distances comparable to the Hill radius. The dynamical activity contrasts with the largely static behaviour typically assumed within the framework of the core accretion model for Jovian planet formation. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Shorter durations are not observable in our work due to the limits of our resolution. Peak temperatures in these events range from T ˜ 1000 K to as high as T ˜ 3-4000 K, with densities ρ ˜ 10-9 to 10-8 g cm-3. These time-scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model. We therefore propose that dynamical activity in the Jovian planet formation environment could be responsible for the production of chondrules and other annealed silicates in the solar nebula.

  10. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  11. Movement Perception and Movement Production in Asperger's Syndrome

    ERIC Educational Resources Information Center

    Price, Kelly J.; Shiffrar, Maggie; Kerns, Kimberly A.

    2012-01-01

    To determine whether motor difficulties documented in Asperger's Syndrome (AS) are related to compromised visual abilities, this study examined perception and movement in response to dynamic visual environments. Fourteen males with AS and 16 controls aged 7-23 completed measures of motor skills, postural response to optic flow, and visual…

  12. Job Flows and Labor Dynamics in the U.S. Rust Belt.

    ERIC Educational Resources Information Center

    Faberman, R. Jason

    2002-01-01

    From 1992-2000, high employment and wage growth occurred together with low unemployment in a number of U.S. Rust Belt metropolitan areas. Localities with these characteristics had larger and younger companies in environments with high rates of both job creation and job destruction. (Contains 24 references.) (Author)

  13. AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE

    NASA Technical Reports Server (NTRS)

    Liever, P. A.; Sheta, E. F.; Habchi, S. D.

    2006-01-01

    A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.

  14. Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.

    PubMed

    Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio

    2018-02-01

    The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.

  15. Dynamics of reactive microbial hotspots in concentration gradients

    NASA Astrophysics Data System (ADS)

    Hubert, Antoine; Farasin, Julien; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2017-04-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as a quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. To quantify bacterial activity we use Fluorescein Diacetate (FDA) hydrolysis by bacterial enzymes which transforms FDA into Fluorescein, whose local concentration is measured optically. We thus measure bacterial activity locally from the time derivative of the measured fluorescence. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  16. High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Wagnild, Ross Martin

    The fluid flow phenomenon of boundary layer transition is a complicated and difficult process to model and predict. The importance of the state of the boundary layer with regard to vehicle design cannot be understated. The high enthalpy environment in which high speed vehicles operate in further complicates the transition process by adding several more degrees of freedom. In this environment, the internal properties of the gas can stabilize or destabilize the boundary layer as well as modify the disturbances that cause transition. In the current work, the interaction of two types of disturbances with the high enthalpy flow environment are analyzed. The first is known as a second mode disturbance, which is acoustic in nature. The second type is known as a transient growth disturbance and is associated with flows behind roughness elements. Theoretical analyses, linear stability analyses, and computation fluid dynamics (CFD) are used to determine the ways in which these disturbances interact with the high enthalpy environment as well as the consequences of these interactions. First, acoustic wave are directly studied in order to gain a basic understanding of the response of second mode disturbances in the high enthalpy boundary layer. Next, this understanding is used in interpreting the results of several computations attempting to simulate the flow through a high enthalpy flow facility as well as experiments attempting to take advantage of the acoustic interaction with the high enthalpy environment. Because of the difficulty in modeling these experiments, direct simulations of acoustic waves in a hypersonic flow of a gas with molecular vibration are performed. Lastly, compressible transient growth disturbances are simulated using a linear optimal disturbance solver as well as a CFD solver. The effect of an internal molecular process on this type of disturbance is tested through the use of a vibrational mode. It is the goal of the current work to reinforce the critical importance of accurately capturing the physics of the "real" gas effects in the high enthalpy flow environment in order to understand and predict transition on high speed vehicles.

  17. Why Pulse If You Live in Turbulent Flow? Studying the Benefits of Pulsing Behavior in Xeniid Corals

    NASA Astrophysics Data System (ADS)

    Samson, J. E.; Khatri, S.; Holzman, R.; Shavit, U.; Miller, L.

    2016-02-01

    Pulsing behavior in benthic cnidarians increases local water flows and thus mass transfer (i.e. nutrient exchange) between organisms and environment. This increased mass transfer plays an especially important role in photosynthetic organisms by increasing the exchange rate of oxygen and carbon dioxide, allowing for increased metabolic rates. For organisms living mostly in the boundary layer of quiet water bodies, the benefits of pulsing to create a (feeding) current seem to be straightforward; the benefit of increased flow around the organism is larger than the cost of sustaining an energetically expensive behavior. Xeniid corals, however, are often found in turbulent flows, and it is unclear what the benefits of pulsing behavior are in an already well-mixed environment. Using lab experiments (particle image velocimetry or PIV), computational fluid dynamics simulations (immersed boundary method), and field data, we explore the reason(s) behind this paradoxical observation. 3D video recordings from pulsing corals in the lab and in the field were used to extract the kinematics of the pulsing motion. These kinematics served as input to create computational fluid dynamics simulations that allow us to further explore and compare fluid flows resulting from different situations (presence or absence of background flow around a coral colony, for example). The PIV data collected in the lab will serve to validate these simulations. Developing our computational models further will allow us to study the potential benefit of pulsing on mass transfer and to explore the advantage of collective pulsing behavior. Xeniid corals form colonies in which collective pulsing patterns can be observed. These patterns, however, have not yet been quantified and it is unclear how they arise, since cnidarians lack a centralized nervous system.

  18. Experimental investigation of the impact of macroalgal mats on flow dynamics and sediment stability in shallow tidal areas

    NASA Astrophysics Data System (ADS)

    Venier, C.; Figueiredo da Silva, J.; McLelland, S. J.; Duck, R. W.; Lanzoni, S.

    2012-10-01

    This study aims to quantify the impact of macroalgal mats of Ulva intestinalis on flow dynamics and sediment stability. Such mats are becoming increasingly common in many coastal and estuarine intertidal habitats, thus it is important to determine whether they increase flow resistance, promote bed stability and therefore reduce the risk of erosion leading to tidal flooding or to degradation of coastal lagoons. The study has been carried out through a systematic series of experiments conducted in the large open-channel flume of the Total Environment Simulator (TES) facility, University of Hull, UK. The experimental facility was set up with a bed of fine sand, partially covered by strands of U. intestinalis; living individuals attached to large clasts were collected from Budle Bay, in the Lindisfarne National Nature Reserve, UK, and transplanted to the flume. The TES was equipped with acoustic doppler velocimetry (ADV) and acoustic backscatter (ABS) sensors, which measured current velocity, water level, bed level, and suspended sediment concentration. The experiments consisted of several unidirectional flow runs, firstly with a mobile sediment bed covered with U. intestinalis, then with a bare sediment surface, conducted at three different water depths. Under the investigated experimental range of velocities, typical of tidal environments, the macroalgal filaments were bent parallel to the sediment bed. The resulting velocity profile departed from the classical logarithmic trend, implying an increase of the overall roughness. This result reflects the different vertical Reynolds shear stress profiles and energy spectra features of the turbulent flow with respect to a bare sandy bed configuration. Macroalgae are also found to affect the morphological configuration of bedforms. The overall result is significant bio-stabilization, with increased flow resistance and reduced sediment transport.

  19. Water temperatures in select nearshore environments of the Colorado River in Grand Canyon, Arizona, during the Low Steady Summer Flow experiment of 2000

    USGS Publications Warehouse

    Vernieu, William S.; Anderson, Craig R.

    2013-01-01

    Water releases from Glen Canyon Dam, Arizona, are the primary determinant of streamflow, sediment transport, water quality, and aquatic and riparian habitat availability in the Colorado River downstream of the dam in Grand Canyon. The presence and operation of the dam have transformed the seasonally warm Colorado River into a consistently cold river because of hypolimnetic, or deep-water, releases from the penstock withdrawal structures on the dam. These releases have substantially altered the thermal regime of the downstream riverine environment. This, in turn, has affected the biota of the river corridor, particularly native and nonnative fish communities and the aquatic food web. In the spring and summer of 2000, a Low Steady Summer Flow experiment was conducted by the U.S. Geological Survey and the Bureau of Reclamation to evaluate the effects of the experimental flow on physical and biological resources of the Colorado River ecosystem downstream from Glen Canyon Dam to Lake Mead on the Arizona-Nevada border. This report describes the water temperatures collected during the experimental flow from 14 nearshore sites in the river corridor in Grand Canyon to assess the effects of steady releases on the thermal dynamics of nearshore environments. These nearshore areas are characterized by low-velocity flows with some degree of isolation from the higher velocity flows in the main channel and are hypothesized to be important rearing environments for young native fish. Water-temperature measurements were made at 14 sites, ranging from backwater to open-channel environments. Warming during daylight hours, relative to main-channel temperatures, was measured at all sites in relation to the amount of isolation from the main-channel current. Boat traffic, amount of direct solar radiation, and degree of isolation from the main-channel current appear to be the primary factors affecting the differential warming of the nearshore environment.

  20. Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik

    2017-02-01

    The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.

  1. Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom

    PubMed Central

    Pomati, Francesco; Kraft, Nathan J. B.; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W.

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which our measured traits were not under selection. PMID:23951218

  2. Individual cell based traits obtained by scanning flow-cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom.

    PubMed

    Pomati, Francesco; Kraft, Nathan J B; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which our measured traits were not under selection.

  3. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    PubMed

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  4. Mimicking Atmospheric Flow Conditions to Examine Mosquito Orientation Behavior

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chun; Vickers, Neil; Hultmark, Marcus

    2017-11-01

    Host-seeking female mosquitoes utilize a variety of sensory cues to locate potential hosts. In addition to visual cues, other signals include CO2 , volatile skin emanations, humidity, and thermal cues, each of which can be considered as passive scalars in the environment, primarily distributed by local flow conditions. The behavior of host-seeking female mosquito vectors can be more thoroughly understood by simulating the natural features of the environment through which they navigate, namely the atmospheric boundary layer. Thus, an exploration and understanding of the dynamics of a scalar plume will not only establish the effect of fluid environment on scalar coherence and distribution, but also provide a bioassay platform for approaches directed at disrupting or preventing the cycle of mosquito-vectored disease transmission. In order to bridge between laboratory findings and the natural, ecologically relevant setting, a unique active flow modulation system consisting of a grid of 60 independently operated paddles was developed. Unlike static grids that generate turbulence within a predefined range of scales, an active grid imposes variable and controllable turbulent structures onto the moving air by synchronized rotation of the paddles at specified frequencies.

  5. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  6. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    NASA Astrophysics Data System (ADS)

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features.

  7. Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.

    2000-01-01

    The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.

  8. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture.

    PubMed

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-05-25

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.

  9. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture

    PubMed Central

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-01-01

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes. PMID:28952530

  10. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

    USGS Publications Warehouse

    Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.

    2012-01-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.

  12. Parallel and perpendicular velocity sheared flows driven tripolar vortices in an inhomogeneous electron-ion quantum magnetoplasma

    NASA Astrophysics Data System (ADS)

    Mirza, Arshad M.; Masood, W.

    2011-12-01

    Nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves are derived by taking into account sheared ion flows parallel and perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on very short scales in dense quantum plasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  13. Characterization of the IXV Thermal Protection System in High Enthalphy Plasma Flow

    NASA Astrophysics Data System (ADS)

    Panerai, F.; Helber, B.; Sakraker, I.; Chazot, O.; Pichon, T.; Barreteau, R.; Tribot, J. P.; Vallee, J. J.; Mareschi, V.; Ferrarella, D.; Rufolo, G.; Mancuso, S.

    2011-05-01

    An experimental campaign dedicated to the characterization of Intermediate eXperimental Vehicle thermal protection system is performed in the Plasmatron wind tunnel at the von Karman Institute for Fluid Dynamics. Emissivity and catalycity properties for representative ceramic specimens are determined under a wide set of operating conditions in order to reproduce the reentry flight trajectory. Intrusive measurements for flow characterization are used together with optical infrared techniques that provide diagnostic of the test articles surface. Experimental data are postprocessed by means of numerical simulations that allow flow enthalpy rebuilding and characterization of the chemical environment for the different conditions investigated.

  14. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  15. Experimental investigation of particle surface interactions for turbomachinery application

    NASA Astrophysics Data System (ADS)

    Hamed, A.; Tabakoff, W.

    This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.

  16. Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves

    PubMed Central

    Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.

    2012-01-01

    Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311

  17. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil

    NASA Technical Reports Server (NTRS)

    Liever, Peter; Tosh, Abhijit; Curtis, Jennifer

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket plume flow impingement under lunar vacuum conditions. Applications and improvements to the granular flow simulation tools contributed by the University of Florida were tested against Earth environment experimental results. Requirements for developing, validating, and demonstrating this solution environment were clearly identified, and an effective second phase execution plan was devised. In this phase, the physics models were refined and fully integrated into a production-oriented simulation tool set. Three-dimensional simulations of Apollo Lunar Excursion Module (LEM) and Altair landers (including full-scale lander geometry) established the practical applicability of the UFS simulation approach and its advanced performance level for large-scale realistic problems.

  18. Hemodynamically driven stent strut design.

    PubMed

    Jiménez, Juan M; Davies, Peter F

    2009-08-01

    Stents are deployed to physically reopen stenotic regions of arteries and to restore blood flow. However, inflammation and localized stent thrombosis remain a risk for all current commercial stent designs. Computational fluid dynamics results predict that nonstreamlined stent struts deployed at the arterial surface in contact with flowing blood, regardless of the strut height, promote the creation of proximal and distal flow conditions that are characterized by flow recirculation, low flow (shear) rates, and prolonged particle residence time. Furthermore, low shear rates yield an environment less conducive for endothelialization, while local flow recirculation zones can serve as micro-reaction chambers where procoagulant and pro-inflammatory elements from the blood and vessel wall accumulate. By merging aerodynamic theory with local hemodynamic conditions we propose a streamlined stent strut design that promotes the development of a local flow field free of recirculation zones, which is predicted to inhibit thrombosis and is more conducive for endothelialization.

  19. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.

  20. A Multiscale Model for Virus Capsid Dynamics

    PubMed Central

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. PMID:20224756

  1. Experiments on point plumes in a rotating environment

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    Motivated by the Deepwater Horizon oil spill in the Gulf of Mexico we study the dynamics of point plumes in a stratified and homogeneous rotating environment. To this end, we conduct small-scale experiments in the laboratory on salt water and bubble plumes over a wide range of Rossby numbers. The rotation modifies the entrainment into the plume and also inhibits the lateral spreading of the plume fluid which leads to various instabilities in the flow. In particular, we focus on the plume behaviour in the near-source region (where the plume is dominated by the source conditions) and at intermediate water depths, e.g., lateral intrusions at the neutral buoyancy level in the stratified environment. One of the striking features in the rotating environment is the anticyclonic precession of the plume axis which leads to an enhanced dispersion of the plume fluid in the ambient and which is absent in the non-rotating system. In this talk, we present our experimental results and develop simple models to explain the observed plume dynamics.

  2. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE PAGES

    Zuo, Wangda; Wetter, Michael; Tian, Wei; ...

    2015-07-13

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  3. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  4. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; Wetter, Michael; Tian, Wei

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  5. Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor

    PubMed Central

    2018-01-01

    The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner. PMID:29363979

  6. Reduced complexity modeling of Arctic delta dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Lauzon, R.; Rowland, J. C.

    2017-12-01

    How water and sediment are routed through deltas has important implications for our understanding of nutrient and sediment fluxes to the coastal ocean. These fluxes may be especially important in Arctic environments, because the Arctic ocean receives a disproportionately large amount of river discharge and high latitude regions are expected to be particularly vulnerable to climate change. The Arctic has some of the world's largest but least studied deltas. This lack of data is due to remote and hazardous conditions, sparse human populations, and limited remote sensing resources. In the absence of data, complex models may be of limited scientific utility in understanding Arctic delta dynamics. To overcome this challenge, we adapt the reduced complexity delta-building model DeltaRCM for Arctic environments to explore the influence of sea ice and permafrost on delta morphology and dynamics. We represent permafrost by increasing the threshold for sediment erosion, as permafrost has been found to increase cohesion and reduce channel migration rates. The presence of permafrost in the model results in the creation of more elongate channels, fewer active channels, and a rougher shoreline. We consider several effects of sea ice, including introducing friction which increases flow resistance, constriction of flow by landfast ice, and changes in effective water surface elevation. Flow constriction and increased friction from ice results in a rougher shoreline, more frequent channel switching, decreased channel migration rates, and enhanced deposition offshore of channel mouths. The reduced complexity nature of the model is ideal for generating a basic understanding of which processes unique to Arctic environments may have important effects on delta evolution, and it allows us to explore a variety of rules for incorporating those processes into the model to inform future Arctic delta modelling efforts. Finally, we plan to use the modeling results to determine how the presence of permafrost and sea ice may influence delta morphology and the resulting large-scale patterns of water and sediment fluxes at the coast.

  7. Polar low formation: ambient environments and the role of moisture

    NASA Astrophysics Data System (ADS)

    Terpstra, Annick; Spengler, Thomas; Michel, Clio; Moore, Richard

    2016-04-01

    Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. Previous studies have shown that wind shear, baroclinicity, latent heat release, and surface fluxes are important factors during formation and intensification, yet their relative contributions and importance are still not fully understood. We use the ambient atmospheric conditions during polar low genesis to provide dynamical insights to the intensification and formation mechanisms for polar lows. We identify the characteristics of the ambient pre-polar low environment utilising an existing polar low database and ERA-Interim reanalysis data. Classification of these environments is based on the the direction between the thermal wind and the mean flow in the lower troposphere, where environments are classified as 'reverse shear' if the thermal wind and mean flow are in opposing directions and 'forward shear' if they are in the same direction. The two types of pre-polar low environments exhibit distinctly different features in terms of synoptic scale patterns, baroclinicity, configuration of the sea-surface temperature, as well as depth and stratification of the troposphere. These clear-cut differences hint at different dynamical pathways for the formation and intensification of polar lows for different shear environments. We also explore the role of latent heating during polar low formation utilising an idealised baroclinic channel model. The experimental design resembles a typical forward-shear moist-baroclinic environment at high-latitudes. Cyclogenesis is triggered by a weak, low-level thermal perturbation in hydrostatic and geostrophic balance. Our experiments show that significant disturbance growth is possible in absence of upper level forcing, surface fluxes, and radiation. The relative importance of diabatic versus baroclinic processes for the generation of eddy available potential energy is used to differentiate between the dynamical processes contributing to disturbance growth. The experiments indicate that sufficient latent heat release in the north-eastern quadrant of the cyclone is crucial for rapid disturbance intensification, where environmental relative humidity, baroclinicity, and static stability modulate the relative importance of latent heat release. Furthermore, the relative shallowness of the perturbation at high-latitudes increases the effectiveness of latent heat release on cyclone amplification.

  8. Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics

    NASA Technical Reports Server (NTRS)

    Puchalla, Jason; Adamek, Daniel; Austin, Robert

    2004-01-01

    We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.

  9. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  10. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  11. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration strategies requires that the role of physical habitat is correctly diagnosed and that restoration activities address true habitat limitations, including the role of dynamic habitats.

  12. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    DOE PAGES

    Reed, K. A.; Bacmeister, J. T.; Rosenbloom, N. A.; ...

    2015-05-13

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral elementmore » core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty« less

  13. Study on gas diffusion emitted from different height of point source.

    PubMed

    Yassin, Mohamed F

    2009-01-01

    The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.

  14. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-09

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Learning to classify wakes from local sensory information

    NASA Astrophysics Data System (ADS)

    Alsalman, Mohamad; Colvert, Brendan; Kanso, Eva; Kanso Team

    2017-11-01

    Aquatic organisms exhibit remarkable abilities to sense local flow signals contained in their fluid environment and to surmise the origins of these flows. For example, fish can discern the information contained in various flow structures and utilize this information for obstacle avoidance and prey tracking. Flow structures created by flapping and swimming bodies are well characterized in the fluid dynamics literature; however, such characterization relies on classical methods that use an external observer to reconstruct global flow fields. The reconstructed flows, or wakes, are then classified according to the unsteady vortex patterns. Here, we propose a new approach for wake identification: we classify the wakes resulting from a flapping airfoil by applying machine learning algorithms to local flow information. In particular, we simulate the wakes of an oscillating airfoil in an incoming flow, extract the downstream vorticity information, and train a classifier to learn the different flow structures and classify new ones. This data-driven approach provides a promising framework for underwater navigation and detection in application to autonomous bio-inspired vehicles.

  16. Information Retrieval and Criticality in Parity-Time-Symmetric Systems

    NASA Astrophysics Data System (ADS)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-01

    By investigating information flow between a general parity-time (P T -)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the P T -unbroken phase, whereas no information can be retrieved in the P T -broken phase. The P T -transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a P T -symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by P T symmetry. Possible experimental situations are also discussed.

  17. An evaluation of the relations between flow regime components, stream characteristics, species traits and meta-demographic rates of warmwater stream fishes: Implications for aquatic resource management

    USGS Publications Warehouse

    Peterson, James T.; Shea, C.P.

    2015-01-01

    Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. Hillslope-scale experiment demonstrates role of convergence during two-step saturation

    USGS Publications Warehouse

    Gevaert, A. I.; Teuling, A. J.; Uijlenhoet, R.; DeLong, Stephen B.; Huxman, T. E.; Pangle, L. A.; Breshears, David D.; Chorover, J.; Pelletier, John D.; Saleska, S. R.; Zeng, X.; Troch, Peter A.

    2014-01-01

    Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.

  19. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  20. Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2017-12-01

    Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.

  1. Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow

    NASA Astrophysics Data System (ADS)

    Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel

    2016-05-01

    Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.

  2. Multiple Views of Space: Continuous Visual Flow Enhances Small-Scale Spatial Learning

    ERIC Educational Resources Information Center

    Holmes, Corinne A.; Marchette, Steven A.; Newcombe, Nora S.

    2017-01-01

    In the real word, we perceive our environment as a series of static and dynamic views, with viewpoint transitions providing a natural link from one static view to the next. The current research examined if experiencing such transitions is fundamental to learning the spatial layout of small-scale displays. In Experiment 1, participants viewed a…

  3. Spatial ecology of the aquatic garter snake, Thamnophis atratus, in a free-flowing stream environment

    Treesearch

    H. H. Welsh; C. A. Wheeler; A. J. Lind

    2010-01-01

    Spatial patterns of animals have important implications for population dynamics and can reveal other key aspects of a species' ecology. Movements and the resulting spatial arrangements have fitness and genetic consequences for both individuals and populations. We studied the spatial and dispersal patterns of the Oregon Gartersnake, Thamnophis atratus...

  4. Analytical and experimental studies of flow-induced vibration of SSME components

    NASA Technical Reports Server (NTRS)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1987-01-01

    Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.

  5. A depth-of-field limited particle image velocimetry technique applied to oscillatory boundary layer flow over a porous bed

    NASA Astrophysics Data System (ADS)

    Lara, J. L.; Cowen, E. A.; Sou, I. M.

    2002-06-01

    Boundary layer flows are ubiquitous in the environment, but their study is often complicated by their thinness, geometric irregularity and boundary porosity. In this paper, we present an approach to making laboratory-based particle image velocimetry (PIV) measurements in these complex flow environments. Clear polycarbonate spheres were used to model a porous and rough bed. The strong curvature of the spheres results in a diffuse volume illuminated region instead of the more traditional finite and thin light sheet illuminated region, resulting in the imaging of both in-focus and significantly out-of-focus particles. Results of a traditional cross-correlation-based PIV-type analysis of these images demonstrate that the mean and turbulent features of an oscillatory boundary layer driven by a free-surface wave over an irregular-shaped porous bed can be robustly measured. Measurements of the mean flow, turbulent intensities, viscous and turbulent stresses are presented and discussed. Velocity spectra have been calculated showing an inertial subrange confirming that the PIV analysis is sufficiently robust to extract turbulence. The presented technique is particularly well suited for the study of highly dynamic free-surface flows that prevent the delivery of the light sheet from above the bed, such as swash flows.

  6. Physical Vapor Transport of Mercurous Chloride Crystals: Design of a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W, M. B.; Singh, N. B.; Glicksman, M. E.

    1997-01-01

    Flow field characteristics predicted from a computational model show that the dynamical state of the flow, for practical crystal growth conditions of mercurous chloride, can range from steady to unsteady. Evidence that the flow field can be strongly dominated by convection for ground-based conditions is provided by the prediction of asymmetric velocity profiles bv the model which show reasonable agreement with laser Doppler velocimetry experiments in both magnitude and planform. Unsteady flow is shown to be correlated with a degradation of crystal quality as quantified by light scattering pattern measurements, A microgravity experiment is designed to show that an experiment performed with parameters which yield an unsteady flow becomes steady (diffusive-advective) in a microgravity environment of 10(exp -3) g(sub 0) as predicted by the model, and hence yields crystals with optimal quality.

  7. Control of self-motion in dynamic fluids: fish do it differently from bees.

    PubMed

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  9. Computational Fluid Dynamics Modeling of Submerged Objects Under Unidirectional and Oscillatory Flows.

    NASA Astrophysics Data System (ADS)

    Fytanidis, D. K.; Wu, H.; Landry, B. J.; Garcia, M. H.

    2017-12-01

    Abandoned Unexploded Ordnances (UXOs) from wartime events, accidents, training or other military activities can be found in coastal environments. While the interest for these hazardous submerged objects is increased, there are still existing knowledge gaps regarding the mechanisms of incipient motion and flow behavior around UXOs lying on the seafloor. Numerical modeling of flow around near bed placed UXOs is conducted for unidirectional and oscillatory flow conditions using Computational Fluid Dynamics techniques. The Reynolds-Averaged Navier-Stokes (RANS) approach is used to simulate the complex turbulent flow field around UXOs. The numerical results are compared with two-dimensional Particle Image Velocimetry measurements from experiments conducted in unidirectional and oscillatory flow facilities within the Ven Te Chow Hydrosystems Laboratory to evaluate the accuracy of the applied RANS-based solver. Realistic boundary conditions are imposed in the numerical models to mimic the experimental conditions in the laboratory facilities. The comparison between the numerical results and the experimental data agrees well. In addition, the effect of the angle of attack on the forces that UXOs experience is examined. Numerical results suggest that the orientation of UXOs with respect to the mean flow is an important parameter for incipient motion under critical flow conditions which is in agreement with prior laboratory experimental results regarding the identification of critical flow conditions for the initiation of motion of UXOs. Finally, an extensive parametric analysis is conducted to evaluate the effect of the maximum current velocity and wave characteristics (maximum velocity and period) on the flow forces and the mean flow pattern around the objects.

  10. Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.

  11. Hydrodynamic Capture of Particles by Micro-swimmers under Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2017-11-01

    We explore a hydrodynamic capture mechanism of a driven particle by a micro-swimmer in confined microfluidic environments with an idealized model. The capture is mediated by the hydrodynamic interactions between the micro-swimmer, the driven particle, and the background flow. This capture mechanism relies on the existence of attractive stable equilibrium configurations between the driven particle and the micro-swimmer, which occurs when the background flow is larger than a certain critical threshold. Dynamics and stability of capture and non-capture events will be discussed. This study may have potential applications in the study of capture and delivery of therapeutic payloads by micro-swimmers as well as particle self-assembly under confinements.

  12. Application of computational fluid dynamics to the study of vortex flow control for the management of inlet distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1992-01-01

    A study is presented to demonstrate that the Reduced Navier-Stokes code RNS3D can be employed effectively to develop a vortex generator installation that minimizes engine face circumferential distortion by controlling the development of secondary flow. The necessary computing times are small enough to show that similar studies are feasible within an analysis-design environment with all its constraints of costs and time. This study establishes the nature of the performance enhancements that can be realized with vortex flow control, and indicates a set of aerodynamic properties that can be utilized to arrive at a successful vortex generator installation design.

  13. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). In-house single-epoch GNSS processing software provides 1-2 cm coordinate time-series capable of detecting a major calving event during the 2012 pilot study. These data can be synthesised with other remotely sensed data e.g. airborne lidar, oblique photogrammetry and TanDEM-X satellite imagery derived DEMs giving an opportunity to fine-tune glacial models delivering a deeper understanding of the contribution to sea-level rise made by tidewater glaciers such as Helheim. The flexibility of our network would make it suitable for deployment in other extreme environments such as areas at risk from earthquakes and landslides.

  14. Wake flow control using a dynamically controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  15. Tectonic and hydrological controls on multiscale deformations in the Levant: numerical modeling and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi

    2016-04-01

    Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.

  16. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  17. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  18. Blind system identification of two-thermocouple sensor based on cross-relation method.

    PubMed

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  19. Blind system identification of two-thermocouple sensor based on cross-relation method

    NASA Astrophysics Data System (ADS)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  20. Centaur in-tank explosion flow fields within STS and Titan 4 payload spaces

    NASA Technical Reports Server (NTRS)

    Eck, M.; Mukunda, M.

    1988-01-01

    Explosions are examined which result from the mixing of liquid hydrogen and liquid oxygen (LH2-LO2) such that the reactants are confined by the missile (CBM) body. Explosion which were confined by the ground surface (CBGS) were also studied, with results reported elsewhere. Initial attempts to predict the reported PYRO experimental results were unsuccessful. A new reaction energy addition hypothesis was then developed and tested. The results obtained provide reasonable agreement with the experiments both in the near and far field. Calculations were performed to predict the environment which would occur at the Galileo Radioisotope Thermoelectric Generator (RTG) location given a Centaur G' upper stage and an STS launch vehicle. It was concluded that the principle threat to the RTG in this environment would be the impact of a slug of LH2. No analyses were conducted to assess the response of the Galileo RTG to such an environment. It was shown that the flow field resulting from the failure of the Centaur G' tankage was benign. It was concluded that while the cryogen particle velocity was very high, the flow field density was extremely low. As a result, the dynamic pressure was a trivial eight psia.

  1. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  2. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.

    PubMed

    Sun, Tian Yin; Bornhöft, Nikolaus A; Hungerbühler, Konrad; Nowack, Bernd

    2016-05-03

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental concentrations. Despite significant advances in analytical methods, it is still not possible to measure the concentrations of ENM in natural systems. Material flow and environmental fate models have been used to provide predicted environmental concentrations. However, almost all current models are static and consider neither the rapid development of ENM production nor the fact that many ENM are entering an in-use stock and are released with a lag phase. Here we use dynamic probabilistic material flow modeling to predict the flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. Caused by the increase in production, the concentrations of all ENM in all compartments are increasing. Nano-TiO2 had far higher concentrations than the other three ENM. Sediment showed in our worst-case scenario concentrations ranging from 6.7 μg/kg (CNT) to about 40 000 μg/kg (nano-TiO2). In most cases the concentrations in waste incineration residues are at the "mg/kg" level. The flows to the environment that we provide will constitute the most accurate and reliable input of masses for environmental fate models which are using process-based descriptions of the fate and behavior of ENM in natural systems and rely on accurate mass input parameters.

  3. A compartmental-spatial system dynamics approach to ground water modeling.

    PubMed

    Roach, Jesse; Tidwell, Vince

    2009-01-01

    High-resolution, spatially distributed ground water flow models can prove unsuitable for the rapid, interactive analysis that is increasingly demanded to support a participatory decision environment. To address this shortcoming, we extend the idea of multiple cell (Bear 1979) and compartmental (Campana and Simpson 1984) ground water models developed within the context of spatial system dynamics (Ahmad and Simonovic 2004) for rapid scenario analysis. We term this approach compartmental-spatial system dynamics (CSSD). The goal is to balance spatial aggregation necessary to achieve a real-time integrative and interactive decision environment while maintaining sufficient model complexity to yield a meaningful representation of the regional ground water system. As a test case, a 51-compartment CSSD model was built and calibrated from a 100,0001 cell MODFLOW (McDonald and Harbaugh 1988) model of the Albuquerque Basin in central New Mexico (McAda and Barroll 2002). Seventy-seven percent of historical drawdowns predicted by the MODFLOW model were within 1 m of the corresponding CSSD estimates, and in 80% of the historical model run years the CSSD model estimates of river leakage, reservoir leakage, ground water flow to agricultural drains, and riparian evapotranspiration were within 30% of the corresponding estimates from McAda and Barroll (2002), with improved model agreement during the scenario period. Comparisons of model results demonstrate both advantages and limitations of the CCSD model approach.

  4. Respirator fit and protection through determination of air and particle leakage.

    PubMed

    Xu, M; Han, D; Hangal, S; Willeke, K

    1991-02-01

    A laboratory technique for determining the respirator protection factor from a test of fit is described. A dynamic pressure test quantifies the air flow through the leak. Calibration data, stored in a computer, relate the contaminant influx to this air flow, and a similar pressure test determines the flow through the respirator cartridges and, therefore, the dilution characteristics. Contaminant removal characteristics of the cartridges are stored in the computer. The contaminant penetration is calculated from these data on flow and removal efficiency. Through specification of the aerosol size distribution and the method of measurement, protection factors are calculated for specific work environments, work loads and respirator cartridges. The protection factor is shown to be highly dependent on the method of measuring the contaminant and on the cartridges used.

  5. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  6. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    NASA Technical Reports Server (NTRS)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.

  7. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    PubMed

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  8. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    PubMed Central

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-01-01

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  9. Turbulence sources, character, and effects in the stable boundary layer: Insights from multi-scale direct numerical simulations and new, high-resolution measurements

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Wang, Ling; Balsley, Ben; Lawrence, Dale

    2013-04-01

    A number of sources contribute to intermittent small-scale turbulence in the stable boundary layer (SBL). These include Kelvin-Helmholtz instability (KHI), gravity wave (GW) breaking, and fluid intrusions, among others. Indeed, such sources arise naturally in response to even very simple "multi-scale" superpositions of larger-scale GWs and smaller-scale GWs, mean flows, or fine structure (FS) throughout the atmosphere and the oceans. We describe here results of two direct numerical simulations (DNS) of these GW-FS interactions performed at high resolution and high Reynolds number that allow exploration of these turbulence sources and the character and effects of the turbulence that arises in these flows. Results include episodic turbulence generation, a broad range of turbulence scales and intensities, PDFs of dissipation fields exhibiting quasi-log-normal and more complex behavior, local turbulent mixing, and "sheet and layer" structures in potential temperature that closely resemble high-resolution measurements. Importantly, such multi-scale dynamics differ from their larger-scale, quasi-monochromatic gravity wave or quasi-horizontally homogeneous shear flow instabilities in significant ways. The ability to quantify such multi-scale dynamics with new, very high-resolution measurements is also advancing rapidly. New in-situ sensors on small, unmanned aerial vehicles (UAVs), balloons, or tethered systems are enabling definition of SBL (and deeper) environments and turbulence structure and dissipation fields with high spatial and temporal resolution and precision. These new measurement and modeling capabilities promise significant advances in understanding small-scale instability and turbulence dynamics, in quantifying their roles in mixing, transport, and evolution of the SBL environment, and in contributing to improved parameterizations of these dynamics in mesoscale, numerical weather prediction, climate, and general circulation models. We expect such measurement and modeling capabilities to also aid in the design of new and more comprehensive future SBL measurement programs.

  10. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved groundwater resource management, highway salt application practice, surface-water - ecosystem management, and decision making on highway drainage to ground. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The enigmatic ultra-long run-out of seafloor density driven flows

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.

    2017-12-01

    Dilute, particulate-laden, density-driven flows - turbidity currents - are a predominant mechanism for transporting sediment from source to sink in deep marine environments. These flows sculpt channels on the seafloor and, as evidenced by a wealth of bathymetric data, can travel for >1000km, forming some of the largest sedimentary landforms on the planet. For turbidity currents to travel such large dsitances, sediment must be self-maintained in suspension, i.e., be in a state of autosuspension. It has been shown that such self-maintained sediment suspensions can only occur whilst inertial forces are greater than gravitational forces, entailing supercritical flow. This conclusion is paradoxical, as inertia dominated flows rapidly entrain fluid, thereby thickening and slowing to become subcritical. However, current theory can only truly be applied to the proximal upper slope regions of seafloor channels where incised flows are fully confined. This contrasts with the distal reaches of long run out turbidity current systems, where the flow is only partially confined through self-channelization. Here it is shown that overspill of partially confined flow has a significant effect on the hydro- and morphodynamics of turbidity current systems. A new model is derived that shows that channel overspill acts to negate the effects of ambient fluid entrainment: a dynamic balance that limits increases in flow depth and maintains supercritical flow throughout the channel. In the new model mass, momentum and energy conservation is modulated by flow overspill onto channel banks, necessarily requiring description of the vertical structure of the flow. Analysis of continuously stratified steady state flow dynamics shows that the integration of overspill and stratification is necessary to enable maintained autosuspension and thus predict the ultra-long run-out of turbidity currents.

  12. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.

  13. LAMPS software

    NASA Technical Reports Server (NTRS)

    Perkey, D. J.; Kreitzberg, C. W.

    1984-01-01

    The dynamic prediction model along with its macro-processor capability and data flow system from the Drexel Limited-Area and Mesoscale Prediction System (LAMPS) were converted and recorded for the Perkin-Elmer 3220. The previous version of this model was written for Control Data Corporation 7600 and CRAY-1a computer environment which existed until recently at the National Center for Atmospheric Research. The purpose of this conversion was to prepare LAMPS for porting to computer environments other than that encountered at NCAR. The emphasis was shifted from programming tasks to model simulation and evaluation tests.

  14. Adaptive Tracking Control for Robots With an Interneural Computing Scheme.

    PubMed

    Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang

    2018-04-01

    Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.

  15. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  16. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

  17. Tidal dynamics in the Bay of Algeciras (Strait of Gibraltar) by a numerical experiment

    NASA Astrophysics Data System (ADS)

    Sammartino, Simone; García Lafuente, Jesús; Sanchez Garrido, José Carlos; De los Santos, Francisco Javier; Álvarez Fanjul, Enrique; Bruno, Miguel; Concepción Calero, María

    2013-04-01

    The Bay of Algeciras (southwest of Spain) is located at the eastern part of the Strait of Gibraltar where the well-known two-way exchange between the Atlantic Ocean and the Mediterranean Sea occurs. The bay and its port have a strategic relevance in terms of maritime traffic and supply of fuel and goods, making the whole area a high risk environment for pollution derived from its commercial activities. Thus, a complete knowledge of the hydrodynamics of the bay is crucial to cope with an efficient management of its environment. A high-resolution numerical three-dimensional model has been applied to the study of the dynamics of the bay at the tidal scale. After a satisfactory validation, based on a comprehensive set of measurements collected in the area in 2011, the model outputs are used for a detailed analysis of the local hydrodynamics. The bay is characterized by a standing-wave pattern of the barotropic dynamics, inherited by the strait region, with a flow across the mouth of 2.7x10-3 Sv, in quadrature with the SSH oscillations. However, the harmonic analysis of the meridional velocity in the cross-bay section at its mouth and in the longitudinal section between the mouth and the head reveals a marked baroclinic structure of the flow, with values one order higher than the barotropic flow. The upper layer and the lower layer flows are clearly in antiphase with a very thin layer of maximum change of phase and minimum amplitude, roughly coinciding with the average location of the isohaline S=37.5. The origin of this structure is the important internal tide acting into the area, characterized by a clear shorewards propagation, with the possible presence of an amphidromic point in the west side of the mouth and a quarter-wave resonance amplifying the internal oscillations. The analysis of the zonally integrated meridional transport (meridional stream function) reveals a circulation scheme opposite to the one of the strait. During the flood tide, while in the strait the Mediterranean water flows inside the channel and displaces the isohalines upwards, in the bay, the Atlantic water flows shorewards, forcing the isohaline downwards and pushing the Mediterranean water out of the bay, where it joins the Mediterranean flow directed westwards. During the ebb tide, the Mediterranean water flowing eastwards penetrates inside the bay producing the raising of the isohalines and pushing the superficial Atlantic water out in the channel, where it joins the Atlantic jet moving eastwards.

  18. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions

    Treesearch

    Christina Tague; Gordon E. Grant

    2009-01-01

    In mountain environments, spatial and temporal patterns of snow accumulation and melt are dominant controls on hydrologic responses to climate change. In this paper, we develop a simple conceptual model that links the timing of peak snowmelt with geologically mediated differences in rate of streamflow recession. This model demonstrates that within the western United...

  19. Numerical and experimental studies of particle flow in a high-pressure boundary-layer wind tunnel

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1984-01-01

    The approach was to simulate the surface environment of Venus as closely as practicable and to conduct experiments to determine threshold wind speeds, particle flux, particle velocities, and the characteristics of various aeolian bedforms. The Venus Wind Tunnel (VWT) is described and the experimental procedures that were developed to make the high-pressure wind tunnel measurements are presented. In terrestrial simulations of aeolian activity, it is possible to conduct experiments under pressures and temperatures found in natural environments. Because of the high pressures and temperatures, Venusian simulations are difficult to achieve in this regard. Consequently, extrapolation of results to Venue potentially involves unknown factors. The experimental rationale was developed in the following way: The VWT enables the density of the Venusian atmosphere to be reproduced. Density is the principal atmospheric property for governing saltation threshold, particle flux, and the ballistics of airborne particles (equivalent density maintains dynamic similarity of gas flow). When operated at or near Earth's ambient temperature, VWT achieves Venusian atmospheric density at pressures of about 30 bar, or about one third less than those on Venus, although still maintaining dynamic similarity to Venus.

  20. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  1. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  2. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  3. A multiple-point geostatistical approach to quantifying uncertainty for flow and transport simulation in geologically complex environments

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.

    2011-12-01

    In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.

  4. Navigating the flow: individual and continuum models for homing in flowing environments

    PubMed Central

    Painter, Kevin J.; Hillen, Thomas

    2015-01-01

    Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to ‘homing’ problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. PMID:26538557

  5. Hypersonic engine component experiments in high heat flux, supersonic flow environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1993-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Even though progress has been made in the computational understanding of fluid dynamics and the physics/chemistry of high speed flight, there is also a need for experimental facilities capable of providing a high heat flux environment for testing component concepts and verifying/calibrating these analyses. A hydrogen/oxygen rocket engine heat source was developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to fulfill this need. This 'Hot Gas Facility' is capable of providing heat fluxes up to 450 w/sq cm on flat surfaces and up to 5,000 w/sq cm at the leading edge stagnation point of a strut in a supersonic flow stream. Gas temperatures up to 3050 K can also be attained. Two recent experimental programs conducted in this facility are discussed. The objective of the first experiment is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Macrophotographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight. The objective of the second experiment is to assess the capability of cooling a porous surface exposed to a high temperature, high velocity flow environment and to provide a heat transfer data base for a design procedure. Experimental results from transpiration cooled surfaces in a supersonic flow environment are presented.

  6. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  7. A Vorticity-preserving Hydrodynamical Scheme for Modeling Accretion Disk Flows

    NASA Astrophysics Data System (ADS)

    Seligman, Darryl; Laughlin, Gregory

    2017-10-01

    Vortices, turbulence, and unsteady nonlaminar flows are likely both prominent and dynamically important features of astrophysical disks. Such strongly nonlinear phenomena are often difficult, however, to simulate accurately, and are generally amenable to analytic treatment only in idealized form. In this paper, we explore the evolution of compressible two-dimensional flows using an implicit dual-time hydrodynamical scheme that strictly conserves vorticity (if applied to simulate inviscid flows for which Kelvin’s Circulation Theorem is applicable). The algorithm is based on the work of Lerat et al., who proposed it in the context of terrestrial applications such as the blade-vortex interactions generated by helicopter rotors. We present several tests of Lerat et al.'s vorticity-preserving approach, which we have implemented to second-order accuracy, providing side-by-side comparisons with other algorithms that are frequently used in protostellar disk simulations. The comparison codes include one based on explicit, second-order van Leer advection, one based on spectral methods, and another that implements a higher-order Godunov solver. Our results suggest that the Lerat et al. algorithm will be useful for simulations of astrophysical environments in which vortices play a dynamical role, and where strong shocks are not expected.

  8. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    PubMed

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  9. Identification of vortexes obstructing the dynamo mechanism in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Limone, A.; Hatch, D. R.; Forest, C. B.; Jenko, F.

    2013-06-01

    The magnetohydrodynamic dynamo effect explains the generation of self-sustained magnetic fields in electrically conducting flows, especially in geo- and astrophysical environments. Yet the details of this mechanism are still unknown, e.g., how and to which extent the geometry, the fluid topology, the forcing mechanism, and the turbulence can have a negative effect on this process. We report on numerical simulations carried out in spherical geometry, analyzing the predicted velocity flow with the so-called singular value decomposition, a powerful technique that allows us to precisely identify vortexes in the flow which would be difficult to characterize with conventional spectral methods. We then quantify the contribution of these vortexes to the growth rate of the magnetic energy in the system. We identify an axisymmetric vortex, whose rotational direction changes periodically in time, and whose dynamics are decoupled from those of the large scale background flow, that is detrimental for the dynamo effect. A comparison with experiments is carried out, showing that similar dynamics were observed in cylindrical geometry. These previously unexpected eddies, which impede the dynamo effect, offer an explanation for the experimental difficulties in attaining a dynamo in spherical geometry.

  10. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    PubMed

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  11. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  12. High order parallel numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.

    1992-01-01

    The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.

  13. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    PubMed Central

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  14. Characterization of granular flow dynamics from the generated high-frequency seismic signal: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Farin, M.; de Rosny, J.; Toussaint, R.; Trinh, P. T.

    2017-12-01

    Landslides, rock avalanche and rockfalls represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics (flow potential energy, involved volume, particle size…) from the characteristics of the generated seismic signal (radiated seismic energy, maximum amplitude, frequencies,...). Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular flow are constituted with steel beads of same diameter. We compare the dynamic parameters of the granular flows, deduced from the movie of the experiments, to the seismic parameters deduced from the measured seismic signals. The ratio of radiated seismic energy to potential energy lost is shown to slightly decrease with slope angle and is between 0.2% and 9%. It decreases as time, slope angle and flow volume increase and when the particle diameter decreases. These results explain the dispersion over several orders of magnitude of the seismic efficiency of natural landslides. We distinguish two successive phases of rise and decay in the time profiles if the amplitude of the seismic signal and of the mean frequency of the signal generated by the granular flows. The rise phase and the maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. We observe that the shape of the seismic envelope and frequencies as a function of time changes after a critical slope angle, between 10° and 15° with respect to the horizontal, with a decay phase lasting much longer as slope angle increases, due to a change in the flow regime, from a dense to a more agitated flow. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter.

  15. Phylodynamics and movement of Phycodnaviruses among aquatic environments

    PubMed Central

    Gimenes, Manuela V; Zanotto, Paolo M de A; Suttle, Curtis A; da Cunha, Hillândia B; Mehnert, Dolores U

    2012-01-01

    Phycodnaviruses have a significant role in modulating the dynamics of phytoplankton, thereby influencing community structure and succession, nutrient cycles and potentially atmospheric composition because phytoplankton fix about half the carbon dioxide (CO2) on the planet, and some algae release dimethylsulphoniopropionate when lysed by viruses. Despite their ecological importance and widespread distribution, relatively little is known about the evolutionary history, phylogenetic relationships and phylodynamics of the Phycodnaviruses from freshwater environments. Herein we provide novel data on Phycodnaviruses from the largest river system on earth—the Amazon Basin—that were compared with samples from different aquatic systems from several places around the world. Based on phylogenetic inference using DNA polymerase (pol) sequences we show the presence of distinct populations of Phycodnaviridae. Preliminary coarse-grained phylodynamics and phylogeographic inferences revealed a complex dynamics characterized by long-term fluctuations in viral population sizes, with a remarkable worldwide reduction of the effective population around 400 thousand years before the present (KYBP), followed by a recovery near to the present time. Moreover, we present evidence for significant viral gene flow between freshwater environments, but crucially almost none between freshwater and marine environments. PMID:21796218

  16. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  17. [Responses of sap flow to natural rainfall and continuous drought of tree species growing on bedrock outcrops].

    PubMed

    Zhang, Hui Ling; Ding, Ya Li; Chen, Hong Song; Wang, Ke Lin; Nie, Yun Peng

    2018-04-01

    This study focused on bedrock outcrops, a very common habitat in karst region of southwest China. To reveal the responses of plant transpiration to natural rainfall and continuous drought, two tree species typical to this habitat, Radermachera sinica and Triadica rotundifolia, were selected as test materials. A rainout shelter was used to simulate continuous drought. The sap flow dynamics were monitored using the method of Granier's thermal dissipation probe (TDP). Our results showed that sap flow density increased to different degrees after rain in different stages of the growing season. Sap flow density of the deciduous species T. rotundifolia was always higher than that of the semi-deciduous species R. sinica. After two months without rainfall input, both species exhibited no obvious decrease in sap flow density, indicating that rainfall was not the dominant source for their water uptake, at least in the short-term. Based on the regression relationships between sap flow density and meteorological factors before and after rainfall, as well as at different stages of continuous drought, we found that the dynamics of meteorological factors contributed little to plant transpiration. The basic transpiration characteristics of both species were not changed in the circumstance of natural rainfall and short-term continuous drought, which would be closely related to the special water storage environments of bedrock outcrops and the reliance on deep water sources by tree species.

  18. The Impact of Urbanization on the Regional Aeolian Dynamics of an Arid Coastal Dunefield

    NASA Astrophysics Data System (ADS)

    Smith, Alexander; Jackson, Derek; Cooper, Andrew

    2016-04-01

    The anthropogenic impact on the geomorphology of many landscapes are inextricably connected but are often neglected due to the difficulty in making a direct link between the quasi natural and human processes that impact the environment. This research focuses on the Maspalomas dunefield, located on the southern coast of Gran Canaria, in the Canary Island Archipelago. The tourism industry in Maspalomas has led to intensive urbanization since the early 1960's over an elevated alluvial terrace that extends into the dunefield. Urbanization has had a substantial impact on both the regional airflow conditions and the geomorphological development of this transverse dune system. As a result airflow and sediment has been redirected in response to the large scale construction efforts. In situ data was collected during field campaigns using high resolution three-dimensional anemometry to identify the various modifications within the dunefield relative to incipient regional airflow conditions. The goal is to analyse the flow conditions near the urbanized terrace in relation to areas that are located away from the influence of the buildings and to verify numerical modelling results. Computational Fluid Dynamics (CFD) modelling is used in order to expand the areal extent of analysis by providing an understanding of relevant flow dynamics (e.g. flow velocity, directionality, turbulence, shear stresses, etc.) at the mesoscale. An integrative three dimensional model for CFD simulations was created to address the impact of both the urban area (i.e. hotels, commercial centers, and residential communities) as well as the dune terrain on regional flow conditions. Early modelling results show that there is significant flow modification around the urban terrace with streamline compression, acceleration, and deflection of flow on the windward side of the development. Consequently downwind of the terrace there is an area of highly turbulent flow conditions and well developed separation and deceleration zones as flow becomes modified by the building geometries. A historical analysis was then carried out to look at the direct link between regional airflow conditions pre and post urbanization. This is done by removing the modelled buildings and simulating flow conditions across the paleo alluvial terrace that is representative of the terrain prior to 1961. Modelling results show that there are largely unperturbed regional flow dynamics prior to urbanization with flow velocity, directionality, and turbulence remaining largely homogeneous at the mesoscale. Recent aerial LiDAR surveys show a distinct trend in the sediment dynamics (i.e. areas of accelerated and retarded dune migration) that correspond well to the modified flow conditions that have been simulated at the dunefield scale. This research begins to address the impact of societal pressures on natural systems by analysing the process-form relationship that has arisen from the coevolution of the Maspalomas dunefield.

  19. Semi-actuator disk theory for compressor choke flutter

    NASA Technical Reports Server (NTRS)

    Micklow, J.; Jeffers, J.

    1981-01-01

    A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.

  20. Report on the Program “Fluid-mediated particle transport in geophysical flows” at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-15

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  1. Space station dynamics, attitude control and momentum management

    NASA Technical Reports Server (NTRS)

    Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi

    1989-01-01

    The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.

  2. Investigation of the oxidation behavior of dispersion stabilized alloys when exposed to a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The oxidation behavior of TD-NiCr and TD-NiCrAlY alloys have been studied at 2000 and 2200 F in static and high speed flowing air environments. The TD-NiCrAlY alloys preoxidized to produce an Al2O3 scale on the surface showed good oxidation resistance in both types of environments. The TD-NiCr alloy which had a Cr2O3 oxide scale after preoxidation was found to oxidize more than an order of magnitude faster under the dynamic test conditions than at comparable static test conditions. Although Cr2O3 normally provides good oxidation protection, it was rapidly lost due to formation of volatile CrO3 when exposed to the high speed air stream. The preferred oxide arrangement for the dynamic test consisted of an external layer of NiO with a porous mushroom type morphology, an intermediate duplex layer of NiO and Cr2O3, and a continuous inner layer of Cr2O3 in contact with the alloy substrate. An oxidation model has been developed to explain the observed microstructure and overall oxidation behavior of all alloys.

  3. Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information

    PubMed Central

    Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling

    2013-01-01

    The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995

  4. Visual analysis of fluid dynamics at NASA's numerical aerodynamic simulation facility

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.

    1991-01-01

    A study aimed at describing and illustrating visualization tools used in Computational Fluid Dynamics (CFD) and indicating how these tools are likely to change by showing a projected resolution of the human computer interface is presented. The following are outlined using a graphically based test format: the revolution of human computer environments for CFD research; comparison of current environments; current environments with the ideal; predictions for the future CFD environments; what can be done to accelerate the improvements. The following comments are given: when acquiring visualization tools, potential rapid changes must be considered; environmental changes over the next ten years due to human computer interface cannot be fathomed; data flow packages such as AVS, apE, Explorer and Data Explorer are easy to learn and use for small problems, excellent for prototyping, but not so efficient for large problems; the approximation techniques used in visualization software must be appropriate for the data; it has become more cost effective to move jobs that fit on workstations and run only memory intensive jobs on the supercomputer; use of three dimensional skills will be maximized when the three dimensional environment is built in from the start.

  5. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less

  6. A Sarsa(λ)-based control model for real-time traffic light coordination.

    PubMed

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  7. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    PubMed

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  8. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  9. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation ismore » boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.« less

  10. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  11. Shear flow driven tripolar vortices in a nonuniform electron-ion magnetoplasma with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.

    2014-04-01

    A set of nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves is derived for sheared ion flows parallel and perpendicular to the ambient magnetic field in the presence of Cairns and Kappa distributed electrons. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on a scale of the order of ion Larmor radius ρ i which is calculated to be around a Kilometer for the plasma parameters found in the Saturn's E-ring. The relevance of the present investigation in planetary environments is also pointed out.

  12. Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model

    PubMed Central

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530

  13. Dynamic properties of hot-wire anemometric measurement circuits in the aspect of measurements in mine conditions / Właściwości dynamiczne termoanemometrycznych układów pomiarowych w aspekcie pomiarów w warunkach kopalnianych

    NASA Astrophysics Data System (ADS)

    Jamróz, Paweł; Ligęza, Paweł; Socha, Katarzyna

    2012-12-01

    The use of measurement apparatus under conditions which differ significantly from those under which the apparatus was adjusted carries the risk of altering the previously determined measurement characteristics. This is of special concern in the case of apparatus which is sensitive to external measurement conditions. Advanced measurement systems are equipped with algorithms which allow the negative effect of unstable environmental conditions on their static characteristics to be compensated for. Meanwhile, the problem of altered dynamic properties of such systems is often neglected. This paper presents a model study in which the effect of variable operational conditions on dynamic response of hot-wire anemometric measurement system in the case of simulated mine flows was investigated. A mathematical model of measurement system able to compensate the negative effect of changes in flow velocity and configuration of measurement apparatus itself on its dynamic properties was developed and investigated. Based on conducted experiments, we have developed an automatic regulation algorithm enabling the transmission band of measurement apparatus to be optimized for measurement conditions prevailing in mine environment.

  14. Mathematical modeling of aeroelastic systems

    NASA Astrophysics Data System (ADS)

    Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.

    2017-12-01

    In the paper, the stability of elastic elements of a class of designs that are in interaction with a gas or liquid flow is investigated. The definition of the stability of an elastic body corresponds to the concept of stability of dynamical systems by Lyapunov. As examples the mathematical models of flowing channels (models of vibration devices) at a subsonic flow and the mathematical models of protective surface at a supersonic flow are considered. Models are described by the related systems of the partial differential equations. An analytic investigation of stability is carried out on the basis of the construction of Lyapunov-type functionals, a numerical investigation is carried out on the basis of the Galerkin method. The various models of the gas-liquid environment (compressed, incompressible) and the various models of a deformable body (elastic linear and elastic nonlinear) are considered.

  15. Dynamics and viscosity of `a'a and pahoehoe lava flows of the 2012-2013 eruption of Tolbachik volcano, Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina

    2018-01-01

    The 2012-2013 flank eruption of Tolbachik volcano (Kamchatka) lasted 9 months and produced 0.54 km3 of basaltic trachyandesite lava, thus becoming one of the most voluminous historical lava effusions of basic composition in subduction-related environments globally. From March to July 2013, the volcano monotonously erupted lava of constant composition (SiO2 = 52 wt%) with a nearly stable effusion rate of 18 m3/s. Despite the uniform eruptive and emplacement conditions, the dominant style of lava propagation throughout that time gradually changed from `a'a to pahoehoe. We report results of instrumental field measurements of the `a'a and pahoehoe flow dynamics (documented with time-lapse cameras) as well as the lava viscosity determined by flow rate and shear stress (using penetrometer) methods. Maximal propagation velocities of the `a'a fronts ranged from 2 to 25 mm/s, and those of the pahoehoe from 0.5 to 6 mm/s. The flow front velocities of both lava types experienced short-period fluctuations that were caused by complex flow mechanics of the advancing flow lobes. Minimal viscosities of lava of the `a'a lobes ranged from 1.3 × 105 to 3.3 × 107 Pa s (flow rate method), and those of the pahoehoe from to 5 × 103 to 5 × 104 Pa s (shear stress method). Our data include the first ever measured profiles of viscosity through the entire thickness of actively advancing pahoehoe lava lobes. We have found that both the `a'a and pahoehoe flows were fed by identical parental lava, which then developed contrasting rheological properties, owing to differences in the process of lava transport over the ground surface. The observed transition from the dominant `a'a to the dominant pahoehoe propagation styles occurred due to gradual elongation and branching of the lava tube system throughout the course of the eruption. Such evolution became possible because the growing lava field, composed of semisolidified flows, provided an environment for shallow subsurface intrusions and internal migrations of lava that, with time, developed into branches of the lava tube system. Based on our data, we propose phenomenological models of the `a'a and pahoehoe flow mechanics.

  16. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    PubMed

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  17. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the CSC flow environment are presented and discussed. The final configuration of the CSC employs magnetic stir bars with angled paddles to achieve the necessary flow requirements within the CSC.

  18. Fluid Mechanics of Blood Clot Formation.

    PubMed

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  19. The pressure is all in your head: A cilia-driven high-pressure pump in the head of a deep-sea animal

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Katija, Kakani; Shelley, Michael; Kanso, Eva

    2017-11-01

    Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. In many ciliated systems found in nature, such as the mammalian airways and marine sponges, the organization and collective behavior of the cilia favors the pumping of fluids at low pressures and high volumes. We recently discovered an alternate design located in the head of a deep-sea animal called Larvacean. Here, cilia morphology, kinematics and flow indicate a role in maintaining the hydrostatic skeleton of the animal by generating a high-pressure flow. We describe our empirical and computational approaches toward understanding the design principles and dynamic range of this newly discovered pumping mechanism. In ongoing work, we further explore the fluid dynamic constraints on the morphological diversity of cilia and the resulting categories of fluid transport functions.

  20. Fluid Mechanics of Blood Clot Formation

    NASA Astrophysics Data System (ADS)

    Fogelson, Aaron L.; Neeves, Keith B.

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  1. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  2. Simulation and assessment of SO2 toxic environment after ignition of uncontrolled sour gas flow of well blowout in hills.

    PubMed

    Zhu, Yuan; Chen, Guo-ming

    2010-06-15

    To study the sulfur dioxide (SO(2)) toxic environment after the ignition of uncontrolled sour gas flow of well blowout, we propose an integrated model to simulate the accident scenario and assess the consequences of SO(2) poisoning. The accident simulation is carried out based on computational fluid dynamics (CFD), which is composed of well blowout dynamics, combustion of sour gas, and products dispersion. Furthermore, detailed complex terrains are built and boundary layer flows are simulated according to Pasquill stability classes. Then based on the estimated exposure dose derived from the toxic dose-response relationship, quantitative assessment is carried out by using equivalent emergency response planning guideline (ERPG) concentration. In this case study, the contaminated areas are graded into three levels, and the areas, maximal influence distances, and main trajectories are predicted. We show that wind drives the contamination and its distribution to spread downwind, and terrains change the distribution shape through spatial aggregation and obstacles. As a result, the most dangerous regions are the downwind areas, the foot of the slopes, and depression areas such as valleys. These cause unfavorable influences on emergency response for accident control and public evacuation. In addition, the effectiveness of controlling the number of deaths by employing ignition is verified in theory. Based on the assessment results, we propose some suggestions for risk assessment, emergency response and accident decision making. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Computational Fluid Dynamics (CFD) Analysis Of Optical Payload For Lasercomm Science (OPALS) sealed enclosure module

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel

    2012-01-01

    Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.

  4. Regional Management of an Aquifer for Mining Under Fuzzy Environmental Objectives

    NASA Astrophysics Data System (ADS)

    BogáRdi, IstváN.; BáRdossy, AndráS.; Duckstein, Lucien

    1983-12-01

    A methodology is developed for the dynamic multiobjective management of a multipurpose regional aquifer. In a case study of bauxite mining in Western Hungary, ore deposits are often under the piezometric level of a karstic aquifer, while this same aquifer also provides recharge flows for thermal springs. N + 1 objectives are to be minimized, the first one being total discounted cost of control by dewatering or grouting; the other N objectives consist of the flow of thermal springs at N control points. However, there is no agreement among experts as to a set of numerical values that would constitute a "sound environment"; for this reason a fuzzy set analysis is used, and the N environmental objectives are combined into a single fuzzy membership function. The constraints include ore availability, various capacities, and the state transition function that describes the behavior of both piezometric head and underground flow. The model is linearized and solved as a biobjective dynamic program by using multiobjective compromise programming. A numerical example with N = 2 appears to lead to realistic control policies. Extension of the model to the nonlinear case is discussed.

  5. Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler

    PubMed Central

    Anthony, T. Renée; Landázuri, Andrea C.; Van Dyke, Mike; Volckens, John

    2016-01-01

    The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min−1 flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s−1 freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0° (horizontal) and 30° down angles. The porous high-flow sampler oriented 30° downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41–84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min−1 was also investigated and was found to match the porous sampler’s aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use. PMID:20418278

  6. Time Evolution of the Density Field of a Micro-Explosion Using Background Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Suriyanarayanan, P.; Venkatakrishnan, L.; Jagadeesh, G.

    In recent years micro-explosions have found interesting trans-disciplinary applications in the areas of food preservation,wood science, drug delivery, gene therapy and bio-medical applications [1, 2]. Generating controlled micro-explosions in a laboratory environment in a reliable manner is essential; to study and understand some of the near field flow dynamics associated with blast waves.

  7. Knowledge Flow Mesh and Its Dynamics: A Decision Support Environment

    DTIC Science & Technology

    2008-06-01

    paper was the ability of the United States military to achieve dominance through information superiority. The use of intelligent sensors and... Intelligence Agency, National Security Agency, Defense Intelligence Agency, and individual Service intelligence agencies). In fact, these edge entities would... intelligence , design, choice, and implementation. 6. Support variety of decision processes and styles. 7. DSS should be adaptable and flexible. 8. DSS

  8. Computational study of the heat transfer of an avian egg in a tray.

    PubMed

    Eren Ozcan, S; Andriessens, S; Berckmans, D

    2010-04-01

    The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.

  9. Intermittent turbulence in flowing bacterial suspensions

    PubMed Central

    Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M. Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman

    2016-01-01

    Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. PMID:27307513

  10. Intermittent turbulence in flowing bacterial suspensions.

    PubMed

    Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman

    2016-06-01

    Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. © 2016 The Author(s).

  11. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  12. Numerical Study of Wave Propagation in a Non-Uniform Flow

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    The propagation of acoustic waves originating from cylindrical and spherical pulses, in a non-uniform mean flow, and in the presence of a reflecting wall is investigated by Hardin and Pope approach using compact approximation of spatial derivatives. The 2-D and 3-D stagnation flows and a flow around a cylinder are taken as prototypes of real world flows with strong gradients of mean pressure and velocity. The intensity and directivity of acoustic wave patterns appear to be quite different from the benchmark solutions obtained in a static environment for the same geometry. The physical reasons for amplification and weakening of sound are discussed in terms of dynamics of wave profile and redistribution of acoustic energy and its potential and kinetic components. For an acoustic wave in the flow around a cylinder, the observed mean acoustic pressure is approximately doubled (upstream pulse position) and halved (downstream pulse position) in comparison with the sound propagation in static ambient conditions.

  13. Modelling of air flow supply in a room at variable regime by using both K - E and spalart - allmaras turbulent model

    NASA Astrophysics Data System (ADS)

    Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna

    2017-12-01

    The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.

  14. Negative effect of nanoconfinement on water transport across nanotube membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Kuiwen; Wu, Huiying; Han, Baosan

    2017-10-01

    Nanoconfinement environments are commonly considered advantageous for ultrafast water flow across nanotube membranes. This study illustrates that nanoconfinement has a negative effect on water transport across nanotube membranes based on molecular dynamics simulations. Although water viscosity and the friction coefficient evidently decrease because of nanoconfinement, water molecular flux and flow velocity across carbon nanotubes decrease sharply with the pore size of nanotubes. The enhancement of water flow across nanotubes induced by the decreased friction coefficient and water viscosity is markedly less prominent than the negative effect induced by the increased flow barrier as the nanotube size decreases. The decrease in water flow velocity with the pore size of nanotubes indicates that nanoconfinement is not essential for the ultrafast flow phenomenon. In addition, the relationship between flow velocity and water viscosity at different temperatures is investigated at different temperatures. The results indicate that flow velocity is inversely proportional to viscosity for nanotubes with a pore diameter above 1 nm, thereby indicating that viscosity is still an effective parameter for describing the effect of temperature on the fluid transport at the nanoscale.

  15. Renal hemodynamics: the influence of the renal artery ostium flow diverter

    NASA Astrophysics Data System (ADS)

    Rossmann, Jenn Stroud; Albert, Scott; Balaban, Robert

    2013-11-01

    The recently identified renal artery ostium flow diverter may preferentially direct blood flow to the renal arteries, and may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter's position, the flow to the renal arteries may be increased or reduced. The results of simulations also show the diverter's effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.

  16. Crystal growth in a low gravity environment

    NASA Technical Reports Server (NTRS)

    Carruthers, J. R.

    1977-01-01

    Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.

  17. Synchronisation effects on the behavioural performance and information dynamics of a simulated minimally cognitive robotic agent.

    PubMed

    Moioli, Renan C; Vargas, Patricia A; Husbands, Phil

    2012-09-01

    Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain-body- environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.

  18. Negotiating energy dynamics through embodied action in a materially structured environment

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Flood, Virginia J.; McKagan, Sarah B.; Robertson, Amy D.; Seeley, Lane; Wittmann, Michael C.; Vokos, Stamatis

    2013-12-01

    We provide evidence that a learning activity called Energy Theater engages learners with key conceptual issues in the learning of energy, including disambiguating matter flow and energy flow and theorizing mechanisms for energy transformation. A participationist theory of learning, in which learning is indicated by changes in speech and behavior, supports ethnographic analysis of learners’ embodied interactions with each other and the material setting. We conduct detailed analysis to build plausible causal links between specific features of Energy Theater and the conceptual engagement that we observe. Disambiguation of matter and energy appears to be promoted especially by the material structure of the Energy Theater environment, in which energy is represented by participants, while objects are represented by areas demarcated by loops of rope. Theorizing mechanisms of energy transformation is promoted especially by Energy Theater’s embodied action, which necessitates modeling the time ordering of energy transformations.

  19. Heat transfer in a real engine environment

    NASA Astrophysics Data System (ADS)

    Gladden, Herbert J.

    1985-10-01

    The hot section facility at the Lewis Research Center was used to demonstrate the capability of instruments to make required measurements of boundary conditions of the flow field and heat transfer processes in the hostile environment of the turbine. The results of thermal scaling tests show that low temperature and pressure rig tests give optimistic estimates of the thermal performance of a cooling design for high pressure and temperature application. The results of measuring heat transfer coefficients on turbine vane airfoils through dynamic data analysis show good comparison with measurements from steady state heat flux gauges. In addition, the data trends are predicted by the STAN5 boundary layer code. However, the magnitude of the experimental data was not predicted by the analysis, particularly in laminar and transitional regions near the leading edge. The infrared photography system was shown capable of providing detailed surface thermal gradients and secondary flow features on a turbine vane and endwell.

  20. Delta Clipper-Experimental In-Ground Effect on Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    A quasitransient in-ground effect method is developed to study the effect of vertical landing on a launch vehicle base-heating environment. This computational methodology is based on a three-dimensional, pressure-based, viscous flow, chemically reacting, computational fluid dynamics formulation. Important in-ground base-flow physics such as the fountain-jet formation, plume growth, air entrainment, and plume afterburning are captured with the present methodology. Convective and radiative base-heat fluxes are computed for comparison with those of a flight test. The influence of the laminar Prandtl number on the convective heat flux is included in this study. A radiative direction-dependency test is conducted using both the discrete ordinate and finite volume methods. Treatment of the plume afterburning is found to be very important for accurate prediction of the base-heat fluxes. Convective and radiative base-heat fluxes predicted by the model using a finite rate chemistry option compared reasonably well with flight-test data.

  1. Models of Metabolic Community Structure in Martian Habitable Environments: Constraints from a Terrestrial Analog Acid-Sulfate Fumarole Environment, Cerro Negro Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; McCollom, T. M.; Hynek, B. M.

    2014-12-01

    Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions that could have supported diverse assemblages of thermoacidophilic organisms with various metabolic strategies adapted to environmental conditions of acid-sulfate fumaroles.

  2. Aerothermal environment induced by mismatch at the SSME main combustion chamber-nozzle joint

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; O'Farrell, J. M.; Olive, T. A.; Brown, G. B.; Holt, J. B.

    1990-01-01

    The computational study reported here is motivated by a Space Shuttle main engine hardware problem detected in post-flight and post-test inspections. Of interest are the potential for hot gas ingestion into the joint (G15) at the main combustion chamber-to-nozzle interface and the effect of particular goemetric nonuniformities on that gas ingestion. The flowfield in the G15 region involves supersonic flow past a rounded forward facing step preceded by a deep narrow cavity. This paper describes the physical problem associated with joint G15 and computational investigations of the G15 aerothermal environment. The associated flowfield was simulated in two and three space dimensions using the United Solutions Algorithm (USA) computational fluid dynamics code series. A benchmark calculation of experimentally measured supersonic flow over of a square cavity was performed to demonstrate the accuracy of the USA code in analyzing flows similar to the G15 computational flowfield. The G15 results demonstrate the mechanism for hot gas ingestion into the joint and reveal the sensitivity to salient geometric nonuniformities.

  3. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  4. No population genetic structure in a widespread aquatic songbird from the Neotropics

    USGS Publications Warehouse

    Cadena, Carlos Daniel; Gutierrez-Pinto, Natalia; Davila, Nicolas; Chesser, R. Terry

    2011-01-01

    Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.

  5. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    PubMed

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  6. Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Haaken, Klaus; Piero Deidda, Gian; Cassiani, Giorgio; Deiana, Rita; Putti, Mario; Paniconi, Claudio; Scudeler, Carlotta; Kemna, Andreas

    2017-03-01

    Saline-freshwater interaction in porous media is a phenomenon of practical interest particularly for the management of water resources in arid and semi-arid environments, where precious freshwater resources are threatened by seawater intrusion and where storage of freshwater in saline aquifers can be a viable option. Saline-freshwater interactions are controlled by physico-chemical processes that need to be accurately modeled. This in turn requires monitoring of these systems, a non-trivial task for which spatially extensive, high-resolution non-invasive techniques can provide key information. In this paper we present the field monitoring and numerical modeling components of an approach aimed at understanding complex saline-freshwater systems. The approach is applied to a freshwater injection experiment carried out in a hyper-saline aquifer near Cagliari (Sardinia, Italy). The experiment was monitored using time-lapse cross-hole electrical resistivity tomography (ERT). To investigate the flow dynamics, coupled numerical flow and transport modeling of the experiment was carried out using an advanced three-dimensional (3-D) density-driven flow-transport simulator. The simulation results were used to produce synthetic ERT inversion results to be compared against real field ERT results. This exercise demonstrates that the evolution of the freshwater bulb is strongly influenced by the system's (even mild) hydraulic heterogeneities. The example also highlights how the joint use of ERT imaging and gravity-dependent flow and transport modeling give fundamental information for this type of study.

  7. Flow-driven waves and sink-driven oscillations during aggregation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, Azam; Zykov, Vladimir; Steinbock, Oliver; Bodenschatz, Eberhard

    The slime mold Dictyostelium discoideum (D.d) is a well-known model system for the study of biological pattern formation. Under starvation, D.d. cells aggregate chemotactically towards cAMP signals emitted periodically from an aggregation center. In the natural environment, D.d cells may experience fluid flows that can profoundly change the underlying wave generation process. We investigate spatial-temporal dynamics of a uniformly distributed population of D.d. cells in a flow-through narrow microfluidic channel with a cell-free inlet area. We show that flow can significantly influence the dynamics of the system and lead to a flow- driven instability that initiate downstream traveling cAMP waves. We also show that cell-free boundary regions have a significant effect on the observed patterns and can lead to a new kind of instability. Since there are no cells in the inlet to produce cAMP, the points in the vicinity of the inlet lose cAMP due to advection or diffusion and gain only a little from the upstream of the channel (inlet). In other words, there is a large negative flux of cAMP in the neighborhood close to the inlet, which can be considered as a sink. This negative flux close to the inlet drives a new kind of instability called sink-driven oscillations. Financial support of the MaxSynBio Consortium is acknowledged.

  8. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    NASA Astrophysics Data System (ADS)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  9. Hypersonics. Volume 1 - Defining the hypersonic environment; Proceedings of the First Joint Europe/U.S. Short Course on Hypersonics, Paris, France, Dec. 7-11, 1987

    NASA Astrophysics Data System (ADS)

    Bertin, John J.; Glowinski, Roland; Periaux, Jacques

    1989-05-01

    The present work discusses the general characterization of hypersonic flows, the hypersonic phenomena to be encountered by the Hermes spacecraft, industrial methodologies for the design of hypersonic vehicles, the definition of aerodynamic methodology, and hypersonic airbreathing-propulsion vehicle design practices applicable to the U.S. National Aerospace Plane. Also discussed are real gas effects in the hypersonic regime, the influence of thermochemistry and of nonequilibrium and surface catalysis on hypersonic vehicle design, the modelling of nonequilibrium effects in high speed flows, air-dissociation thermochemistry, and rarefied gas dynamics effects for spacecraft.

  10. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  11. Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds

    NASA Astrophysics Data System (ADS)

    Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.

    2012-12-01

    Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.

  12. Numerical Analysis of Base Flowfield for a Four-Engine Clustered Nozzle Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1995-01-01

    Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust inside and at the lip of the nozzle, the potential burning of the turbine exhaust in the base region can be of great concern. Accurate prediction of the base environment at altitudes is therefore very important during the vehicle design phase. Otherwise, undesirable consequences may occur. In this study, the turbulent base flowfield of a cold flow experimental investigation for a four-engine clustered nozzle was numerically benchmarked using a pressure-based computational fluid dynamics (CFD) method. This is a necessary step before the benchmarking of hot flow and combustion flow tests can be considered. Since the medium was unheated air, reasonable prediction of the base pressure distribution at high altitude was the main goal. Several physical phenomena pertaining to the multiengine clustered nozzle base flow physics were deduced from the analysis.

  13. A microcomputer based traffic evacuation modeling system for emergency planning application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, A.K.

    1994-12-01

    Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuate to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option. and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in thismore » paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less

  14. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  15. Modelling water flow under glaciers and ice sheets.

    PubMed

    Flowers, Gwenn E

    2015-04-08

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.

  16. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  17. Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebotich, D

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscousmore » flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.« less

  18. Modeling complex biological flows in multi-scale systems using the APDEC framework

    NASA Astrophysics Data System (ADS)

    Trebotich, David

    2006-09-01

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  19. Agent-Based Models in Social Physics

    NASA Astrophysics Data System (ADS)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  20. Organisational learning and self-adaptation in dynamic disaster environments.

    PubMed

    Corbacioglu, Sitki; Kapucu, Naim

    2006-06-01

    This paper examines the problems associated with inter-organisational learning and adaptation in the dynamic environments that characterise disasters. The research uses both qualitative and quantitative methods to investigate whether organisational learning took place during and in the time in between five disaster response operations in Turkey. The availability of information and its exchange and distribution within and among organisational actors determine whether self-adaptation happens in the course of a disaster response operation. Organisational flexibility supported by an appropriate information infrastructure creates conditions conducive to essential interaction and permits the flow of information. The study found that no significant organisational learning occurred within Turkish disaster management following the earthquakes in Erzincan (1992), Dinar (1995) and Ceyhan (1998). By contrast, the 'symmetry-breaking' Marmara earthquake of 1999 initiated a 'double loop' learning process that led to change in the organisational, technical and cultural aspects of Turkish disaster management, as revealed by the Duzce earthquake response operations.

  1. Experimental recovery of quantum correlations in absence of system-environment back-action

    PubMed Central

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554

  2. Experimental recovery of quantum correlations in absence of system-environment back-action.

    PubMed

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.

  3. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  4. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  5. MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection Using Stochastic Search

    DTIC Science & Technology

    2012-03-01

    attacks that are distributed in nature , but may not protect individual systems effectively without incurring large bandwidth penalties while collecting...system-level information to help prepare for more significant attacks. The type of information potentially revealed by footprinting includes account...key areas where MAS may be appropriate: • The environment is open, highly dynamic, uncertain, or complex • Agents are a natural metaphor—Many

  6. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  7. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    NASA Astrophysics Data System (ADS)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.

  8. A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah.

    PubMed

    Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C

    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.

  9. Experimental investigation of multi-scale non-equilibrium plasma dynamics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2013-10-01

    Lab experiments at Caltech resolve complex, detailed MHD dynamics spatially and temporally. Unbalanced forces drive fast plasma flows which tend to self-collimate via self-pinching. Collimation results from flow stagnation compressing embedded magnetic flux and so amplifying the magnetic field responsible for pinching. Measurements show that the collimated flow is essentially a dense plasma jet with embedded axial and azimuthal magnetic fields, i.e., a magnetic flux tube (flux rope). The measured jet velocity is in good agreement with an MHD acceleration model. Depending on how flux tube radius varies with axial position, jets flow into a flux tube from both ends or from just one end. Jets kink when the flux tube in which they are embedded breaches the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can produce an enormous effective gravity which provides the environment for an observed fine-scale, extremely fast Rayleigh-Taylor (RT) instability. The RT can erode the jet current channel to be smaller than the ion skin depth so there is a cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale. This process can result in a magnetic reconnection whereby the jet and its embedded flux tube break. Supported by USDOE.

  10. The evolution of recombination rates in finite populations during ecological speciation.

    PubMed

    Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan

    2016-10-26

    Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).

  11. Navigating the flow: individual and continuum models for homing in flowing environments.

    PubMed

    Painter, Kevin J; Hillen, Thomas

    2015-11-06

    Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).

  12. Quantum Fisher information of the GHZ state due to classical phase noise lasers under non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin

    2016-08-01

    The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).

  13. Dynamics of pairwise motions in the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.

    2016-10-01

    We present results of analysis of the dark matter (DM) pairwise velocity statistics in different Cosmic Web environments. We use the DM velocity and density field from the Millennium 2 simulation together with the NEXUS+ algorithm to segment the simulation volume into voxels uniquely identifying one of the four possible environments: nodes, filaments, walls or cosmic voids. We show that the PDFs of the mean infall velocities v 12 as well as its spatial dependence together with the perpendicular and parallel velocity dispersions bear a significant signal of the large-scale structure environment in which DM particle pairs are embedded. The pairwise flows are notably colder and have smaller mean magnitude in wall and voids, when compared to much denser environments of filaments and nodes. We discuss on our results, indicating that they are consistent with a simple theoretical predictions for pairwise motions as induced by gravitational instability mechanism. Our results indicate that the Cosmic Web elements are coherent dynamical entities rather than just temporal geometrical associations. In addition it should be possible to observationally test various Cosmic Web finding algorithms by segmenting available peculiar velocity data and studying resulting pairwise velocity statistics.

  14. Exploring the dynamic links between microbial ecology and redox state of the hyporheic zone: insight from flume experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.

    2016-12-01

    The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.

  15. Exploring the dynamic links between microbial ecology and redox state of the hyporheic zone: insight from flume experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.

    2017-12-01

    The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.

  16. A new apparatus design for high temperature (up to 950°C) quasi-elastic neutron scattering in a controlled gaseous environment.

    PubMed

    al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D

    2015-09-01

    A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.

  17. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

  18. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed Central

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657

  19. CARS Temperature Measurements in a Hypersonic Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    Jarrett, Olin, Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. Burt; Cutler, A. D.; Capriotti, D. P.; Taylor, D. J.

    1990-01-01

    Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented.

  20. A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination

    PubMed Central

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183

  1. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM).

    PubMed

    Kramer, Tobias; Noack, Matthias; Reinefeld, Alexander; Rodríguez, Mirta; Zelinskyy, Yaroslav

    2018-06-11

    Time- and frequency-resolved optical signals provide insights into the properties of light-harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system-environment dissipation and non-Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time- and frequency-resolved processes in light-harvesting molecular complexes with arbitrary system-environment couplings for a wide range of temperatures and complex sizes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  3. Balancing power production and instream flow regime for small scale hydropower

    NASA Astrophysics Data System (ADS)

    Perona, P.; Gorla, L.; Characklis, G. W.

    2013-12-01

    Flow diversion from river and torrent main stems is a common practice to feed water uses such run-of-river and mini-hydropower, irrigation, etc. Considering the worldwide increasing water demand, it becomes mandatory to take the importance of riparian ecosystems and related biodiversity into account before starting such practices. In this paper, we use a simple hydro-economic model (Perona et al., 2013, Gorla and Perona, 2013) to show that redistribution policies at diversion nodes allow for a clear bio-economic interpretation of residual flows. This model uses the Principle of Equal Marginal Utility (PEMU) as optimal water allocation rule for generating natural-like flow releases while maximizing the aggregated economic benefits of both the riparian environment and the traditional use (e.g., hydropower). We show that both static and dynamic release polices such Minimal Flow, and Proportional/Non-proportional Repartitions, respectively, can all be represented in terms of PEMU, making explicit the value of the ecosystem health underlying each policy. The related ecological and economical performances are evaluated by means of hydrological/ecological indicators. We recommend taking this method into account as a helpful tool guiding political, economical and ecological decisions when replacing the inadequate concept of Minimum Flow Requirement (MFR) with dynamic ones. References Perona, P., D. Dürrenmatt and G. Characklis (2013) Obtaining natural-like flow releases in diverted river reaches from simple riparian benefit economic models. Journal of Environmental Management, 118: 161-169, http://dx.doi.org/10.1016/j.jenvman.2013.01.010 Gorla, L. and P. Perona (2013) On quantifying ecologically sustainable flow releases in a diverted river reach. Journal of Hydrology, 489: 98- 107, http://dx.doi.org/10.1016/j.jhydrol.2013.02.043

  4. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin.

    PubMed

    Lucas, Thabata Coaglio; Tessarolo, Francesco; Jakitsch, Victor; Caola, Iole; Brunori, Giuliano; Nollo, Giandomenico; Huebner, Rudolf

    2014-07-01

    Although catheters with side holes allow high flow rate during hemodialysis, they also induce flow disturbances and create a critical hemodynamic environment that can favor fibrin deposition and thrombus formation. This study compared the blood flow and analyzed the influence of shear stress and shear rate in fibrin deposition and thrombus formation in nontunneled hemodialysis catheters with unobstructed side holes (unobstructed device) or with some side holes obstructed by blood thrombi (obstructed device). Computational fluid dynamics (CFD) was performed to simulate realistic blood flow under laminar and turbulent conditions. The results from the numerical simulations were compared with the fibrin distribution and thrombus architecture data obtained from scanning electron microscopy (SEM) and two photons laser scanning microscopy (TPLSM) on human thrombus formed in catheters removed from patients. CFD showed that regions of flow eddies and separation were mainly found in the venous holes region. TPLSM characterization of thrombi and fibrin structure in patient samples showed fibrin formations in accordance with simulated flux dynamics. Under laminar flow conditions, the wall shear stress close to border holes increased from 87.3±0.2 Pa in the unobstructed device to 176.2±0.5 Pa in the obstructed one. Under turbulent flow conditions, the shear stress increased by 47% when comparing the obstructed to the unobstructed catheter. The shear rates were generally higher than 5000/s and therefore sufficient to induce fibrin deposition. This findings were supported by SEM data documenting a preferential fibrin arrangement on side hole walls. Copyright © 2013 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Slow sedimentary processes on-a-chip: experiments on porous flow effects on granular bed creep

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Maldarelli, C.; Shattuck, M.; Morris, J. F.

    2017-12-01

    Steep soils dynamics is hard to catch. they exhibit very slow granular creep most of the time, and sometimes, mostly under or after rain, turn into a landslide, a very fast avalanche flow.The conditions of transition from soil creep to avalanching remains a lot non-understood, and Safe Factor law (empirical criteria, function of rain intensity and duration). On another side, in marine fast deposition environments, compaction drives vertical porous flow, which makes bed shear resistance change, and form over time bed size patterns (pipes, dishes) or mechanical heterogeneities.Capturing how the slow creep dynamics depends on the porous flow would allow for much more accurate landscape evolution modeling.We present here preliminary results of an experimental investigation of one the major triggering condition for soils destabilization: rain infiltration, and more generally porous flow through a tilted granular bed. In a quasi-2D microfluidics channel, a flat sediment bed made of spherical particles is prepared, in fully submerged condition. It is thereafter tilted (at slope under critical slope of avalanching) and simultaneously put under vertical weak porous flow (well under the critical flow of liquefaction regarding positive pressure gradients). The two control parameters are varied, and local particles concentration and motion are measured. Interestingly, although staying in the sub-critical creeping regime, we observe an acceleration of the bed deformation downward, as the porous flow and the bed slope are increased, until the criteria for avalanching is reached. Those results appear to present similitudes with the case of tilted dry sediment bed under controlled vibrations. Consequently it opens the discussion about a potential universal model of landslides triggering due to frequent seismological and rainstorm events.

  6. How to assess the impact of a physical parameterization in simulations of moist convection?

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech

    2017-04-01

    A numerical model capable in simulating moist convection (e.g., cloud-resolving model or large-eddy simulation model) consists of a fluid flow solver combined with required representations (i.e., parameterizations) of physical processes. The later typically include cloud microphysics, radiative transfer, and unresolved turbulent transport. Traditional approaches to investigate impacts of such parameterizations on convective dynamics involve parallel simulations with different parameterization schemes or with different scheme parameters. Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between the physics and dynamics. For instance, changing the cloud microphysics typically leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is difficult. This presentation will present a novel modeling methodology, the piggybacking, that allows studying the impact of a physical parameterization on cloud dynamics with confidence. The focus will be on the impact of cloud microphysics parameterization. Specific examples of the piggybacking approach will include simulations concerning the hypothesized deep convection invigoration in polluted environments, the validity of the saturation adjustment in modeling condensation in moist convection, and separation of physical impacts from statistical uncertainty in simulations applying particle-based Lagrangian microphysics, the super-droplet method.

  7. Computational modeling of venous sinus stenosis in idiopathic intracranial hypertension

    PubMed Central

    Levitt, Michael R; McGah, Patrick M; Moon, Karam; Albuquerque, Felipe C; McDougall, Cameron G; Kalani, M Yashar S; Kim, Louis J; Aliseda, Alberto

    2016-01-01

    Background and Purpose Idiopathic intracranial hypertension has been associated with dural venous sinus stenosis in some patients, but the hemodynamic environment of the dural venous sinuses has not been quantitatively described. Here, we present the first such computational fluid dynamics model using patient-specific blood pressure measurements. Materials and Methods Six patients with idiopathic intracranial hypertension and at least one stenosis or atresia at the transverse-sigmoid sinus junction underwent MRV followed by cerebral venography and manometry throughout the dural venous sinuses. Patient-specific computational fluid dynamics models were created using MRV anatomy, with venous pressure measurements as boundary conditions. Blood flow and wall shear stress were calculated for each patient. Results Computational models of dural venous sinuses were successfully reconstructed in all six patients with patient-specific boundary conditions. Three patients demonstrated a pathologic pressure gradient (≥ 8 mm Hg) across four dural venous sinus stenoses. Small sample size precludes statistical comparisons, but average overall flow throughout the dural venous sinuses of patients with pathologic pressure gradients was higher than in those without (1041.00 ± 506.52 vs. 358.00 ± 190.95 mL/min). Wall shear stress was also higher across stenoses in patients with pathologic pressure gradients (37.66 ± 48.39 vs 7.02 ± 13.60 Pa). Conclusion The hemodynamic environment of the dural venous sinuses can be computationally modeled using patient-specific anatomy and physiological measurements in patients with idiopathic intracranial hypertension. There was substantially higher blood flow and wall shear stress in patients with pathological pressure gradients. PMID:27197986

  8. Information-theoretic decomposition of embodied and situated systems.

    PubMed

    Da Rold, Federico

    2018-07-01

    The embodied and situated view of cognition stresses the importance of real-time and nonlinear bodily interaction with the environment for developing concepts and structuring knowledge. In this article, populations of robots controlled by an artificial neural network learn a wall-following task through artificial evolution. At the end of the evolutionary process, time series are recorded from perceptual and motor neurons of selected robots. Information-theoretic measures are estimated on pairings of variables to unveil nonlinear interactions that structure the agent-environment system. Specifically, the mutual information is utilized to quantify the degree of dependence and the transfer entropy to detect the direction of the information flow. Furthermore, the system is analyzed with the local form of such measures, thus capturing the underlying dynamics of information. Results show that different measures are interdependent and complementary in uncovering aspects of the robots' interaction with the environment, as well as characteristics of the functional neural structure. Therefore, the set of information-theoretic measures provides a decomposition of the system, capturing the intricacy of nonlinear relationships that characterize robots' behavior and neural dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The roles of physical habitat in reproduction and survival of pallid sturgeon and shovelnose sturgeon in the Lower Missouri River, progress 2005–06: Chapter D in Factors affecting the reproduction, recruitment, habitat, and population dynamics of pallid sturgeon and shovelnose sturgeon in the Missouri River

    USGS Publications Warehouse

    Jacobson, Robert B.; Johnson, Harold E.; Reuter, Joanna M.; Elliott, Caroline M.

    2007-01-01

    This report documents progress on three related components of habitat assessments in the Lower Missouri River during 2005–06. The habitat-use component links this research directly to sturgeon ecology research described in other chapters. The habitat availability and habitat dynamics assessments provide physical context for the ecological research. Results from 2005 to 2006 indicate that the methods developed to assess habitat use, quality, quantity, and dynamics are appropriate and sufficiently accurate to address critical questions about sturgeon habitat on the Lower Missouri River. Preliminary analysis of habitats occupied by adult female shovelnose sturgeon indicates that migrating sturgeon do not select for depth but seem to select for lower than reach-averaged velocities and higher than reach-averaged velocity gradients. Data collected to compile, calibrate, and validate multidimensional hydraulic models in probable spawning reaches appear to be sufficient to support the modeling objectives. Monitoring of selected channel cross sections and long profiles multiple times during the year showed little change at the upstreammost reach over the range of flows measured during 2006, likely because of channel stability associated with an armored bed. Geomorphic changes documented at monitoring cross sections increased with distance downstream. Hydroacoustic substrate-class parameters documented systematic changes with discharge and with hydraulic environment across the channel. Similarly, bed velocity varied predictably with discharge and hydraulic environment, indicating its potential as an indicator of bedload sediment transport. Longitudinal profiles showed substantial downstream movement of dunes over the monitored discharges, as well as substantial within-year variability in dune size. Observations of geomorphic change during the moderate flow range of 2006 support the hypothesis that the magnitude of flow modifications under consideration on the Lower Missouri River will be sufficient to transport sediment and potentially modify spawning habitats.

  10. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and concepts, particularly with respect to how landforms can be securely linked to subglacial processes and ice dynamics. However, recent developments in numerical modelling of the subglacial environment are beginning to offer new opportunities to tackle this issue and observations from both modern and palaeo-ice streams will be critical to constrain and validate such modelling.

  11. Computational fluid dynamics in a marine environment

    NASA Technical Reports Server (NTRS)

    Carlson, Arthur D.

    1987-01-01

    The introduction of the supercomputer and recent advances in both Reynolds averaged, and large eddy simulation fluid flow approximation techniques to the Navier-Stokes equations, have created a robust environment for the exploration of problems of interest to the Navy in general, and the Naval Underwater Systems Center in particular. The nature of problems that are of interest, and the type of resources needed for their solution are addressed. The goal is to achieve a good engineering solution to the fluid-structure interaction problem. It is appropriate to indicate that a paper by D. Champman played a major role in developing the interest in the approach discussed.

  12. Lox droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1994-01-01

    A systematic investigation has been conducted to study the effects of ambient flow conditions (i.e. pressure and velocity) on supercritical droplet gasification in a forced-convective environment. The model is based on the time-dependent conservation equations in axisymmetric coordinates, and accommodates thermodynamic nonidealities and transport anomalies. In addition, an efficient scheme for evaluating thermophysical properties over the entire range of fluid thermodynamic states is established. The analysis allows a thorough examination of droplet behavior during its entire lifetime, including transient gasification, dynamic deformation, and shattering. A parametric study of droplet vaporization rate in terms of ambient pressure and Reynolds number is also conducted.

  13. Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.

    PubMed

    Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D

    2017-06-01

    Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.

  14. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    PubMed

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.

  15. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  16. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  17. Development of a Molecular Tagging Velocimetry Technique for Non-Intrusive Velocity Measurements in Low-Speed Gas Flows

    NASA Technical Reports Server (NTRS)

    Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.

    2017-01-01

    N2O molecular tagging velocimetry (N2O-MTV) is developed for use in very-high-temperature reactor environments. Tests were carried out to determine the optimum excitation wavelength, tracer concentration, and timing parameters for the laser system. Using NO tracers obtained from photo-dissociation of N2O, velocity profiles are successfully obtained in air, nitrogen, and helium for a large range of parameters: temperature from 295 to 781 K, pressure from 1 to 3 bars, with a velocity precision of 0.01 m/s. Furthermore, by using two read pulses at adjustable time delays, the velocity dynamic range can be increased. An unprecedented dynamic range of 5,000 has been obtained to successfully resolve the flow during a helium blowdown from 1000 m/s down to 0.2 m/s. This technique is also applied to the high-temperature test facility (HTTF) at Oregon State University (OSU) during a depressurized condition cooldown (DCC) event. Details of these measurements are presented in a companion paper. This technique shows a strong potential for fundamental understanding of gas flows in nuclear reactors and to provide benchmark experimental data to validate numerical simulations.

  18. Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method

    NASA Astrophysics Data System (ADS)

    Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.

    2013-06-01

    Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.

  19. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.

    PubMed

    Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D

    2017-04-01

    Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.

  20. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  1. Lagrangian transport near perturbed periodic lines in three-dimensional unsteady flows

    NASA Astrophysics Data System (ADS)

    Speetjens, Michel

    2015-11-01

    Periodic lines formed by continuous strings of periodic points are key organizing entities in the Lagrangian flow topology of certain three-dimensional (3D) time-periodic flows. Such lines generically consist of elliptic and/or hyperbolic points and thus give rise to 3D flow topologies made up of families of concentric closed trajectories embedded in chaotic regions. Weak perturbation destroys the periodic lines and causes said trajectories to coalesce into families of concentric tubes. However, emergence of isolated periodic points near the disintegrating periodic lines and/or partitioning of the original lines into elliptic and hyperbolic segments interrupt the tube formation. This yields incomplete tubes that interact with the (chaotic) environment through their open ends, resulting in intricate and essentially 3D flow topologies These phenomena have been observed in various realistic flows yet the underlying mechanisms are to date only partially understood. This study deepens insight into the (perturbed) Lagrangian dynamics of these flows by way of a linearized representation of the equations of motion near the periodic lines. Predictions on the basis of this investigation are in full (qualitative) agreement with observed behavior in the actual flows

  2. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed-jet, stagnation-type. In such configurations the imposed strain rate is well characterized, and the in-depth understanding of the details of the physico-chemical processes can be systematically obtained. A number of computational and experimental studies on spray and particle flows have been conducted in stagnation-type configurations. Numerically, the need for a hybrid Eulerian-Lagrangian approach has been identified by Continillo and Sirignano, and the use of such approach has allowed for the prediction of the phenomenon of droplet flow reversal. Gomez and Rosner have conducted a detailed study on the particle response in the opposed-jet configuration, and the particle thermophoretic diffusivities were determined experimentally. Sung, Law and co-workers have conducted numerical studies on the effect of strain rate and temperature gradients on the dynamics of inert particles, as a way of understanding potential errors in experimental LDV data that may arise from thermophoretic forces. This investigation is a combined experimental and numerical study on the details of reacting dusty flows. The specific tasks are: (1) Experimental determination of laminar flame speeds, and extinction strain rates of dusty flows at normal- and micro-gravity as functions of the particle type, particle initial diameter, particle initial number density, and gas phase chemical composition; (2) Detailed numerical simulation of the experiments. Results are compared with experiments and the adequacy of theoretical models is assessed; and (3) Provision of enhanced insight into the thermo-chemical coupling between the two phases.

  3. Finite-size effects on bacterial population expansion under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico

    2017-03-01

    The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.

  4. Control of unsteady separated flow associated with the dynamic pitching of airfoils

    NASA Technical Reports Server (NTRS)

    Ahmed, Sajeer

    1991-01-01

    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  5. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona.

    PubMed

    Ashby, Jonathan; Pan, Songqin; Zhong, Wenwan

    2014-09-10

    Nanoparticles (NPs) adsorb proteins when in the biological matrix, and the resulted protein corona could affect NP-cell interactions. The corona has a dynamic nature with the adsorbed proteins constantly exchanging with the free proteins in the matrix at various rates. The rapidly exchanging proteins compose the soft corona, which responds more dynamically to environment changes than the hard corona established by the ones with slow exchange rates. In the present study, the corona formed on the superparamagnetic iron oxide NPs (SPIONs) in human serum was studied by flow field-flow fractionation and ultracentrifugation, which rapidly differentiated the corona proteins based on their exchange rates. By varying the surface hydrophobicity of the SPIONs with a core size around 10 nm, we found out that, the more hydrophobic surface ligand attracted proteins with higher surface hydrophobicity and formed a more dynamic corona with a larger portion of the involved proteins with fast exchange rates. Increasing the core diameter of the SPIONs but keeping the surface ligand the same could also result in a more dynamic corona. A brief investigation of the effect on the cellular uptake of SPIONs using one selected corona protein, transferrin, was conducted. The result showed that, only the stably bound transferrin could significantly enhance cellular uptake, while transferrin bound in a dynamic nature had negligible impact. Our study has led to a better understanding of the relationship between the particle properties and the dynamic nature of the corona, which can help with design of nanomaterials with higher biocompatibility and higher efficacy in biosystems for biomedical applications.

  6. Size and Surface Functionalization of Iron Oxide Nanoparticles Influence the Composition and Dynamic Nature of Their Protein Corona

    PubMed Central

    2015-01-01

    Nanoparticles (NPs) adsorb proteins when in the biological matrix, and the resulted protein corona could affect NP-cell interactions. The corona has a dynamic nature with the adsorbed proteins constantly exchanging with the free proteins in the matrix at various rates. The rapidly exchanging proteins compose the soft corona, which responds more dynamically to environment changes than the hard corona established by the ones with slow exchange rates. In the present study, the corona formed on the superparamagnetic iron oxide NPs (SPIONs) in human serum was studied by flow field-flow fractionation and ultracentrifugation, which rapidly differentiated the corona proteins based on their exchange rates. By varying the surface hydrophobicity of the SPIONs with a core size around 10 nm, we found out that, the more hydrophobic surface ligand attracted proteins with higher surface hydrophobicity and formed a more dynamic corona with a larger portion of the involved proteins with fast exchange rates. Increasing the core diameter of the SPIONs but keeping the surface ligand the same could also result in a more dynamic corona. A brief investigation of the effect on the cellular uptake of SPIONs using one selected corona protein, transferrin, was conducted. The result showed that, only the stably bound transferrin could significantly enhance cellular uptake, while transferrin bound in a dynamic nature had negligible impact. Our study has led to a better understanding of the relationship between the particle properties and the dynamic nature of the corona, which can help with design of nanomaterials with higher biocompatibility and higher efficacy in biosystems for biomedical applications. PMID:25144382

  7. The impact of turbulent fluctuations on light propagation in a controlled environment

    NASA Astrophysics Data System (ADS)

    Matt, Silvia; Hou, Weilin; Goode, Wesley

    2014-05-01

    Underwater temperature and salinity microstructure can lead to localized changes in the index of refraction and can be a limiting factor in oceanic environments. This optical turbulence can affect electro-optical (EO) signal transmissions that impact various applications, from diver visibility to active and passive remote sensing. To quantify the scope of the impacts from turbulent flows on EO signal transmission, and to examine and mitigate turbulence effects, we perform experiments in a controlled turbulence environment allowing the variation of turbulence intensity. This controlled turbulence setup is implemented at the Naval Research Laboratory Stennis Space Center (NRLSSC). Convective turbulence is generated in a classical Rayleigh-Benard tank and the turbulent flow is quantified using a state-of-the-art suite of sensors that includes high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The measurements are complemented by very high- resolution non-hydrostatic numerical simulations. These computational fluid dynamics simulations allow for a more complete characterization of the convective flow in the laboratory tank than would be provided by measurements alone. Optical image degradation in the tank is assessed in relation to turbulence intensity. The unique approach of integrating optical techniques, turbulence measurements and numerical simulations helps advance our understanding of how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as of the use of optical techniques to probe oceanic processes.

  8. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Astrophysics Data System (ADS)

    Landgrebe, Anton J.

    1987-03-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  9. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Technical Reports Server (NTRS)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitativemore » high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.« less

  11. Transport of the Norwegian Atlantic current as determined from satellite altimetry

    NASA Technical Reports Server (NTRS)

    Pistek, Pavel; Johnson, Donald R.

    1992-01-01

    Relatively warm and salty North Atlantic surface waters flow through the Faeroe-Shetland Channel into the higher latitudes of the Nordic Seas, preserving an ice-free winter environment for much of the exterior coast of northern Europe. This flow was monitored along the Norwegian coast using Geosat altimetry on two ascending arcs during the Exact Repeat Mission in 1987-1989. Concurrent undertrack CTD surveys were used to fix a reference surface for the altimeter-derived SSH anomalies, in effect creating time series of alongtrack surface dynamic height topographies. Climatologic CTD casts were then used, with empirical orthogonal function (EOF) analysis, to derive relationships between historical surface dynamic heights and vertical temperature and salinity profiles. Applying these EOF relationships to the altimeter signals, mean transports of volume, heat, and salt were calculated at approximately 2.9 Sverdrups, 8.1 x 10 exp 11 KCal/s and 1.0 x 10 exp 8 Kg/s, respectively. Maximum transports occurred in February/March and minimum in July/August.

  12. Extracting heading and temporal range from optic flow: Human performance issues

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Perrone, John A.; Stone, Leland; Banks, Martin S.; Crowell, James A.

    1993-01-01

    Pilots are able to extract information about their vehicle motion and environmental structure from dynamic transformations in the out-the-window scene. In this presentation, we focus on the information in the optic flow which specifies vehicle heading and distance to objects in the environment, scaled to a temporal metric. In particular, we are concerned with modeling how the human operators extract the necessary information, and what factors impact their ability to utilize the critical information. In general, the psychophysical data suggest that the human visual system is fairly robust to degradations in the visual display, e.g., reduced contrast and resolution or restricted field of view. However, extraneous motion flow, i.e., introduced by sensor rotation, greatly compromises human performance. The implications of these models and data for enhanced/synthetic vision systems are discussed.

  13. Disentangling Random Motion and Flow in a Complex Medium

    PubMed Central

    Koslover, Elena F.; Chan, Caleb K.; Theriot, Julie A.

    2016-01-01

    We describe a technique for deconvolving the stochastic motion of particles from large-scale fluid flow in a dynamic environment such as that found in living cells. The method leverages the separation of timescales to subtract out the persistent component of motion from single-particle trajectories. The mean-squared displacement of the resulting trajectories is rescaled so as to enable robust extraction of the diffusion coefficient and subdiffusive scaling exponent of the stochastic motion. We demonstrate the applicability of the method for characterizing both diffusive and fractional Brownian motion overlaid by flow and analytically calculate the accuracy of the method in different parameter regimes. This technique is employed to analyze the motion of lysosomes in motile neutrophil-like cells, showing that the cytoplasm of these cells behaves as a viscous fluid at the timescales examined. PMID:26840734

  14. Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics.

    PubMed

    Coulliette, Chad; Lekien, Francois; Paduan, Jeffrey D; Haller, George; Marsden, Jerrold E

    2007-09-15

    High-frequency (HF) radar technology produces detailed velocity maps near the surface of estuaries and bays. The use of velocity data in environmental prediction, nonetheless, remains unexplored. In this paper, we uncover a striking flow structure in coastal radar observations of Monterey Bay, along the California coastline. This complex structure governs the spread of organic contaminants, such as agricultural runoff which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal environment in the bay. We predict the motion of the Lagrangian flow structures from finite-time Lyapunov exponents of the coastal HF velocity data. From this prediction, we obtain optimal release times, at which pollution leaves the bay most efficiently.

  15. Hybrid fs/ps Coherent Anti-Stokes Raman Scattering for Multiparameter Measurements of Combustion and Nonequilibrium

    NASA Astrophysics Data System (ADS)

    Dedic, Chloe Elizabeth

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is developed for measuring internal energy distributions, species concentration, and pressure for highly dynamic gas-phase environments. Systems of interest include next-generation combustors, plasma-based manufacturing and plasma-assisted combustion, and high-speed aerodynamic flow. These challenging environments include spatial variations and fast dynamics that require the spatial and temporal resolution offered by hybrid fs/ps CARS. A novel dual-pump fs/ps CARS approach is developed to simultaneously excite pure-rotational and rovibrational Raman coherences for dynamic thermometry (300-2400 K) and detection of major combustion species. This approach was also used to measure single-shot vibrational and rotational energy distributions of the nonequilibrium environment of a dielectric barrier discharge plasma. Detailed spatial distributions and shot-to-shot fluctuations of rotational and vibrational temperatures spanning 325-450 K and 1200-5000 K were recorded across the plasma and surrounding flow, and are compared to plasma emission spectroscopy measurements. Dual-pump hybrid fs/ps CARS allows for concise, kHz-rate measurements of vibrational and rotational energy distributions or temperatures at equilibrium and nonequilibrium without nonresonant wave-mixing or molecular collisional interference. Additionally, a highly transient ns laser spark is explored using CARS to measure temperature and pressure behind the shock wave and temperature of the expanding plasma kernel. Vibrational energy distributions at the exit of a microscale gaseous detonation tube are presented. Theory required to model fs/ps CARS response, including nonthermal energy distributions, is presented. The impact of nonequilibrium on measurement accuracy is explored, and a coherent line-mixing model is validated with high-pressure measurements. Temperature and pressure sensitivity are investigated for multiple measurement configurations, and accuracy and precision is quantified as a function of signal-to-noise for the fs/ps CARS system.

  16. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.

    PubMed

    Wang, Shiying; Wang, Claudia Y; Unnikrishnan, Sunil; Klibanov, Alexander L; Hossack, John A; Mauldin, F William

    2015-11-01

    The objective of this study was to optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom-modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as "control peak"). In agreement with in vitro results, the control peak phenomenon was observed in vivo in a murine model. This study provides the first optical observation of microbubble-binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called control peak was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging.

  17. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels with In Vivo Results

    PubMed Central

    Wang, Shiying; Wang, Claudia Y.; Unnikrishnan, Sunil; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2015-01-01

    Objectives To optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Materials and Methods Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Results Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as “control peak”). In agreement with in vitro results, the “control peak” phenomenon was observed in vivo in a murine model. Conclusions This study provides the first optical observation of microbubble binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called “control peak” was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force, and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging. PMID:26135018

  18. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  19. Dynamics of comb-of-comb-network polymers in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  20. Experimental response of Salix cuttings to sudden water table changing dynamics

    NASA Astrophysics Data System (ADS)

    Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.

    2013-12-01

    Hydropower production, agriculture and other human activities change the natural flow regime of rivers, in turn impacting the riparian environment. Inadequate flow rules (e.g., minimal or residual flows) reflecting our limited understanding of eco-hydrological processes have thus been applied since decades. The main challenge for an eco-sustainable water management is to quantify the effects of flow regulation on channel morphodynamics and biological processes. We present a controlled laboratory experiment to investigate riparian vegetation (Salix Viminalis) response to forced water table changing dynamics, from one water regime to another, in a temperate region (Switzerland). Three synthetic flow regimes have been simulated and applied to three batteries of Salix cuttings (60 in total) growing outdoor within plastic pots, each about 1 meter tall. After an initial period where all pots undergone the same oscillations in order to uniform the plants initial conditions, the experiment started, and the water dynamic was changed for two out of three batteries. In particular, one treatment simulated a minimal flow policy, which drastically impacts the low and the medium-low components of the hydrograph, but not the extremes. The other treatment reproduced only the low frequencies corresponding to the seasonal trend of the natural flow regime, still applied on the third battery. Cuttings transitory response dynamics has been quantified by continuous sap flow and water potential measurements, and by regularly collecting growth parameters, as well as leaves photosynthesis, fluorescence, and pictures of each plant. At the end of the experiment, all cuttings were carefully removed and the both above and below ground biomass analyzed in detail. Particularly, the 3D root structure was obtained by High Resolution Computer Tomography. Our analyses reveal a clear dependence between roots distribution and water regime reflecting the need for adaptation, which are also in agreement with field observations of Pasquale et al. (2012, in press). In particular, an initial strong difference in terms of stress and growth performances was then followed by a later adjustment in the roots system, notably detected from tomographic images. Roots tropic response resulted in spatial reallocation, which likely allowed survivors to adapt to new conditions. Macroscopic effects in terms of growth parameters at weekly time step have found correspondence at higher time resolution in terms of sap flow and stem pressure, strengthening our results interpretation. Other interesting effects detected by sap flow meters and psychrometers in the transition time, even if coherent to water regimes, have not led to macroscopic effects. A discussion with data from a parallel field installation along the Thur River (Switzerland) is also made. REFERENCES - Pasquale et al., Effects of streamflow variability on the vertical root density distribution of willow cutting experiments, Ecological Engineering,2011, 10.1016/j.ecoleng.2012.12.002 - Pasquale et al., Above and below-ground Salix dynamics in response to river processes, Hydrological Processes., in press, 10.1002/hyp.9993

  1. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  2. An Assessment of the Effect of Compressibility on Dynamic Stall

    NASA Technical Reports Server (NTRS)

    Carr, Lawrence W.; Chandrasekhara, M. S.; David, Sanford S. (Technical Monitor)

    1994-01-01

    Compressibility plays a significant role in the development of separation on airfoils experiencing unsteady motion, even at moderately compressible free-stream flow velocities. This effect can result in completely changed stall characteristics compared to those observed at incompressible speed, and can dramatically affect techniques used to control separation. There has been a significant effort in recent years directed toward better understanding; of this process, and its impact on possible techniques for control of separation in this complex environment. A review of existing research in this area will be presented, with emphasis on the physical mechanisms that play such an important role in the development of separation on airfoils. The increasing impact of compressibility on the stall process will be discussed as a function of free-stream Mach number, and an analysis of the changing flow physics will be presented. Examples of the effect of compressibility on dynamic stall will be selected from both recent and historical efforts by members of the aerospace community, as well as from the ongoing research program of the present authors. This will include a presentation of a sample of high speed filming of compressible dynamic stall which has recently been created using real-time interferometry.

  3. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall

    NASA Technical Reports Server (NTRS)

    Piziali, R. A.

    1994-01-01

    A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.

  4. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same flow conditions. Nusselt numbers can be correlated in a fashion similar to Chu and Jones.

  5. Observation of dynamic atom-atom correlation in liquid helium in real space

    DOE PAGES

    Dmowski, W.; Diallo, S. O.; Lokshin, K.; ...

    2017-05-04

    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom–atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose–Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDFmore » peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom–atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.« less

  6. Observation of dynamic atom-atom correlation in liquid helium in real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Diallo, S. O.; Lokshin, K.

    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom–atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose–Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDFmore » peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom–atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.« less

  7. Observation of dynamic atom-atom correlation in liquid helium in real space.

    PubMed

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  8. SSME Investment in Turbomachinery Inducer Impeller Design Tools and Methodology

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Mitchell, William; Lunde, Kevin

    2010-01-01

    Within the rocket engine industry, SSME turbomachines are the de facto standards of success with regard to meeting aggressive performance requirements under challenging operational environments. Over the Shuttle era, SSME has invested heavily in our national inducer impeller design infrastructure. While both low and high pressure turbopump failures/anomaly resolution efforts spurred some of these investments, the SSME program was a major benefactor of key areas of turbomachinery inducer-impeller research outside of flight manifest pressures. Over the past several decades, key turbopump internal environments have been interrogated via highly instrumented hot-fire and cold-flow testing. Likewise, SSME has sponsored the advancement of time accurate and cavitating inducer impeller computation fluid dynamics (CFD) tools. These investments together have led to a better understanding of the complex internal flow fields within aggressive high performing inducers and impellers. New design tools and methodologies have evolved which intend to provide confident blade designs which strike an appropriate balance between performance and self induced load management.

  9. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    PubMed

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Flow cells for bioanalytical and bioprocess applications with optimized dynamic response and flow characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, V.R.; Modlin, D.N.

    1994-12-31

    In this study, the authors present a method for design and characterization of flow cells developed for minimum flow volume and optimal dynamic response with a given central observation area. The dynamic response of a circular shaped dual ported flow cell was compared to that obtained from a flow cell whose optimized shape was determined using this method. In the optimized flow cell design, the flow rate at the nominal operating pressure increased by 50% whereas the flow cell volume was reduced by 70%. In addition, the dynamic response of the new flow cell was found to be 200% fastermore » than the circular flow cell. The fluid dynamic analysis included simple graphical techniques utilizing free stream vorticity functions and Hagen-Poiseuille relationships. The flow cell dynamic response was measured using a fluorescence detection system. The fluoresce in emission from a 400{micro}m spot located at the exit port was measured as a function of time after switching the input to the flow cell between fluorescent and non-fluorescent solutions. Analysis of results revealed the system could be reasonably characterized as a first order dynamic system. Although some evidence of second order behavior was also observed, it is reasonable to assume that a first order model will provide adequate predictive capability for many real world applications. Given a set of flow cell requirements, the methods presented in this study can be used to design and characterize flow cells with lower reagent consumption and reduced purging times. These improvements can be readily translated into reduced process times and/or lower usage of high cost reagents.« less

  11. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  12. Parameterizing Coefficients of a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.

  13. A streamlined software environment for situated skills

    NASA Technical Reports Server (NTRS)

    Yu, Sophia T.; Slack, Marc G.; Miller, David P.

    1994-01-01

    This paper documents a powerful set of software tools used for developing situated skills. These situated skills form the reactive level of a three-tiered intelligent agent architecture. The architecture is designed to allow these skills to be manipulated by a task level engine which is monitoring the current situation and selecting skills necessary for the current task. The idea is to coordinate the dynamic activations and deactivations of these situated skills in order to configure the reactive layer for the task at hand. The heart of the skills environment is a data flow mechanism which pipelines the currently active skills for execution. A front end graphical interface serves as a debugging facility during skill development and testing. We are able to integrate skills developed in different languages into the skills environment. The power of the skills environment lies in the amount of time it saves for the programmer to develop code for the reactive layer of a robot.

  14. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  15. Enhancement of Condensation Heat Transfer by Counter-Corrent Wavy Flow in a Vertical Tube

    NASA Astrophysics Data System (ADS)

    Teranishi, Tsunenobu; Ozawa, Takanori; Takimoto, Akira

    As a basic research for the development of a high-performance and environment-friendly thermal energy recovery system, detailed experiments have been conducted to investigate the mechanism of the enhancement of condensation heat transfer by the counter-current moist air flow in a vertical tube. From the results of visual observation of the phenomena by using a high-speed video recorder and the measurement of condensate rate respectively from an upper and a bottom end of a cooled tube, in which various humidity vapor of air and water flowed upward or downward, the dynamic behavior of liquid film condensed on cooled surface and moist air flow was classified into four distinctive patterns in quality and quantity. Further, the effect of the scale and the operating condition such as the diameter and the length of tube, the vapor concentration and the moist air temperature, on the condensation rate of counter-current wavy flow was clarified in relation to the pattern and condition of occurrence of the wavy flow of liquid film and flooding due to the shear forces between the interface of liquid and moist air flow.

  16. Feeding currents of the upside down jellyfish in the presence of background flow.

    PubMed

    Hamlet, Christina L; Miller, Laura A

    2012-11-01

    The upside-down jellyfish (Cassiopea spp.) is an ideal organism for examining feeding and exchange currents generated by bell pulsations due to its relatively sessile nature. Previous experiments and numerical simulations have shown that the oral arms play an important role in directing new fluid into the bell from along the substrate. All of this work, however, has considered the jellyfish in the absence of background flow, but the natural environments of Cassiopea and other cnidarians are dynamic. Flow velocities and directions fluctuate on multiple time scales, and mechanisms of particle capture may be fundamentally different in moving fluids. In this paper, the immersed boundary method is used to simulate a simplified jellyfish in flow. The elaborate oral arm structure is modeled as a homogenous porous layer. The results show that the oral arms trap vortices as they form during contraction and expansion of the bell. For constant flow conditions, the vortices are directed gently across the oral arms where particle capture occurs. For variable direction flows, the secondary structures change the overall pattern of the flow around the bell and appear to stabilize regions of mixing around the secondary mouths.

  17. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section

    NASA Astrophysics Data System (ADS)

    Lind, Andrew H.; Jones, Anya R.

    2016-07-01

    Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.

  18. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.

    PubMed

    Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N

    2007-05-01

    The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.

  19. Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard

    2016-11-01

    We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.

  20. Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System

    NASA Astrophysics Data System (ADS)

    Gao, Hai-Tao; Yang, Sheng-Bo; Zhu, Er-Lin; Sun, Qing-Lin; Chen, Zeng-Qiang; Kang, Xiao-Feng

    2013-11-01

    Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost.

  1. A Microscopic Interpretation of Pump-Probe Vibrational Spectroscopy Using Ab Initio Molecular Dynamics.

    PubMed

    Lesnicki, Dominika; Sulpizi, Marialore

    2018-06-13

    What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.

  2. Capillary Movement in Substrates in Microgravity

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Duffie, N. A.

    1996-01-01

    A more complete understanding of the dynamics of capillary flow through an unsaturated porous medium would be useful for a number of space and terrestrial applications. Knowledge of capillary migration of liquids in granular beds in microgravity would significantly enhance the development and understanding of how a matrix based nutrient delivery system for the growth of plants would function in a microgravity environment. Thus, such information is of interest from the theoretical as well as practical point of view.

  3. Effects of water temperature on breeding phenology, growth, and metamorphosis of foothill yellow-legged frogs (Rana boylii): a case study of the regulated mainstem and unregulated tributaries of California's Trinity River

    Treesearch

    Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh

    2014-01-01

    Many riverine organisms are well adapted to seasonally dynamic environments, but extreme changes in flow and thermal regimes can threaten sustainability of their populations in regulated rivers. Altered thermal regimes may limit recruitment to populations by shifting the timing of breeding activities and affecting the growth and development of early life stages. Stream...

  4. Technical Description of Urban Microscale Modeling System: Component 1 of CRTI Project 02-0093RD

    DTIC Science & Technology

    2007-03-01

    0093RD which involved (1) development and implementation of a com- putational fluid dynamics model for the simulation of urban flow in an arbitrary...resource will serve as a nation-wide general problem- solving tool for first-responders involved with CBR incidents in the urban environment and...predictions with experimental data obtained from a comprehensive full-scale urban field experiment conducted in Oklahoma City, Oklahoma in July 2003 (Joint

  5. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  6. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  7. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  8. The role of β-effect and a uniform current on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Duan, Yihong; Wu, Rongsheng; Yu, Hui; Liang, Xudong; Chan, Johnny C. L.

    2004-02-01

    A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.

  9. Assessment of Flow Control Devices for Transonic Cavity Flows Using DES and LES

    NASA Astrophysics Data System (ADS)

    Barakos, G. N.; Lawson, S. J.; Steijl, R.; Nayyar, P.

    Since the implementation of internal carriage of stores on military aircraft, transonic flows in cavities were put forward as a model problem for validation of CFD methods before design studies of weapon bays can be undertaken. Depending on the free-stream Mach number and the cavity dimensions, the flow inside the cavity can become very unsteady. Below a critical length-to-depth ratio (L/D), the flow has enough energy to span across the cavity opening and a shear layer develops. When the shear layer impacts the downstream cavity corner, acoustical disturbances are generated and propagated upstream, which in turn causes further instabilities at the cavity front and a feedback loop is maintained. The acoustic environment in the cavity is so harsh in these circumstances that the noise level at the cavity rear has been found to approach 170 dB and frequencies near 1 kHz are created. The effect of this unsteady environment on the structural integrity of the contents of the cavity (e.g. stores, avionics, etc.) can be serious. Above the critical L/D ratio, the shear layer no longer has enough energy to span across the cavity and dips into it. Although this does not produce as high noise levels and frequencies as shorter cavities, the differential pressure along the cavity produces large pitching moments making store release difficult. Computational fluid dynamics analysis of cavity flows, based on the Reynolds-Averaged Navier—Stokes equations was only able to capture some of the flow physics present. On the other hand, results obtained with Large-Eddy Simulation or Detached-Eddy Simulation methods fared much better and for the cases computed, quantitative and qualitative agreement with experimental data has been obtained.

  10. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry

    USGS Publications Warehouse

    Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.

    2008-01-01

    Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.

  11. A new apparatus design for high temperature (up to 950°C) quasi-elastic neutron scattering in a controlled gaseous environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Wahish, Amal; Armitage, D.; al-Binni, U.

    Our design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950°C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. And while the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopicmore » dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature protonconductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. Finally, the sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less

  12. Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation

    DTIC Science & Technology

    2016-03-17

    ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time...ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation...SUBTITLE Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  13. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [Nitrogen flow in Huizhou region].

    PubMed

    Ma, Xiaobo; Wang, Zhaoyin; Koenig, Albert; Deng, Jiaquan

    2006-06-01

    Eutrophication is a serious problem of water body pollution. By the method of material flow accounting, this paper studied the human activities- related nitrogen flow in the system of environment and anthroposphere in Huizhou region. The non-point source pollution was quantified by export coefficient method, and the domestic discharge was estimated by demand-supply method. The statistic and dynamic analyses based on the investigation data of 1998 showed that the major nitrogen flows in this region were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal excretes' degradation and volatilization, and the processes relating to burning and other emissions. In 1998, about 40% of nitrogen was detained in the system, which could be accumulated and yield potential environmental problems. The nitrogen export in this region was mainly by rivers, accounted for about 57%. A comparison of Huizhou region with the Danube and Changjiang basins showed that the unit area nitrogen exports in these three regions were of the same magnitude, and the per capita nitrogen exports were comparable.

  15. Dynamic task allocation for a man-machine symbiotic system

    NASA Technical Reports Server (NTRS)

    Parker, L. E.; Pin, F. G.

    1987-01-01

    This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy.

  16. Field measurements of cloud droplet dynamics

    NASA Astrophysics Data System (ADS)

    Molacek, Jan; Bagheri, Gholamhossein; Bertens, Augustinus; Xu, Haitao; Bodenschatz, Eberhard

    2017-11-01

    We present an in-situ experiment investigating the dynamics of cloud droplets and its dependence on the turbulent flow properties. This dynamics plays a major role in the rate of growth of cloud particles by coalescence and the resulting precipitation rate. The experiment takes place at a mountain research station at an altitude of 2650m, and will make use of a movable platform that can travel with the mean wind velocity. Here we present preliminary results using a stationary setup. Simultaneous measurements of other variables such as droplet size distribution and humidity fluctuations are done in order to develop a more complete picture of the microphysical conditions within clouds. We thank the Bavarian State Ministry of the Environment and Consumer Protection for their generous financial support. We also acknowledge funding from European Union Horizon 2020 Programme via the COMPLETE project.

  17. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.

  18. Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level

    PubMed Central

    Mallory-Smith, Carol Ann

    2017-01-01

    The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment. PMID:28257488

  19. Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level.

    PubMed

    Zapiola, María Luz; Mallory-Smith, Carol Ann

    2017-01-01

    The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment.

  20. Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Funaki, Y.; Nishino, M. N.

    2016-12-01

    The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.

  1. Umbilical cannulation optimizes circuit flows in premature lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND).

    PubMed

    Hornick, Matthew A; Davey, Marcus G; Partridge, Emily A; Mejaddam, Ali Y; McGovern, Patrick E; Olive, Aliza M; Hwang, Grace; Kim, Jenny; Castillo, Orlando; Young, Kathleen; Han, Jiancheng; Zhao, Sheng; Connelly, James T; Dysart, Kevin C; Rychik, Jack; Peranteau, William H; Flake, Alan W

    2018-05-01

    Bronchopulmonary dysplasia is a disease of extreme prematurity that occurs when the immature lung is exposed to gas ventilation. We designed a novel 'artificial womb' system for supporting extreme premature lambs (called EXTEND) that obviates gas ventilation by providing oxygen via a pumpless arteriovenous circuit with the lamb submerged in sterile artificial amniotic fluid. In the present study, we compare different arteriovenous cannulation strategies on EXTEND, including carotid artery/jugular vein (CA/JV), carotid artery/umbilical vein (CA/UV) and umbilical artery/umbilical vein (UA/UV). Compared to CA/JV and CA/UV cannulation, UA/UV cannulation provided significantly higher, physiological blood flows to the oxygenator, minimized flow interruptions and supported significantly longer circuit runs (up to 4 weeks). Physiological circuit blood flow in UA/UV lambs made possible normal levels of oxygen delivery, which is a critical step toward the clinical application of artificial womb technology. EXTEND (EXTra-uterine Environment for Neonatal Development) is a novel system that promotes physiological development by maintaining the premature lamb in a sterile fluid environment and providing gas exchange via a pumpless arteriovenous oxygenator circuit. During the development of EXTEND, different cannulation strategies evolved with the aim of improving circuit flow. The present study examines how different cannulation strategies affect EXTEND circuit haemodynamics in extreme premature lambs. Seventeen premature lambs were cannulated at gestational ages 105-117 days (term 145-150 days) and supported on EXTEND for up to 4 weeks. Experimental groups were distinguished by cannulation strategy: carotid artery outflow and jugular vein inflow (CA/JV; n = 4), carotid artery outflow and umbilical vein inflow (CA/UV; n = 5) and double umbilical artery outflow and umbilical vein inflow (UA/UV; n = 8). Circuit flows and pressures were measured continuously. As we transitioned from CA/JV to CA/UV to UA/UV cannulation, mean duration of circuit run and weight-adjusted circuit flows increased (P < 0.001) and the frequency of flow interruptions declined (P < 0.05). Umbilical vessels generally accommodated larger-bore cannulas, and cannula calibre was directly correlated with circuit pressures and indirectly correlated with flow:pressure ratio (a measure of post-membrane resistance). We conclude that UA/UV cannulation in fetal lambs on EXTEND optimizes circuit flow dynamics and flow stability and also supports circuit flows that closely approximate normal placental flow. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-11-01

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  4. Thermal equilibrium control by frequent bang-bang modulation.

    PubMed

    Yang, Cheng-Xi; Wang, Xiang-Bin

    2010-05-01

    In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.

  5. Introducing Computational Fluid Dynamics Simulation into Olfactory Display

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi

    An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.

  6. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less

  7. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  8. Forecasting the shortage of neurosurgeons in Iran using a system dynamics model approach.

    PubMed

    Rafiei, Sima; Daneshvaran, Arman; Abdollahzade, Sina

    2018-01-01

    Shortage of physicians particularly in specialty levels is considered as an important issue in Iran health system. Thus, in an uncertain environment, long-term planning is required for health professionals as a basic priority on a national scale. This study aimed to estimate the number of required neurosurgeons using system dynamic modeling. System dynamic modeling was applied to predict the gap between stock and number of required neurosurgeons in Iran up to 2020. A supply and demand simulation model was constructed for neurosurgeons using system dynamic approach. The demand model included epidemiological, demographic, and utilization variables along with supply model-incorporated current stock of neurosurgeons and flow variables such as attrition, migration, and retirement rate. Data were obtained from various governmental databases and were analyzed by Vensim PLE Version 3.0 to address the flow of health professionals, clinical infrastructure, population demographics, and disease prevalence during the time. It was forecasted that shortage in number of neurosurgeons would disappear at 2020. The most dominant determinants on predicted number of neurosurgeons were the prevalence of neurosurgical diseases, the rate for service utilization, and medical capacity of the region. Shortage of neurosurgeons in some areas of the country relates to maldistribution of the specialists. Accordingly, there is a need to reconsider the allocation system for health professionals within the country instead of increasing the overall number of acceptance quota in training positions.

  9. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    NASA Astrophysics Data System (ADS)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  10. High-order numerical simulations of pulsatile flow in a curved artery model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.

    2016-11-01

    Cardiovascular flows are pulsatile, incompressible and occur in complex geometries with compliant walls. Together, these factors can produce an environment that can affect the progression of cardiovascular disease by altering wall shear stresses. Unstructured high-order CFD methods are well suited for capturing unsteady vortex-dominated viscous flows, and these methods provide high accuracy for similar cost as low-order methods. We use an in-house three-dimensional flux reconstruction Navier-Stokes solver to simulate secondary flows and vortical structures within a rigid 180-degree curved artery model under pulsatile flow of a Newtonian blood-analog fluid. Our simulations use a physiological flowrate waveform taken from the carotid artery. We are particularly interested in the dynamics during the deceleration phase of the waveform, where we observe the deformed-Dean, Dean, Lyne and Wall vortices. Our numerical results reveal the complex nature of these vortices both in space and time and their effect on overall wall shear stress. Numerical results agree with and complement experimental results obtained in our laboratory using particle image velocimetry. Supported by the GW Center for Biomimetics and Bioinspired Engineering.

  11. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    PubMed

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed acclimation to hypoxic conditions, apart from an increased heart rate, there were no other cardiovascular changes associated with the low salinity episode. The implications of these changes in cardiovascular dynamics are discussed in relation to physiological mechanisms and the ecology of decapod crustaceans, in hypoxic or low salinity environments. Copyright 2003, Wiley-Liss, Inc.

  12. Autogenic dynamics of debris-flow fans

    NASA Astrophysics Data System (ADS)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.

  13. A new thermally driven refrigeration system with environmental benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garris, C.A. Jr.; Hong, W.J.; Mavriplis, C.

    1998-07-01

    The pressure-exchange ejector offers the possibility of attaining a breakthrough in the level of performance of ejectors by means of utilizing non-dissipative non-steady flow mechanisms. Yet, the device retains much of the mechanical simplicity of conventional steady-flow ejectors. If such a substantial improvement in performance is demonstrated, its application to ejector refrigeration will be very important. Such a development would provide significant benefits for the environment in terms of both CFC usage reduction and greenhouse gas reduction. The current paper will discuss in detail the concept of pressure-exchange ejector refrigeration, compare it with existing technologies, and discuss the potential impactmore » that might be derived if certain levels of ejector performance can be achieved. Since the limiting issue on the system performance is in the fluid dynamics of non-steady flow induction, research issues and recent progress will be discussed.« less

  14. Reliable multicast protocol specifications flow control and NACK policy

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Montgomery, Todd L.; Whetten, Brian

    1995-01-01

    This appendix presents the flow and congestion control schemes recommended for RMP and a NACK policy based on the whiteboard tool. Because RMP uses a primarily NACK based error detection scheme, there is no direct feedback path through which receivers can signal losses through low buffer space or congestion. Reliable multicast protocols also suffer from the fact that throughput for a multicast group must be divided among the members of the group. This division is usually very dynamic in nature and therefore does not lend itself well to a priori determination. These facts have led the flow and congestion control schemes of RMP to be made completely orthogonal to the protocol specification. This allows several differing schemes to be used in different environments to produce the best results. As a default, a modified sliding window scheme based on previous algorithms are suggested and described below.

  15. Flow dynamic environment data base development for the SSME

    NASA Technical Reports Server (NTRS)

    Sundaram, C. V.

    1985-01-01

    The fluid flow-induced vibration of the Space Shuttle main engine (SSME) components are being studied with a view to correlating the frequency characteristics of the pressure fluctuations in a rocket engine to its operating conditions and geometry. An overview of the data base development for SSME test firing results and the interactive computer software used to access, retrieve, and plot or print the results selectively for given thrust levels, engine numbers, etc., is presented. The various statistical methods available in the computer code for data analysis are discussed. Plots of test data, nondimensionalized using parameters such as fluid flow velocities, densities, and pressures, are presented. Results are compared with those available in the literature. Correlations between the resonant peaks observed at higher frequencies in power spectral density plots with pump geometry and operating conditions are discussed. An overview of the status of the investigation is presented and future directions are discussed.

  16. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    PubMed Central

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  17. The Overgrid Interface for Computational Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.

  18. Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics.

    PubMed

    Ren, Fangfang; Zu, Yingbo; Kumar Rajagopalan, Kartik; Wang, Shengnian

    2012-01-01

    Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics.

  19. Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, È.; Müller, S. K.; Kueppers, U.; Dingwell, D. B.

    2014-12-01

    Soft-sediment deformation produces intriguing sedimentary structures and can occur in diverse environments and from a variety of triggers. From the observation of such structures and their interpretation in terms of trigger mechanisms, valuable information can be extracted about former conditions. Here we document examples of syn-eruptive deformation in dilute pyroclastic density current deposits. Outcrops from 6 different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Ubehebe craters (USA), Tungurahua (Ecuador), Soufrière Hills (Montserrat), Laacher See (Germany), Tower Hill and Purrumbete lake (both Australia). Isolated slumps as well as sinking pseudonodules are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. Isolated, cm-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. The occurrence of degassing pipes together with basal intrusive dikes suggest fluidization during flow stages, and can facilitate the development of Kelvin-Helmholtz structures. The occurrence at the base of flow units of injection dikes in some outcrops compared with suction-driven local uplifts in others indicates the role of dynamic pore pressure. Variations of the latter are possibly related to local changes between depletive and accumulative dynamics of flows. Ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Finally, the passage of shock waves emanating from the vent may be preserved in the form of trains of isolated, fine-grained overturned beds which may disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of a vent. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. These are just some of the many possible triggers acting in a single environment, and reveal the potential for insights into the eruptive mechanisms of dilute pyroclastic density currents.

  20. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712

  1. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Banerjee, Tirtha

    2017-04-01

    Under non-neutral conditions and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has implications for the measurement of surface-atmosphere exchange by means of eddy-covariance. For example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows happen during night, when the flow within the canopy decouples from the flow aloft. In the present work, we investigate the dynamics of terrain-induced turbulent flow within sloped canopies. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To tackle the full spatiotemporal dynamical system theoretically is beyond the scope of this work, although we can make some qualitative arguments. Additionally, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze phase synchronization behavior of the major terms in the momentum budget to explore the turbulent dynamics in more detail.

  2. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    NASA Astrophysics Data System (ADS)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  3. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    PubMed

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  4. Thermal Fault Tolerance Analysis of Carbon Fiber Rope Barrier Systems for Use in the Reusable Solid Rocket Motor ( RSRM) Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Carbon Fiber Rope (CFR) thermal barrier systems are being considered for use in several RSRM (Reusable Solid Rocket Motor) nozzle joints as a replacement for the current assembly gap close-out process/design. This study provides for development and test verification of analysis methods used for flow-thermal modeling of a CFR thermal barrier subject to fault conditions such as rope combustion gas blow-by and CFR splice failure. Global model development is based on a 1-D (one dimensional) transient volume filling approach where the flow conditions are calculated as a function of internal 'pipe' and porous media 'Darcy' flow correlations. Combustion gas flow rates are calculated for the CFR on a per-linear inch basis and solved simultaneously with a detailed thermal-gas dynamic model of a local region of gas blow by (or splice fault). Effects of gas compressibility, friction and heat transfer are accounted for the model. Computational Fluid Dynamic (CFD) solutions of the fault regions are used to characterize the local flow field, quantify the amount of free jet spreading and assist in the determination of impingement film coefficients on the nozzle housings. Gas to wall heat transfer is simulated by a large thermal finite element grid of the local structure. The employed numerical technique loosely couples the FE (Finite Element) solution with the gas dynamics solution of the faulted region. All free constants that appear in the governing equations are calibrated by hot fire sub-scale test. The calibrated model is used to make flight predictions using motor aft end environments and timelines. Model results indicate that CFR barrier systems provide a near 'vented joint' style of pressurization. Hypothetical fault conditions considered in this study (blow by, splice defect) are relatively benign in terms of overall heating to nozzle metal housing structures.

  5. Dynamics of pollutant indicators during flood events in a small river under strong anthropogenic pressures

    NASA Astrophysics Data System (ADS)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the importance of combined sewer overflows are evaluated and discussed. Results from this study were obtained in the framework of the OSIRIS research project (INNOVIRIS Anticipate 2015-2019).

  6. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens Peter; Egelhaaf, Martin

    2014-01-01

    Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments. PMID:25340761

  7. Biomimetics of fetal alveolar flow phenomena using microfluidics.

    PubMed

    Tenenbaum-Katan, Janna; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josué

    2015-01-01

    At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.

  8. Development of Flow and Heat Transfer Models for the Carbon Fiber Rope in Nozzle Joints of the Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)

    2001-01-01

    Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.

  9. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors.

    PubMed

    Guyot, Yann; Smeets, Bart; Odenthal, Tim; Subramani, Ramesh; Luyten, Frank P; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-09-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell's micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications.

  10. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  11. Effects of flow separation and cove leakage on pressure and heat-transfer distributions along a wing-cove-elevon configuration at Mach 6.9. [Langley 8-ft high temperature tunnel test

    NASA Technical Reports Server (NTRS)

    Deveikis, W. D.

    1983-01-01

    External and internal pressure and cold-wall heating-rate distributions were obtained in hypersonic flow on a full-scale heat-sink representation of the space shuttle orbiter wing-elevon-cove configuration in an effort to define effects of flow separation on cove aerothermal environment as a function of cove seal leak area, ramp angle, and free-stream unit Reynolds number. Average free-stream Mach number from all tests was 6.9; average total temperature from all tests was 3360 R; free-stream dynamic pressure ranged from about 2 to 9 psi; and wing angle of attack was 5 deg (flow compression). For transitional and turbulent flow separation, increasing cove leakage progressively increased heating rates in the cove. When ingested mass flow was sufficient to force large reductions in extent of separation, increasing cove leakage reduced heating rates in the cove to those for laminar attached flow. Cove heating-rate distributions calculated with a method that assumed laminar developing channel flow agreed with experimentally obtained distributions within root-mean-square differences that varied between 11 and 36 percent where cove walls were parallel for leak areas of 50 and 100 percent.

  12. Adaptive computational methods for aerothermal heating analysis

    NASA Technical Reports Server (NTRS)

    Price, John M.; Oden, J. Tinsley

    1988-01-01

    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.

  13. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment.

    PubMed

    Høybye, Mette Terp

    2013-02-01

    Given the growing attention to the importance of design in shaping healing hospital environments this study extends the understanding of healing environments, beyond causal links between environmental exposure and health outcome by elucidating how environments and practices interrelate. The study was conducted as an ethnographic fieldwork from March 2011 to September 2011 at the Department of Haematology at Odense University Hospital, Denmark, systematically using participant observation and interviews as research strategies. It included 20 patients, four of who were followed closely over an extended time period. Through thematic analysis five key concepts emerged about the social dynamics of hospital environments: practices of self; creating personal space; social recognition; negotiating space; and ambiguity of space and care. Through these concepts, the study demonstrates how the hospital environment is a flow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients' sense of healing changes with the experience of progression in treatment and the capacity of the hospital space to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Healing environments are complex relations between practices, space and care, where recognition of the individual patient's needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive to the need for flexible spaces in hospitals that recognize the dynamics of healing, by providing individualized care, relating to the particular and changing needs of patients supporting their potential and their challenged condition with the best care possible.

  14. Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution

    NASA Astrophysics Data System (ADS)

    Struble, W.; Roering, J. J.

    2017-12-01

    In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.

  15. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  16. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  17. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.

    PubMed

    Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A

    2015-01-01

    The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors.

  18. Conference Proceedings on Validation of Computational Fluid Dynamics. Volume 2. Poster Papers Held in Lisbon, Portugal on 2-5 May 1988

    DTIC Science & Technology

    1988-05-01

    ifforiable manpower investement. On the basis of our current experience it seems that the basic design principles are valid. The system developed will... system is operational on various computer networks, and in both industrial and in research environments. The design pri,lciples for the construction of...to a useful numerical simulation and design system for very complex configurations and flows. 7. REFERENCES 1. Bartlett G. W. , "An experimental

  19. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl

    2015-01-01

    Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.

  20. Vaporous Hydrogen Peroxide (VHP) Decontamination of a C-141B Starlifter Aircraft: Validation of VHP and Modified VHP (mVHP) Fumigation Decontamination Process via VHP-Sensor, Biological Indicator, and HD Simulant in a Large-Scale Environment

    DTIC Science & Technology

    2007-03-01

    Geobacillus stearothermophilus biological indicator (BI) strips and coupons of three aircraft related surface materials contaminated with the same type...Starlifter Aircraft BIs Geobacillus stearothermophilus mVHP system Vaporizer modules Coupons HD Ammonia Computational flow dynamics CARC CEPS 16. SECURITY...21 18. G. stearothermophilus ATCC 7953VHP Exposure Test Results ..................... 33 19. Vapor Cup

  1. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  2. Velocity measurements of heterogeneous RBC flow in capillary vessels using dynamic laser speckle signal.

    PubMed

    Li, Chenxi; Wang, Ruikang

    2017-04-01

    We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes.

  3. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  4. Dynamic Response of an Energy Harvesting Device Under Realistic Flow Conditions

    NASA Astrophysics Data System (ADS)

    O'Connor, Joseph; Revell, Alistair

    2017-11-01

    The need for reliable, cost-efficient, green energy alternatives has led to increased research in the area of energy harvesting. One approach to energy harvesting is to take advantage of self-sustaining flow-induced vibrations. Through the use of a piezoelectric flag, the mechanical strain from the flapping motion can be converted into electrical energy. While such devices show a lot of promise, the fluid-structure-electrical interactions are highly nonlinear and their response to off-design variations in flow conditions, such as those likely to be encountered upon deployment, is relatively unexplored. The purpose of the present work is to examine how a representative energy harvesting device performs in realistic atmospheric flow conditions involving wind gusts with spatial and temporal variations. A recently developed lattice-Boltzmann-immersed boundary-finite element model is used to perform fully-coupled 3D simulations of the fluid-structure system. For a range of unsteady flow conditions the resulting flow features and structural motion are examined and key behaviour modes are mapped out. The findings of this work will be particularly relevant for self-powered remote sensing networks, which often require deployment in unpredictable and varied environments.

  5. Optical Flow Estimation for Flame Detection in Videos

    PubMed Central

    Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen

    2014-01-01

    Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042

  6. Connectivity variations in time and space: role of events, structures and morphology in ephemeral channels

    NASA Astrophysics Data System (ADS)

    Hooke, Janet

    2017-04-01

    Flow and sediment processes in ephemeral channels are highly dynamic and spatially variable. The connectivity characteristics in a range of events are examined for several semi-arid catchments in Southeast Spain. Rainfall thresholds for runoff generation on slopes and for flow generation in channels have been identified at various scales. In many events, flow is not continuous down the channel system due partly to localised rainfall and to transmission losses but also to structural and morphological conditions. One extreme flow event with high sediment supply produced very high flow and sediment connectivity throughout the system. Results of spatial analysis of variation in hydraulics and sediment processes are presented and the effects are analysed. Amounts and locations of sediment storage were identified from repeat surveys. The overall contribution of such an event to morphological and sedimentological changes in the channel and longer-term landscape evolution is assessed. Land use and management are demonstrated to have a profound influence on the sediment delivery and connectivity functioning. The implications for land, channel and flood management in such an environment, together with the impacts of longer-term variations in flow regime due to land use and climate change, are considered.

  7. Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas; Lucord, Steven; Diegelman, Thomas; Mireles, James; Gonzalez, Pete

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions.

  8. On the Use of the Platelet Activity State Assay for the In Vitro Quantification of Platelet Activation in Blood Recirculating Devices for Extracorporeal Circulation.

    PubMed

    Consolo, Filippo; Valerio, Lorenzo; Brizzola, Stefano; Rota, Paolo; Marazzato, Giulia; Vincoli, Valentina; Reggiani, Stefano; Redaelli, Alberto; Fiore, Gianfranco

    2016-10-01

    We designed an experimental setup to characterize the thrombogenic potential associated with blood recirculating devices (BRDs) used in extracorporeal circulation (ECC). Our methodology relies on in vitro flow loop platelet recirculation experiments combined with the modified-prothrombinase platelet activity state (PAS) assay to quantify the bulk thrombin production rate of circulated platelets, which correlates to the platelet activation (PA) level. The method was applied to a commercial neonatal hollow fiber membrane oxygenator. In analogous hemodynamic environment, we compared the PA level resulting from multiple passes of platelets within devices provided with phosphorylcholine (PC)-coated and noncoated (NC) fibers to account for flow-related mechanical factors (i.e., fluid-induced shear stress) together with surface contact activation phenomena. We report for the first time that PAS assay is not significantly sensitive to the effect of material coating under clinically pertinent flow conditions (500 mL/min), while providing straightforward information on shear-mediated PA dynamics in ECC devices. Being that the latter is intimately dependent on local flow dynamics, according to our results, the rate of thrombin production as measured by the PAS assay is a valuable biochemical marker of the selective contribution of PA in BRDs induced by device design features. Thus, we recommend the use of PAS assay as a means of evaluating the effect of modification of specific device geometrical features and/or different design solutions for developing ECC devices providing flow conditions with reduced thrombogenic impact. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. The fluid dynamics of Balanus glandula barnacles: Adaptations to sheltered and exposed habitats.

    PubMed

    Vo, Maureen; Mehrabian, Sasan; Villalpando, Fernando; Etienne, Stephane; Pelletier, Dominique; Cameron, Christopher B

    2018-04-11

    Suspension feeders use a wide range of appendages to capture particles from the surrounding fluid. Their functioning, either as a paddle or a sieve, depends on the leakiness, or amount of fluid that passes through the gaps between the appendages. Balanus glandula is the most common species of barnacle distributed along the Pacific coast of North America. It shows a strong phenotypic response to water flow velocity. Individuals from exposed, high flow sites have short and robust cirral filters, whereas those from sheltered, low velocity sites have long, spindly appendages. Computational fluid dynamics (CFD) simulations of these two ecophenotypes were done using a finite volume method. Leakiness was determined by simulating flow velocity fields at increasing Reynolds numbers, results that have been unattainable at higher velocities by observation. CFD also allowed us to characterize flow in hard to see regions of the feeding legs (rami). Laser-illumination experiments were performed at low to medium flow velocities in a flume tank and corroborated results from CFD. Barnacle filters from a sheltered site become completely leaky at Re=2.24(0.16m/s), well above the maximum habitat velocity, suggesting that this ecophenotype is not mechanically optimized for feeding. Barnacles from exposed environments become fully leaky within the range of habitat velocities Re=3.50(0.18m/s). Our CFD results revealed that the drag force on exposed barnacles feeding appendages are the same as the sheltered barnacles feeding appendages despite their shape difference and spacing ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  11. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    EPA Science Inventory

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  12. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  13. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  14. Incident shock strength evolution in overexpanded jet flow out of rocket nozzle

    NASA Astrophysics Data System (ADS)

    Silnikov, Mikhail V.; Chernyshov, Mikhail V.

    2017-06-01

    The evolution of the incident shock in the plane overexpanded jet flow or in the axisymmetric one is analyzed theoretically and compared at the whole range of governing flow parameters. Analytical results can be applied to avoid jet flow instability and self-oscillation effects at rocket launch, to improve launch safety and to suppress shock-wave induced noise harmful to environment and personnel. The mathematical model of ;differential conditions of dynamic compatibility; was applied to the curved shock in non-uniform plane or axisymmetrical flow. It allowed us to study such features of the curved incident shock and flow downstream it as shock geometrical curvature, jet boundary curvature, local increase or decrease of the shock strength, flow vorticity rate (local pressure gradient) in the vicinity of the nozzle lip, static pressure gradient in the compressed layer downstream the shock, and many others. All these quantities sufficiently depend on the flow parameters (flow Mach number, jet overexpansion rate, nozzle throat angle, and ration of gas specific heats). These dependencies are sometimes unusual, especially at small Mach numbers. It was also surprising that there is no great difference among all these flowfield features in the plane jet and in the axisymmetrical jet flow out of a nozzle with large throat angle, but all these parameters behave in a quite different way in an axisymmetrical jet at small and moderate nozzle throat angles.

  15. Topological and behavioral disorder in collective motion

    NASA Astrophysics Data System (ADS)

    Quint, David

    2014-03-01

    A major underlying assumption in many studies on the collective motion of self-propelled agents has been that the environment is continuous, isotropic and ordered and agents are all identical. In the natural world there are many examples of disordered environments or heterogeneous swarms where collective motion can exist. Examples include bats that navigate natural caverns via echolocation, schools of fish that maneuver through dark and light areas, microbial colonies that move about in heterogeneous soil, quorum sensing bacteria, crowds of people that are evacuating a building and traffic flow in major cities. In general disorder can arise from two basic sources that inhibit/augment both movement and information flow, those that represent physical obstacles (i.e topological), (extrinsic), and those that arise from behavioral heterogeneties within the swarm itself (intrinsic). In either case, extrinsic or intrinsic, disorder can be quenched or dynamic in space or time or both. To understand the effect of the various forms of disorder that can be present in the environment of the agents, we study both discrete and continuous 2 d agent based models that utilize only local interactions and study the transition to the collectively moving state as a function of the amount of disorder or behavioral heterogeneities present in the environment. I will present our recent results and discuss the effect that disorder has on collective motion and the general physical mechanisms that swarms, either real or artificial, could utilize in order to overcome disorder in their environment.

  16. Optimizing Natural Gas Networks through Dynamic Manifold Theory and a Decentralized Algorithm: Belgium Case Study

    NASA Astrophysics Data System (ADS)

    Koch, Caleb; Winfrey, Leigh

    2014-10-01

    Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.

  17. Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States.

    PubMed

    Wilson, Doyle C

    2018-04-15

    Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  19. Determination of first flush criteria using dynamic EMCs (event mean concentrations) on highway stormwater runoff.

    PubMed

    Kim, L H; Jeong, S M; Ko, S O

    2007-01-01

    Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.

  20. Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.

    2016-12-01

    Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.

  1. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  2. Computational fluid dynamics comparisons of wall shear stress in patient-specific coronary artery bifurcation using coronary angiography and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Poon, Eric; Thondapu, Vikas; Chin, Cheng; Scheerlinck, Cedric; Zahtila, Tony; Mamon, Chris; Nguyen, Wilson; Ooi, Andrew; Barlis, Peter

    2016-11-01

    Blood flow dynamics directly influence biology of the arterial wall, and are closely linked with the development of coronary artery disease. Computational fluid dynamics (CFD) solvers may be employed to analyze the hemodynamic environment in patient-specific reconstructions of coronary arteries. Although coronary X-ray angiography (CA) is the most common medical imaging modality for 3D arterial reconstruction, models reconstructed from CA assume a circular or elliptical cross-sectional area. This limitation can be overcome with a reconstruction technique fusing CA with intravascular optical coherence tomography (OCT). OCT scans the interior of an artery using near-infrared light, achieving a 10-micron resolution and providing unprecedented detail of vessel geometry. We compared 3D coronary artery bifurcation models generated using CA alone versus OCT-angiography fusion. The model reconstructed from CA alone is unable to identify the detailed geometrical variations of diseased arteries, and also under-estimates the cross-sectional vessel area compared to OCT-angiography fusion. CFD was performed in both models under pulsatile flow in order to identify and compare regions of low wall shear stress, a hemodynamic parameter directly linked with progression of atherosclerosis. Supported by ARC LP150100233 and VLSCI VR0210.

  3. Evaluation of biofilm formation using milk in a flow cell model and microarray characterization of Staphylococcus aureus strains from bovine mastitis.

    PubMed

    Snel, G G M; Malvisi, M; Pilla, R; Piccinini, R

    2014-12-05

    It was hypothesized that biofilm could play an important role in the establishment of chronic Staphylococcus aureus bovine mastitis. The in vitro evaluation of biofilm formation can be performed either in closed/static or in flow-based systems. Efforts have been made to characterize the biofilm-forming ability of S. aureus mastitis isolates, however most authors used static systems and matrices other than UHT milk. It is not clear whether such results could be extrapolated to the mammary gland environment. Therefore, the present study aimed to investigate the biofilm-forming ability of S. aureus strains from subclinical bovine mastitis using the static method and a flow-based one. One hundred and twelve strains were tested by the classic tissue culture plate assay (TCP) and 30 out of them were also tested by a dynamic semi-quantitative assay using commercial UHT milk as culture medium (Milk Flow Culture, MFC) or Tryptic Soy Broth as control medium (TS Flow Culture, TSFC). Only 6 (20%) strains formed biofilm in milk under flow conditions, while 36.6% were considered biofilm-producers in TCP, and 93.3% produced biofilm in TSFC. No agreement was found between TCP, MFC and TSFC results. The association between strain genetic profile, determined by microarray, and biofilm-forming ability in milk was evaluated. Biofilm formation in MFC was significantly associated with the presence of those genes commonly found in bovine-associated strains, assigned to clonal complexes typically detected in mastitis. Based on our results, biofilm-forming potential of bovine strains should be critically analysed and tested applying conditions similar to mammary environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Dynamics of nonreactive solute transport in the permafrost environment

    NASA Astrophysics Data System (ADS)

    Svyatskiy, D.; Coon, E. T.; Moulton, J. D.

    2017-12-01

    As part of the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, researchers are developing process-rich models to understand and predict the evolution of water sources and hydrologic flow pathways resulting from degrading permafrost. The sources and interaction of surface and subsurface water and flow paths are complex in space and time due to strong interplay between heterogeneous subsurface parameters, the seasonal to decadal evolution of the flow domain, climate driven melting and release of permafrost ice as a liquid water source, evolving surface topography and highly variable meteorological data. In this study, we seek to characterize the magnitude of vertical and lateral subsurface flows in a cold, wet tundra, polygonal landscape characteristic of the Barrow Peninsula, AK. To better understand the factors controlling water flux partitioning in these low gradient landscapes, NGEE researchers developed and are applying the Advanced Terrestrial Simulator (ATS), which fully couples surface and subsurface flow and energy processes, snow distribution and atmospheric forcing. Here we demonstrate the integration of a new solute transport model within the ATS, which enables the interpretation of applied and natural tracer experiments and observations aimed at quantifying water sources and flux partitioning. We examine the role of ice wedge polygon structure, freeze-thaw processes and soil properties on the seasonal transport of water within and through polygons features, and compare results to tracer experiments on 2D low-centered and high-centered transects corresponding to artificial as well as realistic topographical data from sites in polygonal tundra. These simulations demonstrate significant difference between flow patterns between permafrost and non-permafrost environments due to active layer freeze-thaw processes.

  5. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  6. Fine structure of the vapor field in evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    Villermaux, Emmanuel; Moutte, Alexandre; Amielh, Muriel; Meunier, Patrice

    2017-11-01

    Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved to the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.

  7. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must eventually treat these environments as tightly coupled, interactive systems. The demonstration that the chemistry on the surfaces of outward-flowing, dynamically mixing icy grain surfaces both mimics the chemistry in cold cloud cores and strikes at the central assumption of the photochemical self-shielding model for oxygen isotopes in solar system solids only adds emphasis to this conclusion.

  8. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    NASA Astrophysics Data System (ADS)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer develops over the denticle surface and we propose that there is limited flow under the expanded surfaces of shark denticles. The diversity of fish scale types and textures and the effect of these surfaces on boundary layer flows and fish locomotor energetics is a rich area for future investigation.

  9. Experimental investigation into the impact of vegetation on fan morphology and flow

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Coulthard, Tom

    2013-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator at the Deep, an experimental facility operated by the University of Hull. The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (alfalfa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on fan plots 2x2m in size, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography was also used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution spatial and temporal data on fan development with minimal disruption to the experiments. The results of the preliminary experiments showed that vegetation did influence the morphology and flow conditions during fan evolution. Vegetation reduced the number of active channels, and increasing the vegetation density also led to lower lateral migration rates, the formation of narrower and deeper channels and an increase in fan slope.

  10. Universal evaporation dynamics of a confined sessile droplet

    NASA Astrophysics Data System (ADS)

    Bansal, Lalit; Hatte, Sandeep; Basu, Saptarshi; Chakraborty, Suman

    2017-09-01

    Droplet evaporation under confinement is ubiquitous to multitude of applications such as microfluidics, surface patterning, and ink-jet printing. However, the rich physics governing the universality in the underlying dynamics remains grossly elusive. Here, we bring out hitherto unexplored universal features of the evaporation dynamics of a sessile droplet entrapped in a 3D confined fluidic environment. We show, through extensive set of experiments and theoretical formulations, that the evaporation timescale for such a droplet can be represented by a unique function of the initial conditions. Moreover, using same theoretical considerations, we are able to trace and universally merge the volume evolution history of the droplets along with evaporation lifetimes, irrespective of the extent of confinement. We also showcase the internal flow transitions caused by spatio-temporal variation of evaporation flux due to confinement. These findings may be of profound importance in designing functionalized droplet evaporation devices for emerging engineering and biomedical applications.

  11. Modeling mechanical interactions in growing populations of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Winkle, James J.; Igoshin, Oleg A.; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2017-10-01

    Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cell’s environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.

  12. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  13. Velocity measurements of heterogeneous RBC flow in capillary vessels using dynamic laser speckle signal

    PubMed Central

    Li, Chenxi; Wang, Ruikang

    2017-01-01

    Abstract. We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes. PMID:28384709

  14. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    PubMed Central

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-01-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221

  15. Monte Carlo Methodology Serves Up a Software Success

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.

  16. Collective motion of squirmers in a quasi-2D geometry

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2013-03-01

    Microorganisms like bacteria, algae or spermatozoa typically move in an aqueous environment where they interact via hydrodynamic flow fields. Recent experiments studied the collective motion of dense suspensions of bacteria where swarming and large-scale turbulence emerged. Moreover, spherical artificial microswimmers, so-called squirmers, have been constructed and studied in a quasi-2D geometry. Here we present a numerical study of the collective dynamics of squirmers confined in quasi-2D between two parallel walls. Because of their spherical shape the reorientation of squirmers is solely due to noise and hydrodynamic interactions via induced flow fields. This is in contrast to elongated swimmers like bacteria which locally align due to steric interactions. We study the collective motion of pushers, pullers and potential swimmers at different densities. At small densities the squirmers are oriented parallel to the walls and pairwise collisions determine the reorientation rate. In dense suspensions rotational diffusion is greatly enhanced and pushers, in particular, tend to orient perpendicular to the walls. This effects the dynamics of the emerging clusters. In very dense suspensions we observe active jamming and long-lived crystalline structures.

  17. High-order computational fluid dynamics tools for aircraft design

    PubMed Central

    Wang, Z. J.

    2014-01-01

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  18. Scale Changes Provide an Alternative Cue For the Discrimination of Heading, But Not Object Motion

    PubMed Central

    Calabro, Finnegan J.; Vaina, Lucia Maria

    2016-01-01

    Background Understanding the dynamics of our surrounding environments is a task usually attributed to the detection of motion based on changes in luminance across space. Yet a number of other cues, both dynamic and static, have been shown to provide useful information about how we are moving and how objects around us move. One such cue, based on changes in spatial frequency, or scale, over time has been shown to be useful in conveying motion in depth even in the absence of a coherent, motion-defined flow field (optic flow). Material/Methods 16 right handed healthy observers (ages 18–28) participated in the behavioral experiments described in this study. Using analytical behavioral methods we investigate the functional specificity of this cue by measuring the ability of observers to perform tasks of heading (direction of self-motion) and 3D trajectory discrimination on the basis of scale changes and optic flow. Results Statistical analyses of performance on the test-experiments in comparison to the control experiments suggests that while scale changes may be involved in the detection of heading, they are not correctly integrated with translational motion and, thus, do not provide a correct discrimination of 3D object trajectories. Conclusions These results have the important implication for the type of visual guided navigation that can be done by an observer blind to optic flow. Scale change is an important alternative cue for self-motion. PMID:27231114

  19. Scale Changes Provide an Alternative Cue For the Discrimination of Heading, But Not Object Motion.

    PubMed

    Calabro, Finnegan J; Vaina, Lucia Maria

    2016-05-27

    BACKGROUND Understanding the dynamics of our surrounding environments is a task usually attributed to the detection of motion based on changes in luminance across space. Yet a number of other cues, both dynamic and static, have been shown to provide useful information about how we are moving and how objects around us move. One such cue, based on changes in spatial frequency, or scale, over time has been shown to be useful in conveying motion in depth even in the absence of a coherent, motion-defined flow field (optic flow). MATERIAL AND METHODS 16 right handed healthy observers (ages 18-28) participated in the behavioral experiments described in this study. Using analytical behavioral methods we investigate the functional specificity of this cue by measuring the ability of observers to perform tasks of heading (direction of self-motion) and 3D trajectory discrimination on the basis of scale changes and optic flow. RESULTS Statistical analyses of performance on the test-experiments in comparison to the control experiments suggests that while scale changes may be involved in the detection of heading, they are not correctly integrated with translational motion and, thus, do not provide a correct discrimination of 3D object trajectories. CONCLUSIONS These results have the important implication for the type of visual guided navigation that can be done by an observer blind to optic flow. Scale change is an important alternative cue for self-motion.

  20. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

Top