Sample records for flow enhancement factor

  1. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam

    2018-03-01

    The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

  2. Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia

    NASA Astrophysics Data System (ADS)

    Lafleur, B.; Wilson, J. C.; Seebaugh, W. R.; Gesler, D.; Hilbert, H.; Mullen, J.; Reeves, J. M.

    2002-12-01

    The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.

  3. Analysis of Heat Transfers inside Counterflow Plate Heat Exchanger Augmented by an Auxiliary Fluid Flow

    PubMed Central

    Khaled, A.-R. A.

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572

  4. Analysis of heat transfers inside counterflow plate heat exchanger augmented by an auxiliary fluid flow.

    PubMed

    Khaled, A-R A

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.

  5. Statistical validation and an empirical model of hydrogen production enhancement found by utilizing passive flow disturbance in the steam-reformation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Paul A.; Liao, Chang-hsien

    2007-11-15

    A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less

  6. Transport governs flow-enhanced cell tethering through L-selectin at threshold shear.

    PubMed

    Yago, Tadayuki; Zarnitsyna, Veronika I; Klopocki, Arkadiusz G; McEver, Rodger P; Zhu, Cheng

    2007-01-01

    Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.

  7. Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology.

    PubMed

    Engdahl, Nicholas B; Benson, David A; Bolster, Diogo

    2014-11-01

    The ability for reactive constituents to mix is often the key limiting factor for the completion of reactions across a huge range of scales in a variety of media. In flowing systems, deformation and shear enhance mixing by bringing constituents into closer proximity, thus increasing reaction potential. Accurately quantifying this enhanced mixing is key to predicting reactions and typically is done by observing or simulating scalar transport. To eliminate this computationally expensive step, we use a Lagrangian stochastic framework to derive the enhancement to reaction potential by calculating the collocation probability of particle pairs in a heterogeneous flow field accounting for deformations. We relate the enhanced reaction potential to three well known flow topology metrics and demonstrate that it is best correlated to (and asymptotically linear with) one: the largest eigenvalue of the (right) Cauchy-Green tensor.

  8. Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  9. Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer

    NASA Astrophysics Data System (ADS)

    Yang, Juan-Cheng; Li, Feng-Chen; Cai, Wei-Hua; Zhang, Hong-Na; Yu, Bo

    2015-08-01

    Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid (VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid (VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation (DNS) is performed in this study to explore the mechanisms of heat transfer enhancement (HTE) and flow drag reduction (DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton-Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows. Project supported by the National Natural Science Foundation of China (Grant No. 51276046), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020), the China Postdoctoral Science Foundation (Grant No. 2014M561037), and the President Fund of University of Chinese Academy of Sciences, China (Grant No. Y3510213N00).

  10. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water

    PubMed Central

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-01-01

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs. PMID:20133799

  11. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    PubMed

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  12. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  13. Cancer Cell Glycocalyx Mediates Mechanostransduction and Flow-Regulated Invasion

    PubMed Central

    Qazi, Henry; Palomino, Rocio; Shi, Zhong-Dong; Munn, Lance L.; Tarbell, John M.

    2014-01-01

    Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) were investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiologic levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP actvity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx – a potential target for therapeutics. PMID:24077103

  14. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    PubMed

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  15. Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel

    NASA Astrophysics Data System (ADS)

    Fouladi, Fama

    This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.

  16. Ascorbate elevates perfusion pressure in the bovine extraocular long posterior ciliary artery: role of endothelium-derived hyperpolarizing factor (EDHF).

    PubMed

    Stirrat, Alison; Nelli, Silvia; McGuckin, Alicia; Ho, Vivian Wing Man; Wilson, William S; Martin, William

    2006-03-18

    Ascorbate blocks agonist-induced, endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary artery and this is associated with a rise in perfusion pressure. We now report the origins of this ascorbate-induced rise in perfusion pressure. In segments of ciliary artery perfused at 2.5 ml/min, the addition of ascorbate (10-150 microM) enhanced U46619-induced perfusion pressure. Ascorbate produced no enhancement in the absence of U46619, suggesting that its effects resulted not from a constrictor action but through removal of a tonic vasodilator influence. Experiments revealed the endothelial source of this vasodilator influence, and EDHF, but not nitric oxide or prostanoids, appeared to be involved. The ascorbate-induced enhancement of vasoconstrictor tone was not seen in a static myograph or in segments perfused at low rates of flow, but was seen at flow rates of 2.5 ml(-1) and above. We conclude that ascorbate augments vasoconstrictor tone through inhibition of flow-induced EDHF activity.

  17. Testing Momentum Enhancement of Ribbon Fin Based Propulsion Using a Robotic Model With an Adjustable Body

    NASA Astrophysics Data System (ADS)

    English, Ian; Curet, Oscar

    2016-11-01

    Lighthill and Blake's 1990 momentum enhancement theory suggests there is a multiplicative propulsive effect linked to the ratio of body and fin heights in Gymnotiform and Balistiform swimmers, which propel themselves using multi-rayed undulating fins while keeping their bodies mostly rigid. Proof of such a momentum enhancement could have a profound effect on unmanned underwater vehicle design and shed light on the evolutionary advantage to body-fin ratios found in nature, shown as optimal for momentum enhancement in Lighthill and Blake's theory. A robotic ribbon fin with twelve independent fin rays, elastic fin membrane, and a body of adjustable height was developed specifically to experimentally test momentum enhancement. Thrust tests for various body heights were conducted in a recirculating flow tank at different flow speeds and fin flapping frequencies. When comparing thrust at different body heights, flow speeds, and frequencies to a 'no-body' thrust test case at each frequency and flow speed, data indicate there is no momentum enhancement factor due to the presence of a body on top of an undulating fin. This suggests that if there is a benefit to a specific ratio between body and fin height, it is not due to momentum enhancement.

  18. Numerical analysis of mixing enhancement for micro-electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Tang, G. H.; He, Y. L.; Tao, W. Q.

    2010-05-01

    Micro-electroosmotic flow is usually slow with negligible inertial effects and diffusion-based mixing can be problematic. To gain an improved understanding of electroosmotic mixing in microchannels, a numerical study has been carried out for channels patterned with wall blocks, and channels patterned with heterogeneous surfaces. The lattice Boltzmann method has been employed to obtain the external electric field, electric potential distribution in the electrolyte, the flow field, and the species concentration distribution within the same framework. The simulation results show that wall blocks and heterogeneous surfaces can significantly disturb the streamlines by fluid folding and stretching leading to apparently substantial improvements in mixing. However, the results show that the introduction of such features can substantially reduce the mass flow rate and thus effectively prolongs the available mixing time when the flow passes through the channel. This is a non-negligible factor on the effectiveness of the observed improvements in mixing efficiency. Compared with the heterogeneous surface distribution, the wall block cases can achieve more effective enhancement in the same mixing time. In addition, the field synergy theory is extended to analyze the mixing enhancement in electroosmotic flow. The distribution of the local synergy angle in the channel aids to evaluate the effectiveness of enhancement method.

  19. Modeling of corona discharge combined with Mn²⁺ catalysis for the removal of SO₂ from simulated flue gas.

    PubMed

    Jiwu, Li; Lei, Fan

    2013-05-01

    This study investigated a mass-transfer process of the removal of SO₂ from simulated flue gas by corona discharge combined with Mn(2+) catalysis in wet reactor, including gas migration, liquid phase diffusion, and chemical reaction. The novelty formula of desulphurization efficiency and the flow rate of flue gas, discharge voltage, reaction enhancement factor, and the flow rate of water were established. It is reported that desulphurization efficiency remarkably increased with the increasing of enhancement factor and discharge voltage at 4000 mg m(-3) of SO₂ and 0.05 m(3)s(-1) of gas flow rate. However, the desulphurization efficiency had a slightly increase with the increasing of water flow rate. It is realizable that the energy consumption could be reduced to be lower than 0.3 kJ m(-3), which was acceptable for industrial application. The experimental data were well in accord with the calculated results of theoretical model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  1. Experimental and Numerical Investigation of Pressure Drop in Silicon Carbide Fuel Rod for Application in Pressurized Water Reactors

    NASA Astrophysics Data System (ADS)

    Abir, Ahmed Musafi

    Spacer grids are used in Pressurized Water Reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at High Performance Light Water Reactors (LWRs). Their applicability was tested by Carrilho at University of South Carolina's (USC) Single Heated Element Loop Tester (SHELT). He attained a heat transfer and friction factor enhancement of 50% and 45% respectively, using Inconel nuclear fuel rods with square transverse ribbed surface. Following him Najeeb conducted a similar study due to three dimensional diamond shaped blocks in turbulent flow. He recorded a maximum heat transfer enhancement of 83%. At present, several types of materials are being used for fuel rod cladding including Zircaloy, Uranium oxide, etc. But researchers are actively searching for new material that can be a more practical alternative. Silicon Carbide (SiC) has been identified as a material of interest for application as fuel rod cladding [2]. The current study deals with the experimental investigation to find out the friction factor increase of a SiC fuel rod with 3D surface roughness. The SiC rod was tested at USC's SHELT loop. The experiment was conducted in turbulent flowing Deionized (DI) water at steady state conditions. Measurements of Flow rate and pressure drop were made. The experimental results were also validated by Computational Fluid Dynamics (CFD) analysis in ANSYS Fluent. To simplify the CFD analysis and to save computational resources the 3D roughness was approximated as a 2D one. The friction factor results of the CFD investigation was found to lie within +/-8% of the experimental results. A CFD model was also run with the energy equation turned on, and a heat generation of 8 kW applied to the rod. A maximum heat transfer enhancement of 18.4% was achieved at the highest flow rate investigated (i.e. Re=109204).

  2. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China

    NASA Astrophysics Data System (ADS)

    Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin

    2018-05-01

    Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.

  3. Subtle exchange model of flow depended on the blood cell shape to enhance the micro-circulation in capillary

    NASA Astrophysics Data System (ADS)

    Chan, Iatneng

    2012-02-01

    In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.

  4. Symmetry-breaking bifurcations and enhanced mixing in microfluidic cross-slots

    NASA Astrophysics Data System (ADS)

    Poole, Rob; Haward, Simon; Oliveira, Paulo; Alves, Manuel

    2014-11-01

    We investigate, both experimentally and numerically, a new subcritical bifurcation phenomenon for a Newtonian fluid flowing through three-dimensional cross-slot geometries. At low Reynolds numbers the flow remains steady and symmetric. For the case of square inlets and outlets, at a critical Reynolds number of approximately 40 (based on average velocity) a pitchfork bifurcation is observed beyond which the unstable symmetrical solution is replaced by a pair of steady asymmetric solutions. Sensitivity of this critical Reynolds number to the initial conditions of the simulation, resulting in a small degree of hysteresis, suggests a subcritical instability. At higher flowrates the flow becomes unsteady. The effects of channel aspect ratio are investigated on the critical conditions and excellent agreement is found between three-dimensional finite volume simulations and flow visualisation experiments in microfluidic channels. Finally we suggest this new flow bifurcation could be an effective method of enhancing mixing in microfluidic channels as significant increases in mixing quality are observed beyond the bifurcation. This enhancement occurs at flowrates more than a factor of two smaller than those observed in the well-known T-channel micromixer.

  5. Sustainable green technology on wastewater treatment: The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell.

    PubMed

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2018-04-01

    This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained. Copyright © 2017. Published by Elsevier B.V.

  6. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  7. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  8. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.

    PubMed

    Garcia, A M; Frank, E H; Grimshaw, P E; Grodzinsky, A J

    1996-09-15

    We have studied the contributions of diffusion, fluid flow and electrical migration to molecular transport through adult articular cartilage explants using neutral and charged solutes that were either radiolabeled (3H2O, [35S]sulfate, [3H]thymidine, [3H]raffinose, and a synthetic matrix metalloproteinase inhibitor) or fluorescently tagged (NSPA and Lissamine-dextran). In order to induce fluid flow within the cartilage matrix without mechanical deformation, electric current densities were applied across cartilage disks. These currents produced electroosmotic fluid velocities of 1-2 microns/s, magnitudes that have been reported to exist during joint loading in vivo. This fluid convection enhanced neutral solute flux relative to passive diffusion alone by a factor that increased with the size of the solute. While the enhancement factor for 3H2O was 2.3-fold, that for [3H]raffinose (594 Da) and similar sized neutral solutes was 10-fold, suggesting that the effect of fluid flow is important even for small solutes. The largest enhancement (25-fold) was seen for the neutral 10-kDa Lissamine-dextran, confirming that fluid convection is most important for large solutes. We also studied the electrophoretic contribution to solute flux, which is relevant to the presence of intratissue streaming potentials induced during loading in vivo. Using the negatively charged [35S]sulfate ion with a range of current densities, as much as a 10-fold enhancement in flux was observed. Values for the intrinsic transport properties of the solutes (e.g., diffusivity, electrical mobility, hydrodynamic hindrance factor) can be obtained from the data.

  9. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  10. Fibrin, γ’-fibrinogen, and trans-clot pressure gradient control hemostatic clot growth during human blood flow over a collagen/tissue factor wound

    PubMed Central

    Muthard, Ryan W.; Welsh, John D.; Brass, Lawrence F.; Diamond, Scott L.

    2015-01-01

    SUMMARY Objective Biological and physical factors interact to modulate blood response in a wounded vessel, resulting in a hemostatic clot or an occlusive thrombus. Flow and pressure differential (ΔP) across the wound from the lumen to the extravascular compartment may impact hemostasis and the observed core/shell architecture. We examined physical and biological factors responsible for regulating thrombin mediated clot growth. Approach and Results Using factor XIIa-inhibited human whole blood perfused in a microfluidic device over collagen/tissue factor at controlled wall shear rate and ΔP, we found thrombin to be highly localized in the P-selectin+ core of hemostatic clots. Increasing ΔP from 9 to 29 mm-Hg (wall shear rate = 400 s−1) reduced P-selectin+ core size and total clot size due to enhanced extravasation of thrombin. Blockade of fibrin polymerization with 5 mM GPRP dysregulated hemostasis by enhancing both P-selectin+ core size and clot size at 400 s−1 (20 mm-Hg). For whole blood flow (no GPRP), the thickness of the P-selectin-negative shell was reduced under arterial conditions (2000 s−1, 20 mm-Hg). Consistent with the antithrombin-1 activity of fibrin implicated with GPRP, anti-γ’-fibrinogen antibody enhanced core-localized thrombin, core size, and overall clot size, especially at venous (100 s−1) but not arterial wall shear rates (2000 s−1). Pathological shear (15,000 s−1) and GPRP synergized to exacerbate clot growth. Conclusions Hemostatic clotting was dependent on core-localized thrombin that (1) triggered platelet P-selectin display and (2) was highly regulated by fibrin and the trans-clot ΔP. Also, γ’-fibrinogen had a role in venous but not arterial conditions. PMID:25614284

  11. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    NASA Astrophysics Data System (ADS)

    Herman, C.; Kang, E.

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re=200-6500, corresponding to flow velocities from 0.076 to 2.36m/s. Flow oscillations were first observed between Re=1050 and 1320 for the basic grooved channel, and around Re=350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly.

  12. Battery operated preconcentration-assisted lateral flow assay.

    PubMed

    Kim, Cheonjung; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Lee, Kyungjae; Hwang, Kyo Seon; Lee, Kyu Hyoung; Chung, Seok; Lee, Jeong Hoon

    2017-07-11

    Paper-based analytical devices (e.g. lateral flow assays) are highly advantageous as portable diagnostic systems owing to their low costs and ease of use. Because of their low sensitivity and detection limits for biomolecules, these devices have several limitations in applications for real-field diagnosis. Here, we demonstrate a paper-based preconcentration enhanced lateral flow assay using a commercial β-hCG-based test. Utilizing a simple 9 V battery operation with a low power consumption of approximately 81 μW, we acquire a 25-fold preconcentration factor, demonstrating a clear sensitivity enhancement in the colorimetric lateral flow assay; consequently, clear colors are observed in a rapid kit test line, which cannot be monitored without preconcentration. This device can also facilitate a semi-quantitative platform using the saturation value and/or color intensity in both paper-based colorimetric assays and smartphone-based diagnostics.

  13. Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation.

    PubMed

    Li, Ranran; Zijlstra, Jan G; Kamps, Jan A A M; van Meurs, Matijs; Molema, Grietje

    2014-10-01

    Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during hemorrhagic shock and resuscitation in vivo. We examined the kinetic responses of different endothelial genes in human umbilical vein endothelial cells preconditioned to 20 dyne/cm unidirectional laminar shear stress for 48 h to flow cessation and abrupt reflow, respectively, as well as the effect of flow cessation and reflow on tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory activation. Endothelial CD31 and VE-cadherin were not affected by the changes in flow in the absence or presence of TNF-α. The messenger RNA levels of proinflammatory molecules E-selectin, VCAM-1 (vascular cell adhesion molecule 1), and IL-8 (interleukin 8) were significantly induced by flow cessation respectively acute reflow, whereas ICAM-1 (intercellular adhesion molecule 1) was downregulated on flow cessation and induced by subsequent acute reflow. Flow cessation also affected the Ang/Tie2 (Angiopoietin/Tie2 receptor tyrosine kinase) system by downregulating Tie2 and inducing its endothelial ligand Ang2, an effect that was further extended on acute reflow. Furthermore, the induction of proinflammatory adhesion molecules by TNF-α under flow cessation was significantly enhanced on subsequent acute reflow. This study demonstrated that flow alterations per se during shock and resuscitation contribute to endothelial activation and that these alterations interact with proinflammatory factors coexisting in vivo such as TNF-α. The abrupt reflow-related enhancement of cytokine-induced endothelial proinflammatory activation supports the concept that sudden regain of flow during resuscitation has an aggravating effect on endothelial activation, which may play a significant role in vascular dysfunction and consequent organ injury. This study implies that the improvement of resuscitation strategies and the pharmacological interference with proinflammatory signaling cascades at the right time of resuscitation of shock patients may be beneficial to regain and/or maintain organ function in patients after circulatory shock.

  14. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  15. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  16. Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth

    NASA Astrophysics Data System (ADS)

    Pal, Sagnik; Saha, Sujoy Kumar

    2015-08-01

    The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.

  17. Evidence for enhanced debris-flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria)

    NASA Astrophysics Data System (ADS)

    Dietrich, A.; Krautblatter, M.

    2017-06-01

    Debris flows are among the most important natural hazards. The Northern Calcareous Alps with their susceptible lithology are especially affected by a double digit number of major hazard events per year. It is hypothesised that debris-flow intensity has increased significantly in the last decades in the Northern Calcareous Alps coincident to increased rainstorm frequencies, but yet there is only limited evidence. The Plansee catchment exposes extreme debris-flow activity due to the intensely jointed Upper Triassic Hauptdolomit lithology, being responsible for most of the debris-flow activity in the Northern Calcareous Alps. The debris flows feed into a closed sediment system, the Plansee Lake, where Holocene/Lateglacial sedimentation rates, rates since the late 1940s and recent rates can be inferred accurately. Using aerial photos and field mapping, the temporal and spatial development of eight active debris-flow fans is reconstructed in six time intervals from 1947, 1952, 1971, 1979, 1987, 2000 and 2010 and mean annual debris-flow volumes are calculated. These are compared with mean Holocene/Lateglacial debris-flow volumes derived from the most prominent cone whose contact with the underlying till is revealed by electrical resistivity tomography (ERT). Debris-flow activity there increased by a factor of 10 from 1947-1952 (0.23 ± 0.07 · 103 m3/yr) to 1987-2000 (2.41 ± 0.66 · 103 m3/yr). Mean post-1980 rates from all eight fans exceed pre-1980 rates by a factor of more than three coinciding with enhanced rainstorm activity recorded at meteorological stations in the Northern Calcareous Alps. The frequency of rain storms (def. 35 mm/d) has increased in the study area on average by 10% per decade and has nearly doubled since 1921. Recent debris-flow activity is also 2-3 times higher than mean Holocene/Lateglacial rates. The strong correlation between the non-vegetated catchment area and the annual debris-flow volume might indicate a decadal positive feedback between enhanced rainstorm activity and debris flows. Here we investigate the temporal and spatial development of debris-flow fans to better understand the sensitivity of alpine catchments to heavy rainfall events in the context of climate change. n.m. = not measurable.

  18. Convective heat transfer from circular cylinders located within perforated cylindrical shrouds

    NASA Technical Reports Server (NTRS)

    Daryabeigi, K.; Ash, R. L.

    1986-01-01

    The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.

  19. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  20. Flow-enhanced solution printing of all-polymer solar cells

    PubMed Central

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528

  1. A hydromorphological framework for the evaluation of e-flows

    NASA Astrophysics Data System (ADS)

    Bussettini, Martina; Rinaldi, Massimo; Grant, Gordon

    2017-04-01

    Anthropogenic alteration of hydromorphological processes in rivers is a major factor that diminishes river health and undermines environmental objectives envisaged by river protection policies. Specifying environmental flows to address those impacts can be a key strategy for the maintenance of functional river processes and the achievement of those objectives. Environmental flows are determined by various methods and approaches, based primarily on hydrological and/or hydraulic evaluations, although holistic methodologies, considering the many interacting factors that structure aquatic ecosystems, including sediments, are increasingly used. Hydrological and geomorphological processes are highly coupled and any change in one typically affects the other. The coupling varies over different spatial and temporal scales, and changing either hydrological or geomorphological processes can result in alteration of river habitats, ultimately impacting ecological processes. In spite of these linkages, current restoration approaches typically focus only on changes on hydrological regime as a means promoting ecological enhancements. Neglecting sediment transport and its interaction with flow in shaping riverine habitats is likely to results not only in minor or no enhancements in the ecology, but may also increase the costs of water use. A more integrated view of how human activities jointly affect sediment regime, river morphology and river flows is therefore needed in order to determine the most effective actions to rehabilitate river processes to desired states. These states involve considerations of the combination of intrinsic ("natural") conditions (e.g. river sensitivity and morphological potential, off-site conditions) and socio-economic constraints. The evaluation of such factors, the analysis of different scenarios, and the selection of appropriate actions require the contextualization of river reaches within a wider spatial-temporal hydromorphological framework. Here we present such a general multiscale, process-based hydromorphological framework, and discuss its application to the problem of how best to analyse and estimate e-flows.

  2. Mutational Constraints on Local Unfolding Inhibit the Rheological Adaptation of von Willebrand Factor

    DOE PAGES

    Tischer, Alexander; Campbell, James C.; Machha, Venkata R.; ...

    2015-12-16

    Unusually large von Willebrand factor (VWF), the first responder to vascular injury in primary hemostasis, is designed to capture platelets under the high shear stress of rheological blood flow. In type 2M von Willebrand disease, two rare mutations (G1324A and G1324S) within the platelet GPIbα binding interface of the VWF A1 domain impair the hemostatic function of VWF. We investigate structural and conformational effects of these mutations on the A1 domain's efficacy to bind collagen and adhere platelets under shear flow. These mutations enhance the thermodynamic stability, reduce the rate of unfolding, and enhance the A1 domain's resistance to limitedmore » proteolysis. Collagen binding affinity is not significantly affected indicating that the primary stabilizing effect of these mutations is to diminish the platelet binding efficiency under shear flow. The better stability stems from the steric consequences of adding a side chain (G1324A) and additionally a hydrogen bond (G1324S) to His 1322 across the β2-β3 hairpin in the GPIbα binding interface, which restrains the conformational degrees of freedom and the overall flexibility of the native state. These studies reveal a novel rheological strategy in which the incorporation of a single glycine within the GPIbα binding interface of normal VWF enhances the probability of local unfolding that enables the A1 domain to conformationally adapt to shear flow while maintaining its overall native structure.« less

  3. Watch for pitfalls of discounted cash flow techniques.

    PubMed

    Chow, C W; McNamee, A H

    1991-04-01

    Discounted cash flow (DCF) techniques can enhance the effectiveness of a healthcare organization's capital budgeting decisions. But a financial manager unaware of common misapplications of DCF techniques may make capital decisions with a hidden bias against long-term projects, an inaccurate evaluation of options, or inappropriate estimations of expected inflation and risk. Social and psychological factors also can impede effective decisions on projects already introduced.

  4. Using copper substrate to enhance the thermal conductivity of top-emission organic light-emitting diodes for improving the luminance efficiency and lifetime

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Chuan-Hung; Cheng, Chien-Lung; Liao, Teh-Chao

    2009-12-01

    The influence of heat dissipation on the performances of organic light-emitting diode (OLED) is investigated by measuring junction temperature and by calculating the rate of heat flow. The calculated rate of heat flow reveals that the key factors include the thermal conductivity, the substrate thickness, and the UV glue. Moreover, the use of copper substrate can effectively dissipate the joule heat, which then reduces the temperature gradient. Finally, it is shown that the use of a high thermal conductivity thinner substrate can enhance the thermal conductivity of OLED and the luminance efficiency as well.

  5. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    Herrero Martín, R.; García, A.; Pérez-García, J.

    2012-11-01

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  6. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Field electron emission from diamond and related films synthesized by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Xianfeng

    The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.

  8. The ultrasonic-enhanced factor of mass-transfer coefficient in the supercritical carbon dioxide extraction

    NASA Astrophysics Data System (ADS)

    Luo, Benyi; Lu, Yigang

    2008-10-01

    Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link between the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced factor of mass-transfer coefficient is brought forward, which describes the mathematical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extraction of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.

  9. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  10. Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank; de Brabander, Sang; Huyghe, Ann

    The Ragnhild glaciers are three enhanced-flow features situated between the Sør Rondane and Yamato Mountains in eastern Dronning Maud Land, Antarctica. We investigate the glaciological mechanisms controlling their existence and behavior, using a three-dimensional numerical thermomechanical ice-sheet model including higher-order stress gradients. This model is further extended with a steady-state model of subglacial water flow, based on the hydraulic potential gradient. Both static and dynamic simulations are capable of reproducing the enhanced ice-flow features. Although basal topography is responsible for the existence of the flow pattern, thermomechanical effects and basal sliding seem to locally soften and lubricate the ice in the main trunks. Lateral drag is a contributing factor in balancing the driving stress, as shear margins can be traced over a distance of hundreds of kilometers along west Ragnhild glacier. Different basal sliding scenarios show that central Ragnhild glacier stagnates as west Ragnhild glacier accelerates and progressively drains the whole catchment area by ice and water piracy.

  11. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  12. The Effect of Flow Velocity on Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Lee, D.; Shin, S.; Chung, W.; Ha, J.; Lim, Y.; Kim, S.

    2017-12-01

    The waveform inversion is a velocity modeling technique that reconstructs accurate subsurface physical properties. Therefore, using the model in its final, updated version, we generated data identical to modeled data. Flow velocity, like several other factors, affects observed data in seismic exploration. Despite this, there is insufficient research on its relationship with waveform inversion. In this study, the generated synthetic data considering flow velocity was factored in waveform inversion and the influence of flow velocity in waveform inversion was analyzed. Measuring the flow velocity generally requires additional equipment. However, for situations where only seismic data was available, flow velocity was calculated by fixed-point iteration method using direct wave in observed data. Further, a new waveform inversion was proposed, which can be applied to the calculated flow velocity. We used a wave equation, which can work with the flow velocities used in the study by Käser and Dumbser. Further, we enhanced the efficiency of computation by applying the back-propagation method. To verify the proposed algorithm, six different data sets were generated using the Marmousi2 model; each of these data sets used different flow velocities in the range 0-50, i.e., 0, 2, 5, 10, 25, and 50. Thereafter, the inversion results from these data sets along with the results without the use of flow velocity were compared and analyzed. In this study, we analyzed the results of waveform inversion after flow velocity has been factored in. It was demonstrated that the waveform inversion is not affected significantly when the flow velocity is of smaller value. However, when the flow velocity has a large value, factoring it in the waveform inversion produces superior results. This research was supported by the Basic Research Project(17-3312, 17-3313) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

  13. Preconditioned conjugate gradient methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1994-01-01

    A preconditioned Krylov subspace method (GMRES) is used to solve the linear systems of equations formed at each time-integration step of the unsteady, two-dimensional, compressible Navier-Stokes equations of fluid flow. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux-split formulation. Several preconditioning techniques are investigated to enhance the efficiency and convergence rate of the implicit solver based on the GMRES algorithm. The superiority of the new solver is established by comparisons with a conventional implicit solver, namely line Gauss-Seidel relaxation (LGSR). Computational test results for low-speed (incompressible flow over a backward-facing step at Mach 0.1), transonic flow (trailing edge flow in a transonic turbine cascade), and hypersonic flow (shock-on-shock interactions on a cylindrical leading edge at Mach 6.0) are presented. For the Mach 0.1 case, overall speedup factors of up to 17 (in terms of time-steps) and 15 (in terms of CPU time on a CRAY-YMP/8) are found in favor of the preconditioned GMRES solver, when compared with the LGSR solver. The corresponding speedup factors for the transonic flow case are 17 and 23, respectively. The hypersonic flow case shows slightly lower speedup factors of 9 and 13, respectively. The study of preconditioners conducted in this research reveals that a new LUSGS-type preconditioner is much more efficient than a conventional incomplete LU-type preconditioner.

  14. Transport physics and biorheology in the setting of hemostasis and thrombosis.

    PubMed

    Brass, L F; Diamond, S L

    2016-05-01

    The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action. © 2016 International Society on Thrombosis and Haemostasis.

  15. Blood Flow Changes in Subsynovial Connective Tissue on Contrast-Enhanced Ultrasonography in Patients With Carpal Tunnel Syndrome Before and After Surgical Decompression.

    PubMed

    Motomiya, Makoto; Funakoshi, Tadanao; Ishizaka, Kinya; Nishida, Mutsumi; Matsui, Yuichiro; Iwasaki, Norimasa

    2017-11-24

    Although qualitative alteration of the subsynovial connective tissue in the carpal tunnel is considered to be one of the most important factors in the pathophysiologic mechanisms of carpal tunnel syndrome (CTS), little information is available about the microcirculation in the subsynovial connective tissue in patients with CTS. The aims of this study were to use contrast-enhanced ultrasonography (US) to evaluate blood flow in the subsynovial connective tissue proximal to the carpal tunnel in patients with CTS before and after carpal tunnel release. The study included 15 volunteers and 12 patients with CTS. The blood flow in the subsynovial connective tissue and the median nerve was evaluated preoperatively and at 1, 2, and 3 months postoperatively using contrast-enhanced US. The blood flow in the subsynovial connective tissue was higher in the patients with CTS than in the volunteers. In the patients with CTS, there was a significant correlation between the blood flow in the subsynovial connective tissue and the median nerve (P = .01). The blood flow in both the subsynovial connective tissue and the median nerve increased markedly after carpal tunnel release. Our results suggest that increased blood flow in the subsynovial connective tissue may play a role in the alteration of the microcirculation within the median nerve related to the pathophysiologic mechanisms of CTS. The increase in the blood flow in the subsynovial connective tissue during the early postoperative period may contribute to the changes in intraneural circulation, and these changes may lead to neural recovery. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows

    NASA Astrophysics Data System (ADS)

    Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.

    2017-12-01

    Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.

  17. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes.

    PubMed

    Evani, Shankar J; Dallo, Shatha F; Murthy, Ashlesh K; Ramasubramanian, Anand K

    2013-09-01

    Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae -infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae -infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm 2 for 1 h on C. pneumoniae -infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.

  18. Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear.

    PubMed

    Govindarajan, Vijay; Zhu, Shu; Li, Ruizhi; Lu, Yichen; Diamond, Scott L; Reifman, Jaques; Mitrophanov, Alexander Y

    2018-02-27

    The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm 2 . Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot's structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot's occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow. Copyright © 2018 Biophysical Society. All rights reserved.

  19. Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint

    DTIC Science & Technology

    2011-02-01

    biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson

  20. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    PubMed

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  2. Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland

    NASA Technical Reports Server (NTRS)

    Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.

  3. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  4. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Reed, X. B., Jr.

    1995-01-01

    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  5. Improved geometric variables for predicting disturbed flow at the normal carotid bifurcation

    NASA Astrophysics Data System (ADS)

    Bijari, Payam B.; Antiga, Luca; Steinman, David A.

    2011-03-01

    Recent work from our group has shown the primacy of the bifurcation area ratio and tortuosity in determining the amount of disturbed flow at the carotid bifurcation, believed to be a local risk factor for the carotid atherosclerosis. We have also presented fast and reliable methods of extraction of geometry from routine 3D contrast-enhanced magnetic resonance angiography, as the necessary step along the way for large-scale trials of such local risk factors. In the present study, we refine our original geometric variables to better reflect the underlying fluid mechanical principles. Flaring of the bifurcation, leading to flow separation, is defined by the maximum relative expansion of the common carotid artery (CCA), proximal to the bifurcation apex. The beneficial effect of curvature on flow inertia, via its suppression of flow separation, is now characterized by the tortuosity of CCA as it enters the flare region. Based on data from 50 normal carotid bifurcations, multiple linear regressions of these new independent geometric predictors against the dependent disturbed flow burden reveals adjusted R2 values approaching 0.5, better than the values closer to 0.3 achieved using the original variables. The excellent scan-rescan reproducibility demonstrated for our earlier geometric variables is shown to be preserved for the new definitions. Improved prediction of disturbed flow by robust and reproducible vascular geometry offers a practical pathway to large-scale studies of local risk factors in atherosclerosis.

  6. Experimental studies on laminar flow heat transfer in nanofluids flowing through a straight circular tube with and without V-cut twisted tape insert

    NASA Astrophysics Data System (ADS)

    Arunachalam, U.; Edwin, M.

    2018-03-01

    This paper presents experimental studies on the convective heat transfer and friction factor characteristics of flows in a straight circular tube with and without V-cut twisted tapeinserts using Al2O3-Cu/water hybrid nanofluid as working fluid and also comparative studies between Alumina nanofluid and (Cu-Alumina) hybrid nanofluid is conducted. This work is restricted to one type of hybrid nanofluid only. It also does not include the effect of twisted tape dimensions on heat transfer coefficient and pressure drop.Itis observed that the experimental convective heat transfer coefficient increases slightly with an increase in particle volume concentration from 0.1 and 0.4%. The experimental data is in good agreement with the previous models and correlations.The experimental results showed a good enhancement in Nusselt number for Peclet number from 2580 to 11,780 compared to Nusselt number of water, when the copper nanofluid is 0.01% volume concentration and mixed with 0.4% concentration of Alumina nanofluid.Itis also noticed that 0.01% Al2O3-Cu/water hybrid nanofluidhas a higher friction factor than the Al2O3/water nanofluid and base fluid. Since the magnitude of thermal enhancement factor (η) has been observed to be only marginally higher than unity (1.01 to 1.05), the net benefit of inserting V - cut twisted tapes in nanofluids is also nevertheless marginal.

  7. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  8. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    NASA Astrophysics Data System (ADS)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction factor and enhancements in the fluid slip are greater as the cavity-to-rib length ratio is increased (increasing shear-free fraction) and as the channel hydraulic diameter is decreased. The results also show that the slip length and average friction factor-Reynolds number product exhibit a flow Reynolds dependence. Furthermore, the predictions reveal the global impact of the vapor cavity depth on the overall frictional resistance.

  9. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    PubMed Central

    Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.

    2017-01-01

    Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049

  10. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension.

    PubMed

    Nicholson, David A; Rutledge, Gregory C

    2016-12-28

    Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered clusters under weak flow fields.

  11. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  12. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  13. Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor

    NASA Astrophysics Data System (ADS)

    Chen, Xuying; Liu, Xinxin; Wang, Tao; Le, Xianhao; Ma, Fangyi; Lee, Chengkuo; Xie, Jin

    2018-05-01

    Thermoelastic dissipation is one of the main dissipative mechanisms in piezoelectric micromachined ultrasonic transducers (pMUTs). In this paper, we firstly propose pMUTs with etching holes to decrease thermoelastic dissipation and enhance quality factor (Q). The etching holes effectively disturb heat flow, and thus reduce thermoelastic loss. Working mechanism based on the Zener’s model is interpreted. The experiment results show that the Q of pMUT with three rows of holes is increased by 139% from 2050 to 4909 compared with the traditional one. Temperature coefficient of frequency (TCF) and vibration performance are also improved. The enhanced pMUT can be widely used in measurement of Doppler shift and relative high power applications.

  14. Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Acosta, Waldo A.

    1994-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, reverse-flow, small gas turbine combustor using a compliant metal enhanced (CME) convection wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CME cooling technique and tben demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F (1922 K) burner outlet temperature (BOT). The CME concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefit of improved efficiency, reduced emissions, and smoke levels. Rig test results demonstrated the benefits and viability of the CME concept meeting or exceeding the aerothermal performance and liner wall temperature characteristics of similar lower temperature-rise combustors, achieving 0.15 pattern factor at 3000 F (1922 K) BOT, while utilizing approximately 80 percent less cooling air than conventional, film-cooled combustion systems.

  15. The effects of the exhaust plume on the lightning triggering conditions for launch vehicles

    NASA Technical Reports Server (NTRS)

    Eriksen, Frederick J.; Rudolph, Terence H.; Perala, Rodney A.

    1991-01-01

    Apollo 12 and Atlas Centaur 67 are two launch vehicles that have experienced triggered lightning strikes. Serious consequences resulted from the events; in the case of Atlas Centaur 67, the vehicle and the payload were lost. These events indicate that it is necessary to develop launch rules which would prevent such occurrences. In order to develop valid lightning related rules, it is necessary to understand the effects of the plume. Some have assumed that the plume can be treated as a perfect conductor, and have computed electric field enhancement factors on that basis. The authors have looked at the plume, and believe that these models are not correct, because they ignore the fluid motion of the conducting plates. The authors developed a model which includes this flow character. In this model, the external field is excluded from the plume as it would be for any good conductor, but, in addition, the charge must distribute so that the charge density is zero at some location in the exhaust. When this condition is included in the calculation of triggering enhancement factors, they can be two to three times larger than calculated by other methods which include a conductive plume but don't include the correct boundary conditions. Here, the authors review the relevant features of rocket exhausts for the triggered lightning problem, present an approach for including flowing conductive gases, and present preliminary calculations to demonstrate the effect that the plume has on enhancement factors.

  16. Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube

    NASA Astrophysics Data System (ADS)

    Gautam, Abhishek; Pandey, Lokesh; Singh, Satyendra

    2018-02-01

    Numerous studies has been observed in terms of enhancement of heat transfer by using passive techniques. In present work, a very unique perforated triple wing vortex generator has been used as an insert geometry, with different geometrical parameters of twist ratio (l/D = 2, 3 & 4) and Porosity (P A /T A = 0%, 10%, 20% & 30%). The experimentation has been performed for the wide range of Re (Re), varying between 3200 to 20,600, in order to investigate effect on heat transfer (Nu), friction factor (f) & thermal performance factor (η) in circular tube HEs with respect to different geometrical and flow parameters. Experimentation has been performed in 1.5 m length of test section with 68 mm diameter. Heat flux of 1000 W/m2 has been provided on the test section with the help of variable voltage transformer connected with Nicrome wire coiled heater located on the test section. There is a significant enhancement has been observed in terms of heat enhancement and pressure drop over the smooth tube. The experimental result shows 4.8 times improvement in heat transfer and 1.63 times improvement in thermal performance as compared to smooth tube HE. The statistical correlations have also been presented for Nu, f and η.

  17. Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses.

    PubMed

    Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David

    2011-01-01

    The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  18. Viscoelastic flow in rotating curved pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yitung; Chen, Huajun; Zhang, Jinsuo; Zhang, Benzhao

    2006-08-01

    Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number RΩ', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, RΩ' can be estimated according to the expression RΩ'=-4Weδ. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed.

  19. Analysis of flow field characteristics in IC equipment chamber based on orthogonal design

    NASA Astrophysics Data System (ADS)

    Liu, W. F.; Yang, Y. Y.; Wang, C. N.

    2017-01-01

    This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.

  20. Enhanced ventricular pump function and decreased reservoir backflow sustain rise in pulmonary blood flow after reduction of lung liquid volume in fetal lambs.

    PubMed

    Smolich, Joseph J

    2014-02-15

    Although a reduction in lung liquid volume increases fetal pulmonary blood flow, the changes in central flow patterns that sustain this increased pulmonary perfusion are unknown. To address this issue, eight anesthetized late-gestation fetal sheep were instrumented with pulmonary trunk (PT), ductus arteriosus (DA), and left pulmonary artery (PA) micromanometer catheters and transit-time flow probes, with blood flow profile and wave intensity analyses performed at baseline and after withdrawal of lung liquid via an endotracheal tube. Reducing lung liquid volume by 19 ± 6 ml/kg (mean ± SD) augmented right ventricular power by 34% (P < 0.001), with distribution of an accompanying increase in mean PT blood flow (245 ± 63 ml/min, P < 0.001) to the lungs (169 ± 91 ml/min, P = 0.001) and across the DA (77 ± 92 ml/min, P = 0.04). However, although PT and DA flow increments were confined to systole and were related to an increased magnitude of flow-increasing, forward-running compression waves, the rise in PA flow spanned both systole (108 ± 66 ml/min) and diastole (61 ± 32 ml/min). Flow profile analysis showed that the step-up in PA diastolic flow was associated with diminished PA diastolic backflow and accompanied by a lesser degree of diastolic right-to-left DA shunting. These data suggest that an increased pulmonary blood flow after reduction of lung liquid volume is associated with substantial changes in PT-DA-PA interactions and underpinned by two main factors: 1) enhanced right ventricular pump function that increases PA systolic inflow and 2) decreased PA diastolic backflow that arises from a fundamental change in PA reservoir function, thereby resulting in greater passage of systolic inflow through the lungs.

  1. Expressions for the C-term in the presence of pore flow.

    PubMed

    Poppe, Hans; Stol, Remco; Kok, Wim Th

    2002-08-02

    In the course of our work on capillary electrochromatography (CEC) we, as others, have found strong evidence that flow in pores of particles can be significant. Its magnitude relative to the interstitial flow is characterized by the flow reduction factor, omega. Indirect evidence for pore flow was obtained much earlier by others, when it was noted that plate height, especially the C-term part, was significantly smaller in electrically driven (ED) than in pressure drive (PD) systems. This was interpreted as enhanced mass transfer, for which the intra-particle flow was held responsible. More direct evidence was produced by us when the size-exclusion (SEC) behaviour of polymers was studied in ED systems. It was found that the effect of exclusion on migration velocity could vanish entirely, and large and small molecules were co-eluted. This can only be explained if omega approaches 1; flow within the pores being as large as the interstitial flow. Indeed, consideration of double layer overlap indicated that omega-values close to 1 can often be expected in CEC. These large values omega inspired us to reconsider the effect of pore flow on the mass transfer term. We have arrived at the conclusion that enhanced mass transfer cannot explain in itself the extremely small values for the reduced plate height, h, (<1) observed especially for weakly retained solutes. In fact, when the pore flow is equal in magnitude to the interstitial flow, an unretained solute moves as fast within the particle as in the interstices; there is no non-equilibrium generated and a mass transfer term in h is not expected. For the migration of the solute the system is essentially uniform. Thus, apart from the mass transfer enhancement, another factor plays a role in the decrease of the h-values. We have attempted to derive a suitable expression for this effect. Some results are presented here. In one approach the situation is compared to that of an open tubular column with moving pseudo-stationary phase on the wall, an experiment that has actually been carried out by Krejci et al., or with micellar electrokinetic chromatography. In that case the plate height is easily derived. The result says that the plate height is proportional to the square of velocity difference between the two zones. However, the analogy is not perfect, and another approach suggests a direct proportionality rather than a square law one. Finally, a more refined treatment could be made only for a slab, not for a sphere. Extrapolation of this result to a sphere is put forward as a tentative expression for this effect.

  2. SPQR II: A beam-plasma interaction experiment

    NASA Astrophysics Data System (ADS)

    Bimbot, R.; Della-Negra, S.; Gardès, D.; Rivet, M. F.; Fleurier, C.; Dumax, B.; Hoffman, D. H. H.; Weyrich, K.; Deutsch, C.; Maynard, G.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of Cn+ ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nℓ=1019 e-cm-2 at T=5 eV. One expects a factor of two enhanced stopping over the cold gas case.

  3. Electrokinetic Microstrirring to Enhance Immunoassays

    NASA Astrophysics Data System (ADS)

    Feldman, Hope; Sigurdson, Marin; Meinhart, Carl

    2006-11-01

    Electrokinetic microstirring is used to improve the sensitivity of microfluidic heterogeneous immuno-sensors by enhancing the transport in diffusion-limited reactions. The AC electrokinetic force, Electrothermal Flow, is exploited to create a circular stirring fluid motion, thereby providing more binding opportunities between suspended and wall-immobilized molecules. This process can significantly reduce test times, important for both field-portable biosensors and for lab-based assays. A 2-D numerical simulation model is used to predict the effect of electrothermal flow on a heterogeneous immunoassay resulting from an AC potential applied to two parallel electrodes. The binding is increased by a factor of 7 for an applied voltage of 10 Vrms. The effect was investigated experimentally using a high affinity biotin-streptavidin reaction. Microstirred reaction rates were compared with passive reactions. The measurements show on average an order of magnitude increase in binding between immobilized biotin and fluorescently-labeled streptavidin after 5 minutes. Therefore, this technique shows significant promise for reducing incubation time and enhancing the sensitivity of immunoassays.

  4. Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.

  5. Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design.

    PubMed

    Mo, Yu; Zhao, Lei; Wang, Zhonghui; Chen, Chia-Lung; Tan, Giin-Yu Amy; Wang, Jing-Yuan

    2014-04-01

    A work applied response surface methodology coupled with Box-Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470-505°C, a heating rate of 40°C/min, and a carrier gas flow rate range of 115-140mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A predictor-corrector technique for visualizing unsteady flow

    NASA Technical Reports Server (NTRS)

    Banks, David C.; Singer, Bart A.

    1995-01-01

    We present a method for visualizing unsteady flow by displaying its vortices. The vortices are identified by using a vorticity-predictor pressure-corrector scheme that follows vortex cores. The cross-sections of a vortex at each point along the core can be represented by a Fourier series. A vortex can be faithfully reconstructed from the series as a simple quadrilateral mesh, or its reconstruction can be enhanced to indicate helical motion. The mesh can reduce the representation of the flow features by a factor of one thousand or more compared with the volumetric dataset. With this amount of reduction it is possible to implement an interactive system on a graphics workstation to permit a viewer to examine, in three dimensions, the evolution of the vortical structures in a complex, unsteady flow.

  7. Mega debris flow deposits on the western Wilkes Land margin, East Antarctica

    USGS Publications Warehouse

    Donda, F.; O'Brien, P.E.; De Santis, L.; Rebesco, M.; Brancolini, Giuliano

    2007-01-01

    Multichannel seismic data collected off Western Wilkes Land (East Antarctica) reveal the occurrence of mega debris flow deposits on the lower slope and rise that were formed throughout the Miocene. Commonly, debris flow units are separated by thin deposits of well-stratified facies, interpreted as predominantly glaciomarine mixed contouritic and distal turbidite deposits. These units could act as weak layers and could have played a major role in the slope instability. High sedimentation rates, due to large amounts of sediment delivered from a temperate, wet-based ice sheet, constituted a key factor in the sediment failures. The main trigger mechanism would probably have been earthquakes enhanced by isostatic rebound following major ice sheet retreats.

  8. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  9. On the effectiveness of the thermoelectric energy filtering mechanism in low-dimensional superlattices and nano-composites

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Kosina, Hans; Neophytou, Neophytos

    2016-12-01

    Electron energy filtering has been suggested as a promising way to improve the power factor and enhance the ZT figure of merit of thermoelectric materials. In this work, we explore the effect that reduced dimensionality has on the success of the energy-filtering mechanism for power factor enhancement. We use the quantum mechanical non-equilibrium Green's function method for electron transport including electron-phonon scattering to explore 1D and 2D superlattice/nanocomposite systems. We find that, given identical material parameters, 1D channels utilize energy filtering more effectively than 2D as they: (i) allow one to achieve the maximal power factor for smaller well sizes/smaller grains which are needed to maximize the phonon scattering, (ii) take better advantage of a lower thermal conductivity in the barrier/boundary materials compared to the well/grain materials in both: enhancing the Seebeck coefficient; and in producing a system which is robust against detrimental random deviations from the optimal barrier design. In certain cases, we find that the relative advantage can be as high as a factor of 3. We determine that energy-filtering is most effective when the average energy of carrier flow varies the most between the wells and the barriers along the channel, an event which occurs when the energy of the carrier flow in the host material is low, and when the energy relaxation mean-free-path of carriers is short. Although the ultimate reason for these aspects, which cause a 1D system to see greater relative improvement than a 2D, is the 1D system's van Hove singularity in the density-of-states, the insights obtained are general and inform energy-filtering design beyond dimensional considerations.

  10. Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica†

    PubMed Central

    Kong, Xianming; Xi, Yuting; LeDuff, Paul; Li, Erwen; Liu, Ye; Cheng, Li-Jing; Rorrer, Gregory L.; Tan, Hua; Wang, Alan X.

    2016-01-01

    Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106–107) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10−17 g trinitrotoluene from only 200 nanoliter solution. PMID:27714122

  11. A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube

    NASA Astrophysics Data System (ADS)

    Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi

    The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.

  12. Burned forests impact water supplies.

    PubMed

    Hallema, Dennis W; Sun, Ge; Caldwell, Peter V; Norman, Steven P; Cohen, Erika C; Liu, Yongqiang; Bladon, Kevin D; McNulty, Steven G

    2018-04-10

    Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States. We show that annual river flow changed in 32 locations, where more than 19% of the basin area was burned. Wildland fires enhanced annual river flow in the western regions with a warm temperate or humid continental climate. Wildland fires increased annual river flow most in the semi-arid Lower Colorado region, in spite of frequent droughts in this region. In contrast, prescribed burns in the subtropical Southeast did not significantly alter river flow. These extremely variable outcomes offer new insights into the potential role of wildfire and prescribed fire in regional water resource management, under a changing climate.

  13. Capturing spatiotemporal variation in wildfires for improving postwildfire debris-flow hazard assessments: Chapter 20

    USGS Publications Warehouse

    Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.

    2017-01-01

    Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.

  14. Endogenous flow-induced nitric oxide reduces superoxide-stimulated Na/H exchange activity via PKG in thick ascending limbs

    PubMed Central

    Garvin, Jeffrey L.

    2014-01-01

    Luminal flow stimulates endogenous nitric oxide (NO) and superoxide (O2−) production by renal thick ascending limbs (TALs). The delicate balance between these two factors regulates Na transport in TALs; NO enhances natriuresis, whereas O2− augments Na absorption. Endogenous, flow-stimulated O2− enhances Na/H exchange (NHE). Flow-stimulated NO reduces flow-induced O2−, a process mediated by cGMP-dependent protein kinase (PKG). However, whether flow-stimulated, endogenously-produced NO diminishes O2−-stimulated NHE activity and the signaling pathway involved are unknown. We hypothesized that flow-induced NO reduces the stimulation of NHE activity caused by flow-induced O2− via PKG in TALs. Intracellular pH recovery after an acid load was measured as an indicator of NHE activity in isolated, perfused rat TALs. l-Arginine, the NO synthase substrate, decreased NHE activity by 34 ± 5% (n = 5; P < 0.04). The O2− scavenger tempol decreased NHE activity by 46 ± 8% (n = 6; P < 0.004) in the absence of NO. In the presence of l-arginine, the inhibitory effect of tempol on NHE activity was reduced to −19 ± 6% (n = 6; P < 0.03). The soluble guanylate cyclase inhibitor LY-83583 blocked the effect of l-arginine thus restoring tempol's effect on NHE activity to −42 ± 4% (n = 6; P < 0.0005). The PKG inhibitor KT-5823 also inhibited l-arginine's effect on tempol-reduced NHE activity (−43 ± 5%; n = 5; P < 0.03). We conclude that flow-induced NO reduces the stimulatory effect of endogenous, flow-induced O2− on NHE activity in TALs via an increase in cGMP and PKG activation. PMID:25503735

  15. Evidence for enhanced debris flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria)

    NASA Astrophysics Data System (ADS)

    Dietrich, Andreas; Krautblatter, Michael

    2016-04-01

    From 1950 to 2011 almost 80.000 people lost their lives through the occurrence of debris flow events (Dowling and Santi, 2014). Debris flows occur in all alpine regions due to intensive rainstorms and mobilisable loose debris. Due to their susceptible lithology, the Northern Calcareous Alps are affected by a double digit number of major hazard events per year. Some authors hypothesised a relation between an increasing frequency of heavy rainstorms and an increasing occurrence of landslides in general (Beniston and Douglas, 1996) and debris flows in special (Pelfini and Santilli, 2008), but yet there is only limited evidence. The Plansee catchment in the Ammergauer Alps consists of intensely jointed Upper Triassic Hauptdolomit lithology and therefore shows extreme debris flow activity. To investigate this activity in the last decades, the temporal and spatial development of eight active debris flow fans is examined with GIS and field mapping. The annual rates since the late 1940s are inferred accurately by using aerial photos from 1947, 1952, 1971, 1979, 1987, 2000 and 2010. These rates are compared to the mean Holocene/Lateglacial debris flow volume derived from the most prominent cone. The contact with the underlying till is revealed by electrical resistivity tomography (ERT). It shows that the mean annual debris flow volume has increased there by a factor of 10 from 1947-1952 (0.23 ± 0.07 10³m³/yr) to 1987-2000 (2.41 ± 0.66 10³m³/yr). A similar trend can be seen on all eight fans: mean post-1980 rates exceed pre-1980 rates by a factor of more than three. This increasing debris flow activity coincides with an enhanced rainstorm (def. 35 mm/d) frequency recorded at the nearest meteorological station. Since 1921 the frequency of heavy rainstorms has increased there on average by 10% per decade. Recent debris flow rates are also 2-3 times higher compared to mean Holocene/Lateglacial rates. Furthermore, we state a strong correlation between the non-vegetated catchment area and the annual debris flow volume. This might indicate a decadal positive feedback between enhanced rainstorm frequency and the occurrence of debris flows. The study contributes to a better understanding of the sensitivity of alpine catchments to heavy rainfall events in the context of climate change. Beniston, M., Douglas, G.F., 1996. Impacts of climate change on mountain regions. In: Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J. (Eds.), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Cambridge Univ. Press, Cambridge, pp. 191-213. Dowling, C.A., Santi, P.M., 2014. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 71, 203-227. doi: 10.1007/s11069-013-0907-4 Pelfini, M., Santilli, M., 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101, 721-730. doi:10.1016/j.geomorph.2008.04.002

  16. Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge

    NASA Astrophysics Data System (ADS)

    Rashad, A. M.

    2017-01-01

    This article is concerned with the problem of magnetohydrodynamic (MHD) mixed convection flow of Cobalt-kerosene ferrofluid adjacent a non-isothermal wedge under the influence of thermal radiation and partial slip. Such type of problems are posed by electric generators and biomedical enforcement. The governing equations are solved using the Thomas algorithm with finite-difference type and solutions for a wide range of magnet parameter are presented. It is found that local Nusselt number manifests a considerable diminishing for magnetic parameter and magnifies intensively in case of slip factor, thermal radiation and surface temperature parameters. Further, the skin friction coefficient visualizes a sufficient enhancement for the parameters thermal radiation, surface temperature and magnetic field, but a huge reduction is recorded by promoting the slip factor.

  17. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Virus transport during infiltration of a wetting front into initially unsaturated sand columns.

    PubMed

    Kenst, Andrew B; Perfect, Edmund; Wilhelm, Steven W; Zhuang, Jie; McCarthy, John F; McKay, Larry D

    2008-02-15

    We investigated the effect of different flow conditions on the transport of bacteriophage phiX174 in Memphis aquifer sand. Virus transport associated with a wetting front moving into an initially unsaturated horizontal sand column was experimentally compared with that observed under steady-state saturated vertical flow. Results obtained by sectioning the sand columns showthattotal (retained and free) resident virus concentrations decreased approximately exponentially with the travel distance. The rate of decline was similar under both transient unsaturated flow and steady-state saturated flow conditions. Total resident virus concentrations near the inlet were an order of magnitude greater than the virus concentration of the influent solution in both experiments, indicating continuous virus sorption during flow through this zone. Virus retardation was quantified using the ratio of the centroids of the relative saturation and virus concentration versus relative distance functions. The mean retardation factors were 6.43 (coefficient of variation, CV = 14.4%) and 8.22 (CV = 8.22%) for the transient unsaturated and steady-state saturated flow experiments, respectively. Attest indicated no significant difference between these values at P < 0.05. Air-water and air-water-solid interfaces are thought to enhance virus inactivation and sorption to solid particles. The similar retardation factors obtained may be attributable to the reduced presence of these interfaces in the two flow systems investigated as compared to steady-state unsaturated flow experiments in which these interfaces occur throughout the entire column.

  19. Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability.

    PubMed

    Huang, Po-Hsun; Chen, Yung-Hsiang; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Wu, Tao-Cheng; Lin, Feng-Yen; Sata, Masataka; Chen, Jaw-Wen; Lin, Shing-Jong

    2010-04-01

    Red wine (RW) consumption has been associated with a reduction of cardiovascular events, but limited data are available on potential mediating mechanisms. This study tested the hypothesis that intake of RW may promote the circulating endothelial progenitor cell (EPC) level and function through enhancement of nitric oxide bioavailability. Eighty healthy, young subjects were randomized and assigned to consume water (100 mL), RW (100 mL), beer (250 mL), or vodka (30 mL) daily for 3 weeks. Flow cytometry was used to quantify circulating EPC numbers, and in vitro assays were used to evaluate EPC functions. After RW ingestion, endothelial function determined by flow-mediated vasodilation was significantly enhanced; however, it remained unchanged after water, beer, or vodka intake. There were significantly increased numbers of circulating EPC (defined as KDR(+)CD133(+), CD34(+)CD133(+), CD34(+)KDR(+)) and EPC colony-forming units only in the RW group (all P<0.05). Only RW ingestion significantly enhanced plasma levels of nitric oxide and decreased asymmetrical dimethylarginine (both P<0.01). Incubation of EPC with RW (but not beer or ethanol) and resveratrol in vitro attenuated tumor necrosis factor-alpha-induced EPC senescence and improved tumor necrosis factor-alpha-suppressed EPC functions and tube formation. Incubation with nitric oxide donor sodium nitroprusside significantly ameliorated the inhibition of tumor necrosis factor-alpha on EPC proliferation, but incubation with endothelial nitric oxide synthase inhibitor l-NAME and PI3K inhibitor markedly attenuated the effect of RW on EPC proliferation. The intake of RW significantly enhanced circulating EPC levels and improved EPC functions by modifying nitric oxide bioavailability. These findings may help explain the beneficial effects of RW on the cardiovascular system. This study demonstrated that a moderate intake of RW can enhance circulating levels of EPC in healthy subjects by increasing nitric oxide availability. Direct incubation of EPC with RW and resveratrol can modify the functions of EPC, including attenuation of senescence and promotion of EPC adhesion, migration, and tube formation. These data suggest that RW ingestion may alter the biology of EPC, and these alterations may contribute to its unique cardiovascular-protective effect.

  20. Transport physics and biorheology in the setting of haemostasis and thrombosis

    PubMed Central

    Brass, Lawrence F.; Diamond, Scott L.

    2016-01-01

    SUMMARY The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on haemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are very distinct for: (1) haemostasis vs. thrombosis and (2) venous vs. arterial episodes. Intraclot transport changes dramatically the moment haemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50–200-fold greater than platelet rich plasma, clots formed under flow have very different composition and structure compared to blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by: γ′-fibrinogen incorporated into fibrin, engageability of FIXa/VIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne/cm2. Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand Factor self-association into massive fibers along with shear induced platelet activation. Pathological VWF fibers are ADAMTS13-resistant, but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand’s disease, hemophilia, traumatic bleeding, and drug action. PMID:26848552

  1. In Vitro Expression of Cytokeratin 19 in Adipose-Derived Stem Cells Is Induced by Epidermal Growth Factor.

    PubMed

    Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng

    2018-06-21

    BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.

  2. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study

    NASA Astrophysics Data System (ADS)

    Acharya, Nilankush; Das, Kalidas; Kundu, Prabir Kumar

    2018-04-01

    In this piece of writing, we have demonstrated the rotating flow of carbon nanotube passing over a stretching sheet. Two types of carbon nanotube, i.e. single-wall carbon nanotube (SWCNT) and multi-wall carbon nanotube, (MWCNT) have been employed to illustrate the fine points of the flow. Suitable transformations have been consumed to construct its non-dimensional appearance from the partial ones. Transformed forms of equations have been sketched out by RK-4 procedure. Outcomes of the key flow factors on velocity along with temperature outline have been exemplified through tables and graphs, and scrutinized from the sensible judgement. Our investigation authenticates that the temperature of the fluid enhances owing to the improvisation of rotation parameter. Nusselt number goes down with the authority of magnetic parameter.

  3. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    PubMed

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  4. Human astrocytes/astrocyte conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells

    PubMed Central

    Siddharthan, Venkatraman; V. Kim, Yuri; Liu, Suyi; Kim, Kwang Sik

    2009-01-01

    The blood-brain barrier (BBB) is a structural and functional barrier that regulates the passage of molecules into and out of the brain to maintain the neural microenvironment. We have previously developed the in vitro BBB model with human brain microvascular endothelial cells (HBMEC). However, in vivo HBMEC are shown to interact with astrocytes and also exposed to shear stress through blood flow. In an attempt to develop the BBB model to mimic the in vivo condition we constructed the flow-based in vitro BBB model using HBMEC and human fetal astrocytes (HFA). We also examined the effect of astrocyte conditioned medium (ACM) in lieu of HFA to study the role of secreted factor(s) on the BBB properties. The tightness of HBMEC monolayer was assessed by the permeability of dextran and propidium iodide as well as by measuring the transendothelial electrical resistance (TEER). We showed that the HBMEC permeability was reduced and TEER was increased by non-contact, co-cultivation with HFA and ACM. The exposure of HBMEC to shear stress also exhibited decreased permeability. Moreover, HFA/ACM and shear flow exhibited additive effect of decreasing the permeability of HBMEC monolayer. In addition, we showed that the HBMEC expression of ZO-1 (tight junction protein) was increased by co-cultivation with ACM and in response to shear stress. These findings suggest that the non-contact co-cultivation with HFA helps maintain the barrier properties of HBMEC by secreting factor(s) into the medium. Our in vitro flow model system with the cells of human origin should be useful for studying the interactions between endothelial cells, glial cells, and secreted factor(s) as well as the role of shear stress in the barrier property of HBMEC. PMID:17368578

  5. Improvement in circulation and in cardiovascular risk factors with a proprietary isotonic bioflavonoid formula OPC-3.

    PubMed

    Cesarone, Maria R; Di Renzo, Andrea; Errichi, Silvia; Schönlau, Frank; Wilmer, James L; Blumenfeld, Julian

    2008-01-01

    This study investigated the efficacy of isotonic bioflavonoid supplementation, OPC-3 on 61 individuals presenting with risk factors meeting the criteria for metabolic syndrome. Subjects were supplemented with a proprietary isotonic bioflavonoid OPC-3 or placebo over 2 months. Plasma oxidative stress status was significantly lowered by 10.1% with OPC-3. All major cardiovascular risk factors were improved with blood pressure, total cholesterol, and fasting blood glucose lowered. OPC-3 significantly improved endothelial function as evaluated by increased vasorelaxation in reactive hyperemia and enhanced diastolic carotid artery flow. Cardiac ultrasound scanning revealed a significant increase of left ventricular ejection fraction. Skin microcirculation was enhanced, and better tissue perfusion led to significantly increased transcutaneous oxygen partial pressure and decreased pCO(2). With OPC-3 a dramatic and significant plasma C-reactive protein decrease by 52.1% occurred. Individuals may improve key cardiovascular risk factors by daily supplementation with the bioflavonoid OPC-3 as an important part of a healthier lifestyle.

  6. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    PubMed

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Dipolar induced para-hydrogen-induced polarization.

    PubMed

    Buntkowsky, Gerd; Gutmann, Torsten; Petrova, Marina V; Ivanov, Konstantin L; Bommerich, Ute; Plaumann, Markus; Bernarding, Johannes

    2014-01-01

    Analytical expressions for the signal enhancement in solid-state PHIP NMR spectroscopy mediated by homonuclear dipolar interactions and single pulse or spin-echo excitation are developed and simulated numerically. It is shown that an efficient enhancement of the proton NMR signal in solid-state NMR studies of chemisorbed hydrogen on surfaces is possible. Employing typical reaction efficacy, enhancement-factors of ca. 30-40 can be expected both under ALTADENA and under PASADENA conditions. This result has important consequences for the practical application of the method, since it potentially allows the design of an in-situ flow setup, where the para-hydrogen is adsorbed and desorbed from catalyst surfaces inside the NMR magnet. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  9. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh

    2018-01-01

    The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

  10. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh

    2018-06-01

    The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

  11. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    NASA Astrophysics Data System (ADS)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  12. What Factors Influence the Direction of Global Brain Circulation: The Case of Chinese Canada Research Chairholders

    ERIC Educational Resources Information Center

    Zha, Qiang

    2016-01-01

    As part of globalisation, academics have become more mobile and are tempted to move to institutions that have the most favourable research funding and work environment. The university is now viewed as a global magnet for academic talent and a key institution that enhances competitiveness by connecting cities and nations to global flows of…

  13. Experimental Investigation of Transverse Supersonic Gaseous Injection Enhancement Into Supersonic Flow

    DTIC Science & Technology

    1996-12-01

    Ramp AR 2........................................................ A.2 A. 9 . Test Section, No Injection or PME Ramp...B.2 B.8. Wide Ramp AR 1 ......................................................... B.2 B. 9 . Narrow Ramp AR 2...identified as a major near-field mixing factor.5 𔄀 While work has continued in transverse injection, 7𔄂 ’ 9 later studies sought to produce greater

  14. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by vertical exchange beneath small bedforms throughout river networks. Future implementations of NEXSS will expand the model to consider flow variation and to consider HEFs beyond hyporheic flow to include exchange with marginal surface waters such as riparian wetlands, floodplains, and ponded water.

  15. Dynamic MRI for distinguishing high-flow from low-flow peripheral vascular malformations.

    PubMed

    Ohgiya, Yoshimitsu; Hashimoto, Toshi; Gokan, Takehiko; Watanabe, Shouji; Kuroda, Masayoshi; Hirose, Masanori; Matsui, Seishi; Nobusawa, Hiroshi; Kitanosono, Takashi; Munechika, Hirotsugu

    2005-11-01

    The purpose of our study was to assess the usefulness of dynamic MRI in distinguishing high-flow vascular malformations from low-flow vascular malformations, which do not need angiography for treatment. Between September 2001 and January 2003, 16 patients who underwent conventional and dynamic MRI had peripheral vascular malformations (six high- and 10 low-flow). The temporal resolution of dynamic MRI was 5 sec. Time intervals between beginning of enhancement of an arterial branch in the vicinity of a lesion in the same slice and the onset of enhancement in the lesion were calculated. We defined these time intervals as "artery-lesion enhancement time." Time intervals between the onset of enhancement in the lesion and the time of the maximal percentage of enhancement above baseline of the lesion within 120 sec were measured. We defined these time intervals as "contrast rise time" of the lesion. Diagnosis of the peripheral vascular malformations was based on angiographic or venographic findings. The mean artery-lesion enhancement time of the high-flow vascular malformations (3.3 sec [range, 0-5 sec]) was significantly shorter than that of the low-flow vascular malformations (8.8 sec [range, 0-20 sec]) (Mann-Whitney test, p < 0.05). The mean maximal lesion enhancement time of the high-flow vascular malformations (5.8 sec [range, 5-10 sec]) was significantly shorter than that of the low-flow vascular malformations (88.4 sec [range, 50-100 sec]) (Mann-Whitney test, p < 0.01). Dynamic MRI is useful for distinguishing high-flow from low-flow vascular malformations, especially when the contrast rise time of the lesion is measured.

  16. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-dimensional Study of Nonlinear Evolution

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Jones, T. W.; Frank, Adam

    2000-12-01

    We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.

  17. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    PubMed

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.

  18. Study of poly(L-lactide) microparticles based on supercritical CO2.

    PubMed

    Chen, Ai-Zheng; Pu, Xi-Ming; Kang, Yun-Qing; Liao, Li; Yao, Ya-Dong; Yin, Guang-Fu

    2007-12-01

    Poly(L-lactide) (PLLA) microparticles were prepared in supercritical anti-solvent process. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included initial drops size, saturation ratio of PLLA solution, pressure, temperature, concentration of the organic solution, the flow rate of the solution and molecular weight of PLLA. The results indicated that the saturation ratio of PLLA solution, concentration of the organic solution and flow rate of the solution played important roles on the properties of products. Various microparticles with the mean particle size ranging from 0.64 to 6.64 microm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in a process namely solution-enhanced dispersion by supercritical fluids (SEDS) process with dichloromethane/acetone mixture as solution.

  19. An extended model based on the modified Nernst-Planck equation for describing transdermal iontophoresis of weak electrolytes.

    PubMed

    Imanidis, Georgios; Luetolf, Peter

    2006-07-01

    An extended model for iontophoretic enhancement of transdermal drug permeation under constant voltage is described based on the previously modified Nernst-Planck equation, which included the effect of convective solvent flow. This model resulted in an analytical expression for the enhancement factor as a function of applied voltage, convective flow velocity due to electroosmosis, ratio of lipid to aqueous pathway passive permeability, and weighted average net ionic valence of the permeant in the aqueous epidermis domain. The shift of pH in the epidermis compared to bulk caused by the electrical double layer at the lipid-aqueous domain interface was evaluated using the Poisson-Boltzmann equation. This was solved numerically for representative surface charge densities and yielded pH differences between bulk and epidermal aqueous domain between 0.05 and 0.4 pH units. The developed model was used to analyze the experimental enhancement of an amphoteric weak electrolyte measured in vitro using human cadaver epidermis and a voltage of 250 mV at different pH values. Parameter values characterizing the involved factors were determined that yielded the experimental enhancement factors and passive permeability coefficients at all pH values. The model provided a very good agreement between experimental and calculated enhancement and passive permeability. The deduced parameters showed (i) that the pH shift in the aqueous permeation pathway had a notable effect on the ionic valence and the partitioning of the drug in this domain for a high surface charge density and depending on the pK(a) and pI of the drug in relation to the bulk pH; (ii) the magnitude and the direction of convective transport due to electroosmosis typically reflected the density and sign, respectively, of surface charge of the tissue and its effect on enhancement was substantial for bulk pH values differing from the pI of epidermal tissue; (iii) the aqueous pathway predominantly determined passive permeability of the studied compound despite its measurable lipophilicity and therefore the lipid pathway did not notably affect enhancement. Hence, the proposed model can provide a good quantitative insight into the interplay between different phenomena and permeant properties influencing iontophoresis and can potentially be used as a predictive tool of the process.

  20. Reliability of vascular geometry factors derived from clinical MRA

    NASA Astrophysics Data System (ADS)

    Bijari, Payam B.; Antiga, Luca; Steinman, David A.

    2009-02-01

    Recent work from our group has demonstrated that the amount of disturbed flow at the carotid bifurcation, believed to be a local risk factor for carotid atherosclerosis, can be predicted from luminal geometric factors. The next step along the way to a large-scale retrospective or prospective imaging study of such local risk factors for atherosclerosis is to investigate whether these geometric features are reproducible and accurate from routine 3D contrast-enhanced magnetic resonance angiography (CEMRA) using a fast and practical method of extraction. Motivated by this fact, we examined the reproducibility of multiple geometric features that are believed important in atherosclerosis risk assessment. We reconstructed three-dimensional carotid bifurcations from 15 clinical study participants who had previously undergone baseline and repeat CEMRA acquisitions. Certain geometric factors were extracted and compared between the baseline and the repeat scan. As the spatial resolution of the CEMRA data was noticeably coarse and anisotropic, we also investigated whether this might affect the measurement of the same geometric risk factors by simulating the CEMRA acquisition for 15 normal carotid bifurcations previously acquired at high resolution. Our results show that the extracted geometric factors are reproducible and faithful, with intra-subject uncertainties well below inter-subject variabilities. More importantly, these geometric risk factors can be extracted consistently and quickly for potential use as disturbed flow predictors.

  1. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  2. Applying the Technology Acceptance Model and flow theory to Cyworld user behavior: implication of the Web2.0 user acceptance.

    PubMed

    Shin, Dong-Hee; Kim, Won-Yong; Kim, Won-Young

    2008-06-01

    This study explores attitudinal and behavioral patterns when using Cyworld by adopting an expanded Technology Acceptance Model (TAM). A model for Cyworld acceptance is used to examine how various factors modified from the TAM influence acceptance and its antecedents. This model is examined through an empirical study involving Cyworld users using structural equation modeling techniques. The model shows reasonably good measurement properties and the constructs are validated. The results not only confirm the model but also reveal general factors applicable to Web2.0. A set of constructs in the model can be the Web2.0-specific factors, playing as enhancing factor to attitudes and intention.

  3. Flow-enhanced solution printing of all-polymer solar cells

    DOE PAGES

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less

  4. Towards metering tap water by Lorentz force velocimetry

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas

    2015-11-01

    In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K.C.

    The poloidal flow damping rate in the vicinity of the magnetic axis in tokamaks is calculated using the time-dependent plasma viscosity. It is found that the damping rate is of the order of {nu}{sub ii}/f{sub t}{sup 2}, where {nu}{sub ii} is the ion-ion collision frequency, and f{sub t} is the fraction of the trapped potatoes. The corresponding neoclassical polarization or inertia enhancement factor is [1+({sigma}{sub p}q{sup 2}/f{sub t})], where {sigma}{sub p} is a numerical number of the order of unity, and q is the safety factor.

  6. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    NASA Astrophysics Data System (ADS)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  7. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    NASA Astrophysics Data System (ADS)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5% arrival time and potential key soil properties, site factors and boundary conditions will be presented in order to identify key properties which control the preferential transport in the vadose zone under transient hydrological conditions.

  8. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    PubMed

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Magnetic resonance imaging with an optical atomic magnetometer

    PubMed Central

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-01-01

    We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

  10. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  11. Effects of fine sediment, hyporheic flow, and spawning site characteristics on survival and development of bull trout embryos

    USGS Publications Warehouse

    Bowerman, Tracy; Neilson, Bethany; Budy, Phaedra

    2014-01-01

    Successful spawning is imperative for the persistence of salmonid populations, but relatively little research has been conducted to evaluate factors affecting early life-stage survival for bull trout (Salvelinus confluentus), a threatened char. We conducted a field experiment to assess the relationship between site-specific environmental factors and bull trout embryo survival and fry emergence timing. Survival from egg to hatch was negatively related to percent fine sediment (<1 mm) in the redd and positively related to the strength of downwelling at spawning sites. Survival of eggs to fry emergence was also negatively related to fine sediment, and the best statistical models included additional variables that described the rate of downwelling and intragravel flow within the incubation environment. Fry emerged at an earlier stage in development from redds with high percentages of fine sediment. Increased hydraulic conductivity via redd construction and selection of spawning sites with strong downwelling appear to enhance hyporheic flow rates and bull trout egg survival, but early life-stage success may ultimately be limited by intrusion of fine sediment into the incubation environment.

  12. Experimental investigation of convective heat transfer agumentation using Al2O3/water nanofluid in circular pipe

    NASA Astrophysics Data System (ADS)

    Chavan, Durgeshkumar; Pise, Ashok T.

    2015-09-01

    In the present paper, experimental study is performed to investigate convective heat transfer and flow characteristics of nanofluids through a circular tube. The heat transfer coefficient and friction factor of the γ-Al2O3-water nanofluid flowing through a pipe of 10 mm inner ID and 1 m in length, with constant wall temperature under turbulent flow conditions are investigated. Experiments are conducted with 30 nm size γ-Al2O3 nanoparticle with a volume fraction between 0.1 and to 1.0 and Reynolds number between 8,000 and 14,000. Experimental results emphasize the heat transfer enhancement with the increase in a Reynolds number or nanoparticle volume fraction. The maximum enhancement of 36 % in the heat transfer coefficient for a Reynolds number of 8,550, by using nanofluid with 1.0 vol% was observed compared with base fluid. Experimental measurement also shows the considerable increase in the pressure drop with small addition of nanoparticles in base fluid. Experimental results of nanofluids were compared with existing convective heat transfer correlations in the turbulent regime. Comparison shows that Maiga's correlation has close agreement with experimental results in comparison with Dittus Boelter correlation.

  13. Time-dependent electrokinetic flows of non-Newtonian fluids in microchannel-array for energy conversion

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team

    2016-11-01

    We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).

  14. Heat transfer analysis of radiator using graphene oxide nanofluids

    NASA Astrophysics Data System (ADS)

    Rao Ponangi, Babu; Sumanth, S.; Krishna, V.; Seetharam, T. R.; Seetharamu, K. N.

    2018-04-01

    As the technology is developing day by day, there is a requirement for enhancement in performance of automobile radiator to have a better performance of the IC Engine and fuel effectiveness. One of the major and recent approach to upgrade the performance of a radiator is that nanoparticles must be suspended in the general coolant (Ethylene Glycol – Water) which form nanofluids. Present work has been carried out by suspending graphene oxide nanoparticles in 50:50 Ethylene Glycol and RO-Water as base fluid. Experimentation is carried out by using three volume concentrations of the nanofluid (0.02%, 0.03% and 0.04%) and at different volumetric flow rates ranging from 3 to 6 LPM. Effect of volume concentration, inlet temperature and flow rate on Effectiveness, pressure drop and friction factor has been studied experimentally. Effectiveness versus NTU curves are plotted for further design calculations. The results show that the nanofluids will enhance the performance of an automobile radiator when compared with base fluid. Results also shows a maximum of 56.45% and 41.47% improvement in effectiveness for 0.03% volume concentration and 5 LPM flow rate at 40°C and 50°C inlet temperatures respectively.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  16. Solar cycle modulation of Southern Annular Mode -Energy-momentum analysis-

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.

    2016-12-01

    Climate is affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the Southern Annular Mode (SAM) in late-winter/spring show structural modulation associated with 11-year solar cycle. In fact, SAM-related signal tends to extend from surface to upper stratosphere and persistent longer period in the High Solar (HS) years, whereas it is restricted in the troposphere and not persist in the Low Solar (LS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.

  17. Experimental Evaluation of a Carbon Slurry Droplet Combustion Model

    DTIC Science & Technology

    1981-12-14

    the increased mass and energy transport due to the flow percolating through the open porous structure of the carbon agglomerate. Two separate models...catalysts. Transport-rate enhancement factors were also employed in the carbon-agglomerate reaction analysis to account for the increased mass and energy ...D Effective binary diffusivity Ei Activation energy h Heat transfer coefficient H2 Diatomic hydrogen H20 Water i Enthalpy if Enthalpy of formation

  18. Ship Wakes Generated in a Diffuse Internal Layer

    DTIC Science & Technology

    2015-01-01

    can enhance wake detectability by increasing the surface flows. One example is the reflection of natural waves from a ship hull. A wave carries...be observed using satellite borne optical sensors and high resolution radar. Their existence implies the presence of significant internal layers. The...The principal factors associated with the ship appear to be its principal dimensions (length, beam and draft), its block coefficient and its speed

  19. A soil-column gas chromatography (SCGC) approach to explore the thermal desorption behavior of hydrocarbons from soils.

    PubMed

    Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem

    2016-01-01

    A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time.

  20. Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.

    2017-12-01

    Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?

  1. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective.

    PubMed

    Moody, Jonathan B; Lee, Benjamin C; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2015-10-01

    A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized.

  2. Extracting heading and temporal range from optic flow: Human performance issues

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Perrone, John A.; Stone, Leland; Banks, Martin S.; Crowell, James A.

    1993-01-01

    Pilots are able to extract information about their vehicle motion and environmental structure from dynamic transformations in the out-the-window scene. In this presentation, we focus on the information in the optic flow which specifies vehicle heading and distance to objects in the environment, scaled to a temporal metric. In particular, we are concerned with modeling how the human operators extract the necessary information, and what factors impact their ability to utilize the critical information. In general, the psychophysical data suggest that the human visual system is fairly robust to degradations in the visual display, e.g., reduced contrast and resolution or restricted field of view. However, extraneous motion flow, i.e., introduced by sensor rotation, greatly compromises human performance. The implications of these models and data for enhanced/synthetic vision systems are discussed.

  3. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  4. Reproducibility of cerebrospinal venous blood flow and vessel anatomy with the use of phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA.

    PubMed

    Schrauben, E M; Johnson, K M; Huston, J; Del Rio, A M; Reeder, S B; Field, A; Wieben, O

    2014-05-01

    The chronic cerebrospinal venous insufficiency hypothesis raises interest in cerebrospinal venous blood flow imaging, which is more complex and less established than in arteries. For accurate assessment of venous flow in chronic cerebrospinal venous insufficiency diagnosis and research, we must account for physiologic changes in flow patterns. This study examines day-to-day flow variability in cerebrospinal veins by use of 4D MR flow and contrast-enhanced MRA under typical, uncontrolled conditions in healthy individuals. Ten healthy volunteers were scanned in a test-retest fashion by use of a 4D flow MR imaging technique and contrast-enhanced MRA. Flow parameters obtained from phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA scoring measurements in the head, neck, and chest veins were analyzed for internal consistency and interscan reproducibility. Internal consistency was satisfied at the torcular herophili, with an input-output difference of 2.2%. Percentages of variations in flow were 20.3%, internal jugular vein; 20.4%, azygos vein; 6.8%, transverse sinus; and 5.1%, common carotid artery. Retrograde flow was found in the lower internal jugular vein (4.8%) and azygos vein (7.2%). Contrast-enhanced MRA interscan κ values for the internal jugular vein (left: 0.474, right: 0.366) and azygos vein (-0.053) showed poor interscan agreement. Phase contrast-vastly undersampled isotropic projection reconstruction blood flow measurements are reliable and highly reproducible in intracranial veins and in the common carotid artery but not in veins of the neck (internal jugular vein) and chest (azygos vein) because of normal physiologic variation. Retrograde flow normally may be observed in the lower internal jugular vein and azygos vein. Low interrater agreement in contrast-enhanced MRA scans was observed. These findings have important implications for imaging diagnosis and experimental research of chronic cerebrospinal venous insufficiency. © 2014 by American Journal of Neuroradiology.

  5. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia.

    PubMed

    Ryu, Jae Choon; Davidson, Brian P; Xie, Aris; Qi, Yue; Zha, Daogang; Belcik, J Todd; Caplan, Evan S; Woda, Juliana M; Hedrick, Catherine C; Hanna, Richard N; Lehman, Nicholas; Zhao, Yan; Ting, Anthony; Lindner, Jonathan R

    2013-02-12

    Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPCs) promotes recovery of blood flow through the recruitment of proangiogenic monocytes. Hind-limb ischemia was produced in mice by iliac artery ligation, and MAPCs were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPCs indicated that cells survived for 1 week. Contrast-enhanced ultrasound on days 3, 7, and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX(3)CR-1-positive monocytes were significantly higher in MAPC-treated mice than in the control groups at days 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold-greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or tumor necrosis factor-α-treated cremaster muscle demonstrated that MAPCs migrate to perimicrovascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14(+) monocytes was 10-fold greater in response to MAPC-conditioned than basal media. In limb ischemia, MAPCs stimulate the recruitment of proangiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond the MAPC lifespan, suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype.

  6. Cellular Links between Neuronal Activity and Energy Homeostasis.

    PubMed

    Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.

  7. Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California

    NASA Astrophysics Data System (ADS)

    Hecht, Chad W.; Cordeira, Jason M.

    2017-09-01

    Atmospheric rivers (ARs) are long (>2000 km) and narrow (500-1000 km) corridors of enhanced vertically integrated water vapor and enhanced integrated water vapor transport (IVT) that are responsible for a majority of global poleward moisture transport and can result in extreme orographic precipitation. Observational evidence suggests that ARs within different synoptic-scale flow regimes may contain different water vapor source regions, orientations, and intensities and may result in different precipitation distributions. This study uses k-means clustering to objectively identify different orientations and intensities of ARs that make landfall over the California Russian River watershed. The ARs with different orientations and intensities occur within different synoptic-scale flow patterns in association with variability in IVT direction and quasi-geostrophic forcing for ascent and lead to different precipitation distributions over the Russian River watershed. These differences suggest that both mesoscale upslope moisture flux and synoptic-scale forcing for ascent are important factors in modulating precipitation distributions during landfalling ARs.

  8. Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry.

    PubMed

    Liang, H R; Foltz, R L; Meng, M; Bennett, P

    2003-01-01

    The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant. Copyright 2003 John Wiley & Sons, Ltd.

  9. Using Functional Flow Diagrams to Enhance Technical Systems Understanding.

    ERIC Educational Resources Information Center

    Satchwell, Richard E.

    1997-01-01

    A treatment group of 20 aviation students used training manuals that presented functional flow diagrams before schematic diagrams. Comparison of data from 10 controls on a card-sort task showed that functional flow diagrams enhanced understanding of technical systems. (SK)

  10. Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.

    2008-12-01

    CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.

  11. Approximate Model for Turbulent Stagnation Point Flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near themore » stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.« less

  12. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  13. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  14. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-08-05

    Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Asynchronous, macrotasked relaxation strategies for the solution of viscous, hypersonic flows

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1991-01-01

    A point-implicit, asynchronous macrotasked relaxation of the steady, thin-layer, Navier-Stokes equations is presented. The method employs multidirectional, single-level storage Gauss-Seidel relaxation sweeps, which effectively communicate perturbations across the entire domain in 2n sweeps, where n is the dimension of the domain. In order to enhance convergence the application of relaxation factors to specific components of the Jacobian is examined using a stability analysis of the advection and diffusion equations. Attention is also given to the complications associated with asynchronous multitasking. Solutions are generated for hypersonic flows over blunt bodies in two and three dimensions with chemical reactions, utilizing single-tasked and multitasked relaxation strategies.

  16. Imatinib Enhances Docetaxel-Induced Apoptosis Through Inhibition of Nuclear Factor-κB Activation in Anaplastic Thyroid Carcinoma Cells

    PubMed Central

    Kim, EunSook; Matsuse, Michiko; Saenko, Vladimir; Suzuki, Keiji; Ohtsuru, Akira; Yamashita, Shunichi

    2012-01-01

    Background We previously reported the partial effectiveness of imatinib (also known as STI571, Glivec, or Gleevec) on anaplastic thyroid cancer (ATC) cells. Imatinib is a selective tyrosine kinase inhibitor that has been used for various types of cancer treatments. Recently, several reports have demonstrated that imatinib enhanced the sensitivity of cancer cells to other anticancer drugs. In this study, therefore, we investigated whether imatinib enhances the antitumor activity of docetaxel in ATC cells. Methods Two ATC cell lines, FRO and KTC-2, were treated with imatinib and/or docetaxel. Cell survival assay and flow cytometry for annexin V were used to assess the induction of apoptosis. Changes of pro- and antiapoptotic factors were determined by Western blot. Nuclear factor-κB (NF-κB) activity was measured by DNA-binding assay. Tumor growth was also investigated in vivo. Results The combined treatment significantly enhanced apoptosis compared with single treatment. ATC cells themselves expressed high levels of antiapoptotic factors, X-linked inhibitor of apoptosis (XIAP), and survivin. The treatment with docetaxel alone further increased their expressions; however, the combined treatment blocked the inductions. Although imatinib alone had no effect on NF-κB background levels, combined treatment significantly suppressed the docetaxel-induced NF-κB activation. Further, the combined administration of the drugs also showed significantly greater inhibitory effect on tumor growth in mice xenograft model. Conclusions Imatinib enhanced antitumor activity of docetaxel in ATC cells. Docetaxel seemed to induce both pro- and antiapoptotic signaling pathways in ATC cells, and imatinib blocked the antiapoptotic signal. Thus, docetaxel combined with imatinib emerges as an attractive strategy for the treatment of ATC. PMID:22650230

  17. A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions.

    PubMed

    Payán, María Ramos; Murillo, Elia Santigosa; Coello, Jordi; López, Miguel Ángel Bello

    2018-06-29

    A new geometry for a versatile microfluidic-chip device based liquid phase microextraction was developed in order to enhance the preconcentration in microfluidic chips and also to enable double-flow and stopped-flow working modes. The microchip device was combined with a HPLC procedure for the simultaneous determination of two different families as model analytes, which were parabens and non-steroidal anti-inflammatories (NSAIDs): Ethyl 4-hydroxybenzoate (Et-P), Propyl 4-hydroxybenzoate (Pr-P), Butyl 4-hydroxybenzoate (Bu-P), IsoButyl 4-hydroxybenzoate (iBu-P), salycilic acid (SAC), ketoprofen (KET), naproxen (NAX), diclofenac (DIC) and ibuprofen (IBU) in urine samples. The new miniaturized microchip proposed in this work allows not only the possibility of working in double-flow conditions, but also under stagnant conditions (stopped-flow) (SF-μLPME). The sample (pH 1.5) was delivered to the SF-μLPME at 20 μL min -1 while keeping the acceptor phase (pH 11.75) under stagnant conditions during 20 min. The highest enrichment factors (between 16 and 47) were obtained under stopped-flow conditions at 20 μL min -1 (sample flow rate) after 20 min extraction; whereas the extraction efficiencies were within the range of 27-81% for all compounds. The procedure provided very low detection limits between 0.7 and 8.5 μg L -1 with a sample volume consumption of 400 μL. Parabens and NSAIDs have successfully been extracted from urine samples with excellent clean up and recoveries over 90% for all compounds. In parallel, the new device was also tested under double flow conditions, obtaining good but lower enrichment factors (between 9 and 20) and higher extraction efficiencies (between 45 and 95) after 7 min extraction, consuming a volume sample of 140 μL. The versatile device offered very high extraction efficiencies and good enrichment factor for double flow and stopped-flow conditions, respectively. In addition, this new miniaturized SF-μLPME device significantly reduced costs compared to the existing analytical techniques for sample preparation since this microchip require few microliters of sample and reagents and it is reusable. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS

    PubMed Central

    2015-01-01

    We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared to dead-ended nanohole arrays, suspended nanohole arrays capable of flow-through detection increased the measured SERS signal intensity by 50 times. For directed transport of analytes, we present a novel methodology utilizing surface tension to generate spontaneous flow through the nanoholes with flow rates of 1 μL/min, obviating the need for external pumps or microfluidic interconnects. Using this method for SERS, we obtained a 50 times higher signal as compared to diffusion-limited transport and could detect 100 pM 4-mercaptopyridine. The suspended nanohole substrates presented herein possess a uniform and reproducible geometry and show the potential for improved analyte transport and SERS detection. PMID:25678744

  19. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  20. Forecasting inundation from debris flows that grow during travel, with application to the Oregon Coast Range, USA

    USGS Publications Warehouse

    Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne

    2016-01-01

    Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.

  1. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  2. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg

    NASA Astrophysics Data System (ADS)

    Marini, Jonathan; Mahaboob, Isra; Hogan, Kasey; Novak, Steve; Bell, L. D.; Shahedipour-Sandvik, F.

    2017-10-01

    We report on the effect of growth polarity and pulsed or δ -doped growth mode on impurity incorporation in metalorganic chemical vapor deposition-grown GaN. In Ga-polar orientation, up to 12× enhancement in Mg concentration for given Mg flow rate is observed, resulting in enhanced p-type conductivity for these samples. In contrast, this enhancement effect is greatly diminished for N-polar samples, falling off with increasing Mg flow and showing maximum enhancement of 2.7× at 30 nmol/min Mg flow. At higher Mg flow rates, Mg incorporation at normal levels did not correspond to p-type conductivity, which may be due to Mg incorporation at nonacceptor sites. Concentrations of C, O, and Si were also investigated, revealing dependence on Mg flow in N-polar pulsed samples. Carbon incorporation was found to decrease with increasing Mg flow, and oxygen incorporation was found to remain high across varied Mg flow. These effects combine to result in N-polar samples that are not p-type when using the pulsed growth mode.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  4. Mechanisms for Flow-Enhanced Cell Adhesion

    PubMed Central

    Zhu, Cheng; Yago, Tadayuki; Lou, Jizhong; Zarnitsyna, Veronika I.; McEver, Rodger P.

    2009-01-01

    Cell adhesion is mediated by specific receptor—ligand bonds. In several biological systems, increasing flow has been observed to enhance cell adhesion despite the increasing dislodging fluid shear forces. Flow-enhanced cell adhesion includes several aspects: flow augments the initial tethering of flowing cells to a stationary surface, slows the velocity and increases the regularity of rolling cells, and increases the number of rollingly adherent cells. Mechanisms for this intriguing phenomenon may include transport-dependent acceleration of bond formation and force-dependent deceleration of bond dissociation. The former includes three distinct transport modes: sliding of cell bottom on the surface, Brownian motion of the cell, and rotational diffusion of the interacting molecules. The latter involves a recently demonstrated counterintuitive behavior called catch bonds where force prolongs rather than shortens the lifetimes of receptor—ligand bonds. In this article, we summarize our recently published data that used dimensional analysis and mutational analysis to elucidate the above mechanisms for flow-enhanced leukocyte adhesion mediated by L-selectinligand interactions. PMID:18299992

  5. [Rainfall effects on the sap flow of Hedysarum scoparium.

    PubMed

    Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng

    2016-03-01

    In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.

  6. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    NASA Astrophysics Data System (ADS)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  7. Identification of Candidate Transcriptional Regulators of Epidermal Transfer Cell Development in Vicia faba Cotyledons

    PubMed Central

    Arun-Chinnappa, Kiruba S.; McCurdy, David W.

    2016-01-01

    Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nutrient transport in plants, little is known of the transcriptional regulation of wall ingrowth formation. Here, we used RNA-Seq to identify transcription factors putatively involved in regulating epidermal TC development in cotyledons of Vicia faba. Comparing cotyledons cultured for 0, 3, 9, and 24 h to induce trans-differentiation of epidermal TCs identified 43 transcription factors that showed either epidermal-specific or epidermal–enhanced expression, and 10 that showed epidermal-specific down regulation. Members of the WRKY and ethylene-responsive families were prominent in the cohort of transcription factors showing epidermal-specific or epidermal–enhanced expression, consistent with the initiation of TC development often representing a response to stress. Members of the MYB family were also prominent in these categories, including orthologs of MYB genes involved in localized secondary wall deposition in Arabidopsis thaliana. Among the group of transcription factors showing down regulation were various homeobox genes and members of the MADs-box and zinc-finger families of poorly defined functions. Collectively, this study identified several transcription factors showing expression characteristics and orthologous functions that indicate likely participation in transcriptional regulation of epidermal TC development in V. faba cotyledons. PMID:27252730

  8. Microbial enhancement of non-Darcy flow: Theoretical consideration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulationmore » and enhanced oil recovery.« less

  9. Influence of strut cross-section of stents on local hemodynamics in stented arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2016-05-01

    Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.

  10. Enhancement of convective heat transfer in internal flows using an electrically-induced corona jet

    NASA Astrophysics Data System (ADS)

    Baghaei Lakeh, Reza

    The enhancement of heat transfer by active and passive methods has been the subject of many academic and industrial research studies. Internal flows play a major role in many applications and different methods have been utilized to augment the heat transfer to internal flows. Secondary flows consume part of the kinetic energy of the flow and disturb the boundary layer. Inducing secondary flows is known as mechanism for heat transfer enhancement. Secondary flows may be generated by corona discharge and ion-driven flows. When a high electric potential is applied to a conductor, a high electric field will be generated. The high electric field may exceed the partial break-down of the neutral molecules of surrounding gas (air) and generate a low-temperature plasma in the vicinity of the conductor. The generated plasma acts as a source of ions that accelerate under the influence of the electric field and escape beyond the plasma region and move toward the grounded electrode. The accelerating ions collide with neutral particles of the surrounding gas and impose a dragging effect which is interpreted as a body-force to the air particles. The shape and configuration of the emitting and receiving electrodes has a significant impact on the distribution of the electric body-force and the resulting electrically-induced flow field. It turned out that the certain configurations of longitudinal electrodes may cause a jet-like secondary flow field on the cross section of the flow passage in internal flows. The impingement effect of the corona jet on the walls of the channel disturbs the boundary layer, enhances the convective heat transfer, and generates targeted cooling along the centerline of the jet. The results of the current study show that the concentric configuration of a suspended wire-electrode in a circular tube leads to a hydrostatic condition and do not develop any electrically-induced secondary flow; however, the eccentric wire-electrode configuration generates a corona jet along the eccentricity direction. The generated corona jet exhibits interesting specifications similar to conventional inertia-driven air jets which are among common techniques for cooling and heat transfer enhancement. On the other hand, wall-mounted flat electrode pairs along the parallel walls of a rectangular mini-channel develop a similar jet-like flow pattern. The impingement of the corona jet to the receiving wall causes excessive heat transfer enhancement and cooling effect. The flat electrode pairs were also utilized to study the effect of corona discharge on the heat transfer specifications of the internal flow between parallel plates in fully-developed condition. It turned out that the electrically-induced secondary flow along with a pressure-driven main flow generates a swirling effect which can enhance the heat transfer significantly in fully-developed condition.

  11. Impact of selected parameters on the development of boiling and flow resistance in the minichannel

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Ziętala, Kinga

    2015-05-01

    The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure), geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.

  12. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar S. Sohal

    2005-09-01

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfermore » visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.; Patchen, D.G.; Heald, M.

    Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less

  15. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-07-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  16. Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600°C and 1000°C: II. Mechanical properties

    USGS Publications Warehouse

    Castaing, J.; Kronenberg, A.K.; Kirby, S.H.; Mitchell, T.E.

    2000-01-01

    Hydrogen impurities in alumina have been introduced by hydrothermal annealing (see part I). In this paper, we report on reductions in the flow strength of α-Al2O3 single crystals and polycrystals associated with hydrogen incorporation. Prior to deformation, α-Al2O3 single crystal and ceramic specimens were annealed in the presence of supercritical water at 850° or 900°C, under 1500 MPa pressure. Sapphire and alumina ceramics were plastically deformed between 600° and 1000°C under 1500 MPa pressure, by the addition of a uniaxial stress. Flow stresses are reduced by a factor of two, due to the presence of water, for sapphire and large grain (30–50 μm) polycrystals, as a result of enhanced dislocation mobility. Flow stresses of fine-grained (3–5 μm) polycrystals are reduced by water by a factor of six. This large reduction in strength is attributed to a change in mechanism from dislocation glide under dry conditions to grain boundary sliding under hydrothermal conditions.

  17. Microstructural analysis of hot press formed 22MnB5 steel

    NASA Astrophysics Data System (ADS)

    Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan

    2017-10-01

    This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.

  18. Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth.

    PubMed

    Nakayama, H; Iohara, K; Hayashi, Y; Okuwa, Y; Kurita, K; Nakashima, M

    2017-07-01

    We have previously demonstrated that dental pulp stem cells (DPSCs) isolated from mature teeth by granulocyte colony-stimulating factor (G-CSF)-induced mobilization method can enhance angiogenesis/vasculogenesis and improve pulp regeneration when compared with colony-derived DPSCs. However, the efficacy of this method in immature teeth with root-formative stage has never been investigated. Therefore, the aim of this study was to examine the stemness, biological characteristics, and regeneration potential in mobilized DPSCs compared with colony-derived DPSCs from immature teeth. Mobilized DPSCs isolated from immature teeth were compared to colony-derived DPSCs using methods including flow cytometry, migration assays, mRNA expression of angiogenic/neurotrophic factor, and induced differentiation assays. They were also compared in trophic effects of the secretome. Regeneration potential was further compared in an ectopic tooth transplantation model. Mobilized DPSCs had higher migration ability and expressed more angiogenic/neurotrophic factors than DPSCs. The mobilized DPSC secretome produced a higher stimulatory effect on migration, immunomodulation, anti-apoptosis, endothelial differentiation, and neurite extension. In addition, vascularization and pulp regeneration potential were higher in mobilized DPSCs than in DPSCs. G-CSF-induced mobilization method enhances regeneration potential of colony-derived DPSCs from immature teeth. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling.

    PubMed

    Scherer, Elias Q; Yang, Jingli; Canis, Martin; Reimann, Katrin; Ivanov, Karolina; Diehl, Christian D; Backx, Peter H; Wier, W Gil; Strieth, Sebastian; Wangemann, Philine; Voigtlaender-Bolz, Julia; Lidington, Darcy; Bolz, Steffen-Sebastian

    2010-11-01

    We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks. TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 μmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin. TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis, and treatment.

  20. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  1. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  2. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    PubMed

    Huo, Yunlong; Luo, Tong; Guccione, Julius M; Teague, Shawn D; Tan, Wenchang; Navia, José A; Kassab, Ghassan S

    2013-01-01

    It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG) are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60%) may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12) patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS) and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI). The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2)) and decreased OSI (<0.02) to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2)). These findings have significant implications for graft adaptation and long-term patency.

  3. Enhanced heat transfer with full circumferential ribs in helical pipe

    NASA Astrophysics Data System (ADS)

    Chang, S. W.; Su, L. M.; Yang, T. L.

    2002-08-01

    This paper describes an experimental study of heat transfers in the smooth-walled and rib-roughened helical pipes with reference to the design of enhanced cooling passages in the cylinder head and liner of a marine propulsive diesel engine. The manner in which the repeated ribs modify the forced heat convection in the helical pipe is considered for the case where the flow is turbulent upon entering the coil but laminar in further downstream. A selection of experimental results illustrates the individual and interactive effects of Dean vortices and rib-flows on heat transfer along the inner and outer helixes of coils. The experimental-based observations reveal that the centrifugal force modifies the heat transfer in a manner to generate circumferential heat transfer variation with better cooling performance on the outer edge relative to its inner counterpart even with the agitated flow field caused by the repeated ribs. Heat transfer augmentation factor in the range of 1.3 - 3 times of the smooth-walled level is achieved using the present ribbing geometry. A set of empirical correlations based on the experimental data has been developed to permit the evaluation of heat transfers along the inner and outer helixes of the smooth-walled and rib-roughened helical pipes.

  4. Effect of ship locking on sediment oxygen uptake in impounded rivers

    NASA Astrophysics Data System (ADS)

    Lorke, A.; McGinnis, D. F.; Maeck, A.; Fischer, H.

    2012-12-01

    In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy-correlation flux measurements. The continuous observations cover a time period of nearly 5 days and 39 individual locking events. Ship locking is associated with the generation of surges propagating back and forth through the impoundment which causes strong variations of near-bed current velocity and turbulence. These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 ± 0.1 g m-2 d-1, it increased by about a factor of 2 to 1.0 ± 0.5 g m-2 d-1within time periods with ship locking. Following the daily schedule of lock operations, fluxes are predominantly enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the increased flux is the enhancement of diffusive transport across the sediment-water interface by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed.

  5. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis.

    PubMed

    Komaki, Motohiro; Numata, Yuri; Morioka, Chikako; Honda, Izumi; Tooi, Masayuki; Yokoyama, Naoki; Ayame, Hirohito; Iwasaki, Kengo; Taki, Atsuko; Oshima, Noriko; Morita, Ikuo

    2017-10-03

    The therapeutic potential of mesenchymal stem cells (MSCs) may be attributed partly to humoral factors such as growth factors, cytokines, and chemokines. Human term placental tissue-derived MSCs (PlaMSCs), or conditioned medium left over from cultures of these cells, have been reported to enhance angiogenesis. Recently, the exosome, which can transport a diverse suite of macromolecules, has gained attention as a novel intercellular communication tool. However, the potential role of the exosome in PlaMSC therapeutic action is not well understood. The purpose of this study was to evaluate PlaMSC-derived exosome angiogenesis promotion in vitro and in vivo. MSCs were isolated from human term placental tissue by enzymatic digestion. Conditioned medium was collected after 48-h incubation in serum-free medium (PlaMSC-CM). Angiogenic factors present in PlaMSC-CM were screened by a growth factor array. Exosomes were prepared by ultracentrifugation of PlaMSC-CM, and confirmed by transmission electron microscopy, dynamic light scattering, and western blot analyses. The proangiogenic activity of PlaMSC-derived exosomes (PlaMSC-exo) was assessed using an endothelial tube formation assay, a cell migration assay, and reverse transcription-PCR analysis. The in-vivo angiogenic activity of PlaMSC-exo was evaluated using a murine auricle ischemic injury model. PlaMSC-CM contained both angiogenic and angiostatic factors, which enhanced endothelial tube formation. PlaMSC-exo were incorporated into endothelial cells; these exosomes stimulated both endothelial tube formation and migration, and enhanced angiogenesis-related gene expression. Laser Doppler blood flow analysis showed that PlaMSC-exo infusion also enhanced angiogenesis in an in-vivo murine auricle ischemic injury model. PlaMSC-exo enhanced angiogenesis in vitro and in vivo, suggesting that exosomes play a role in the proangiogenic activity of PlaMSCs. PlaMSC-exo may be a novel therapeutic approach for treating ischemic diseases.

  6. Enhanced Forced Convection Heat Transfer using Small Scale Vorticity Concentrations Effected by Flow Driven, Aeroelastically Vibrating Reeds

    DTIC Science & Technology

    2016-08-03

    insulated from behind (using an air gap) as shown in figure III.3-1c. Each of the heated side walls are instrumented with seven equally-spaced T-Type...AFRL-AFOSR-VA-TR-2016-0339 Enhanced convection heat transfer using small-scale vorticity concentrations effected by flow-driven, aeroelastically...public release. Enhanced Forced Convection Heat Transfer using Small-Scale Vorticity Concentrations Effected by Flow-Driven, Aeroelastically Vibrating

  7. High-Energy, High-Pulse-Rate Light Sources for Enhanced Time-Resolved Tomographic PIV of Unsteady and Turbulent Flows

    DTIC Science & Technology

    2017-07-31

    Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email

  8. Non-Axisymmetric Line Driven Disc Winds II - Full Velocity Gradient

    NASA Astrophysics Data System (ADS)

    Dyda, Sergei; Proga, Daniel

    2018-05-01

    We study non-axisymetric features of 3D line driven winds in the Sobolev approximation, where the optical depth is calculated using the full velocity gradient. We find that non-axisymmetric density features, so called clumps, form primarily at the base of the wind on super-Sobolev length scales. The density of clumps differs by a factor of ˜3 from the azimuthal average, the magnitude of their velocity dispersion is comparable to the flow velocity and they produce ˜20% variations in the column density. Clumps may be observable because differences in density produce enhancements in emission and absorption profiles or through their velocity dispersion which enhances line broadening.

  9. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction.

    PubMed

    Ferguson, Richard A; Hunt, Julie E A; Lewis, Mark P; Martin, Neil R W; Player, Darren J; Stangier, Carolin; Taylor, Conor W; Turner, Mark C

    2018-04-01

    This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT-PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.

  10. The Janus-Faced Role of Gambling Flow in Addiction Issues.

    PubMed

    Trivedi, Rohit H; Teichert, Thorsten

    2017-03-01

    Flow experience has been widely investigated in experiential activities such as sports, the performing arts, gaming, and Internet usage. Most studies focus on the positive aspects of flow experience and its effect on performance. In stark contrast, gambling research focusing on the negative side of addiction lacks an in-depth investigation of gamblers' (positive) flow encounters. This separation of research lines seems out of place given that recent research indicates connections between flow and addiction. Joining both constructs in a causal-effects model helps one gain a better understanding of their relationship and its contingencies. This article empirically investigates whether and how it is possible to observe a "Janus face" of flow with its various sub-dimensions in online gambling. Empirical data were collected from 500 online gamblers by applying a structured questionnaire with established scales. The data were analyzed with a confirmatory factor analysis and a double-hurdle model to separate casual gamblers who are unsusceptible to any addiction issues from gamblers affected by initiatory addiction issues. The findings indicate that online gambling addiction is negatively influenced by two sub-dimensions of flow experience, namely a sense of control and concentration on the task at hand, whereas it is enhanced by a transformation of time and autotelic experience.

  11. The problem of modeling the process of air blowing through finely perforated wall for skin friction reduction

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2017-10-01

    Problems of experimental modeling of the process of air blowing into turbulent boundary layer of incompressible fluid through finely perforated wall are discussed. Particular attention is paid to the analysis of both the main factors responsible for the effectiveness of blowing and the possibility of studying the factors in artificially generated turbulent boundary layer. It was shown that uniformity of the injected gas is one of the main requirements to enhance the effectiveness of this method of flow control. An example of the successful application of this technology exhibiting a significant reduction of the turbulent skin friction is provided.

  12. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    PubMed

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  13. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    NASA Astrophysics Data System (ADS)

    Waghole, D. R.

    2018-06-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  14. Combined effects of flow condition and parasitism on shoaling behaviour of female guppies Poecilia reticulata.

    PubMed

    Hockley, F A; Wilson, C A M E; Graham, N; Cable, J

    2014-01-01

    Group living in fish can provide benefits of protection from predators and some parasites, more efficient foraging for food, increased mating opportunities and enhanced energetic benefit when swimming. For riverine species, shoaling behaviour can be influenced by various environmental stressors, yet little is known how flow rate might influence the shoaling of diseased fish shoals. In view of the increasingly unpredictable flow rates in streams and rivers, this study aimed to assess the combined effect of flow condition and parasitism on the shoaling behaviour of a model fish species. Shoal size, shoal cohesion and time spent shoaling of female guppies Poecilia reticulata were compared when infected with the directly transmitted ectoparasite Gyrodactylus turnbulli under flow and static conditions. Flow condition was an important factor in influencing shoaling behaviour of guppies with the fish forming larger shoals in the absence of flow. When a shoal member was infected with G. turnbulli , shoal cohesion was reduced, but the magnitude of this effect was dependent on flow condition. In both flow and static conditions, bigger fish formed larger shoals than smaller counterparts. Future changes to stream hydrology with more frequent flooding and drought events will affect the shoaling tendency of fish. During high-flow events, diseased fish may not be able to keep up with shoal mates and therefore have a higher risk of predation. Additionally, these findings may be important for aquaria and farmed species where an increase in flow rate may reduce aggregation in fish.

  15. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.

  16. Oscillating-flow regenerator test rig: Woven screen and metal felt results

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1992-01-01

    We present correlating expressions, in terms of Reynolds or Peclet numbers, for friction factors, Nusselt numbers, enhanced axial conduction ratios, and overall heat flux ratios in four porous regenerator samples representative of stirling cycle regenerators: two woven screen samples and two random wire samples. Error estimates and comparison of data with others suggest our correlations are reliable, but we need to test more samples over a range of porosities before our results will become generally useful.

  17. Analysis of channel confined selective area growth in evolutionary growth of GaN on SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Benjamin; Tsai, Miao-Chan; Song, Jie

    2015-09-01

    Here, we analyze the chemical vapor deposition of semiconductor crystals by selective area growth in a non-planar geometry. Specifically, the growth process in laterally and vertically confined masks forming single-crystal GaN on SiO2 by metal-organic chemical vapor deposition is considered in detail. A textured AlN seed is used to initiate growth of oriented GaN selectively through the mask, allowing the reduction of degrees of freedom by the evolutionary grain selection process. As shown by measurements of growth rates within the mask, the sub micron length scale of the channel opening is comparable to the mean free path of precursors inmore » the gas phase, resulting in transport characteristics that can be described by an intermediate flow regime between continuum and free-molecular. Mass transport is modeled through kinetic theory to explain the growth rate enhancements of more than a factor of two by changes in reactor pressure. The growth conditions that enable the modification of nucleation density within the channel are then discussed, and are measured by electron-back scatter diffraction of the nucleated grains on the AlN seed. Finally, the selectivity behavior using the low fill factor masks needed in these configurations has been optimized by control of precursor flow rates and the H2 enhanced etching of the polycrystalline GaN nuclei.« less

  18. Ballistic range experiments on superbooms generated by refraction

    NASA Technical Reports Server (NTRS)

    Sanai, M.; Toong, T.-Y.; Pierce, A. D.

    1976-01-01

    The enhanced sonic boom or supersonic boom generated as a result of atmospheric refraction in threshold Mach number flights was recreated in a ballistic range by firing projectiles at low supersonic speeds into a stratified medium obtained by slowly injecting carbon dioxide into air. The range was equipped with a fast-response dynamic pressure transducer and schlieren photographic equipment, and the sound speed variation with height was controlled by regulating the flow rate of the CO2. The schlieren observations of the resulting flow field indicate that the generated shocks are reflected near the sonic cutoff altitude where local sound speed equals body speed, provided such an altitude exists. Maximum shock strength occurs very nearly at the point where the incident and reflected shocks join, indicating that the presence of the reflected shock may have an appreciable effect on the magnitude of the focus factor. The largest focus factor detected was 1.7 and leads to an estimate that the constant in the Guiraud-Thery scaling law should have a value of 1.30.

  19. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    NASA Astrophysics Data System (ADS)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  20. Reacting flow studies in a dump combustor: Enhanced volumetric heat release rates and flame anchorability

    NASA Astrophysics Data System (ADS)

    Behrens, Alison Anne

    Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.

  1. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  2. Oily wastewater treatment by ultrafiltration using Taguchi experimental design.

    PubMed

    Salahi, A; Mohammadi, T

    2011-01-01

    In this research, results of an experimental investigation on separation of oil from a real oily wastewater using an ultrafiltration (UF) polymeric membrane are presented. In order to enhance the performance of UF in API separator effluent treatment and to get more permeation flux (PF), effects of operating factors on the yield of PF were studied. Five factors at four levels were investigated: trans-membrane pressure (TMP), temperature (T), cross flow velocity (CFV), pH and salt concentration (SC). Taguchi method (L(16) orthogonal array (OA)) was used. Analysis of variance (ANOVA) was applied to calculate sum of square, variance, error variance and contribution percentage of each factor on response. The optimal levels thus determined for the four influential factors were: TMP, 3 bar; T, 40˚C; CFV, 1.0 m/s; SC, 25 g/L and pH, 8. The results showed that CFV and SC are the most and the least effective factors on PF, respectively. Increasing CFV, TMP, T and pH caused the better performance of UF membrane process due to enhancement of driving force and fouling residence. Also, effects of oil concentration (OC) in the wastewater on PF and total organic carbon (TOC) rejection were investigated. Finally, the highest TOC rejection was found to be 85%.

  3. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  4. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes

    PubMed Central

    2011-01-01

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901

  5. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow

    PubMed Central

    Zhu, Shu; Travers, Richard J.; Morrissey, James H.

    2015-01-01

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) –bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm2. Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm2 and sensitive to O1A6 at 0 to 0.2 molecules per µm2. However, neither antibody reduced fibrin generation at ∼2 molecules per µm2 when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm2) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. PMID:26136249

  6. Characteristic Fracture Spacing in Primary and Secondary Recovery from Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Gong, J.; Rossen, W.

    2015-12-01

    We showed previously (Gong and Rossen, 2014a,b) that, if the fracture aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is well-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery (EOR) process, the production of oil depends on the supply of injected water or EOR agent. This suggests that the characteristic fracture spacing for the dual-porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured reservoir should account not for all fractures but only the relatively small portion of the fracture network carrying almost all the injected water or EOR agent. In contrast, in primary production even a relatively small fracture represents an effective path for oil to flow to a production well. Thus in primary production the effective fracture spacing should include all the fractures. This distinction means that the "shape factor" in dual-porosity/dual-permeability reservoir simulators and the repeating unit in homogenization should depend on the process involved: specifically, it should be different for primary and secondary or tertiary recovery. We test this hypothesis in a simple representation of a fractured reservoir with a non-uniform distribution of fracture flow conductivities. We compare oil production, flow patterns in matrix, and the pattern of oil recovery around fractures with and without the "unimportant" fractures present. In primary production, all fractures which are much more permeable than matrix play a significant role in production. The shape factor or repeating-unit size should reflect the entire fracture distribution. In secondary or tertiary production, the role of fractures that carry relatively little flow depends on injection rate, the ratio of flow carried by the different fractures, and the permeability of matrix. In some cases, the appropriate shape factor or repeating-unit size for waterflood or EOR should reflect only those fractures that carry most of the flow. References:Gong, and Rossen, 14th ECMOR Conf., Catania, Sicily, 2014(a). Gong, and Rossen, Intl. Discrete Fracture Network Eng. Conf., Vancouver, Canada, 2014(b).

  7. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...

    2015-07-13

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less

  8. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    NASA Astrophysics Data System (ADS)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  9. Exploring the Cattaneo-Christov heat flux phenomenon on a Maxwell-type nanofluid coexisting with homogeneous/heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sarkar, Amit; Kundu, Prabir Kumar

    2017-12-01

    This specific article unfolds the efficacy of Cattaneo-Christov heat flux on the heat and mass transport of Maxwell nanofluid flow over a stretched sheet with changeable thickness. Homogeneous/heterogeneous reactions in the fluid are additionally considered. The Cattaneo-Christov heat flux model is initiated in the energy equation. Appropriate similarity transformations are taken up to form a system of nonlinear ODEs. The impact of related parameters on the nanoparticle concentration and temperature is inspected through tables and diagrams. It is renowned that temperature distribution increases for lower values of the thermal relaxation parameter. The rate of mass transfer is enhanced for increasing in the heterogeneous reaction parameter but the reverse tendency is ensued for the homogeneous reaction parameter. On the other side, the rate of heat transfer is getting enhanced for the Cattaneo-Christov model compared to the classical Fourier's model for some flow factors. Thus the implication of the current study is to delve its unique effort towards the generalized version of traditional Fourier's law at nano level.

  10. Fungal Denitrification Activity in Vertical Flow Constructed Wetlands as Impacted by Plant Species Richness, Carbon, Nitrogen and pH Amendments.

    PubMed

    Liu, W L; Zhang, C B; Han, W J; Guan, M; Liu, S Y; Ge, Y; Chang, J

    2017-12-01

    To control potential fungal denitrification rate (PFDR) in vertical flow simulated wetlands (VFSW) microcosms, thirty VFSW microcosms were established and planted with three plant species richness levels (i.e. unplanted, monoculture, and four-species polyculture treatment), and effects of carbon, nitrogen and pH amendments on the PFDR were investigated using a room-incubating method. Among seven carbon compounds, sodium citrate, glycerol, glucose and sodium succinate were more effective in enhancing PFDRs. These enhanced effects were dependant on a given species richness level. Sodium nitrite mostly stimulated PFDRs to a greater extent than the other three nitrogen compound amendments at any richness level. Treatments with pH 5.6 or 8.4 had significantly greater PFDRs than the treatment with pH 2.8 in the three species richness levels. However, no effect of plant species richness on the PFDR was observed among any carbon, nitrogen and pH amendments. Current results suggest carbon, nitrogen and pH factors should be considered when mediating fungal denitrification in VFSW microcosms.

  11. IGF-1 and TGF-β stimulate cystine/glutamate exchange activity in dental pulp cells

    PubMed Central

    Pauly, Katherine; Fritz, Kimberly; Furey, Alyssa; Lobner, Doug

    2011-01-01

    Introduction The growth factors IGF-1 and TGF-β are protective to dental pulp cells in culture against the toxicity of the composite materials Durafill VS and Flow Line. Since the toxicity of these materials is mediated by oxidative stress, it seemed possible that the protective effects of IGF-1 and TGF-β were through enhancement of an endogenous antioxidant mechanism. Methods We used cultured dental pulp cells to determine the mechanism of the protective effects of IGF-1 and TGF-β, focusing on the glutathione system and the role of cystine/glutamate exchange (system xc-). Results We found that the toxicity of Durafill VS and Flow Line was attenuated by addition of glutathione monoethylester, suggesting a specific role for the cellular antioxidant glutathione. Supporting this hypothesis we found that IGF-1 and TGF-β were protective against the toxicity of the glutathione synthesis inhibitor buthionine sulfoximine. Since levels of cellular cystine are the limiting factor in the production of glutathione we tested the effects of IGF-1 and TGF-β on cystine uptake. Both growth factors stimulated system xc- mediated cystine uptake. Furthermore, they attenuated the glutathione depletion induced by Durafill VS and Flow Line. Conclusions The results suggest that IGF-1 and TGF-β are protective through the stimulation of system xc- mediated cystine uptake leading to maintenance of cellular glutathione. This novel action of growth factors on dental pulp cells has implications not only for preventing toxicity of dental materials but also for the general function of these cells. PMID:21689549

  12. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  13. Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh.

    PubMed

    Whitehead, Paul G; Jin, Li; Macadam, Ian; Janes, Tamara; Sarkar, Sananda; Rodda, Harvey J E; Sinha, Rajiv; Nicholls, Robert J

    2018-09-15

    The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality. Climate datasets downscaled from three different Global Climate Models have been used to drive a daily process based flow and water quality model. The results suggest that due to climate change the flows will increase in the monsoon period and also be enhanced in the dry season. However, once socio-economic changes are also considered, increased population, irrigation, water use and industrial development reduce water availability in drought conditions, threatening water supplies and posing a threat to river and coastal ecosystems. This study, as part of the DECCMA (Deltas, vulnerability and Climate Change: Migration and Adaptation) project, also addresses water quality issues, particularly nutrients (N and P) and their transport along the rivers and discharge into the Delta System. Climate will alter flows, increasing flood flows and changing pollution dilution factors in the rivers, as well as other key processes controlling water quality. Socio-economic change will affect water quality, as water diversion strategies, increased population and industrial development alter the water balance and enhance fluxes of nutrients from agriculture, urban centers and atmospheric deposition. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Heat Transfer Enhancement in High Performance Heat Sink Channels by Autonomous, Aero-Elastic Reed Fluttering

    NASA Astrophysics Data System (ADS)

    Jha, Sourabh; Crittenden, Thomas; Glezer, Ari

    2016-11-01

    Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.

  15. Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts

    NASA Astrophysics Data System (ADS)

    Verma, Aditya; Kumar, Manoj; Patil, Anil Kumar

    2018-04-01

    The application of compact heat exchangers in any thermal system improves overall performance with a considerable reduction in size and weight. Inserts of different geometrical features have been used as turbulence promoting devices to increase the heat transfer rates. The present study deals with the experimental investigation of heat transfer and fluid flow characteristics of a tubular heat exchanger fitted with modified helical coiled inserts. Experiments have been carried out for a smooth tube without insert, tube fitted with helical coiled inserts, and modified helical coiled inserts. The helical coiled inserts are tested by varying the pitch ratio and wire diameter ratio from 0.5-1.5, and 0.063-0.125, respectively for the Reynolds number range of 1400 to 11,000. Experimental data have also been collected for the modified helical coiled inserts with gradually increasing pitch (GIP) and gradually decreasing pitch (GDP) configurations. The Nusselt number and friction factor values for helical coiled inserts are enhanced in the range of 1.42-2.62, 3.4-27.4, relative to smooth tube, respectively. The modified helical coiled insert showed enhancements in Nusselt number and friction factor values in the range of 1.49-3.14, 11.2-19.9, relative to smooth tube, respectively. The helical coiled and modified helical coiled inserts have thermo-hydraulic performance factor in the range of 0.59-1.29, 0.6-1.39, respectively. The empirical correlations of Nusselt number and friction factor for helical coiled inserts are proposed.

  16. Ultrasensitive SERS Flow Detector Using Hydrodynamic Focusing

    PubMed Central

    Negri, Pierre; Jacobs, Kevin T.; Dada, Oluwatosin O.; Schultz, Zachary D.

    2013-01-01

    Label-free, chemical specific detection in flow is important for high throughput characterization of analytes in applications such as flow injection analysis, electrophoresis, and chromatography. We have developed a surface-enhanced Raman scattering (SERS) flow detector capable of ultrasensitive optical detection on the millisecond time scale. The device employs hydrodynamic focusing to improve SERS detection in a flow channel where a sheath flow confines analyte molecules eluted from a fused silica capillary over a planar SERS-active substrate. Increased analyte interactions with the SERS substrate significantly improve detection sensitivity. The performance of this flow detector was investigated using a combination of finite element simulations, fluorescence imaging, and Raman experiments. Computational fluid dynamics based on finite element analysis was used to optimize the flow conditions. The modeling indicates that a number of factors, such as the capillary dimensions and the ratio of the sheath flow to analyte flow rates, are critical for obtaining optimal results. Sample confinement resulting from the flow dynamics was confirmed using wide-field fluorescence imaging of rhodamine 6G (R6G). Raman experiments at different sheath flow rates showed increased sensitivity compared with the modeling predictions, suggesting increased adsorption. Using a 50-millisecond acquisitions, a sheath flow rate of 180 μL/min, and a sample flow rate of 5 μL/min, a linear dynamic range from nanomolar to micromolar concentrations of R6G with a LOD of 1 nM is observed. At low analyte concentrations, rapid analyte desorption is observed, enabling repeated and high-throughput SERS detection. The flow detector offers substantial advantages over conventional SERS-based assays such as minimal sample volumes and high detection efficiency. PMID:24074461

  17. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  18. Flow-Directed Crystallization for Printed Electronics.

    PubMed

    Qu, Ge; Kwok, Justin J; Diao, Ying

    2016-12-20

    The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.

  19. Safety, efficiency and learning curves in robotic surgery: a human factors analysis.

    PubMed

    Catchpole, Ken; Perkins, Colby; Bresee, Catherine; Solnik, M Jonathon; Sherman, Benjamin; Fritch, John; Gross, Bruno; Jagannathan, Samantha; Hakami-Majd, Niv; Avenido, Raymund; Anger, Jennifer T

    2016-09-01

    Expense, efficiency of use, learning curves, workflow integration and an increased prevalence of serious incidents can all be barriers to adoption. We explored an observational approach and initial diagnostics to enhance total system performance in robotic surgery. Eighty-nine robotic surgical cases were observed in multiple operating rooms using two different surgical robots (the S and Si), across several specialties (Urology, Gynecology, and Cardiac Surgery). The main measures were operative duration and rate of flow disruptions-described as 'deviations from the natural progression of an operation thereby potentially compromising safety or efficiency.' Contextual parameters collected were surgeon experience level and training, type of surgery, the model of robot and patient factors. Observations were conducted across four operative phases (operating room pre-incision; robot docking; main surgical intervention; post-console). A mean of 9.62 flow disruptions per hour (95 % CI 8.78-10.46) were predominantly caused by coordination, communication, equipment and training problems. Operative duration and flow disruption rate varied with surgeon experience (p = 0.039; p < 0.001, respectively), training cases (p = 0.012; p = 0.007) and surgical type (both p < 0.001). Flow disruption rates in some phases were also sensitive to the robot model and patient characteristics. Flow disruption rate is sensitive to system context and generates improvement diagnostics. Complex surgical robotic equipment increases opportunities for technological failures, increases communication requirements for the whole team, and can reduce the ability to maintain vision in the operative field. These data suggest specific opportunities to reduce the training costs and the learning curve.

  20. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    NASA Astrophysics Data System (ADS)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2016-11-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochannels. Indeed, this might be attributed to significant fluid adsorption on the channel walls and to the effect of the increased surface to volume ratio inherent to the nanoconfinement. Therefore, it is desirable to explore strategies for drag reduction in nanopores. Recently, studies have found that carbon nanotubes (CNTs) feature ultrafast water flow rates which result in flow enhancements of 1 to 5 orders of magnitude compared to Hagen-Poiseuille predictions. In the present study, CNT-based coatings are considered to induce water flow enhancement in silica nanopores with different radius. We conduct atomistic simulations of pressurized water flow inside tubular silica nanopores with and without inner coaxial carbon nanotubes. In particular, we compute water density and velocity profiles, flow enhancement and slip lengths to understand the drag reduction capabilities of single- and multi-walled carbon nanotubes implemented as coating material in silica nanopores. We wish to thank partial funding from CRHIAM and FONDECYT project 11130559, computational support from DTU and NLHPC (Chile).

  1. Self-assembled diatom substrates with plasmonic functionality

    NASA Astrophysics Data System (ADS)

    Kwon, Sun Yong; Park, Sehyun; Nichols, William T.

    2014-04-01

    Marine diatoms have an exquisitely complex exoskeleton that is promising for engineered surfaces such as sensors and catalysts. For such applications, creating uniform arrays of diatom frustules across centimeter scales will be necessary. Here, we present a simple, low-cost floating interface technique to self-assemble the diatom frustules. We show that well-prepared diatoms form floating hexagonal close-packed arrays at the air-water interface that can be transferred directly to a substrate. We functionalize the assembled diatom surfaces with gold and characterize the plasmonic functionality by using surface enhanced Raman scattering (SERS). Thin gold films conform to the complex, hierarchical diatom structure and produce a SERS enhancement factor of 2 × 104. Small gold nanoparticles attached to the diatom's surface produce a higher enhancement of 7 × 104 due to stronger localization of the surface plasmons. Taken together, the large-scale assembly and plasmonic functionalization represent a promising platform to control the energy and the material flows at a complex surface for applications such as sensors and plasmonic enhanced catalysts.

  2. The Effects of Channel Curvature and Protrusion Height on Nucleate Boiling and the Critical Heat Flux of a Simulated Electronic Chip

    DTIC Science & Technology

    1994-05-01

    parameters and geometry factor. 57 3.2 Laminar sublayer and buffer layer thicknesses for geometry of Mudawar and Maddox.ŝ 68 3.3 Correlation constants...transfer from simulated electronic chip heat sources that are flush with the flow channel wall. Mudawar and Maddox2" have studied enhanced surfaces...bias error was not estimated; however, the percentage of heat loss measured compares with that previously reported by Mudawar and Maddox19 for a

  3. Multipath Routing of Fragmented Data Transfer in a Smart Grid Environment

    NASA Astrophysics Data System (ADS)

    Borgohain, Tuhin; Borgohain, Amardeep; Borgohain, Rajdeep; Sanyal, Sugata

    2015-02-01

    The purpose of this paper is to do a general survey on the existing communication modes inside a smart grid, the existing security loopholes and their countermeasures. Then we suggest a detailed countermeasure, building upon the Jigsaw based secure data transfer [8] for enhanced security of the data flow inside the communication system of a smart grid. The paper has been written without the consideration of any factor of inoperability between the various security techniques inside a smart grid

  4. A novel investigation of heat transfer characteristics in rifled tubes

    NASA Astrophysics Data System (ADS)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  5. A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seung; Lee, Keon-Joon; Han, Young-Kyu; Ryu, Ji Heon; Oh, Seung M.

    2017-04-01

    A methyl-substituted p-phenylenediamine (PD), N,N,N‧,N‧-tetramethyl-p-phenylenediamine (TMPD), is examined as a positive redox couple with high energy density for non-aqueous Li-flow batteries. Methyl substitution affects the solubility of the redox couple, as the solubility is increased by a factor of ten, to a maximum solubility of 5.0 M in 1.0 M lithium tetrafluoroborate-propylene carbonate supporting electrolyte due to elimination of the hydrogen bonding between the solute molecules. The methyl substitution also enhances the chemical stability of the cation radical and di-cation being generated from PD, as the redox center is shielded by the methyl groups. Furthermore, this organic redox couple demonstrate two-electron redox reactions at 3.2 and 3.8 V (vs. Li/Li+); therefore, the volumetric capacity is twice higher compared to conventional one-electron involved redox couples. In a non-flowing Li/TMPD coin-cell, this organic redox couple demonstrates very stable cycleability as a positive redox couple for non-aqueous flow batteries.

  6. Monitoring of coagulation factor therapy in patients with von Willebrand disease type 3 using a microchip flow chamber system.

    PubMed

    Ågren, Anna; Holmström, Margareta; Schmidt, David E; Hosokawa, Kazuya; Blombäck, Margareta; Hjemdahl, Paul

    2017-01-05

    Patients with type 3 von Willebrand disease (VWD-3) have no measurable levels of VW factor (VWF) and usually require treatment with VWF-FVIII concentrate to prevent and/or stop bleeding. Even though the patients are treated prophylactically, they may experience bleeding symptoms. The aim of this study was to evaluate the effect of VWF-FVIII concentrate treatment in VWD-3 patients with the Total Thrombus Analysis System (T-TAS ® ), which measures thrombus formation under flow conditions. Coagulation profiles of 10 VWD-3 patients were analysed using T-TAS before and 30 minutes after VWF-FVIII concentrate (Haemate ® ) injection. Results were compared to VWF- and FVIII activity in plasma, and results with thromboelastometry and ristocetin-activated platelet impedance aggregometry (Multiplate ® ) in whole blood. For comparison, 10 healthy controls were also analysed with T-TAS. A median dose of 27 (range 15-35) IU/kg of VWF-FVIII concentrate increased VWF- and FVIII activity as expected. T-TAS thrombus formation was enhanced when a tissue factor/collagen-coated flow chamber was used at low shear, but treatment effects at high shear using a collagen-coated flow chamber were minimal. Whole blood coagulation assessed by thromboelastometry was normal and did not change (p > 0.05) but ristocetin-induced platelet aggregation improved (p < 0.001). In conclusion, T-TAS detects effects of VWF-FVIII concentrate treatment on coagulation-dependent thrombus formation at low shear, but minor effects are observed on platelet-dependent thrombus formation at high shear. The poor prediction of bleeding by conventional laboratory monitoring in VWD-3 patients might be related to insufficient restoration of platelet-dependent thrombus formation.

  7. Chemically non-equilibrated QGP and thermal photon elliptic flow

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko

    2016-07-01

    It has been discovered in recent heavy-ion experiments that elliptic and triangular flow of direct photons are underpredicted by most hydrodynamic models. I discuss possible enhancement mechanisms based on late chemical equilibration of the QGP and in-medium modification of parton distributions. Numerical hydrodynamic analyses indicate that they suppress early photon emission and visibly enhance thermal photon elliptic flow.

  8. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review

    PubMed Central

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2017-01-01

    Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas. In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root. PMID:28452965

  9. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    PubMed Central

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology. PMID:28084447

  10. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review.

    PubMed

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2017-04-28

    Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas . In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root.

  11. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    NASA Astrophysics Data System (ADS)

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.

  12. Experimental forensic and bioanthropological aspects of soft tissue taphonomy: 1. Factors influencing postmortem tissue desiccation rate.

    PubMed

    Aturaliya, S; Lukasewycz, A

    1999-09-01

    Euthanized rats' carcasses were exposed in an environmental chamber to multiple variables including: (1) position, (2) enveloping clothing, and (3) soil interment in an effort to determine the individual variables' effect on postmortem rate of body and visceral organ water loss. Results indicated that body water loss was enhanced by a horizontal position versus vertical, probably because of wider spread of bacteria- and enzyme-laden abdominal fluid secondary to diaphragm digestion with consequent greater tissue digestion and liquefaction. Clothing also accelerated the desiccation rate. Desiccation was about equally as effective by soil interment as by air exposure, though simulating windy conditions by tripling the air flow rate resulted in much more rapid desiccation in the air-exposed specimen. These studies suggest that the single most important factor influencing postmortem body water loss rate is the environment at the skin surface that acts to enhance or impair water removal from the skin surface and thus influences the water concentration gradient between the skin and underlying deeper tissues.

  13. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    PubMed

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  14. Propagation of thrombosis by neutrophils and extracellular nucleosome networks

    PubMed Central

    Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd

    2017-01-01

    Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771

  15. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    PubMed

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  16. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin

    NASA Astrophysics Data System (ADS)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  17. Evaluation of air-liquid interface exposure systems for in vitro ...

    EPA Pesticide Factsheets

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared five ALI systems for their ability to deliver both particulate matter (PM) and gases to cells cultured on porous membrane inserts. The ALI systems use different mechanisms to deliver pollutants to the inserts: diffusion, sedimentation, electrostatic precipitation (ESP), and thermophoresis (THP). We used fluorescent polystyrene latex spheres (PSLs) as a surrogate for PM to assess the efficacy of particle deposition in each system. PM loading in each insert was determined by dissolving the PSLs in ethyl acetate and measuring the fluorescence. Results show that using ESP as an external force enhances deposition of 50-nm PSLs by 5.5-fold and 11-fold for 1-µm PSLs when compared to diffusion alone. Similarly, THP enhances deposition of 50-nm and 1-µm PSLs by 4.5-fold and 2.7-fold, respectively. The interaction of ozone with an indigo dye on the surface of the insert showed that diffusion alone permitted gas-cell interaction. For each system there were various design and operational factors, such as the flow rate, surface materials and flow path geometry that adversely affected performance. Increased flow rates correlated with increased efficacy of the systems to deliver the gas to the inserts.

  18. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    PubMed

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  19. Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.

    PubMed

    Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan

    2016-07-01

    In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Brett Edward

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0more » $$\\vec{J}$$∙$$\\vec{B}$$/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP.« less

  1. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS)

    PubMed Central

    Hildebrandt, Wulf; Schwarzbach, Hans; Pardun, Anita; Hannemann, Lena; Bogs, Björn; König, Alexander M.; Mahnken, Andreas H.; Hildebrandt, Olaf; Koehler, Ulrich; Kinscherf, Ralf

    2017-01-01

    Background Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Methods Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. Results During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. Conclusions In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed. PMID:28273102

  2. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS).

    PubMed

    Hildebrandt, Wulf; Schwarzbach, Hans; Pardun, Anita; Hannemann, Lena; Bogs, Björn; König, Alexander M; Mahnken, Andreas H; Hildebrandt, Olaf; Koehler, Ulrich; Kinscherf, Ralf

    2017-01-01

    Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.

  3. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  4. Multicapillary Gas Chromatography-Temperature Modulated Metal Oxide Semiconductor Sensors Array Detector for Monitoring of Volatile Organic Compounds in Closed Atmosphere Using Gaussian Apodization Factor Analysis.

    PubMed

    Alinoori, Amir Hossein; Masoum, Saeed

    2018-05-22

    A unique metal oxide semiconductor sensor (MOS) array detector with eight sensors was designed and fabricated in a PTFE chamber as an interface for coupling with multicapillary gas chromatography. This design consists of eight transfer lines with equal length between the multicapillary columns (MCC) and sensors. The deactivated capillary columns were passed through each transfer line and homemade flow splitter to distribute the same gas flow on each sensor. Using the eight ports flow splitter design helps us to equal the length of carrier gas path and flow for each sensor, minimizing the dead volume of the sensor's chamber and increasing chromatographic resolution. In addition to coupling of MCC to MOS array detector and other considerations in hardware design, modulation of MOS temperature was used to increase sensitivity and selectivity, and data analysis was enhanced with adapted Gaussian apodization factor analysis (GAFA) as a multivariate curve resolution algorithm. Continues air sampling and injecting system (CASI) design provides a fast and easily applied method for continues injection of air sample with no additional sample preparation. The analysis cycle time required for each run is less than 300 s. The high sample load and sharp injection with the fast separation by MCC decrease the peak widths and improve detection limits. This homemade customized instrument is an alternative to other time-consuming and expensive technologies for continuous monitoring of outgassing in air samples.

  5. Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.

    2009-12-01

    Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.

  6. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tubemore » axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the secondary processes i.e. hot rotary forming and ambient-temperature flow forming exhibited improvement over the base-line hoop-creep performance. The flow formed MA956 tubes exhibited performance superior to all other rolling/forming variants. At the conclusion of this program 2ksi creep-test exposure for flow formed materials exceeded 7300 hours, 7694 hours and 4200 hours for creep tests operating at 950 C, 975 C and 1000 C respectively. The Larsen-Miller parameter for these improvised flow-formed tubes now exceeds 54.14, i.e., better than ever recorded previously. The creep performance enhancement in cross-rolled MA956 material samples versus the base creep property is elucidated. At least 2-3 orders of magnitude of improvement in creep rates/day and concomitant increases in creeplife are demonstrated for the flow formed tubes versus the base reference tests.« less

  7. National plan to enhance aviation safety through human factors improvements

    NASA Technical Reports Server (NTRS)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  8. The Effect of Debris-Flow Composition on Runout Distance

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2014-12-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, debris-flow composition had a larger effect on runout distance than topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  9. The effect of debris-flow composition on runout distance

    NASA Astrophysics Data System (ADS)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  10. Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity

    NASA Astrophysics Data System (ADS)

    Jayachandra Babu, M.; Sandeep, N.; Ali, M. E.; Nuhait, Abdullah O.

    The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively.

  11. Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.

  12. Collaborate and share: an experimental study of the effects of task and reward interdependencies in online games.

    PubMed

    Choi, Boreum; Lee, Inseong; Choi, Dongseong; Kim, Jinwoo

    2007-08-01

    Today millions of players interact with one another in online games, especially massively multiplayer online role-playing games (MMORPGs). These games promote interaction among players by offering interdependency features, but to date few studies have asked what interdependency design factors of MMORPGs make them fun for players, produce experiences of flow, or enhance player performance. In this study, we focused on two game design features: task and reward interdependency. We conducted a controlled experiment that compared the interaction effects of low and high task-interdependency conditions and low and high reward-interdependency conditions on three dependent variables: fun, flow, and performance. We found that in a low task-interdependency condition, players had more fun, experienced higher levels of flow, and perceived better performance when a low reward-interdependency condition also obtained. In contrast, in a high task-interdependency condition, all of these measures were higher when a high reward-interdependency condition also obtained.

  13. Performance assessment and optimisation of a large information system by combined customer relationship management and resilience engineering: a mathematical programming approach

    NASA Astrophysics Data System (ADS)

    Azadeh, A.; Foroozan, H.; Ashjari, B.; Motevali Haghighi, S.; Yazdanparast, R.; Saberi, M.; Torki Nejad, M.

    2017-10-01

    ISs and ITs play a critical role in large complex gas corporations. Many factors such as human, organisational and environmental factors affect IS in an organisation. Therefore, investigating ISs success is considered to be a complex problem. Also, because of the competitive business environment and the high amount of information flow in organisations, new issues like resilient ISs and successful customer relationship management (CRM) have emerged. A resilient IS will provide sustainable delivery of information to internal and external customers. This paper presents an integrated approach to enhance and optimise the performance of each component of a large IS based on CRM and resilience engineering (RE) in a gas company. The enhancement of the performance can help ISs to perform business tasks efficiently. The data are collected from standard questionnaires. It is then analysed by data envelopment analysis by selecting the optimal mathematical programming approach. The selected model is validated and verified by principle component analysis method. Finally, CRM and RE factors are identified as influential factors through sensitivity analysis for this particular case study. To the best of our knowledge, this is the first study for performance assessment and optimisation of large IS by combined RE and CRM.

  14. Enhancement of phonon backscattering due to confinement of ballistic phonon pathways in silicon as studied with a microfabricated phonon spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otelaja, O. O.; Robinson, R. D., E-mail: rdr82@cornell.edu

    2015-10-26

    In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) aroundmore » the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.« less

  15. Natural convection enhancement by a discrete vibrating plate and a cross-flow opening: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Florio, L. A.; Harnoy, A.

    2011-06-01

    In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.

  16. The significance of turbulent flow representation in single-continuum models

    USGS Publications Warehouse

    Reimann, T.; Rehrl, C.; Shoemaker, W.B.; Geyer, T.; Birk, S.

    2011-01-01

    Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single-continuum model that results in conduit-type flow in continuum cells (CTFC). The single-continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW-2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Copyright 2011 by the American Geophysical Union.

  17. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  18. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at the quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.

  19. Enhanced Photoacoustic Gas Analyser Response Time and Impact on Accuracy at Fast Ventilation Rates during Multiple Breath Washout

    PubMed Central

    Horsley, Alex; Macleod, Kenneth; Gupta, Ruchi; Goddard, Nick; Bell, Nicholas

    2014-01-01

    Background The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. Methods A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. Results 10–90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was −0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range −3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. Conclusion The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus. PMID:24892522

  20. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsiliyannis, C.A., E-mail: anion@otenet.gr

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Dynamic flow models are presented for remanufactured, reused or recycled products. Black-Right-Pointing-Pointer Early loss and stochastic return are included for fast and slow cycling products. Black-Right-Pointing-Pointer The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. Black-Right-Pointing-Pointer The cycle rate, which is increasing with the ICF, monitors eco-performance. Black-Right-Pointing-Pointer Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast andmore » slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand.« less

  1. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome.

    PubMed

    Lavrencic, A; Salobir, B G; Keber, I

    2000-02-01

    Endothelial dysfunction that can be detected as impaired flow-mediated dilation by ultrasonography is an early event in atherogenesis and has been demonstrated in healthy subjects with risk factors for atherosclerosis many years before the appearance of atheromatous plaques. We examined the influence of physical training on flow-mediated dilation in patients with the polymetabolic syndrome. Twenty-nine asymptomatic men aged 40 to 60 years with the polymetabolic syndrome were randomly divided between the control group and the training group, which trained 3 times a week for 12 weeks. On high-resolution ultrasound images, the diameter of the brachial artery was measured at rest, after reactive hyperemia (causing flow-mediated, endothelium-dependent dilation), and after sublingual glyceryltrinitrate (causing endothelium-independent vasodilation) in all subjects before and after the training period. The training program induced an increase of 18% in physical fitness. Flow-mediated dilation increased from 5.3+/-2.8% to 7.3+/-2.7% (P<0. 05). There was no change in body mass index, blood pressure, insulin resistance, lipids, and big endothelin-1 in either group. Flow-mediated dilation measured before training was negatively correlated with resting heart rate, waist-to-hip ratio, and insulin resistance. Resting heart rate emerged as the only independent determinant, which explained 22% of the variation in flow-mediated dilation. In conclusion, our findings suggest that a 3-month physical training program, which improved maximal exercise capacity, enhances flow-mediated dilation in patients with the polymetabolic syndrome.

  2. Confined Rayleigh-Bénard, Rotating Rayleigh-Bénard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation

    NASA Astrophysics Data System (ADS)

    Chong, Kai Leong; Yang, Yantao; Huang, Shi-Di; Zhong, Jin-Qiang; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef; Xia, Ke-Qing

    2017-08-01

    Many natural and engineering systems are simultaneously subjected to a driving force and a stabilizing force. The interplay between the two forces, especially for highly nonlinear systems such as fluid flow, often results in surprising features. Here we reveal such features in three different types of Rayleigh-Bénard (RB) convection, i.e., buoyancy-driven flow with the fluid density being affected by a scalar field. In the three cases different stabilizing forces are considered, namely (i) horizontal confinement, (ii) rotation around a vertical axis, and (iii) a second stabilizing scalar field. Despite the very different nature of the stabilizing forces and the corresponding equations of motion, at moderate strength we counterintuitively but consistently observe an enhancement in the flux, even though the flow motion is weaker than the original RB flow. The flux enhancement occurs in an intermediate regime in which the stabilizing force is strong enough to alter the flow structures in the bulk to a more organized morphology, yet not too strong to severely suppress the flow motions. Near the optimal transport enhancements all three systems exhibit a transition from a state in which the thermal boundary layer (BL) is nested inside the momentum BL to the one with the thermal BL being thicker than the momentum BL. The observed optimal transport enhancement is explained through an optimal coupling between the suction of hot or fresh fluid and the corresponding scalar fluctuations.

  3. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  4. Normal Pregnancy Is Associated with Changes in Central Hemodynamics and Enhanced Recruitable, but Not Resting, Endothelial Function

    PubMed Central

    Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Scasso, Santiago; Bia, Daniel

    2015-01-01

    Introduction. Flow-mediated dilation (FMD), low flow-mediated constriction (L-FMC), and reactive hyperemia-related changes in carotid-to-radial pulse wave velocity (ΔPWVcr%) could offer complementary information about both “recruitability” and “resting” endothelial function (EF). Carotid-to-femoral pulse wave velocity (PWVcf) and pulse wave analysis-derived parameters (i.e., AIx@75) are the gold standard methods for noninvasive evaluation of aortic stiffness and central hemodynamics. If healthy pregnancy is associated with both changes in resting and recruitable EF, as well as in several arterial parameters, it remains unknown and/or controversial. Objectives. To simultaneously and noninvasively assess in healthy pregnant (HP) and nonpregnant (NP) women central parameters in conjunction with “basal and recruitable” EF, employing new complementary approaches. Methods. HP (n = 11, 34.2 ± 3.3 weeks of gestation) and age- and cardiovascular risk factors-matched NP (n = 22) were included. Aortic blood pressure (BP), AIx@75, PWVcf, common carotid stiffness, and intima-media thickness, as well as FMD, L-FMC, and ΔPWVcr %, were measured. Results. Aortic BP, stiffness, and AIx@75 were reduced in HP. ΔPWVcr% and FMD were enhanced in HP in comparison to NP. No differences were found in L-FMC between groups. Conclusion. HP is associated with reduced aortic stiffness, central BP, wave reflections, and enhanced recruitable, but not resting, EF. PMID:26421317

  5. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway.

    PubMed

    Feng, Xingmei; Huang, Dan; Lu, Xiaohui; Feng, Guijuan; Xing, Jing; Lu, Jun; Xu, Ke; Xia, Weiwei; Meng, Yan; Tao, Tao; Li, Liren; Gu, Zhifeng

    2014-12-01

    Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  6. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  7. Parameters of Blood Flow in Great Arteries in Hypertensive ISIAH Rats with Stress-Dependent Arterial Hypertension.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel', A L

    2016-08-01

    Magnetic resonance angiography was used to examine blood flow in great arteries of hypertensive ISIAH and normotensive Wistar rats. In hypertensive ISIAH rats, increased vascular resistance in the basin of the abdominal aorta and renal arteries as well as reduced fraction of total renal blood flow were found. In contrast, blood flow through both carotid arteries in ISIAH rats was enhanced, which in suggests more intensive blood supply to brain regulatory centers providing enhanced stress reactivity of these rats characterized by stress-dependent arterial hypertension.

  8. Signal enhancement using a switchable magnetic trap

    DOEpatents

    Beer, Neil Reginald [Pleasanton, CA

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  9. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream

    NASA Astrophysics Data System (ADS)

    Dunkerley, David; Brown, Kate

    1999-08-01

    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  10. Impact of enhanced sensory input on treadmill step frequency: infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Smith, Beth A; Moerchen, Victoria; Ulrich, Beverly D

    2011-01-01

    To determine the effect of enhanced sensory input on the step frequency of infants with myelomeningocele (MMC) when supported on a motorized treadmill. Twenty-seven infants aged 2 to 10 months with MMC lesions at, or caudal to, L1 participated. We supported infants upright on the treadmill for 2 sets of 6 trials, each 30 seconds long. Enhanced sensory inputs within each set were presented in random order and included baseline, visual flow, unloading, weights, Velcro, and friction. Overall friction and visual flow significantly increased step rate, particularly for the older subjects. Friction and Velcro increased stance-phase duration. Enhanced sensory input had minimal effect on leg activity when infants were not stepping. : Increased friction via Dycem and enhancing visual flow via a checkerboard pattern on the treadmill belt appear to be more effective than the traditional smooth black belt surface for eliciting stepping patterns in infants with MMC.

  11. Impact of Enhanced Sensory Input on Treadmill Step Frequency: Infants Born With Myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Smith, Beth A; Moerchen, Victoria; Ulrich, Beverly D.

    2012-01-01

    Purpose To determine the effect of enhanced sensory input on the step frequency of infants with myelomeningocele (MMC) when supported on a motorized treadmill. Methods Twenty seven infants aged 2 to 10 months with MMC lesions at or caudal to L1 participated. We supported infants upright on the treadmill for 2 sets of 6 trials, each 30s long. Enhanced sensory inputs within each set were presented in random order and included: baseline, visual flow, unloading, weights, Velcro and friction. Results Overall friction and visual flow significantly increased step rate, particularly for the older group. Friction and Velcro increased stance phase duration. Enhanced sensory input had minimal effect on leg activity when infants were not stepping. Conclusions Increased friction via Dycem and enhancing visual flow via a checkerboard pattern on the treadmill belt appear more effective than the traditional smooth black belt surface for eliciting stepping patterns in infants with MMC. PMID:21266940

  12. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  13. Color-coded perfusion analysis of CEUS for pre-interventional diagnosis of microvascularisation in cases of vascular malformations.

    PubMed

    Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M

    2014-01-01

    Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.

  14. Enhanced Line Integral Convolution with Flow Feature Detection

    NASA Technical Reports Server (NTRS)

    Lane, David; Okada, Arthur

    1996-01-01

    The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.

  15. Saliva and dental erosion

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  16. Saliva and dental erosion.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  18. Convective Heat Transfer Enhancement Using Alternating Magnetic Fields and Particle Laden Fluid Applied to the Microscale

    DTIC Science & Technology

    2010-05-11

    convective heat transfer , researchers have been drawn to the high heat flux potentials of microfluidic devices. Microchannel flows, with hydraulic...novel heat transfer enhancement technique proven on the conventional scale to the mini and microchannel scales. 1.3 Background: Conventional...S.G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” International Conference on Microchannels

  19. Effects of insulin on physical factors: atherosclerosis in diabetes mellitus.

    PubMed

    McMillan, D E

    1985-12-01

    Newton's laws of motion play a major role in blood flow. Inertia and conservation of momentum cause flow to separate at branches and curves in large blood vessels. Areas of separated flow in the arterial system are sites of atherogenesis. The place at which the separation ends, called the stagnation point, is the focus for plaque development. Pulsation of the arterial circulation causes the stagnation point to move downstream with each systole and upstream with each diastole. This movement generates forward and backward shearing force in the stagnation region as the separated flow migrates back and forth. Angular momentum, introduced into flowing blood with each heart beat and further enhanced by the asymmetry of origin of vessels branching from the aorta, generates a sidewise force component that is preserved during migration of the stagnation point. The sidewise force, added to the forward and backward shear stresses, creates an area of multidirectional shear stress under the migrating stagnation point that increases the permeability of the local endothelium. Blood is a complex fluid; it can generate greater shear stresses near the stagnation point than the simple fluids normally studied by fluid mechanicists. Blood is capable of retaining shear stress for short periods after it ceases to flow and extra work is required to establish its flow. In diabetes, reduced erythrocyte deformability further burdens flow onset. We are not yet able to establish whether the increase is only a few percent, or whether the burden is larger. Whatever its magnitude, diabetic modifications of the flow properties of blood, directly affect the size, location, and rate of development of atherosclerotic plaques.

  20. Research on spatial difference in the effecting factors of the urban flow

    NASA Astrophysics Data System (ADS)

    Liang, Jian; Li, Feixue; Xu, Jiangang; Li, Manchun

    2007-06-01

    Urban flow is a phenomenon of the interaction and relation between the cities in the region based on the transport network and urban synthetic strength. And, because of the difference in traffic conditions and the level of economic development in different city, the intensity of the urban flow of each city is different and the primary effecting factor is dissimilar. The traditional analysis on the effecting factors of urban flow concerns the background of the entire region as a whole entity, which would be too vague and ignore the difference in the effecting factors of different cities as well as the micro differences and spatial non-stationarity in the dominant factor. The research on spatial difference in the effecting factors of the urban flow in this paper focused on the analysis of the diverse effecting factors of urban flow caused by the regional disparity; found out the primary factors; and analyzed the spatial characteristics of effecting factors using GIS. We established a mathematical model, which was applied to the urban agglomeration of the Yangtze River Delta, the intensity of the urban flow of every city in this district was figured and the regression model was constructed. The principal effecting factor of the urban flow of every city and its characteristic of the spatial distribution was analyzed. we summarized the effecting factors of the urban flow is an indication of the persistence of spatial difference among Yangtze River Delta, and the spatial pattern of it was investigated.

  1. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  2. An experimental investigation of the effects of spiral angle on the evaporation heat transfer coefficients in microfin tubes with visualization technique

    NASA Astrophysics Data System (ADS)

    Oh, Se-Yoon

    A smooth tube and five microfin tubes were tested, and evaporation heat transfer coefficients were measured and compared for mass fluxes, 50, 100 and 200 kg/m2 s, and heat fluxes, 5, 10 and 20 kW/m 2, with Refrigerant 134a as a working fluid. The evaporation heat transfer coefficients at quality 0.5 were compared among the smooth and five microfin tubes with spiral angles 6, 12, 18, 25 and 44 degrees. The effect of the spiral angle on the heat transfer coefficients was examined. It was found that the optimal spiral angle where the maximum heat transfer coefficient occurs, mainly depends on mass flux. The optimal spiral angle was 18 degrees for G=50 kg/m2 s, and 6 degrees for G=100 and 200 kg/m 2 s. A borescope was used to visualize the flow on the inside wall of test tubes. The purpose was to find out the effect of the grooves on the liquid flow in microfin tubes and to explain the mechanism of heat transfer enhancement. Temperatures on the tube wall were measured at the same axial location as the imaging sensor of the borescope, and were related to the behavior of the liquid flow on the inside wall of the tubes. The liquid flow in the grooves on the wall was found to be the most important factor in enhancing heat transfer coefficients. The liquid flowed upward along the grooves and covered the upper inside wall of the microfin tubes at G=50 kg/m2 s. When heat flux increases, the liquid flow was found at a higher position. Both liquid viscosity and surface tension decrease, when temperature increases. Thus, the lower viscosity at higher heat flux facilitated the upward motion of the liquid flow in the grooves, so that the momentum force as well as the capillary effect was found to push the liquid along the grooves.* *A CD is included with dissertation containing video clips in avi format which can be viewed with media player.

  3. Mixing enhancement strategies and their mechanisms in supersonic flows: A brief review

    NASA Astrophysics Data System (ADS)

    Huang, Wei

    2018-04-01

    Achieving efficient fuel-air mixing is a crucial issue in the design of the scramjet engine due to the compressibility effect on the mixing shear layer growth and the stringent flow residence time limitation induced by the high-speed crossflow, and the potential solution is to enhance mixing between air and fuel by introducing of streamwise vortices in the flow field. In this survey, some mixing enhancement strategies based on the traditional transverse injection technique proposed in recent years, as well as their mixing augmentation mechanisms, were reviewed in detail, namely the pulsed transverse injection scheme, the traditional transverse injection coupled with the vortex generator, and the dual transverse injection system with a front porthole and a rear air porthole arranged in tandem. The streamwise vortices, through the large-scale stirring motion that they introduce, are responsible for the extraction of large amounts of energy from the mean flow that can be converted into turbulence, ultimately leading to increased mixing effectiveness. The streamwise vortices may be obtained by taking advantage of the shear layer between a jet and the cross stream or by employing intrusive physical devices. Finally, a promising mixing enhancement strategy in supersonic flows was proposed, and some remarks were provided.

  4. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    NASA Astrophysics Data System (ADS)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  5. Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces – A Novel Method of Enhancing Flow-Resistant Cell Adhesion

    PubMed Central

    Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.

    2014-01-01

    Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491

  6. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    NASA Astrophysics Data System (ADS)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  7. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    NASA Astrophysics Data System (ADS)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  8. Quantitative fluorescence angiography for neurosurgical interventions.

    PubMed

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  9. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Min; Ku, S.; Choi, M. J.; Chang, C. S.; Hager, R.; Yoon, E. S.; Lee, H. H.; Kim, H. S.

    2018-05-01

    We perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E × B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Te -driven trapped electron modes. This implies that the enhanced E × B flow can sustain a quasi-internal transport barrier for Te in an inner region neighboring the magnetic island. The enhanced E × B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.

  10. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jae-Min; Ku, S.; Choi, M. J.

    Here, we perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E x B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Tmore » e-driven trapped electron modes. This implies that the enhanced E x B flow can sustain a quasi-internal transport barrier for T e in an inner region neighboring the magnetic island. The enhanced E x B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.« less

  11. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    DOE PAGES

    Kwon, Jae-Min; Ku, S.; Choi, M. J.; ...

    2018-05-01

    Here, we perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E x B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Tmore » e-driven trapped electron modes. This implies that the enhanced E x B flow can sustain a quasi-internal transport barrier for T e in an inner region neighboring the magnetic island. The enhanced E x B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.« less

  12. The skeletal vascular system - Breathing life into bone tissue.

    PubMed

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Modeling of Greenland outlet glaciers response to future climate change

    NASA Astrophysics Data System (ADS)

    Beckmann, J.

    2017-12-01

    Over the past two decades net mass loss from the Greenland ice sheet (GIS) quadrupled, resulting in 25% of the global mean sea level (GMSL) rise. Increased mass loss of the GIS is caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers. This speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and by increased subglacial, meltwater discharge. Yet, ice-ocean processes are not properly represented in contemporary Greenland Ice Sheet models used to project future changes in the GIS. In this work, we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional (depth- and width- integrated) ice flow model for several representative outlet glaciers in Greenland. We investigate the dynamic response of the coupled ice-flow plume model to scenarios of future climate change. In particular, we examine the transient response of the outlet glaciers to projected changes in surface melting, ocean temperature and subglacial discharge. With our modeling approach we quantify the amount of the surface and submarine melting and the resulting retreat and mass loss for each individual glacier for the next 100 years.

  14. Coherent Doppler lidar for measurements of wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Hardesty, R. Michael

    1989-01-01

    The signal-processing techniques for obtaining the velocity estimates and the fundamental factors that influence coherent lidar performance are considered. The similarities and distinctions between Doppler lidar and Doppler radars are discussed. The capability of coherent Doppler lidars for mapping wind fields over selected regions in the lower atmosphere and greatly enhancing the capability to visualize flow patterns in real time is discussed, and examples are given. Salient features of a concept for an earth-orbiting Doppler lidar to be launched in the late 1990s are examined.

  15. Simulation of nonlinear convective thixotropic liquid with Cattaneo-Christov heat flux

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Waqas, M.; Hayat, T.; Ayub, M.; Alsaedi, A.

    2018-03-01

    In this communication we utilized a modified Fourier approach featuring thermal relaxation effect in nonlinear convective flow by a vertical exponentially stretchable surface. Temperature-dependent thermal conductivity describes the heat transfer process. Thixotropic liquid is modeled. Convergent local similar solutions by homotopic approach are obtained. Graphical results for emerging parameters of interest are analyzed. Skin friction is calculated and interpreted. Consideration of larger local buoyancy and nonlinear convection parameters yields an enhancement in velocity distribution. Temperature and thermal layer thickness are reduced for larger thermal relaxation factor.

  16. Differential response of endothelial cells to simvastatin when conditioned with steady, non-reversing pulsatile or oscillating shear stress.

    PubMed

    Rossi, Joanna; Jonak, Paul; Rouleau, Leonie; Danielczak, Lisa; Tardif, Jean-Claude; Leask, Richard L

    2011-01-01

    Few studies have investigated whether fluid mechanics can impair or enhance endothelial cell response to pharmacological agents such as statin drugs. We evaluated and compared Kruppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and thrombomodulin (TM) expression in human abdominal aortic endothelial cells (HAAEC) treated with increasing simvastatin concentrations (0.1, 1 or 10 μM) under static culture and shear stress (steady, non-reversing pulsatile, and oscillating). Simvastatin, steady flow, and non-reversing pulsatile flow each separately upregulated KLF2, eNOS, and TM mRNA. At lower simvastatin concentrations (0.1 and 1 μM), the combination of statin and unidirectional steady or pulsatile flow produced an overall additive increase in mRNA levels. At higher simvastatin concentration (10 μM), a synergistic increase in eNOS and TM mRNA expression was observed. In contrast, oscillating flow impaired KLF2 and TM, but not eNOS expression by simvastatin at 1 μM. A higher simvastatin concentration of 10 μM overcame the inhibitory effect of oscillating flow. Our findings suggest that oscillating shear stress renders the endothelial cells less responsive to simvastatin than cells exposed to unidirectional steady or pulsatile flow. Consequently, the pleiotropic effects of statins in vivo may be less effective in endothelial cells exposed to atheroprone hemodynamics.

  17. A factor involved in efficient breakdown of supersonic streamwise vortices

    NASA Astrophysics Data System (ADS)

    Hiejima, Toshihiko

    2015-03-01

    Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.

  18. Flow control of an elongated jet in cross-flow: Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.

    2016-02-01

    The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.

  19. Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow

    NASA Astrophysics Data System (ADS)

    Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.

    2005-04-01

    Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.

  20. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    PubMed

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  1. Analysis of factors affecting gas exchange in intravascular blood gas exchanger.

    PubMed

    Niranjan, S C; Clark, J W; San, K Y; Zwischenberger, J B; Bidani, A

    1994-10-01

    A mathematical model of an intravascular hollow-fiber gas-exchange device, called IVOX, has been developed using a Krogh cylinder-like approach with a repeating unit structure comprised of a single fiber with gas flowing through its lumen surrounded by a coaxial cylinder of blood flowing in the opposite direction. Species mass balances on O2 and CO2 result in a nonlinear coupled set of convective-diffusion parabolic partial differential equations that are solved numerically using an alternating-direction implicit finite-difference method. Computed results indicated the presence of a large resistance to gas transport on the external (blood) side of the hollow-fiber exchanger. Increasing gas flow through the device favored CO2 removal from but not O2 addition to blood. Increasing blood flow over the device favored both CO2 removal as well as O2 addition. The rate of CO2 removal increased linearly with the transmural PCO2 gradient imposed across the device. The effect of fiber crimping on blood phase mass transfer resistance was evaluated indirectly by varying species blood diffusivity. Computed results indicated that CO2 excretion by IVOX can be significantly enhanced with improved bulk mixing of vena caval blood around the IVOX fibers.

  2. Peripheral Artery Disease and Continuous Flow Left Ventricle Assist Device: An Engaging Complement Analysis May Help to Guide Treatment.

    PubMed

    Falletta, Calogero; Pasta, Salvatore; Raffa, Giuseppe Maria; Crinò, Francesca; Sciacca, Sergio; Clemenza, Francesco

    2018-02-13

    Use of continuous flow left ventricle assist device (CF-LVAD) in advanced heart failure (HF) patients results in clinically relevant improvements in survival, functional capacity, and quality of life. Peripheral artery disease (PAD) can occur in patients with CF-LVAD due to the high rate of concomitance between risk factors for atherosclerosis and HF. Diagnosis of PAD can be difficult in the specific setting of a patient supported by this kind of device because of the marked alteration in waveform morphology and velocity created by the artificial physiology of an LVAD. We report the case of a 53-year-old man with HF secondary to ischemic cardiomyopathy supported by the HeartWare HVAD as bridge to transplant, who after the implant developed symptoms suggestive of PAD. We describe additional computational flow analysis for the study of PAD-related hemodynamic disturbances induced by a CF-LVAD. Flow simulations enhance the information of clinical image data, and may have an application in clinical investigations of the risk of hemodynamic disturbances induced by LVAD implantation. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Vasoresponsiveness of collateral vessels in the rat hindlimb: influence of training.

    PubMed

    Colleran, Patrick N; Li, Zeyi; Yang, Hsiao T; Laughlin, M Harold; Terjung, Ronald L

    2010-04-15

    Exercise training is known to be an effective means of improving functional capacity and quality of life in patients with peripheral arterial insufficiency (PAI). However, the specific training-induced physiological adaptations occurring within collateral vessels remain to be clearly defined. The purpose of this study was to determine the effect of exercise training on vasomotor properties of isolated peripheral collateral arteries. We hypothesized that daily treadmill exercise would improve the poor vasodilatory capacity of collateral arteries isolated from rats exposed to surgical occlusion of the femoral artery. Following femoral artery ligation, animals were either kept sedentary or exercise trained daily for a period of 3 weeks. Hindlimb collateral arteries were then isolated, cannulated and pressurized via hydrostatic reservoirs to an intravascular pressure of either 45 or 120 cmH(2)O. Non-occluded contralateral vessels of the sedentary animals served as normal Control. Vasodilatory responses to acetylcholine (ACh; 1 x 10(9)-1 x 10(5)m) and sodium nitroprusside (SNP; 1 x 10(9)-1 x 10(4)m), constrictor responses to phenylephrine (PE; 1 x 10(9)-1 x 10(4)m), and flow-induced vasodilatation were determined. Endothelium-mediated vasodilatation responses were significantly greater to either ACh (P < 0.02) or intravascular flow (P < 0.001) in collateral arteries of trained rats. Neither blockade of cyclooxygenase with indomethacin (Indo; 5 microm) nor blockade of endothelial nitric oxide synthase with N(G)-nitro-L-arginine methyl ester (L-NAME; 300 microm) eliminated this ACh- or flow-induced vasodilatation. The depressed vasodilatory response to SNP caused by vascular occlusion was reversed with training. These data indicate that exercise training improves endothelium-mediated vasodilatory capacity of hindlimb collateral arteries, apparently by enhanced production of the putative endothelium-derived hyperpolarizing factor(s). If these findings were applicable to patients with PAI, they could contribute to an improved collateral vessel function and enhance exercise tolerance during routine physical activity.

  4. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  5. Undulated Nozzle for Enhanced Exit Area Mixing

    NASA Technical Reports Server (NTRS)

    Seiner, John M. (Inventor); Gilinsky, Mikhail M. (Inventor)

    2000-01-01

    A nozzle having an undulating surface for enhancing the mixing of a primary flow with a secondary flow or ambient air, without requiring an ejector. The nozzle includes a nozzle structure and design for introducing counter-rotating vorticity into the primary flow either through (i) internal surface corrugations where an axisymmetric line through each corrugation is coincident with an axisymmetric line through the center of the flow passageway or (ii) through one or more sets of alternating convexities and cavities in the internal surface of the nozzle where an axisymmetric line through each convexity and cavity is coincident with an axisymmetric line through the center of the flow passageway, and where the convexities contract from the entrance end towards the exit end. Exit area mixing is also enhanced by one or more chevrons attached to the exit edge of the nozzle. The nozzle is ideally suited for application as a jet engine nozzle. When used as a jet engine nozzle, noise suppression with simultaneous thrust augmentation/minimal thrust loss is achieved.

  6. The measurement of skin lymph flow by isotope clearance--reliability, reproducibility, injection dynamics, and the effect of massage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, P.S.; Simmonds, R.; Rezvani, M.

    1990-12-01

    The measurement of skin lymph flow was investigated using an isotope clearance technique (ICT). Multiple lymph flow determinations were undertaken in the skin of anaesthetized large white pigs to test for reproducibility, ascertain the most suitable tracer, study the influence of injection dynamics, and observe the effect of massage as a stimulus to lymph flow. Blood clearance of tracer was also investigated. Results demonstrated that lymphatic clearance is a monoexponential function with good reproducibility under controlled laboratory conditions. 99mTc-colloid (TCK17 Cis) compared favorably with 131I-human serum albumin as a tracer and both performed better than colloid gold (198Au). Lymph flowmore » was significantly faster in one pig than in the other. No difference existed between left and right sides or between caudal and rostral sites on each flank, but clearance was significantly slower in thigh than flank skin. Sub-epidermal injections cleared faster and more consistently than either deep or subcutaneous injections. Neither injection volume nor needle tract backflow of tracer influenced results, but local massage significantly enhanced clearance. Escape of 99mTc-colloid by the blood was negligible. These results indicate that skin lymph flow can be reliably measured when conditions are controlled. Extrinsic factors such as massage strongly influence lymph flow. Greater sensitivity in detecting degrees of lymphatic insufficiency may be achieved if a standardized stimulus to lymph flow is administered during isotope clearance measurement.« less

  7. Numerical analysis of the hemodynamic effect of plaque ulceration in the stenotic carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Wong, Emily Y.; Milner, Jaques S.; Steinman, David A.; Poepping, Tamie L.; Holdsworth, David W.

    2009-02-01

    The presence of ulceration in carotid artery plaque is an independent risk factor for thromboembolic stroke. However, the associated pathophysiological mechanisms - in particular the mechanisms related to the local hemodynamics in the carotid artery bifurcation - are not well understood. We investigated the effect of carotid plaque ulceration on the local time-varying three-dimensional flow field using computational fluid dynamics (CFD) models of a stenosed carotid bifurcation geometry, with and without the presence of ulceration. CFD analysis of each model was performed with a spatial finite element discretization of over 150,000 quadratic tetrahedral elements and a temporal discretization of 4800 timesteps per cardiac cycle, to adequately resolve the flow field and pulsatile flow, respectively. Pulsatile flow simulations were iterated for five cardiac cycles to allow for cycle-to-cycle analysis following the damping of initial transients in the solution. Comparison between models revealed differences in flow patterns induced by flow exiting from the region of the ulcer cavity, in particular, to the shape, orientation and helicity of the high velocity jet through the stenosis. The stenotic jet in both models exhibited oscillatory motion, but produced higher levels of phase-ensembled turbulence intensity in the ulcerated model. In addition, enhanced out-of-plane recirculation and helical flow was observed in the ulcerated model. These preliminary results suggest that local fluid behaviour may contribute to the thrombogenic risk associated with plaque ulcerations in the stenotic carotid artery bifurcation.

  8. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes.

    PubMed

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-09-14

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ∼17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.

  9. Optimization of the Ion Source-Mass Spectrometry Parameters in Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals Analysis by a Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Paíga, Paula; Silva, Luís M. S.; Delerue-Matos, Cristina

    2016-10-01

    The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 22 factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal.

  10. Peace in the pipeline

    NASA Astrophysics Data System (ADS)

    Luhar, Mitul

    2018-04-01

    Turbulence in pipe flows causes substantial friction and economic losses. The solution to appease the flow through pipelines might be, counterintuitively, to initially enhance turbulent mixing and get laminar flow in return.

  11. Blob-enhanced reconstruction technique

    NASA Astrophysics Data System (ADS)

    Castrillo, Giusy; Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2016-09-01

    A method to enhance the quality of the tomographic reconstruction and, consequently, the 3D velocity measurement accuracy, is presented. The technique is based on integrating information on the objects to be reconstructed within the algebraic reconstruction process. A first guess intensity distribution is produced with a standard algebraic method, then the distribution is rebuilt as a sum of Gaussian blobs, based on location, intensity and size of agglomerates of light intensity surrounding local maxima. The blobs substitution regularizes the particle shape allowing a reduction of the particles discretization errors and of their elongation in the depth direction. The performances of the blob-enhanced reconstruction technique (BERT) are assessed with a 3D synthetic experiment. The results have been compared with those obtained by applying the standard camera simultaneous multiplicative reconstruction technique (CSMART) to the same volume. Several blob-enhanced reconstruction processes, both substituting the blobs at the end of the CSMART algorithm and during the iterations (i.e. using the blob-enhanced reconstruction as predictor for the following iterations), have been tested. The results confirm the enhancement in the velocity measurements accuracy, demonstrating a reduction of the bias error due to the ghost particles. The improvement is more remarkable at the largest tested seeding densities. Additionally, using the blobs distributions as a predictor enables further improvement of the convergence of the reconstruction algorithm, with the improvement being more considerable when substituting the blobs more than once during the process. The BERT process is also applied to multi resolution (MR) CSMART reconstructions, permitting simultaneously to achieve remarkable improvements in the flow field measurements and to benefit from the reduction in computational time due to the MR approach. Finally, BERT is also tested on experimental data, obtaining an increase of the signal-to-noise ratio in the reconstructed flow field and a higher value of the correlation factor in the velocity measurements with respect to the volume to which the particles are not replaced.

  12. Cyclic Mechanical Loading Enhances Transport of Antibodies Into Articular Cartilage.

    PubMed

    DiDomenico, Chris D; Xiang Wang, Zhen; Bonassar, Lawrence J

    2017-01-01

    The goal of this study was to characterize antibody penetration through cartilage tissue under mechanical loading. Mechanical stimulation aids in the penetration of some proteins, but this effect has not characterized molecules such as antibodies (>100 kDa), which may hold some clinical value for treating osteoarthritis (OA). For each experiment, fresh articular cartilage plugs were obtained and exposed to fluorescently labeled antibodies while under cyclic mechanical load in unconfined compression for several hours. Penetration of these antibodies was quantified using confocal microscopy, and finite element (FE) simulations were conducted to predict fluid flow patterns within loaded samples. Transport enhancement followed a linear trend with strain amplitude (0.25-5%) and a nonlinear trend with frequency (0.25-2.60 Hz), with maximum enhancement found to be at 5% cyclic strain and 1 Hz, respectively. Regions of highest enhancement of transport within the tissue were associated with the regions of highest interstitial fluid velocity, as predicted from finite-element simulations. Overall, cyclic compression-enhanced antibody transport by twofold to threefold. To our knowledge, this is the first study to test how mechanical stimulation affects the diffusion of antibodies in cartilage and suggest further study into other important factors regarding macromolecular transport.

  13. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  14. Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI.

    PubMed

    Shirzadi, Zahra; Stefanovic, Bojana; Chappell, Michael A; Ramirez, Joel; Schwindt, Graeme; Masellis, Mario; Black, Sandra E; MacIntosh, Bradley J

    2018-03-01

    To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL. ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images. ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001). These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655. © 2017 International Society for Magnetic Resonance in Medicine.

  15. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow.

    PubMed

    Zhu, Shu; Travers, Richard J; Morrissey, James H; Diamond, Scott L

    2015-09-17

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) -bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm(2). Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm(2) and sensitive to O1A6 at 0 to 0.2 molecules per µm(2). However, neither antibody reduced fibrin generation at ∼2 molecules per µm(2) when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm(2)) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. © 2015 by The American Society of Hematology.

  16. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    NASA Astrophysics Data System (ADS)

    Xie, Huaqing; Li, Yang; Yu, Wei

    2010-05-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  17. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited.

  18. Internal cycle modeling and environmental assessment of multiple cycle consumer products.

    PubMed

    Tsiliyannis, C A

    2012-01-01

    Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Ping; Zhang Qing; Torossian, Artour

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used tomore » investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have important therapeutic implication in the treatment of a subset of breast cancer patients with high expression of EGFR and deficient function of PTEN.« less

  20. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  1. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers

    PubMed Central

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-01-01

    Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. PMID:27594649

  2. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers.

    PubMed

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-11-01

    Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuousmore » TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.« less

  4. ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells

    PubMed Central

    Towfik, Alam Mohammad; Akiyama, Kosuke; Ohga, Noritaka; Shindoh, Masanobu; Hida, Yasuhiro; Minowa, Kazuyuki; Fujisawa, Toshiaki; Hida, Kyoko

    2017-01-01

    Reactive oxygen species (ROS) are unstable molecules that activate oxidative stress. Because of the insufficient blood flow in tumors, the tumor microenvironment is often exposed to hypoxic condition and nutrient deprivation, which induces ROS accumulation. We isolated tumor endothelial cells (TECs) and found that they have various abnormalities, although the underlying mechanisms are not fully understood. Here we showed that ROS were accumulated in tumor blood vessels and ROS enhanced TEC migration with upregulation of several angiogenesis related gene expressions. It was also demonstrated that these genes were upregulated by regulation of Nuclear factor erythroid 2-related factor 2 (NRF2). Among these genes, we focused on Biglycan, a small leucine-rich proteoglycan. Inhibition of Toll-like receptors 2 and 4, known BIGLYCAN (BGN) receptors, cancelled the TEC motility stimulated by ROS. ROS inhibited NRF2 expression in TECs but not in NECs, and NRF2 inhibited phosphorylation of SMAD2/3, which activates transcription of BGN. These results indicated that ROS-induced BGN caused the pro-angiogenic phenotype in TECs via NRF2 dysregulation. PMID:28525375

  5. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  6. NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs.

    PubMed

    Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L

    2018-05-01

    Luminal flow augments Na + reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na + , playing a key role in its homeostasis. Whether flow elevations enhance Na + -K + -2Cl - cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.

  7. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    PubMed

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  8. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F. J.; Forsberg, René; Matsuoka, Kenichi; Olesen, Arne V.; Casal, Tania G.

    2018-05-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the "bottleneck" zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.

  9. Gas-Liquid Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; Motil, Brian J.; McCready, Mark J.; Kamotani, Yasuhiro

    2004-01-01

    Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).

  10. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.

    PubMed

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-12-15

    Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.

  11. Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration.

    PubMed

    Zhou, Yalei; Yan, Zhiwei; Zhang, Hongmei; Lu, Wei; Liu, Shiyu; Huang, Xinhui; Luo, Hailang; Jin, Yan

    2011-12-01

    Cell/microcarrier combinations can be injected to repair tissue defects, but whether currently available microcarriers can be utilized to repair different tissue defects remains unknown. Here, we compared the suitability of fabricated micronized acellular dermal matrix (MADM), micronized small intestinal submucosa (MSIS), and gelatin microspheres as expansion and delivery scaffolds for adipose-derived mesenchymal stem cells (ADSCs). The results of MTS assay, scanning electron microscopy (SEM), and flow cytometry suggested that the three microcarriers all have good biocompatibility. Quantitative polymerase chain reaction revealed enhanced epidermal growth factor, vascular endothelial growth factor, basal fibroblast growth factor, and transforming growth factor-β expression levels after ADSCs had been cultured on MADM or MSIS for 5 days. After culturing ADSCs on microcarriers in osteogenic medium for 7 days, the expression levels of bone formation-related genes were enhanced. ADSC/microcarrier treatment accelerated wound closure. The ADSC/MADM and ADSC/MSIS combinations retained more of the original implant volume at 1 month postimplantation than ADSC/gelatin microspheres combination in soft-tissue augmentation studies. All implants displayed fibroblast and capillary vessel infiltrations; but ectopic bone formation did not occur, and the calvarial defect repair results were unfavorable. Our study demonstrates the potential utility of these microcarriers not only as a cell-culture substrate but also as a cell-transplantation vehicle for skin regeneration and soft-tissue reconstruction.

  12. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  13. Hierarchical and coupling model of factors influencing vessel traffic flow.

    PubMed

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  14. Hierarchical and coupling model of factors influencing vessel traffic flow

    PubMed Central

    Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system. PMID:28414747

  15. Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows

    NASA Astrophysics Data System (ADS)

    Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong

    2017-10-01

    The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.

  16. Fine-grained linings of leveed channels facilitate runout of granular flows

    NASA Astrophysics Data System (ADS)

    Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.

  17. Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices.

    PubMed

    Yeh, Shih-Hao; Chou, Kuang-Hua; Yang, Ruey-Jen

    2016-03-07

    The lack of sensitivity is a major problem among microfluidic paper-based analytical devices (μPADs) for early disease detection and diagnosis. Accordingly, the present study presents a method for improving the enrichment factor of low-concentration biomarkers by using shallow paper-based channels realized through a double-sided wax-printing process. In addition, the enrichment factor is further enhanced by exploiting the ion concentration polarization (ICP) effect on the cathodic side of the nanoporous membrane, in which a stationary sample plug is obtained. The occurrence of ICP on the shallow-channel μPAD is confirmed by measuring the current-voltage response as the external voltage is increased from 0 to 210 V (or the field strength from 0 to 1.05 × 10(4) V m(-1)) over 600 s. In addition, to the best of our knowledge, the electroosmotic flow (EOF) speed on the μPAD fabricated with a wax-channel is measured for the first time using a current monitoring method. The experimental results show that for a fluorescein sample, the concentration factor is increased from 130-fold in a conventional full-thickness paper channel to 944-fold in the proposed shallow channel. Furthermore, for a fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) sample, the proposed shallow-channel μPAD achieves an 835-fold improvement in the concentration factor. The concentration technique presented here provides a novel strategy for enhancing the detection sensitivity of μPAD applications.

  18. Decoy receptor 3 suppresses RANKL-induced osteoclastogenesis via down-regulating NFATc1 and enhancing cell apoptosis.

    PubMed

    Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming

    2013-04-01

    Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.

  19. Methods to Enhance Laser Speckle Imaging of High-Flow and Low-Flow Vasculature

    PubMed Central

    Choi, Bernard; Ringold, Tyson L.; Kim, Jeehyun

    2012-01-01

    The objective of this paper is to present two methods to extend the response range of laser speckle imaging (LSI). We report on the use of two methods (image exposure time control and magnetomotive actuation of exogenous contrast agents) to enhance characterization of high- and low-flow vasculature, respectively. With an exposure time of 10 and 0.01 ms, the linear response range extended to 10 and 280 mm/s, respectively. With application of an AC magnetic field to a solution of stagnant SPIO particles, an apparent increase of ~3× in speckle flow index was induced. PMID:19964103

  20. Non-contrast-enhanced MR portography with balanced steady-state free-precession sequence and time-spatial labeling inversion pulses: comparison of imaging with flow-in and flow-out methods.

    PubMed

    Furuta, Akihiro; Isoda, Hiroyoshi; Yamashita, Rikiya; Ohno, Tsuyoshi; Kawahara, Seiya; Shimizu, Hironori; Fujimoto, Koji; Kido, Aki; Kusahara, Hiroshi; Togashi, Kaori

    2014-09-01

    To compare and evaluate images of non-contrast-enhanced MR portography acquired with two different methods, the flow-in and flow-out methods. Twenty-five healthy volunteers were examined using respiratory-triggered three-dimensional balanced steady-state free-precession (SSFP) with two selective inversion recovery pulses (flow-in method) and one tagging pulse and one nonselective inversion recovery pulse (flow-out method). For quantitative analysis, vessel-to-liver contrast (Cv-l) ratios of the main portal vein (MPV), right portal vein (RPV), and left portal vein (LPV) were measured. The quality of portal vein visualization was scored using a four-point scale. The Cv-ls of the MPV, RPV, and LPV were all significantly higher with the flow-out than flow-in method (MPV = 0.834 ± 0.06 versus 0.711 ± 0.10; RPV = 0.861 ± 0.04 versus 0.729 ± 0.11; LPV = 0.786 ± 0.08 versus 0.545 ± 0.22; P < 0.0001). In all analyses of vessel visibility, non-contrast-enhanced MR portography with the flow-out method showed higher scores than with the flow-in method. With the flow-out method, visual scores of the MPV, RPV, portal vein branches of segments 4 (P4), and 8 (P8) were significantly better than with the flow-in method (MPV = 3.4 ± 0.7 versus 2.6 ± 0.9; RPV = 4.0 ± 0.0 versus 3.5 ± 0.9; P4 = 2.8 ± 1.3 versus 1.6 ± 1.0; P8 = 4.0 ± 0.0 versus 2.9 ± 1.1; P < 0.05). Non-contrast-enhanced MR portography with the flow-out method improves the visualization of the intrahepatic portal vein in comparison with the flow-in method. J. Magn. Reson. Imaging 2014;40:583-587. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  1. A mathematical model for the iron/chromium redox battery

    NASA Technical Reports Server (NTRS)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  2. Nanoparticle-mediated delivery of pioglitazone enhances therapeutic neovascularization in a murine model of hindlimb ischemia.

    PubMed

    Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke

    2012-10-01

    Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery disease with critical limb ischemia.

  3. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.; Paris, Mark W.

    2017-03-01

    We calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energy spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. We analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.

  4. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale

    1996-01-01

    An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  5. Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1996-01-01

    An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  6. 2011 and 2012 Early Careers Achievement Awards: Placental programming: how the maternal environment can impact placental function.

    PubMed

    Vonnahme, K A; Lemley, C O; Shukla, P; O'Rourke, S T

    2013-06-01

    Proper establishment of the placenta is important for fetal survival; however, placental adaptations to inadequate maternal nutrition or other stressors are imperative for fetal growth to be optimal. The effects of maternal nutritional status and activity level on placental vascular function and uteroplacental blood flows are important to understand as improper placental function leads to reduced growth of the fetus. In environments where fetal growth can be compromised, potential therapeutics may augment placental function and delivery of nutrients to improve offspring performance during postnatal life. Factors that could enhance placental function include supplementation of specific nutrients, such as protein, hormone supplements, such as indolamines, and increased activity levels of the dam. To understand the mechanism of how the maternal environment can impact uterine or umbilical blood flows, assessment of placental vascular reactivity has been studied in several large animal models. As we begin to understand how the maternal environment impacts uterine and umbilical blood flows and other uteroplacental hemodynamic parameters, development of management methods and therapeutics for proper fetal growth can be achieved.

  7. Predictive model for convective flows induced by surface reactivity contrast

    NASA Astrophysics Data System (ADS)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  8. A Two-Dimensional Numerical Investigation of Transport of Malaria-Infected Red Blood Cells in Stenotic Microchannels

    PubMed Central

    Tao, Yong; Rongin, Uwitije; Xing, Zhongwen

    2016-01-01

    The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological properties of human red blood cells and related malaria disease state by investigating the transport of multiple red blood cell aggregates passing through microchannels with symmetric stenosis. Effects of stenosis magnitude, aggregation strength, and cell deformability on cell rheology and flow characteristics were studied by a two-dimensional model using the fictitious domain-immersed boundary method. The results indicated that the motion and dissociation of red blood cell aggregates were influenced by these factors and the flow resistance increases with the increase of aggregating strength and cell stiffness. Further, the roughness of the velocity profile was enhanced by cell aggregation, which considerably affected the blood flow characteristics. The study may assist us in understanding cellular-level mechanisms in disease development. PMID:28105411

  9. Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium.

    PubMed

    Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela

    2016-11-10

    Gene therapy is a promising approach for chronic disorders that require continuous treatment such as cardiovascular disease. Overexpression of vasoprotective genes has generated encouraging results in animal models, but not in clinical trials. One major problem in humans is the delivery of sufficient amounts of genetic vectors to the endothelium which is impeded by blood flow, whereas prolonged stop-flow conditions impose the risk of ischemia. In the current study we have therefore developed a strategy for the efficient circumferential lentiviral gene transfer in the native endothelium under constant flow conditions. For that purpose we perfused vessels that were exposed to specially designed magnetic fields with complexes of lentivirus and magnetic nanoparticles thereby enabling overexpression of therapeutic genes such as endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). This treatment enhanced NO and VEGF production in the transduced endothelium and resulted in a reduction of vascular tone and increased angiogenesis. Thus, the combination of MNPs with magnetic fields is an innovative strategy for site-specific and efficient vascular gene therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Shape of the human nasal cavity promotes retronasal smell

    NASA Astrophysics Data System (ADS)

    Trastour, Sophie; Melchionna, Simone; Mishra, Shruti; Zwicker, David; Lieberman, Daniel E.; Kaxiras, Efthimios; Brenner, Michael P.

    2015-11-01

    Humans are exceptionally good at perceiving the flavor of food. Flavor includes sensory input from taste receptors but is dominated by olfactory (smell) receptors. To smell food while eating, odors must be transported to the nasal cavity during exhalation. Olfactory performance of this retronasal route depends, among other factors, on the position of the olfactory receptors and the shape of the nasal cavity. One biological hypothesis is that the derived configuration of the human nasal cavity has resulted in a greater capacity for retronasal smell, hence enhanced flavor perception. We here study the air flow and resulting odor deposition as a function of the nasal geometry and the parameters of exhalation. We perform computational fluid dynamics simulations in realistic geometries obtained from CT scans of humans. Using the resulting flow fields, we then study the deposition of tracer particles in the nasal cavity. Additionally, we derive scaling laws for the odor deposition rate as a function of flow parameters and geometry using boundary layer theory. These results allow us to assess which changes in the evolution of the human nose led to significant improvements of retronasal smell.

  11. Fine-grained linings of leveed channels facilitate runout of granular flows

    USGS Publications Warehouse

    Kokelaar, B.P.; Graham, R. L.; Gray, J.M.N.T.; Vallance, James W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300–425 μm) mixed with spherical fine ballotini (150–250 μm), on rough slopes of 27–29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30–40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow–substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.

  12. Method and system for gas flow mitigation of molecular contamination of optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less

  13. Enhancement of heat transfer rate on phase change materials with thermocapillary flows

    NASA Astrophysics Data System (ADS)

    Madruga, Santiago; Mendoza, Carolina

    2017-04-01

    We carry out simulations of the melting process on the phase change material n-octadecane in squared geometries in the presence of natural convection and including thermocapillary effects. We show how the introduction of thermocapillary effects enhances the heat transfer rate, being the effect especially relevant for small Bond numbers. Thus induction of Marangoni flows results in a useful mechanism to enhance the typical slow heat transfer rate of paraffin waxes in applications of energy storage or passive control management.

  14. Matrix-specific protein kinase A signaling regulates p21 activated kinase activation by flow in endothelial cells

    PubMed Central

    Funk, Steven Daniel; Yurdagul, Arif; Green, Jonette M.; Jhaveri, Krishna A.; Schwartz, Martin Alexander; Orr, A. Wayne

    2010-01-01

    Rationale Atherosclerosis is initiated by blood flow patterns that activate inflammatory pathways in endothelial cells. Activation of inflammatory signaling by fluid shear stress is highly dependent on the composition of the subendothelial extracellular matrix. The basement membrane proteins laminin and collagen found in normal vessels suppress flow-induced p21 activated kinase (PAK) and NF-κB activation. By contrast, the provisional matrix proteins fibronectin and fibrinogen found in wounded or inflamed vessels support flow-induced PAK and NF-κB activation. PAK mediates both flow-induced permeability and matrix-specific activation of NF-κB. Objective To elucidate the mechanisms regulating matrix-specific PAK activation. Methods and Results We now show that matrix composition does not affect the upstream pathway by which flow activates PAK (integrin activation, Rac). Instead basement membrane proteins enhance flow-induced protein kinase A (PKA) activation, which suppresses PAK. Inhibiting PKA restored flow-induced PAK and NF-κB activation in cells on basement membrane proteins, whereas stimulating PKA inhibited flow-induced activation of inflammatory signaling in cells on fibronectin. PKA suppressed inflammatory signaling through PAK inhibition. Activating PKA by injection of the PGI2 analog iloprost reduced PAK activation and inflammatory gene expression at sites of disturbed flow in vivo, whereas inhibiting PKA by PKI injection enhanced PAK activation and inflammatory gene expression. Inhibiting PAK prevented the enhancement of inflammatory gene expression by PKI. Conclusions Basement membrane proteins inhibit inflammatory signaling in endothelial cells via PKA-dependent inhibition of PAK. PMID:20224042

  15. Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide

    NASA Astrophysics Data System (ADS)

    Meisl, Georg; Yang, Xiaoting; Frohm, Birgitta; Knowles, Tuomas P. J.; Linse, Sara

    2016-01-01

    Disease related mutations and environmental factors are key determinants of the aggregation mechanism of the amyloid-β peptide implicated in Alzheimer's disease. Here we present an approach to investigate these factors through acquisition of highly reproducible data and global kinetic analysis to determine the mechanistic influence of intrinsic and extrinsic factors on the Aβ aggregation network. This allows us to translate the shift in macroscopic aggregation behaviour into effects on the individual underlying microscopic steps. We apply this work-flow to the disease-associated Aβ42-A2V variant, and to a variation in pH as examples of an intrinsic and an extrinsic perturbation. In both cases, our data reveal a shift towards a mechanism in which a larger fraction of the reactive flux goes via a pathway that generates potentially toxic oligomeric species in a fibril-catalyzed reaction. This is in agreement with the finding that Aβ42-A2V leads to early-onset Alzheimer’s disease and enhances neurotoxicity.

  16. Abundance Variations and Flows in Plage Regions Observed with CDS/SOHO

    NASA Astrophysics Data System (ADS)

    Rank, G.; Bagalá, L. G.; Czaykowska, A.; Haerendel, G.

    1999-10-01

    We present results from CDS/SOHO observations of the spotless active region NOAA-8208, obtained on 28th April 1998 near disk center. MDI images show a bipolar magnetic configuration. The regions of enhanced He I emission correspond to the areas with strong magnetic flux and also with bright plage areas seen in Ca II and H-alpha images. A high correlation is found between intensity maps of the transition region lines He I (logTmax = 4.3), O III (logTmax = 5.0), and O V (logTmax = 5.4). The line-of-sight velocities of He I reveal a strong downflow in the plage areas. Further, the line-of-sight velocities of He I, O III, and O V are well correlated, showing that the downflow pattern exists up to temperatures of about 0.25 MK. At higher temperatures (Mg VIII at logTmax = 5.8) this flow is not detected, suggesting that material streams into the plage region from sideways in the high transition region. Maps of the electron density in the transition region have been constructed from several line ratios yielding densities of about 9.0 cm-3 in the plage regions, about dex 0.5 cm-3 higher compared to the surrounding. To study the spatial variation of the first ionization potential (FIP) effect, the abundance ratio has been mapped for the ion ratio MgVI/NeVI. The ratio is highly variable on spatial scales down to a few arcsec from photospheric values to enhancements of a factor of 10. The strongest FIP enhancements are not correlated with transition region line emission, but are found outside of the plage regions. Some areas of strong FIP enhancement appear stretched and elongated, suggesting that the material is confined in loop-like structures.

  17. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  18. Endogenous flow-induced superoxide stimulates Na/H exchange activity via PKC in thick ascending limbs

    PubMed Central

    Garvin, Jeffrey L.

    2014-01-01

    Luminal flow stimulates Na reabsorption along the nephron and activates protein kinase C (PKC) which enhances endogenous superoxide (O2−) production by thick ascending limbs (TALs). Exogenously-added O2− augments TAL Na reabsorption, a process also dependent on PKC. Luminal Na/H exchange (NHE) mediates NaHCO3 reabsorption. However, whether flow-stimulated, endogenously-produced O2− enhances luminal NHE activity and the signaling pathway involved are unclear. We hypothesized that flow-induced production of endogenous O2− stimulates luminal NHE activity via PKC in TALs. Intracellular pH recovery was measured as an indicator of NHE activity in isolated, perfused rat TALs. Increasing luminal flow from 5 to 20 nl/min enhanced total NHE activity from 0.104 ± 0.031 to 0.167 ± 0.036 pH U/min, 81%. The O2− scavenger tempol decreased total NHE activity by 0.066 ± 0.011 pH U/min at 20 nl/min but had no significant effect at 5 nl/min. With the NHE inhibitor EIPA in the bath to block basolateral NHE, tempol reduced flow-enhanced luminal NHE activity by 0.029 ± 0.010 pH U/min, 30%. When experiments were repeated with staurosporine, a nonselective PKC inhibitor, tempol had no effect. Because PKC could mediate both induction of O2− by flow and the effect of O2− on luminal NHE activity, we used hypoxanthine/xanthine oxidase to elevate O2−. Hypoxanthine/xanthine oxidase increased luminal NHE activity by 0.099 ± 0.020 pH U/min, 137%. Staurosporine and the PKCα/β1-specific inhibitor Gö6976 blunted this effect. We conclude that flow-induced O2− stimulates luminal NHE activity in TALs via PKCα/β1. This accounts for part of flow-stimulated bicarbonate reabsorption by TALs. PMID:25080525

  19. Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.

    PubMed

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2017-01-01

    The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.

  20. Cooling of a microchannel with thin evaporating liquid film sheared by dry gas flow

    NASA Astrophysics Data System (ADS)

    Kabova, Yu O.; Kuznetsov, V. V.

    2017-11-01

    A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase, taking into account the evaporation process. Major factors affecting the temperature distribution in the liquid and the gas phases are as follows: transfer of heat by liquid and gas flows, heat loses due to evaporation, diffusion heat exchange. Comparisons of the numerical results for the case of the dry gas and for the case of equilibrium concentration of vapor in the gas have been carried out. It is shown that use of dry gas enhances the heat dissipation from the heater. It is found out that not only intense evaporation occurs near the heating areas, but also in both cases vapor condensation takes place below the heater in streamwise direction.

  1. Simulation of Bioleaching Heat Effects for Enhancement of Copper Recovery from Sarcheshmeh Chalcopyrite

    NASA Astrophysics Data System (ADS)

    Mahmoudian, Ali Reza; Sadrnezhaad, S. K.; Manafi, Zahra

    2014-08-01

    A heat-transfer model was formulated to determine the distribution of temperature within a bioheap of chalcopyrite of Sarcheshmeh copper mine. Bioleaching employs mixed mesophilic and thermophilic microbes for Cu extraction. Thermophiles are better than mesophiles to dissolve CuFeS2. The solution irrigation and aeration rates were taken into account as the main operational factors. The model was validated by comparing the temperature profiles of test columns with those of bioheap. The model was used to find the optimal ratio of irrigation to aeration. It was found that when the solution was fed at a flow rate of 5 kg/m2 h and air was blown at a flow rate of 7.5 kg/m2 h, the transition from a mesophilic to thermophilic state inside the heap was possible. In this situation, the maximum temperature rise inside the heap was about 332 K (59 °C) after 60 days.

  2. Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H

    2011-02-25

    Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society

  3. Assessing Marine Microbial Induced Corrosion at Santa Catalina Island, California

    PubMed Central

    Ramírez, Gustavo A.; Hoffman, Colleen L.; Lee, Michael D.; Lesniewski, Ryan A.; Barco, Roman A.; Garber, Arkadiy; Toner, Brandy M.; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    High iron and eutrophic conditions are reported as environmental factors leading to accelerated low-water corrosion, an enhanced form of near-shore microbial induced corrosion. To explore this hypothesis, we deployed flow-through colonization systems in laboratory-based aquarium tanks under a continuous flow of surface seawater from Santa Catalina Island, CA, USA, for periods of 2 and 6 months. Substrates consisted of mild steel – a major constituent of maritime infrastructure – and the naturally occurring iron sulfide mineral pyrite. Four conditions were tested: free-venting “high-flux” conditions; a “stagnant” condition; an “active” flow-through condition with seawater slowly pumped over the substrates; and an “enrichment” condition where the slow pumping of seawater was supplemented with nutrient rich medium. Electron microscopy analyses of the 2-month high flux incubations document coating of substrates with “twisted stalks,” resembling iron oxyhydroxide bioprecipitates made by marine neutrophilic Fe-oxidizing bacteria (FeOB). Six-month incubations exhibit increased biofilm and substrate corrosion in the active flow and nutrient enriched conditions relative to the stagnant condition. A scarcity of twisted stalks was observed for all 6 month slow-flow conditions compared to the high-flux condition, which may be attributable to oxygen concentrations in the slow-flux conditions being prohibitively low for sustained growth of stalk-producing bacteria. All substrates developed microbial communities reflective of the original seawater input, as based on 16S rRNA gene sequencing. Deltaproteobacteria sequences increased in relative abundance in the active flow and nutrient enrichment conditions, whereas Gammaproteobacteria sequences were relatively more abundant in the stagnant condition. These results indicate that (i) high-flux incubations with higher oxygen availability favor the development of biofilms with twisted stalks resembling those of marine neutrophilic FeOB and (ii) long-term nutrient stimulation results in substrate corrosion and biofilms with different bacterial community composition and structure relative to stagnant and non-nutritionally enhanced incubations. Similar microbial succession scenarios, involving increases in nutritional input leading to the proliferation of anaerobic iron and sulfur-cycling guilds, may occur at the nearby Port of Los Angeles and cause potential damage to maritime port infrastructure. PMID:27826293

  4. Enhancements to the KATE model-based reasoning system

    NASA Technical Reports Server (NTRS)

    Thomas, Stan J.

    1994-01-01

    KATE (Knowledge-based Autonomous Test Engineer) is a model-based software system developed in the Artificial Intelligence Laboratory at the Kennedy Space Center for monitoring, fault detection, and control of launch vehicles and ground support systems. This report describes two software efforts which enhance the functionality and usability of KATE. The first addition, a flow solver, adds to KATE a tool for modeling the flow of liquid in a pipe system. The second addition adds support for editing KATE knowledge base files to the Emacs editor. The body of this report discusses design and implementation issues having to do with these two tools. It will be useful to anyone maintaining or extending either the flow solver or the editor enhancements.

  5. Yoga Enhances Positive Psychological States In Young Adult Musicians

    PubMed Central

    Butzer, Bethany; Ahmed, Khalique; Khalsa, Sat Bir S.

    2016-01-01

    Although yoga has been shown to be a viable technique for improving the performance of the mind and body, little attention has been directed to studying the relationship between yoga and the psychological states of flow and mindfulness. Musicians enrolled in a 2-month fellowship program in 2005, 2006 and 2007 were invited to participate in a yoga and meditation program. Fellows not participating in the yoga program were recruited separately as controls. All participants completed baseline and end-program questionnaires evaluating dispositional flow, mindfulness, confusion, and music performance anxiety. Compared to controls, yoga participants reported significant decreases in confusion and increases in dispositional flow. Yoga participants in the 2006 sample also reported significant increases in the mindfulness subscale of awareness. Correlational analyses revealed that increases in participants' dispositional flow and mindfulness scores were associated with decreases in confusion and music performance anxiety. This study demonstrates the commonalities between positive psychology and yoga, both of which are focused on enhancing human performance and promoting beneficial psychological states. The results suggest that yoga and meditation may enhance the states of flow and mindful awareness, and reduce confusion. PMID:26721471

  6. Yoga Enhances Positive Psychological States in Young Adult Musicians.

    PubMed

    Butzer, Bethany; Ahmed, Khalique; Khalsa, Sat Bir S

    2016-06-01

    Although yoga has been shown to be a viable technique for improving the performance of the mind and body, little attention has been directed to studying the relationship between yoga and the psychological states of flow and mindfulness. Musicians enrolled in a 2-month fellowship program in 2005, 2006 and 2007 were invited to participate in a yoga and meditation program. Fellows not participating in the yoga program were recruited separately as controls. All participants completed baseline and end-program questionnaires evaluating dispositional flow, mindfulness, confusion, and music performance anxiety. Compared to controls, yoga participants reported significant decreases in confusion and increases in dispositional flow. Yoga participants in the 2006 sample also reported significant increases in the mindfulness subscale of awareness. Correlational analyses revealed that increases in participants' dispositional flow and mindfulness were associated with decreases in confusion and music performance anxiety. This study demonstrates the commonalities between positive psychology and yoga, both of which are focused on enhancing human performance and promoting beneficial psychological states. The results suggest that yoga and meditation may enhance the states of flow and mindful awareness, and reduce confusion.

  7. Winter-spring 2001 United States streamflow probabilities based on anticipated neutral ENSO conditions and recent NPO status

    USGS Publications Warehouse

    Dettinger, M.D.; Cayan, D.R.; McCabe, G.J.; Redmond, K.T.

    2000-01-01

    An analysis of historical floods and seasonal streamflows during years with neutral El NiñoSouthern Oscillation (ENSO) conditions in the tropical Pacific and “negative” states of the North Pacific Oscillation (NPO) in the North Pacific—like those expected next year—indicates that (1) chances of having maximum-daily flows next year that are near the longterm averages in many rivers are enhanced, especially in the western states, (2) chances of having near-average seasonal-average flows also may be enhanced across the country, and (3) locally, chances of large floods and winter-season flows may be enhanced in the extreme Northwest, chances of large winter flows may be diminished in rivers in and around Wisconsin, and chances of large spring flows may be diminished in the interior southwest and southeastern coastal plain. The background, methods, and forecast results that lead to these statements are detailed below, followed by a summary of the successes and failures of last year’s streamflow forecast by Dettinger et al. (1999).

  8. Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena

    2012-04-01

    The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.

  9. Computational analysis of stall and separation control in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Stein, Alexander

    2000-10-01

    A numerical technique for simulating unsteady viscous fluid flow in turbomachinery components has been developed. In this technique, the three-dimensional form of the Reynolds averaged Navier-Stokes equations is solved in a time-accurate manner. The flow solver is used to study fluid dynamic phenomena that lead to instabilities in centrifugal compressors. The results indicate that large flow incidence angles, at reduced flow rates, can cause boundary layer separation near the blade leading edge. This mechanism is identified as the primary factor in the stall inception process. High-pressure jets upstream of the compressor face are studied as a means of controlling compressor instabilities. Steady jets are found to alter the leading edge flow pattern and effectively suppress compressor instabilities. Yawed jets are more effective than parallel jets and an optimum yaw angle exists for each compression system. Numerical simulations utilizing pulsed jets have also been done. Pulsed jets are found to yield additional performance enhancements and lead to a reduction in external air requirements for operating the jets. Jets pulsed at higher frequencies perform better than low-frequency jets. These findings suggest that air injection is a viable means of alleviating compressor instabilities and could impact gas turbine technology. Results concerning the optimization of practical air injection systems and implications for future research are discussed. The flow solver developed in this work, along with the postprocessing tools developed to interpret the results, provide a rational framework for analyzing and controlling current and next generation compression systems.

  10. Enhancement of elliptic flow can signal a first-order phase transition in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nara, Yasushi; Niemi, Harri; Ohnishi, Akira; Steinheimer, Jan; Luo, Xiaofeng; Stöcker, Horst

    2018-02-01

    The beam energy dependence of the elliptic flow, v2, is studied in mid-central Au+Au collisions in the energy range of 3≤ √{s_{NN}} ≤ 30 GeV within the microscopic transport model JAM. The results of three different modes of JAM are compared; cascade-, hadronic mean field-, and a new mode with modified equations of state, with a first-order phase transition and with a crossover transition. The standard hadronic mean field suppresses the elliptic flow v2, while the inclusion of the effects of a first-order phase transition (and also of a crossover transition) does enhance the elliptic flow at √{s_{NN}} < 30 GeV. This is due to the high sensitivity of v2 on the early, compression stage, pressure gradients of the systems created in high-energy heavy-ion collisions. The enhancement or suppression of the scaled energy flow, dubbed "elliptic flow", v2= <(px2-py2)/pT2 >, is understood as being due to out-of-plane flow, py > px, i.e. v2 < 0, dubbed out of plane - "squeeze-out", which occurs predominantly in the early, compression stage. Subsequently, the in-plane flow dominates, px > py, in the expansion stage, v2 > 0. The directed flow, v1(y) = < px(y)/pT(y)>, dubbed "bounce-off", is an independent measure of the pressure, which quickly builds up the transverse momentum transfer in the reaction plane. When the spectator matter leaves the participant fireball region, where the highest compression occurs, a hard expansion leads to larger v2. A combined analysis of the three transverse flow coefficients, radial v0 ˜ v_{\\perp}-, directed v1- and elliptic v2- flow of nucleons, in the beam energy range 3≤√{s_{NN}} ≤ 10 GeV, distinguishes the different compression and expansion scenarios: a characteristic dependence on the early stage equation of state is observed. The enhancement of both the elliptic and the transverse radial flow and the simultaneous collapse of the directed flow of nucleons offers a clear signature if a first-order phase transition is realized at the highest baryon densities created in high-energy heavy-ion collisions.

  11. Friction factors of colloidal suspension containing silicon dioxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Tang, Clement; Pant, Sarbottam; Sharif, Md. Tanveer

    2015-11-01

    The purpose of this study is to experimentally characterize the friction factor of a colloidal suspension flow in circular and square tubes. The suspension contained silicon dioxide nanoparticles dispersed in distilled water at 9.58% volume concentration. Rheological measurements indicated that the suspension exhibits non-Newtonian behavior, and could be modelled as a power-law generalized Newtonian fluid. The experimental study showed that, with proper characterization of the consistency and flow behavior indices, the suspension flow friction factors in circular and square tubes exhibit similarities with those of Newtonian fluid flow. In the laminar fully-developed flow region, the Poiseuille numbers are similar to those established for Newtonian fluid flow. In the turbulent region, the Dodge and Metzner relation between the friction factor and a generalized Reynolds number can adequately describe the flow. The onsets of transition to turbulent flow for the suspension vary with the shape of the tube and differ from those of Newtonian fluid flow. The deviations suggest that the flow passage shape and the presence of nanoparticles affect the onset of transition to turbulent flow. Supported by North Dakota NASA EPSCoR.

  12. Calculations of steady and transient channel flows with a time-accurate L-U factorization scheme

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    Calculations of steady and unsteady, transonic, turbulent channel flows with a time accurate, lower-upper (L-U) factorization scheme are presented. The L-U factorization scheme is formally second-order accurate in time and space, and it is an extension of the steady state flow solver (RPLUS) used extensively to solve compressible flows. A time discretization method and the implementation of a consistent boundary condition specific to the L-U factorization scheme are also presented. The turbulence is described by the Baldwin-Lomax algebraic turbulence model. The present L-U scheme yields stable numerical results with the use of much smaller artificial dissipations than those used in the previous steady flow solver for steady and unsteady channel flows. The capability to solve time dependent flows is shown by solving very weakly excited and strongly excited, forced oscillatory, channel flows.

  13. Leading-Edge Votex-System Details Obtained on F-106B Aircraft Using a Rotating Vapor Screen and Surface Techniques

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Brandon, Jay; Stacy, Kathryn; Johnson, Thomas D., Jr.; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A flight research program to study the flow structure and separated-flow origins over an F-106B aircraft wing is described. The flight parameters presented include Mach numbers from 0.26 to 0.81, angles of attack from 8.5 deg to 22.5 deg, Reynolds numbers from 22.6 x 10(exp 6) to 57.3 x 10(exp 6) and load factors from 0.9 to 3.9 times the acceleration due to gravity. Techniques for vapor screens, image enhancement, photogrammetry, and computer graphics are integrated to analyze vortex-flow systems. Emphasis is placed on the development and application of the techniques. The spatial location of vortex cores and their tracks over the wing are derived from the analysis. Multiple vortices are observed and are likely attributed to small surface distortions in the wing leading-edge region. A major thrust is to correlate locations of reattachment lines obtained from the off-surface (vapor-screen) observations with those obtained from on-surface oil-flow patterns and pressure-port data. Applying vapor-screen image data to approximate reattachment lines is experimental, but depending on the angle of attack, the agreement with oil-flow results is generally good. Although surface pressure-port data are limited, the vapor-screen data indicate reattachment point occurrences consistent with the available data.

  14. Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA

    USGS Publications Warehouse

    Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.

    2016-01-01

    We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands

  15. A generalised model of secondary circulation for a wide range of geophysical flows from direct observations of natural turbidity currents

    NASA Astrophysics Data System (ADS)

    Azpiroz, M.; Cartigny, M.; Sumner, E. J.; Talling, P.; Parsons, D. R.; Clare, M. A.; Cooper, C.

    2017-12-01

    Turbidity currents transport sediment through submarine channel systems for hundreds of kilometres to form vast deposits of sediment in the deep sea called submarine fans. The largest submarine fans are fed by meandering channels suggesting that bends may enhance sediment transport distances. The interaction between meander bends and turbidity currents has been a topic of intense debate. Due to the absence of observations of deep-sea turbidity currents flowing through meander bends, our understanding has been based on experimental and numerical models. Measurements of geophysical flows demonstrate a common helical flow structure around meanders. Previous work has demonstrated that helical circulation in rivers is dominated by a single helix that rotates towards the inner bend at near-bed depths. In contrast, initial numerical and experimental models for turbidity currents found both river-like and river-reversed circulations. Saline flows in well-mixed estuaries show a river-like basal helical circulation, while stratified estuaries and saline flows are river-reversed. The existence of lateral stratification in stratified flows is thought to be the key factor in the change of direction of rotation. Stratification causes lateral pressure gradients that can govern the rotation of the flow helix. Turbidity currents are stratified due to their upwards-decreasing sediment load. It has therefore been proposed that stratified turbidity currents behave like stratified saline flow, but this hypothesis remains so far untested. Here we present the first observations of the helical flow in turbidity currents, which occurred within the deep-sea Congo Canyon. The measurements show a consistent river-reversed pattern downstream of the bend apex. Those results lead us to develop a new generalised model for a wide range of flows around meanders. Our conclusions have implications for understanding the flow erosional and depositional patterns, the evolution of channel systems and the architecture of the depositional record.

  16. Cytoplasmic Flow Enhances Organelle Dispersion in Eukaryotic Cells

    NASA Astrophysics Data System (ADS)

    Koslover, Elena; Mogre, Saurabh; Chan, Caleb; Theriot, Julie

    The cytoplasm of a living cell is an active environment through which intracellular components move and mix. We explore, using theoretical modeling coupled with microrheological measurements, the efficiency of particle dispersion via different modes of transport within this active environment. In particular, we focus on the role of cytoplasmic flow over different scales in contributing to organelle transport within two different cell types. In motile neutrophil cells, we show that bulk fluid flow associated with rapid cell deformation enhances particle transport to and from the cell periphery. In narrow fungal hyphae, localized flows due to hydrodynamic entrainment are shown to contribute to optimally efficient organelle dispersion. Our results highlight the importance of non-traditional modes of transport associated with flow of the cytoplasmic fluid in the distribution of organelles throughout eukaryotic cells.

  17. Lattice Boltzmann Simulation of Electroosmotic Micromixing by Heterogeneous Surface Charge

    NASA Astrophysics Data System (ADS)

    Tang, G. H.; Wang, F. F.; Tao, W. Q.

    Microelectroosmotic flow is usually restricted to low Reynolds number regime, and mixing in these microfluidic systems becomes problematic due to the negligible inertial effects. To gain an improved understanding of mixing enhancement in microchannels patterned with heterogeneous surface charge, the lattice Boltzmann method has been employed to obtain the electric potential distribution in the electrolyte, the flow field, and the species concentration distribution, respectively. The simulation results show that heterogeneous surfaces can significantly disturb the streamlines leading to apparently substantial improvements in mixing. However, the introduction of such a feature can reduce the mass flow rate in the channel. The reduction in flow rate effectively prolongs the available mixing time when the flow passes through the channel and the observed mixing enhancement by heterogeneous surfaces partly results from longer mixing time.

  18. Thermotropic nanostructured gels with complex hierarchical structure and two gelling components for water shut-off and enhance of oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.

  19. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X. Q.; Xiong, Z.; Nevins, W. M.

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  20. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.

    2008-05-01

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  1. TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.

    PubMed

    Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R

    2008-05-30

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  2. Effects of debris-flow composition on runout and erosion

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Kleinhans, M. G.

    2016-12-01

    Predicting debris-flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout depends on debris-flow composition (i.e., particle-size distribution and water content), but how is poorly understood. Moreover, debris flows can grow greatly in size by entrainment of bed material, enhancing their volume and thereby runout and hazardous impact. Debris-flow erosion rates also depend on debris-flow composition, but the relation between the two is largely unexplored. Composition thus strongly affects the dynamics of debris flows. We experimentally investigate the effects of composition on debris-flow runout and erosion. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. We further find that debris-flow runout depends at least as much on composition as on topography. In general, erosion depth increases with basal shear stress in our experiments, while there is no correlation with grain collisional stress. There are substantial differences in the scour caused by different types of debris flows. Mean and maximum erosion depths generally become larger with increasing water fraction and grain size and decrease with increasing clay content. However, the erodibility of the very coarse-grained experimental debris flows is unrelated to basal shear stress. This relates to the relatively large influence of grain-collisional stress to the total bed stress in these flows (30-50%). The relative effect of grain-collisional stress is low in the other experimental debris flows (<5%) causing erosion to be largely controlled by basal shear stress. These results show that the erosive behaviour of debris flows may change from basal-shear stress dominated to grain-collisional stress dominated in increasingly coarse-grained debris flows. In short, this study improves our understanding of the effects of debris-flow composition on runout and erosion.

  3. [Effects of Cultivation Soil Properties on the Transport of Genetically Engineered Microorganism in Huabei Plain].

    PubMed

    Zhang, Jing; Liu, Ping; Liu, Chun; Chen, Xiao-xuan; Zhang, Lei

    2015-12-01

    The transport of genetically engineered microorganism (GEM) in the soil is considered to be the important factor influencing the enhanced bioremediation of polluted soil. The transport of an atrazine-degrading GEM and its influencing factors were investigated in the saturated cultivation soil of Huabei Plain. The results showed that horizontal infiltration was the main mechanism of GEM transport in the saturated cultivation soil. The transport process could be simulated using the filtration model. Soil properties showed significant effects on pore water flow and GEM transport in saturated soil. When particle size, porosity and sand component of the soil increased, the hydraulic conductivity constant increased and filtration coefficient of GEM decreased in saturated soil, indicating the reduced retention of GEM in the soil. An increase in infiltration flow also increased hydraulic conductivity constant in saturated soil and consequently decreased filtration coefficient of GEM. When hydraulic conductivity constants ranged from 5.02 m · d⁻¹ to 6.70 m · d⁻¹ in the saturated soil, the filtration coefficients of GEM varied from 0.105 to 0.274. There was a significantly negative correlation between them.

  4. The Friction Factor in the Forchheimer Equation for Rock Fractures

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Qing; Hu, Shao-Hua; Chen, Yi-Feng; Wang, Min; Zhou, Chuang-Bing

    2016-08-01

    The friction factor is an important dimensionless parameter for fluid flow through rock fractures that relates pressure head loss to average flow velocity; it can be affected by both fracture geometry and flow regime. In this study, a theoretical formula form of the friction factor containing both viscous and inertial terms is formulated by incorporating the Forchheimer equation, and a new friction factor model is proposed based on a recent phenomenological relation for the Forchheimer coefficient. The viscous term in the proposed formula is inversely proportional to Reynolds number and represents the limiting case in Darcy flow regime when the inertial effects diminish, whereas the inertial term is a power function of the relative roughness and represents a limiting case in fully turbulent flow regime when the fracture roughness plays a dominant role. The proposed model is compared with existing friction factor models for fractures through parametric sensitivity analyses and using experimental data on granite fractures, showing that the proposed model has not only clearer physical significance, but also better predictive performance. By accepting proper percentages of nonlinear pressure drop to quantify the onset of Forchheimer flow and fully turbulent flow, a Moody-type diagram with explicitly defined flow regimes is created for rock fractures of varying roughness, indicating that rougher fractures have a large friction factor and are more prone to the Forchheimer flow and fully turbulent flow. These findings may prove useful in better understanding of the flow behaviors in rock fractures and improving the numerical modeling of non-Darcy flow in fractured aquifers.

  5. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  6. 17 CFR 229.1113 - (Item 1113) Structure of the transaction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... securities, and within each class, with respect to cash flows, credit enhancement or other support and any... narrative discussion of the allocation and priority structure of pool cash flows, present the flow of funds... any requirements directing cash flows from the pool assets (such as to reserve accounts, cash...

  7. 17 CFR 229.1113 - (Item 1113) Structure of the transaction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... securities, and within each class, with respect to cash flows, credit enhancement or other support and any... narrative discussion of the allocation and priority structure of pool cash flows, present the flow of funds... any requirements directing cash flows from the pool assets (such as to reserve accounts, cash...

  8. 17 CFR 229.1113 - (Item 1113) Structure of the transaction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... securities, and within each class, with respect to cash flows, credit enhancement or other support and any... narrative discussion of the allocation and priority structure of pool cash flows, present the flow of funds... any requirements directing cash flows from the pool assets (such as to reserve accounts, cash...

  9. 17 CFR 229.1113 - (Item 1113) Structure of the transaction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... securities, and within each class, with respect to cash flows, credit enhancement or other support and any... narrative discussion of the allocation and priority structure of pool cash flows, present the flow of funds... any requirements directing cash flows from the pool assets (such as to reserve accounts, cash...

  10. Conduit Artery Diameter During Exercise Is Enhanced After Local, but Not Remote, Ischemic Preconditioning

    PubMed Central

    Cocking, Scott; Cable, N. T.; Wilson, Mathew G.; Green, Daniel J.; Thijssen, Dick H. J.; Jones, Helen

    2018-01-01

    Introduction: The ability of ischemic preconditioning (IPC) to enhance exercise capacity may be mediated through altering exercise-induced blood flow and/or vascular function. This study investigated the hypothesis that (local) IPC enhances exercise-induced blood flow responses and prevents decreases in vascular function following exercise. Methods: Eighteen healthy, recreationally trained, male participants (mean ±SD: age 32 ± 8 years; BMI 24.2 ± 2.3; blood pressure 122 ± 10/72 ± 8 mmHg; resting HR 58 ± 9 beats min-1) received IPC (220 mmHg; 4 × 5-min bilateral arms), REMOTE IPC (220 mmHg; 4 × 5-min bilateral legs), or SHAM (20 mmHg; 4 × 5-min bilateral arms) in a counterbalanced order prior to 30-min of submaximal (25% maximal voluntary contraction) unilateral rhythmic handgrip exercise. Brachial artery diameter and blood flow were assessed every 5-min throughout the 30-min submaximal exercise using high resolution ultrasonography. Pre- and post-exercise vascular function was measured using flow-mediated dilation (FMD). Results: IPC resulted in enlarged brachial artery diameter during exercise [0.016 cm (0.003–0.03 cm), P = 0.015] compared to REMOTE IPC, but blood flow during exercise was similar between conditions (P > 0.05). Blood flow (l/min) increased throughout exercise (time: P < 0.005), but there was no main effect of condition (P = 0.29) or condition ∗ time interaction (P = 0.83). Post-exercise FMD was similar between conditions (P > 0.05). Conclusion: Our data show that local (but not remote) IPC, performed as a strategy prior to exercise, enhanced exercise-induced conduit artery diameter dilation, but these changes do not translate into increased blood flow during exercise nor impact post-exercise vascular function. PMID:29740345

  11. Optimization of the Ion Source-Mass Spectrometry Parameters in Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals Analysis by a Design of Experiments Approach.

    PubMed

    Paíga, Paula; Silva, Luís M S; Delerue-Matos, Cristina

    2016-10-01

    The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.

  12. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    PubMed

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  13. The research on flow pulsation characteristics of axial piston pump

    NASA Astrophysics Data System (ADS)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  14. Numerical study of vorticity-enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2013-11-01

    Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.

  15. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  16. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.

    PubMed

    Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon

    2015-05-01

    To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.

  17. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    PubMed

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven micro-drip infusion sets under wide-open flow conditions revealed that infusion rate (drug and/or volume delivery) can vary widely depending on extrinsic factors including catheter size, fluid column height, and carrier flow. The variable resistance implies nonlaminar flow in the micro-drip model that cannot be easily predicted mathematically. These findings support the use of mechanical pumps instead of gravity-driven micro-drips to enhance the precision and safety of IV infusions, especially for vasoactive drugs.

  18. Conversion of elderly to Alzheimer's dementia: role of confluence of hypothermia and senescent stigmata--the plausible pathway.

    PubMed

    Daulatzai, Mak Adam

    2010-01-01

    Aging is a consequence of progressive decline in special and somatosensory functions and specific brain stem nuclei. Many senescent stigmata, including hypoxia, hypoxemia, depressed cerebral blood flow and glucose metabolism, diseases of senescence, and their medications all enhance hypothermia as do alcohol, cold environment, and malnutrition. Hypothermia is a critical factor having deleterious impact on brain stem and neocortical functions. Additionally, anesthesia in elderly also promotes hypothermia; anesthetics not only cause consciousness (sensory and motor) changes, but memory impairment as well. Anesthesia inhibits cholinergic pathways, reticular and thalamocortical systems, cortico-cortical connectivity, and causes post-operative delirium and cognitive dysfunction. Increasing evidence indicates that anesthetic exposures may contribute to dementia onset and Alzheimer's disease (AD) in hypothermic elderly. Inhaled anesthetics potentiate caspases, BACE, tau hyperphosphorylation, and apoptosis. This paper addresses the important question: "Why do only some elderly fall victim to AD"? Based on information on the pathogenesis of early stages of cognitive dysfunction in elderly (i.e., due to senescent stigmata), and the effects of anesthesia superimposed, a detailed plausible neuropathological substrate (mechanism/pathway) is delineated here that reveals the possible cause(s) of AD. Basically, it encompasses several risk factors for cognitive dysfunction during senescence plus several hypothermia-enhancing routes; they all converge and tip the balance towards dementia onset. This knowledge of the confluence of heterogeneous risk factors in perpetuating dementia relentlessly is of importance in order to: (a) avoid their convergence; (b) take measures to stop/reverse cognitive dysfunction; and (c) to develop therapeutic strategies to enhance cognitive function and attenuate AD.

  19. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Treesearch

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  20. Assessment of the transport of polyvinylpyrrolidone-stabilised zero-valent iron nanoparticles in a silica sand medium

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Xie, Yingying; Fang, Zhanqiang; Tsang, Eric Pokeung

    2014-07-01

    Nano zero-valent iron has been considered a promising material for in situ remediation, but its strong tendency to form aggregates makes it difficult to transport in porous media. Thus, stabilization techniques are required to overcome this limitation. In this study, we use polyvinylpyrrolidone (PVP) to synthesise to stabilise iron nanoparticles. The effects of various factors such as nZVI influent concentrations, flow velocity, Ca2+, Mg2+ and humic acid on the transport behaviour of the PVP-nZVI particles were considered. A sedimentation test indicated that PVP-nZVI particles with diameters ranging from 50 to 80 nm were more stable than Bare-nZVI particles. Column experiments demonstrated that PVP-nZVI also exhibited better mobility in silica sand than Bare-nZVI. Due to either the straining or blocking effect, the effluent relative concentration ( C/ C 0) plateau increased with increasing particle concentration. Increasing the flow velocity increased the C/ C 0, resulting in the reduction of overall single-collector contact efficiency ( η 0). Humic acid (HA) enhanced the mobility of PVP-nZVI, and the sedimentation test in the presence of HA suggested that decreased attachment of PVP-nZVI to the silica sand surface rather than decreased aggregation was the primary mechanism of this enhanced mobility.

  1. Design, Fabrication, and In Vitro Testing of an Anti-biofouling Glaucoma Micro-shunt.

    PubMed

    Harake, Ryan S; Ding, Yuzhe; Brown, J David; Pan, Tingrui

    2015-10-01

    Glaucoma, one of the leading causes of irreversible blindness, is a progressive neurodegenerative disease. Chronic elevated intraocular pressure (IOP), a prime risk factor for glaucoma, can be treated by aqueous shunts, implantable devices, which reduce IOP in glaucoma patients by providing alternative aqueous outflow pathways. Although initially effective at delaying glaucoma progression, contemporary aqueous shunts often lead to numerous complications and only 50% of implanted devices remain functional after 5 years. In this work, we introduce a novel micro-device which provides an innovative platform for IOP reduction in glaucoma patients. The device design features an array of parallel micro-channels to provide precision aqueous outflow resistance control. Additionally, the device's microfluidic channels are composed of a unique combination of polyethylene glycol materials in order to provide enhanced biocompatibility and resistance to problematic channel clogging from biofouling of aqueous proteins. The microfabrication process employed to produce the devices results in additional advantages such as enhanced device uniformity and increased manufacturing throughput. Surface characterization experimental results show the device's surfaces exhibit significantly less non-specific protein adsorption compared to traditional implant materials. Results of in vitro flow experiments verify the device's ability to provide aqueous resistance control, continuous long-term stability through 10-day protein flow testing, and safety from risk of infection due to bacterial ingression.

  2. Synopsis of Past Stimulation Methods in Enhanced (Engineered) Geothermal Systems, Boreholes, and Existing Hydrothermal Systems with Success Analysis and Recommendations for Future Projects

    NASA Astrophysics Data System (ADS)

    Broadhurst, T.; Mattson, E.

    2017-12-01

    Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.

  3. Fluid Shearing for Accelerated Chemical Reactions - Fluid Mechanics in the VFD

    NASA Astrophysics Data System (ADS)

    Leivadarou, Evgenia; Dalziel, Stuart; G. K. Batchelor Laboratory, Department of Applied Mathematics; Theoretical Physics Team

    2016-11-01

    The Vortex Fluidic Device (VFD) is a rapidly rotating tube that can operate under continuous flow with a jet feeding liquid reactants to the tube's hemispherical base. It is a new 'green' approach to the organic synthesis with many industrial applications in cosmetics, protein folding and pharmaceutical production. The rate of reaction in the VFD is enhanced when the collision rate is increased. The aim of the project is to explain the fluid mechanics and optimize the performance of the device. One contribution to the increased yield is believed to be the high levels of shear stress. We attempt to enhance the shear stress by achieving high velocity gradients in the boundary layers. Another factor is the uncontrolled vibrations due to imperfections in the bearings and therefore it is important to assess their influence in the initial spreading. The surface area of the film should be maximized with respect to the rotation rate, geometry and orientation of the tube, flow rate, wettability and contact line dynamics. Experiments are presented for a flat disk and a curved bowl, establishing the optimum height of release, rotation rate and tube orientation. Vibrations were imposed to investigate the changes in the film formation. We discuss the implications of our results in the VFD.

  4. Dynamics of ionospheric convection during disturbed periods observed by the mid-latitude SuperDARN radars in the premidnight and postmidnight sector

    NASA Astrophysics Data System (ADS)

    Nishitani, N.; Hori, T.; Baker, J. B.; Ruohoniemi, J. M.; Shepherd, S. G.; Bristow, W. A.; Matsuoka, A.; Teramoto, M.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are one of the main disturbance signatures in the ionospheric convection at subauroral latitudes. Their generation is related to a wide variety of factors such as ring current distribution, solar wind / magnetospheric conditions, ionospheric conductivity etc. Expansion of the Super Dual Auroral Radar Network (SuperDARN) field of view into mid-latitudes and the launch of the inner magnetosphere spacecraft made it possible to study the SAPS dynamics in the framework of the global convection and magnetospheric disturbances. In this paper we discuss one event of the SAPS and concurrent convection signatures on Apr 4, 2017, observed by the mid-latitude SuperDARN radars. Together with the enhancement / decay of the SAPS in the premidnight sector, the mid-latitude SuperDARN radar observed the intensification / weakening of the eastward convective flows in the postmidnight sector. Furthermore, these eastward flows were enhanced together with the magnetic perturbations observed by the ERG / Arase satellite located in the same local time sector, probably associated with the substorm expansion onset. Detailed study of the ionospheric convection dynamics including SAPS, as well as their relation to solar wind / IMF condition changes, or substorm / storm developments will be reported in the presentation.

  5. Environmental flows and water quality objectives for the River Murray.

    PubMed

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results from many factors acting over a long period. Also, the health of the river varies along its length, from highly degraded to reasonably healthy, so it is clear that different approaches will be needed in the various river zones, with some problems requiring reach or even point scale solutions. Environmental flow needs have been determined through two major Expert Panel reports that identified the ecological priorities for the river. The next step is to translate these needs into feasible flow management actions that will provide the necessary hydrological conditions. Several investigations are underway to recommend options for flow management. Two important investigations are described in this paper: how to enhance flows to wetlands of national and international significance, and how to physically alter or change the operation of structures (including a dam, weir, lock, regulator, barrage or causeway), to provide significant environmental benefits. Early modelling suggests that the only option which has a positive environmental effect in all zones of the River is a reduction in overall water consumption.

  6. Micromixer based on viscoelastic flow instability at low Reynolds number.

    PubMed

    Lam, Y C; Gan, H Y; Nguyen, N T; Lie, H

    2009-03-30

    We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re approximately 0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 mus. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.

  7. Micromixer based on viscoelastic flow instability at low Reynolds number

    PubMed Central

    Lam, Y. C.; Gan, H. Y.; Nguyen, N. T.; Lie, H.

    2009-01-01

    We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re≈0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 μs. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing. PMID:19693399

  8. Electrokinetic effects on motion of submicron particles in microchannel

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Hishida, Koichi

    2006-11-01

    Two-fluid mixing utilizing electrokinetically driven flow in a micro-channel is investigated by micron-resolution particle image velocimetry and an image processing technique. Submicron particles are transported and mixed with deionized water by electrophoresis. The particle electrophoretic velocity that is proportional to an applied electric field is measured in a closed cell, which is used to calculate the electroosmotic flow velocity. At a constant electric field, addition of pressure-driven flow to electrokinetically driven flow in a T-shaped micro-channel enhances two-fluid mixing because the momentum flux is increased. On the other hand, on application of an alternative sinusoidal electric field, the velocity difference between pressure-driven and electroosmotic flows has a significant effect on increasing the length of interface formed between two fluids. It is concluded from the present experiments that the transport and mixing process in the micro-channel will be enhanced by accurate flow-rate control of both pressure-driven and electroosmotic flows.

  9. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  10. Regional danger assessment of Debris flow and its engineering mitigation practice in Sichuan-Tibet highway

    NASA Astrophysics Data System (ADS)

    Su, Pengcheng; Sun, Zhengchao; li, Yong

    2017-04-01

    Luding-Kangding highway cross the eastern edge of Qinghai-Tibet Plateau where belong to the most deep canyon area of plateau and mountains in western Sichuan with high mountain and steep slope. This area belongs to the intersection among Xianshuihe, Longmenshan and Anninghe fault zones which are best known in Sichuan province. In the region, seismic intensity is with high frequency and strength, new tectonic movement is strong, rock is cracked, there are much loose solid materials. Debris flow disaster is well developed under the multiple effects of the earthquake, strong rainfall and human activity which poses a great threat to the local people's life and property security. So this paper chooses Kangding and LuDing as the study area to do the debris flow hazard assessment through the in-depth analysis of development characteristics and formation mechanism of debris flow. Which can provide important evidence for local disaster assessment and early warning forecast. It also has the important scientific significance and practical value to safeguard the people's life and property safety and the security implementation of the national major project. In this article, occurrence mechanism of debris flow disasters in the study area is explored, factor of evaluation with high impact to debris flow hazards is identified, the database of initial evaluation factors is made by the evaluation unit of basin. The factors with high impact to hazards occurrence are selected by using the stepwise regression method of logistic regression model, at the same time the factors with low impact are eliminated, then the hazard evaluation factor system of debris flow is determined in the study area. Then every factors of evaluation factor system are quantified, and the weights of all evaluation factors are determined by using the analysis of stepwise regression. The debris flows hazard assessment and regionalization of all the whole study area are achieved eventually after establishing the hazard assessment model. In this paper, regional debris flows hazard assessment method with strong universality and reliable evaluation result is presented. The whole study area is divided into 1674 units by automatically extracting and artificial identification, and then 11 factors are selected as the initial assessment factors of debris flow hazard assessment in the study area. The factors of the evaluation index system are quantified using the method of standardized watershed unit amount ratio. The relationship between debris flow occurrence and each evaluation factor is simulated using logistic regression model. The weights of evaluation factors are determined, and the model of debris flows hazard assessment is established in the study area. Danger assessment result of debris flow was applied in line optimization and engineering disaster reduction of Sichuan-Tibet highway (section of Luding-Kangding).

  11. Performance of a pervaporation system for the separation of an ethanol-water mixture using fractional condensation.

    PubMed

    Liu, Jie; Li, Jiding; Chen, Quan; Li, Xiaoduan

    2018-04-01

    Polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membranes were fabricated and subsequently applied in ethanol recovery from an ethanol-water mixture by pervaporation (PV) using fractional condensation. The effects of feed temperature and feed flow velocity on the pervaporative properties of PDMS/PVDF composite membranes were investigated. Scanning electron microscopy (SEM) results showed that PDMS was coated uniformly on the surface of porous PVDF substrate, and the PDMS separation layer was dense with a thickness of 1.7 µm. Additionally, it was found that with increasing feed temperature, the total flux of the composite membrane increased, whereas the separation factor decreased. As the feed flow velocity increased, the total flux and separation factor increased. Besides, the permeate vapor was condensed by a two-stage fractional condenser maintained at different temperatures. The effects of the condensation conditions on fractions of ethanol-water vapor were studied to concentrate ethanol in product. The fractional condensers proved to be an effective way to enhance the separation efficiency. Under the optimum fractional condensation conditions, the second condenser showed a flux of 1,329 g/m 2 h and the separation factor was increased to 17.2. Furthermore, the long-term operation stability was verified, indicating that the PV system incorporating fractional condensation was a promising approach to separate ethanol from the ethanol-water mixture.

  12. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use

    NASA Astrophysics Data System (ADS)

    Schot, P. P.; van der Wal, J.

    1992-06-01

    The relations between groundwater composition, land use, soil conditions and flow patterns on a regional scale are studied for the Gooi and Vechtstreek area in the Netherlands. This densely populated area consists of a glacier-created ridge with dry sand soils bordered by the Vecht and Eem River plains with wet peat and clay soils. R-mode factor analysis and Q-mode cluster analysis were applied to a set of 1349 groundwater analyses to determine the factors controlling groundwater composition and the main resulting water types. The results indicate that groundwater composition in the study area is affected on a regional scale by human activities through changes in land use and intervention in natural flow patterns. On the ridge, ground water is recharged by precipitation, which dissolves carbonates from the matrix of the sandy aquifer. Increased solute concentrations in shallow ground water, especially of nitrate, sulphate and potassium, indicate increased pollution resulting from urbanization and increasingly intensive agricultural activity over the past decades. In the Vecht River plain infiltration occurs as a result of drainage of polders and groundwater extraction on the ridge. Recharge occurs by precipitation and from polluted surface water to which ammonium, organic complexes and carbonic acid are added through decomposition of organic matter in the peat and clay soils. The carbonic acid results in enhanced dissolution of carbonates present in the soil and the underlying sandy aquifer. Oxygen depletion and subsequent low redox potentials result in denitrification, dissolution of manganese and iron oxides, and sulphate reduction. The flow of ground water from high-level to low-level polders causes displacement of a former stagnant brakish groundwater body under the Vecht River plain accompanied by increased mixing of fresh and brackish ground water.

  13. Sensitivity analysis of a ground-water-flow model

    USGS Publications Warehouse

    Torak, Lynn J.; ,

    1991-01-01

    A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.

  14. A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah.

    PubMed

    Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C

    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.

  15. Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality

    NASA Astrophysics Data System (ADS)

    Yang, Liyang; Chang, Soon-Woong; Shin, Hyun-Sang; Hur, Jin

    2015-04-01

    The source of river dissolved organic matter (DOM) during storm events has not been well constrained, which is critical in determining the quality and reactivity of DOM. This study assessed temporal changes in the contributions of four end members (weeds, leaf litter, soil, and groundwater), which exist in a small forested watershed (the Ehwa Brook, South Korea), to the stream DOM during two storm events, using end member mixing analysis (EMMA) based on spectroscopic properties of DOM. The instantaneous export fluxes of dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent components were all enhanced during peak flows. The DOC concentration increased with the flow rate, while CDOM and humic-like fluorescent components were diluted around the peak flows. Leaf litter was dominant for the DOM source in event 2 with a higher rainfall, although there were temporal variations in the contributions of the four end members to the stream DOM for both events. The contribution of leaf litter peaked while that of deeper soils decreased to minima at peak flows. Our results demonstrated that EMMA based on DOM properties could be used to trace the DOM source, which is of fundamental importance for understanding the factors responsible for river DOM dynamics during storm events.

  16. Application of composite flow laws to grain size distributions derived from polar ice cores

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp

    2014-05-01

    Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a variation of vertical strain rates by a factor 2-3 in the upper ice column. We discuss the current applicability of composite flow laws to grain size distributions extracted from ice cores drilled at sites where the flow direction rotates by 90 degrees with depth (i.e. ice divide). An interesting finding is that a transition to a glacial period in future would be associated with a decrease in vertical strain rate (due to a reduced accumulation rate) and an increase of the frequency of small grains (due to an enhanced impurity content). Composite flow laws assign an enhanced contribution of GSS creep to this transition. It is currently unclear which factor would have a greater influence. [1] Herwegh et al., 2005, J. Struct. Geol., 27, 503-521 [2] T. Binder et al., 2013, J. Microsc., 250, 130-141 [3] W. Dansgaard & S.J. Johnsen, 1969, J. Glaciol., 8, 215-223

  17. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  18. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  19. Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells.

    PubMed

    Ribalta, F M; Croser, J S; Ochatt, S J

    2012-01-01

    Flow cytometry was used to quantify the effect of individual and combined stress treatments on elicitation of androgenesis by analyzing the relative nuclear DNA content of in vitro cultured microspores of Pisum sativum L. Differences in relative nuclear DNA content of microspores within anthers after stress treatments were clearly evident from the flow cytometry profiles, and permitted us to predict whether a combination of stresses were elicitors or enhancers of androgenesis. This is the first report to assess the effect of various stress treatments in a plant species based on relative nuclear DNA content and to use this information to categorize them as 'elicitors' or 'enhancers'. Flow cytometry represents a simple, quick and reliable way to analyze and discriminate the effect of various stress treatments on elicitation of androgenesis. These results form a solid basis for further efforts designed to enhance responses and to extend double haploid technology to other legumes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  1. Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α.

    PubMed

    Wang, Buhai; Ge, Yizhi; Gu, Xiang

    2016-10-06

    Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.

  2. Enhanced two phase flow in heat transfer systems

    DOEpatents

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  3. Enhanced boiling in microchannels due to recirculation induced by repeated saw-toothed cross-sectional geometry

    NASA Astrophysics Data System (ADS)

    Gao, Le; Bhavnani, Sushil H.

    2017-10-01

    A saw-toothed shaped microchannel heat sink is investigated for enhancing flow boiling heat transfer. Tests are conducted at mass fluxes of 444-1776 kg/m2 s and an inlet subcooling of 15 °C. The effects of channel geometry on boiling curves, flow patterns, pressure drops, and heat transfer coefficient are discussed in this letter. It is found that heat transfer performance is enhanced by up to 50% especially at heat flux levels associated with the current generation of microprocessors.

  4. Pilot-scale treatment of atrazine production wastewater by UV/O3/ultrasound: Factor effects and system optimization.

    PubMed

    Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu

    2017-12-01

    This study shed light on removing atrazine from pesticide production wastewater using a pilot-scale UV/O 3 /ultrasound flow-through system. A significant quadratic polynomial prediction model with an adjusted R 2 of 0.90 was obtained from central composite design with response surface methodology. The optimal atrazine removal rate (97.68%) was obtained at the conditions of 75 W UV power, 10.75 g h -1 O 3 flow rate and 142.5 W ultrasound power. A Monte Carlo simulation aided artificial neural networks model was further developed to quantify the importance of O 3 flow rate (40%), UV power (30%) and ultrasound power (30%). Their individual and interaction effects were also discussed in terms of reaction kinetics. UV and ultrasound could both enhance the decomposition of O 3 and promote hydroxyl radical (OH·) formation. Nonetheless, the dose of O 3 was the dominant factor and must be optimized because excess O 3 can react with OH·, thereby reducing the rate of atrazine degradation. The presence of other organic compounds in the background matrix appreciably inhibited the degradation of atrazine, while the effects of Cl - , CO 3 2- and HCO 3 - were comparatively negligible. It was concluded that the optimization of system performance using response surface methodology and neural networks would be beneficial for scaling up the treatment by UV/O 3 /ultrasound at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury

    PubMed Central

    Kuo, Jon-Son; Wang, Jia-Yi

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury. PMID:26146654

  6. Preconditioned conjugate-gradient methods for low-speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  7. Preconditioned Conjugate Gradient methods for low speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  8. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    PubMed

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia.

  9. An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia.

    PubMed

    Dash, Biraja C; Thomas, Dilip; Monaghan, Michael; Carroll, Oliver; Chen, Xizhe; Woodhouse, Kimberly; O'Brien, Timothy; Pandit, Abhay

    2015-10-01

    Critical limb ischemia is a major clinical problem. Despite rigorous treatment regimes, there has been only modest success in reducing the rate of amputations in affected patients. Reduced level of blood flow and enhanced inflammation are the two major pathophysiological changes that occur in the ischemic tissue. The objective of this study was to develop a controlled dual gene delivery system capable of delivering therapeutic plasmid eNOS and IL-10 in a temporal manner. In order to deliver multiple therapeutic genes, an elastin-like polypeptide (ELP) based injectable system was designed. The injectable system was comprised of hollow spheres and an in situ-forming gel scaffold of elastin-like polypeptide capable of carrying gene complexes, with an extended manner release profile. In addition, the ELP based injectable system was used to deliver human eNOS and IL-10 therapeutic genes in vivo. A subcutaneous dose response study showed enhanced blood vessel density in the treatment groups of eNOS (20 μg) and IL-10 (10 μg)/eNOS (20 μg) and reduced inflammation with IL-10 (10 μg) alone. Next, we carried out a hind-limb ischemia model comparing the efficacy of the following interventions; Saline; IL-10, eNOS and IL-10/eNOS. The selected dose of eNOS, exhibited enhanced angiogenesis. IL-10 treatment groups showed reduction in the level of inflammatory cells. Furthermore, we demonstrated that eNOS up-regulated major proangiogenic growth factors such as vascular endothelial growth factors, platelet derived growth factor B, and fibroblast growth factor 1, which may explain the mechanism of this approach. These factors help in formation of a stable vascular network. Thus, ELP injectable system mediating non-viral delivery of human IL10-eNOS is a promising therapy towards treating limb ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.

    PubMed

    Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T

    2018-01-01

    Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p < 0.05). Human umbilical vein endothelial cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p < 0.05). Wounds treated with PHD-2 knockdown mesenchymal stromal cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p < 0.05). Histologic studies revealed increased blood vessel density and increased cellularity in the wounds treated with PHD-2 knockdown mesenchymal stromal cells (p < 0.05). Silencing PHD-2 in mesenchymal stromal cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.

  11. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2017-12-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  12. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2018-05-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  13. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  14. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    DOE PAGES

    Modestov, M.; Kolemen, E.; Fisher, A. E.; ...

    2017-11-06

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces onmore » flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.« less

  15. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    NASA Astrophysics Data System (ADS)

    Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.

    2018-01-01

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J  ×  B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.

  16. Origin of Slope Failure in the Ursa Region, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Stigall, J.; Dugan, B.

    2008-12-01

    We use one-dimensional fluid flow and stability models to predict the evolution of overpressure and stability conditions of IODP Expedition Sites U1322 and U1324 in the Ursa region, northern Gulf of Mexico. Simulations of homogenous mud deposited at 3 and 12 mm/yr for Sites U1322 and U1324, with permeability (k) on the order of 10-17m2 and bulk compressibility of .4 /MPa, predict overpressures up to .45MPa and 1MPa in shallow sediments (<200m below sea floor). With limit equilibrium calculations for an infinite slope, these overpressures equate to a factor of safety (FS) greater than 10 and 4.5 for a internal friction angle of 26° and a seafloor slope of 2°. This implies stability throughout the last 50,000 years. Seismic and core observations, however, document major slope failures that span the entire Ursa region. Permeability in this region is well constrained by laboratory experiments, so we investigate how pulsed (high-to-low) sedimentation rates could have created unstable conditions, FS <1. Models with periods of high sedimentation generate overpressure that create unstable conditions while maintaining the time-averaged sedimentation rates. Other factors which are not possible to simulate in one dimension, such as a complex basin geometry, also influence the conditions that caused the past failures. A two-dimensional model linking lateral flow between the sites with the interpreted geometry from seismic stratigraphy gives a better picture of the flow field and instability within the basin. Asymmetrical loading of permeable sediments could have created a lateral difference in pore pressures which would have driven lateral flow from Site U1324 to Site U1322 where overpressures are higher than our one-dimensional models suggest. We anticipate that two-dimensional models with transient sedimentation patterns will enhance our understanding of flow in marginally stable environments and triggers of slope failures in passive margin systems.

  17. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.; ...

    2017-03-03

    In this paper, we calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energymore » spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. Finally, we analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.« less

  18. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.

    In this paper, we calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energymore » spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. Finally, we analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.« less

  19. Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes.

    PubMed

    Kumar, Yogesh; Popat, K M; Brahmbhatt, H; Ganguly, B; Bhattacharya, A

    2008-06-15

    Removal of pentachlorophenol from water is investigated using the surfactant-enhanced cross-flow membrane filtration technique in which anionic surfactant; sodium dodecyl sulfate (SDS) is the carrier of pentachlorophenol. The separation performances are studied by varying SDS concentrations (

  20. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters

    NASA Astrophysics Data System (ADS)

    Lehahn, Yoav; Koren, Ilan; Sharoni, Shlomit; D'Ovidio, Francesco; Vardi, Assaf; Boss, Emmanuel

    2017-03-01

    Spatial characteristics of phytoplankton blooms often reflect the horizontal transport properties of the oceanic turbulent flow in which they are embedded. Classically, bloom response to horizontal stirring is regarded in terms of generation of patchiness following large-scale bloom initiation. Here, using satellite observations from the North Pacific Subtropical Gyre and a simple ecosystem model, we show that the opposite scenario of turbulence dispersing and diluting fine-scale (~1-100 km) nutrient-enriched water patches has the critical effect of regulating the dynamics of nutrients-phytoplankton-zooplankton ecosystems and enhancing accumulation of photosynthetic biomass in low-nutrient oceanic environments. A key factor in determining ecological and biogeochemical consequences of turbulent stirring is the horizontal dilution rate, which depends on the effective eddy diffusivity and surface area of the enriched patches. Implementation of the notion of horizontal dilution rate explains quantitatively plankton response to turbulence and improves our ability to represent ecological and biogeochemical processes in oligotrophic oceans.

  1. Analytical study of pressure balancing in gas film seals

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1973-01-01

    The load factor is investigated for subsonic and choked flow conditions, laminar and turbulent flows, and various seal entrance conditions. Both parallel sealing surfaces and surfaces with small linear deformation were investigated. The load factor for subsonic flow depends strongly on pressure ratio; under choked flow conditions, however the load factor is found to depend more strongly on film thickness and flow entrance conditions rather than pressure ratio. The importance of generating hydrodynamic forces to keep the seal balanced under severe and multipoint operation is also discussed.

  2. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu; Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California; Chen, Allen M.

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positivemore » and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.« less

  3. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae).

    PubMed

    Cosendai, Anne-Caroline; Hörandl, Elvira

    2010-03-01

    Asexual organisms are more widespread in previously glaciated areas than their sexual relatives ('geographical parthenogenesis'). In plants, this pattern is probably dependent on reproductive isolation and stability of cytotypes within their respective distribution areas. Both partial apomixis and introgressive hybridization potentially destabilize the spatial separation of sexual and apomictic populations. The wide distribution of apomicts may be further enhanced by uniparental reproduction which is advantageous for colonization. These factors are studied in the alpine species Ranunculus kuepferi. Geographical distribution, diversity and mode of reproduction of cytotypes were assessed using flow cytometry and flow cytometric seed screening on samples from 59 natural populations of Ranunculus kuepferi. Seed set of cytotypes was compared in the wild. Diploid sexuals are confined to the south-western parts of the Alps, while tetraploid apomicts dominate in previously glaciated and in geographically isolated areas despite a significantly lower fertility. Other cytotypes (3x, 5x and 6x) occur mainly in the sympatric zone, but without establishing populations. The tetraploids are predominantly apomictic, but also show a partial apomixis via an uncoupling of apomeiosis and parthenogenesis in the seed material. Both pseudogamy and autonomous endosperm formation are observed which may enhance uniparental reproduction. Diploids occupy a glacial relic area and resist introgression of apomixis, probably because of a significantly higher seed set. Among the polyploids, only apomictic tetraploids form stable populations; the other cytotypes arising from partial apomixis fail to establish, probably because of minority cytotype disadvantages. Tetraploid apomicts colonize previously devastated and also distant areas via long-distance dispersal, confirming Baker's law of an advantage of uniparental reproduction. It is concluded that stability of cytotypes and of modes of reproduction are important factors for establishing a pattern of geographical parthenogenesis.

  4. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae)

    PubMed Central

    Cosendai, Anne-Caroline; Hörandl, Elvira

    2010-01-01

    Background and Aims Asexual organisms are more widespread in previously glaciated areas than their sexual relatives (‘geographical parthenogenesis’). In plants, this pattern is probably dependent on reproductive isolation and stability of cytotypes within their respective distribution areas. Both partial apomixis and introgressive hybridization potentially destabilize the spatial separation of sexual and apomictic populations. The wide distribution of apomicts may be further enhanced by uniparental reproduction which is advantageous for colonization. These factors are studied in the alpine species Ranunculus kuepferi. Methods Geographical distribution, diversity and mode of reproduction of cytotypes were assessed using flow cytometry and flow cytometric seed screening on samples from 59 natural populations of Ranunculus kuepferi. Seed set of cytotypes was compared in the wild. Key Results Diploid sexuals are confined to the south-western parts of the Alps, while tetraploid apomicts dominate in previously glaciated and in geographically isolated areas despite a significantly lower fertility. Other cytotypes (3x, 5x and 6x) occur mainly in the sympatric zone, but without establishing populations. The tetraploids are predominantly apomictic, but also show a partial apomixis via an uncoupling of apomeiosis and parthenogenesis in the seed material. Both pseudogamy and autonomous endosperm formation are observed which may enhance uniparental reproduction. Conclusions Diploids occupy a glacial relic area and resist introgression of apomixis, probably because of a significantly higher seed set. Among the polyploids, only apomictic tetraploids form stable populations; the other cytotypes arising from partial apomixis fail to establish, probably because of minority cytotype disadvantages. Tetraploid apomicts colonize previously devastated and also distant areas via long-distance dispersal, confirming Baker's law of an advantage of uniparental reproduction. It is concluded that stability of cytotypes and of modes of reproduction are important factors for establishing a pattern of geographical parthenogenesis. PMID:20100695

  5. PDGF Suppresses the Sulfation of CD44v and Potentiates CD44v-Mediated Binding of Colon Carcinoma Cells to Fibrin under Flow

    PubMed Central

    Alves, Christina S.; Konstantopoulos, Konstantinos

    2012-01-01

    Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen). PMID:23056168

  6. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status.

    PubMed

    Vlashi, Erina; Chen, Allen M; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A; Hess, Clayton B; Pajonk, Frank

    2016-04-01

    To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription-polymerase chain reaction for re-expression of reprogramming factors. Patients with HPV-positive tumors have superior overall survival and local-regional control. Human papillomavirus-positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus-negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Yang, R.-J.

    2004-04-01

    Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in microchannels with various numbers of incorporated patterned rectangular blocks. Furthermore, a novel approach is introduced which patterns heterogeneous surfaces on the upper faces of these rectangular blocks in order to enhance species mixing. The simulation results confirm that the introduction of rectangular blocks within the mixing channel slightly enhances species mixing by constricting the bulk flow, hence creating a stronger diffusion effect. However, it is noted that a large number of blocks and hence a long mixing channel are required if a complete mixing of the species is to be obtained. The results also indicate that patterning heterogeneous upper surfaces on the rectangular blocks is an effective means of enhancing the species mixing. It is shown that increasing the magnitude of the heterogeneous surface zeta potential enables a reduction in the mixing channel length and an improved degree of mixing efficiency.

  8. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  9. Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors

    PubMed Central

    Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug

    2010-01-01

    Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288

  10. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  11. Multi-scale forcing and the formation of subtropical desert and monsoon

    NASA Astrophysics Data System (ADS)

    Wu, G. X.; Liu, Y.; Zhu, X.; Li, W.; Ren, R.; Duan, A.; Liang, X.

    2009-09-01

    This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows. First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO) over eastern parts of oceans, sensible heating (SE) over western parts of continents, condensation heating (CO) over eastern parts of continents, and double dominant heating (D: LO+CO) over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west. The Tibetan Plateau (TP) is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are located over the western parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent. A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.

  12. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    NASA Astrophysics Data System (ADS)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons learned from design, construction, and monitoring will be synthesized to share what worked and what didn't, and what key elements a practitioner should think about as part of enhancement project design.

  13. Turbulent Flow Enhancement by Polyelectrolyte Additives: Mechanistic Implications for Drag Reduction.

    NASA Astrophysics Data System (ADS)

    Wagger, David Leonard

    1992-01-01

    The drag reduction phenomenon was experimentally studied in two pipes, of diameters 1.46 and 1.02 cm, using seven polyelectrolytic HPAM additives, with molecular weights from 1 to 20 times 10^6 g/mole and degree of backbone hydrolysis from 8 to 60%, at concentrations from 1 to 1000 wppm, in saline solutions containing from 0.3 to 0.00001 N NaCl. Both laminar and turbulent flow behavior were greatly influenced by salinity-induced changes in the initial conformation of the HPAM additives. Initially collapsed, random-coiling conformations exhibited Newtonian laminar flow and Type-A turbulent drag reduction, while initially extended conformations exhibited shear-thinning in laminar flow and Type-B turbulent drag reduction. The gross-flow physics of Type-B drag reduction were delineated. A characteristic "ladder" structure prevailed, with polymeric regime segments that were roughly parallel to, but shifted upward from, the Prandtl-Karman line. In the polymeric regime, both Type-A fan and Type -B ladder structures were essentially independent of pipe diameter, and were scaled by the wall shear stress. The wall shear stress also scaled degradation during drag reduction. New onset and slope increment correlations were presented for Type-A drag reduction by HPAM additives. In Type-B drag reduction, flow enhancement was found proportional to additive concentration, and the intrinsic slip, Sigma = S^'/(c/M _{rm w}), varied roughly as the third power of backbone chain links N_ {rm bb}. New intrinsic slip and retro-onset correlations were presented for Type-B drag reduction by HPAM additives. Analysis of Type-B literature revealed a wide range of additive efficacies, with specific slips S^'/c from 0.0001 to 4. For the most effective additives, HPAM and asbestos fibers, the additive-pervaded volume fraction per unit flow enhancement, X_{rm v} /S^' ~ 3000, implied that these additives align during drag reduction. The slip ratio R_{rm sc}, which is the relative flow enhancement induced in Type-A and Type-B drag reduction at constant additive concentration, was found to be a universal function of the normalized turbulent flow strength (Re_ {rm s}sqrtf/Re_ {rm s}sqrtf*). The extension of initially collapsed, random-coiling, HPAM macromolecules by the turbulent flow field thus seems independent of additive parameters and absolute wall shear stress levels. Gross flow additive equivalence was detected at iso-slip points, where different polymer solutions induced equal flow enhancements. At numerous such points, the collapsed to extended slip ratio at constant concentration, R_{rm sc}, was essentially equal to the extended to collapsed concentration ratio at constant slip, R _{rm cs}. Thus, for fixed total additive concentration, the R_{ rm sc} observed at any Re_ {rm s}sqrtf simply represents the fraction of originally collapsed macromolecules that have become extended in the flow, and thence effective in drag reduction. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  14. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  15. Age discrimination among basalt flows using digitally enhanced LANDSAT imagery. [Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Brown, G. F.

    1984-01-01

    Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings.

  16. Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power

    NASA Astrophysics Data System (ADS)

    Nishiyama, H.; Onodera, M.; Igawa, J.; Nakajima, T.

    2009-12-01

    The aim of this study is to provide the optimum operating conditions for enhancing in-flight alumina particle heating as much as possible for particle spheroidization and aggregation of melted particles using a DC-RF hybrid plasma flow system even at constant low operating power based on the thermofluid considerations. It is clarified that the swirl flow and higher operating pressure enhance the particle melting and aggregation of melted particles coupled with increasing gas temperature downstream of a plasma uniformly in the radial direction at constant electrical discharge conditions.

  17. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seung; Hwang, Seunghae; Kim, Youngjin; Ryu, Ji Heon; Oh, Seung M.; Kim, Ki Jae

    2018-04-01

    Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M) than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N',N'-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  18. Enhanced line integral convolution with flow feature detection

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain [Cabral & Leedom '93]. The method produces a flow texture imag...

  19. Plasma torch for ignition, flameholding and enhancement of combustion in high speed flows

    NASA Technical Reports Server (NTRS)

    O'Brien, Walter F. (Inventor); Billingsley, Matthew C. (Inventor); Sanders, Darius D. (Inventor); Schetz, Joseph A. (Inventor)

    2009-01-01

    Preheating of fuel and injection into a plasma torch plume fro adjacent the plasma torch plume provides for only ignition with reduced delay but improved fuel-air mixing and fuel atomization as well as combustion reaction enhancement. Heat exchange also reduced erosion of the anode of the plasma torch. Fuel mixing atomization, fuel mixture distribution enhancement and combustion reaction enhancement are improved by unsteady plasma torch energization, integral formation of the heat exchanger, fuel injection nozzle and plasma torch anode in a more compact, low-profile arrangement which is not intrusive on a highspeed air flow with which the invention is particularly effective and further enhanced by use of nitrogen as a feedstock material and inclusion of high pressure gases in the fuel to cause effervescence during injection.

  20. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    PubMed

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  1. Enhanced accumulation of PCB congeners by Baltic Sea blue mussels, Mytilus edulis, with increased algae enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilek, M.; Bjoerk, M.; Broman, D.

    The objective of this study was to examine if natural variations in the quantity of phytoplankton-derived particulate and dissolved organic carbon influences the accumulation of polychlorinated biphenyls (PCBs) in the tissues of Baltic Sea blue mussels (Mytilus edulis L.). In a laboratory flow-through experiment the authors exposed M. edulis to the technical PCB mixture Aroclor{reg_sign} 1248 for 21 d at three different enrichments of the unicellular green algae Chlamydomonas sp., 0.10, 0.16, and 0.32 mg particulate organic carbon (POC)/L. Tissue and water concentrations were determined for seven PCB congeners and 21-d bioaccumulation factors were calculated against total water concentrations. Contrarymore » to what would be expected, an increase in algae enrichment from 0.10 to 0.32 mg POC/L resulted in an enhanced PCB accumulation by a factor of approx. 2. This increase in PCB accumulation was more pronounced for PCB congeners with lower hydrophobicity. These observations have implications for the design of laboratory accumulation studies and potentially for PCB accumulation and cycling in field populations of suspension-feeding mussels in response to changes in eutrophication status.« less

  2. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  3. Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor

    PubMed Central

    Fang, Ci; Zhang, Tao; Jiang, Rongfeng; Ohtake, Hisao

    2016-01-01

    Since phosphorus, a non-renewable and non-substitutable resource, has become the principal contributor and limiting factor to water eutrophication, achieving phosphorus removal and recovery from wastewater is pretty essential. Even though struvite crystallization process has been widely used for phosphate (P) recovery in wastewater treatment, its application is hampered by difficulties controlling small particle size and crystal growth. This study was conducted to control the settleability of struvite by calculating and predicting the struvite-settling percentage (Ps), which is always affected by the initial concentration of P (CP), solution pH (pH), reaction time (t), reaction temperature (T), agitation rate (Ar), and inlet flow velocity (vf) of the fluidized bed reactor. The results showed that the settleability of struvite could be enhanced by increasing T and decreasing pH, Ar, or vf, and would perform worse with overlong t or excessive CP. The dynamic variation process of the solution supersaturated index (SI) combined with the phase equilibrium theory and Ostwald ripening mechanism explained the above results sufficiently. The logistic model was chosen to predict the Ps under multi-factors, but the accuracy needs to be improved. PMID:27573918

  4. Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Fang, Ci; Zhang, Tao; Jiang, Rongfeng; Ohtake, Hisao

    2016-08-01

    Since phosphorus, a non-renewable and non-substitutable resource, has become the principal contributor and limiting factor to water eutrophication, achieving phosphorus removal and recovery from wastewater is pretty essential. Even though struvite crystallization process has been widely used for phosphate (P) recovery in wastewater treatment, its application is hampered by difficulties controlling small particle size and crystal growth. This study was conducted to control the settleability of struvite by calculating and predicting the struvite-settling percentage (Ps), which is always affected by the initial concentration of P (CP), solution pH (pH), reaction time (t), reaction temperature (T), agitation rate (Ar), and inlet flow velocity (vf) of the fluidized bed reactor. The results showed that the settleability of struvite could be enhanced by increasing T and decreasing pH, Ar, or vf, and would perform worse with overlong t or excessive CP. The dynamic variation process of the solution supersaturated index (SI) combined with the phase equilibrium theory and Ostwald ripening mechanism explained the above results sufficiently. The logistic model was chosen to predict the Ps under multi-factors, but the accuracy needs to be improved.

  5. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    NASA Astrophysics Data System (ADS)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  6. Information system support as a critical success factor for chronic disease management: Necessary but not sufficient.

    PubMed

    Green, Carolyn J; Fortin, Patricia; Maclure, Malcolm; Macgregor, Art; Robinson, Sylvia

    2006-12-01

    Improvement of chronic disease management in primary care entails monitoring indicators of quality over time and across patients and practices. Informatics tools are needed, yet implementing them remains challenging. To identify critical success factors enabling the translation of clinical and operational knowledge about effective and efficient chronic care management into primary care practice. A prospective case study of positive deviants using key informant interviews, process observation, and document review. A chronic disease management (CDM) collaborative of primary care physicians with documented improvement in adherence to clinical practice guidelines using a web-based patient registry system with CDM guideline-based flow sheet. Thirty community-based physician participants using predominantly paper records, plus a project management team including the physician lead, project manager, evaluator and support team. A critical success factor (CSF) analysis of necessary and sufficient pathways to the translation of knowledge into clinical practice. A web-based CDM 'toolkit' was found to be a direct CSF that allowed this group of physicians to improve their practice by tracking patient care processes using evidence-based clinical practice guideline-based flow sheets. Moreover, the information and communication technology 'factor' was sufficient for success only as part of a set of seven direct CSF components including: health delivery system enhancements, organizational partnerships, funding mechanisms, project management, practice models, and formal knowledge translation practices. Indirect factors that orchestrated success through the direct factor components were also identified. A central insight of this analysis is that a comprehensive quality improvement model was the CSF that drew this set of factors into a functional framework for successful knowledge translation. In complex primary care settings environment where physicians have low adoption rates of electronic tools to support the care of patients with chronic conditions, successful implementation may require a set of interrelated system and technology factors.

  7. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal.

    PubMed

    Liu, Ye; Zhang, Baogang; Tian, Caixing; Feng, Chuanping; Wang, Zhijun; Cheng, Ming; Hu, Weiwu

    2016-01-01

    Factors influencing the performance of a continual-flow bioelectrical reactor (BER) intensified by microbial fuel cells for groundwater nitrate removal, including nitrate load, carbon source and hydraulic retention time (HRT), were investigated and optimized by response surface methodology (RSM). With the target of maximum nitrate removal and minimum intermediates accumulation, nitrate load (for nitrogen) of 60.70 mg/L, chemical oxygen demand (COD) of 849.55 mg/L and HRT of 3.92 h for the BER were performed. COD was the dominant factor influencing performance of the system. Experimental results indicated the undistorted simulation and reliable optimized values. These demonstrate that RSM is an effective method to evaluate and optimize the nitrate-reducing performance of the present system and can guide mathematical models development to further promote its practical applications.

  8. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Xing; Zhang, H. M.

    2018-04-01

    We investigated the mixed traffic flow with human-driving and autonomous cars. A new mathematical model with adjustable sensitivity and smooth factor was proposed to describe the autonomous car's moving behavior in which smooth factor is used to balance the front and back headway in a flow. A lemma and a theorem were proved to support the stability criteria in traffic flow. A series of simulations were carried out to analyze the mixed traffic flow. The fundamental diagrams were obtained from the numerical simulation results. The varying sensitivity and smooth factor of autonomous cars affect traffic flux, which exhibits opposite varying tendency with increasing parameters before and after the critical density. Moreover, the sensitivity of sensors and smooth factors play an important role in stabilizing the mixed traffic flow and suppressing the traffic jam.

  9. Enhancing the hydrodynamic performance of a tapered swept-back wing through leading-edge tubercles

    NASA Astrophysics Data System (ADS)

    Wei, Zhaoyu; Lian, Lian; Zhong, Yisen

    2018-06-01

    The hydrodynamic benefit of implementing leading-edge (LE) tubercles on wings at very low Reynolds numbers ( Res) has not been thoroughly elucidated to date, though their benefits at relatively higher Res are well-studied. Through wind tunnel testing at Re = 5.5 × 104, we found that the LE tubercles increase the lift at all pitch angles tested and slightly reduce the drag at a pitch angle of 4° < α < 10°, which finally results in a significant hydrodynamic performance enhancement at lower pitch angles. Flow visualization reveals that the hydrodynamic performance enhancement is due to the favourable attached flows downstream of the tubercle peaks. The attached flows are believed to be closely related to the downwash and momentum exchange within the boundary layers, which originate from surface and streamwise-aligned counter-rotating vortex pairs (CVPs).

  10. Head and neck vascular malformations: time-resolved MR projection angiography.

    PubMed

    Ziyeh, S; Schumacher, M; Strecker, R; Rössler, J; Hochmuth, A; Klisch, J

    2003-10-01

    Extracranial vascular anomalies can be divided into haemangiomas and vascular malformations. The latter can be subdivided on the basis of the predominant type of vascular channels. Separation of high- and low-flow vascular malformations is of clinical importance. We report preliminary observations on time-resolved magnetic resonance projection angiography (MRPA) of vascular malformations of the head and neck. We examined eight patients with vascular anomalies of the head and neck. On MRPA the time between the early arterial phase and enhancement of the malformation could be used to distinguish high- and low-flow lesions. High-flow arteriovenous malformations showed early, intense enhancement. Venous malformations were either not visible on MRPA or showed late enhancement of veins. One patient was examined after embolisation of an arteriovenous fistula of the mandible. Normal MRPA was taken to indicate absence of a residual lesion.

  11. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake.

    PubMed

    Hepworth, Christopher; Doheny-Adams, Timothy; Hunt, Lee; Cameron, Duncan D; Gray, Julie E

    2015-10-01

    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 ((15) N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.

    PubMed

    Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun

    2018-03-01

    This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrasound evaluation of valsartan therapy for renal cortical perfusion.

    PubMed

    Kishimoto, Noriko; Mori, Yasukiyo; Nishiue, Takashi; Nose, Atsuko; Kijima, Yasuaki; Tokoro, Toshiko; Yamahara, Hideki; Okigaki, Mitsuhiko; Kosaki, Atsushi; Iwasaka, Toshiji

    2004-05-01

    An increase in renal blood flow with a concomitant decrease in filtration fraction at the onset of angiotensin II receptor blocker treatment has been shown to predict a long-term renoprotective effect. However, no studies are available regarding angiotensin receptor blocker-induced changes in renal cortical perfusion observed in the clinical setting. We have recently developed a convenient method of evaluating human renal cortical blood flow with contrast-enhanced harmonic ultrasonography. The goal of this study was to use this method to examine the effect of valsartan, an angiotensin II receptor blocker, on renal cortical perfusion. We performed intermittent second harmonic imaging with venous infusion of a microbubble contrast agent in 7 healthy volunteers. Contrast-enhanced harmonic ultrasonography performed after oral administration of valsartan (80mg) showed a significant increase in microbubble velocity, which correlated well with the increase in total renal blood flow determined by p-aminohippurate clearance (r=0.950, p < 0.001). Although fractional vascular volume was not significantly increased, alterations in renal cortical blood flow calculated by the product of microbubble velocity and fractional volume were also correlated with the change in total renal blood flow (r=0.756, p < 0.05). These results indicate that valsartan increases the renal cortical blood flow in normal kidneys, mainly by increasing blood flow velocity. Contrast-enhanced harmonic ultrasonography is a promising technique for evaluating the precise effect on renal cortical perfusion and optimal dose of valsartan in diseased kidneys.

  14. Effects of finite-size particles on the turbulent flows in a square duct

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2015-11-01

    Fully resolved numerical simulations of the particle-laden turbulent flows in a square duct are performed with a direct-forcing fictitious domain method. The effects of the finite-size particles on the mean and root-mean-square (RMS) velocities are investigated at the friction Reynolds number of 150 (based on the friction velocity and half duct width) and the particle volume fractions ranging from 0.78% to 7.07%. For the neutrally buoyant case, our results show that the mean secondary flow is enhanced and its circulation center shifts closer to the center of the duct cross-section when the particles are added. The reason for the particle effect on the mean secondary flow is analyzed by examining the terms in the mean streamwise vorticity equation. The particles enhance the wall-tangential component of the RMS velocity (i.e. Reynolds normal stress) more than its wall-normal component in the near-wall region near the corners, resulting in the enhancement in the gradients of the normal stress difference, which we think is mainly responsible for the enhancement in the mean secondary flow. The particles accumulate preferentially in the near-corner region in the neutrally buoyant case. In addition, the effects of particle sedimentation are examined at different Shields numbers. The work was supported by the National Natural Science Foundation of China (11372275) and Research Fund for the Doctoral Program of Higher Education of China (20130101110035).

  15. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats.

    PubMed

    Li, Lin; Chu, Lisheng; Fang, Yan; Yang, Yan; Qu, Tiebing; Zhang, Jianping; Yin, Yuanjun; Gu, Jingjing

    2017-05-12

    Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is one of the new therapeutic strategies for treating ischemic stroke. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limited the therapeutic potential of this approach. Pharmacological preconditioning can increase the expression of CXC chemokine receptor 4 (CXCR4) in BMSCs and enhance cell migration toward the injury site. In the present study, we investigated whether tetramethylpyrazine (TMP) preconditioning could enhance BMSCs migration to the ischemic brain and improve functional recovery through upregulating CXCR4 expression. BMSCs were identified by flow cytometry analysis. BMSCs migration was evaluated in vitro by transwell migration assay, and CXCR4 expression was measured by quantitative reverse transcription-polymerase chain reaction and western blot analysis. In rats with focal cerebral ischemia, the neurological function was evaluated by the modified neurological severity score, the adhesive removal test and the corner test. The homing BMSCs and angiogenesis were detected by immunofluorescence, and expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 was measured by western blot analysis. Flow cytometry analysis demonstrated that BMSCs expressed CD29 and CD90, but not CD34 and CD45. TMP pretreatment dose-dependently induced BMSCs migration and CXCR4 expression in vitro, which was significantly inhibited by AMD3100, a CXCR4 antagonist. In rat stroke models, we found more TMP-preconditioned BMSCs homing toward the infarcted regions than nonpreconditioned cells, leading to improved neurological performance and enhanced angiogenesis. Moreover, TMP-preconditioned BMSCs significantly upregulated the protein expression of SDF-1 and CXCR4 in the ischemic boundary regions. These beneficial effects of TMP preconditioning were blocked by AMD3100. TMP preconditioning enhances the migration and homing ability of BMSCs, increases CXCR4 expression, promotes angiogenesis, and improves neurological performance. Therefore, TMP preconditioning may be an effective strategy to improve the therapeutic potency of BMSCs for ischemic stroke due to enhanced BMSCs migration to ischemic regions.

  17. The effect of transverse flow on the nuclear modification factor at RHIC and LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, Barbara; Gyulassy, Miklos

    2016-01-22

    We determine the nuclear modification factor at RHIC and LHC energies using a generic jet-energy loss model that is expanded by an additional flow factor accounting for the impact of transverse flow. We consider a pQCD-based ansatz with and without jet-energy loss fluctuations that is coupled to a state-of-the-art hydrodynamic prescription and includes a running coupling effect. We show that the nuclear modification factor is a rather insensitive quantity that is barely affected by the flow dynamics of the medium created in a heavy-ion collision.

  18. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.

    PubMed

    Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G

    2016-11-01

    Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability. © 2016 John Wiley & Sons Ltd.

  19. The combination of electrospray and flow focusing

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.; López-Herrera, José M.; Riesco-Chueca, Pascual

    2006-11-01

    An ultra-fine liquid atomization procedure combining the advantages of electrospray and flow focusing is presented. Both techniques are known to produce strikingly small and steady liquid micro-jets issuing from menisci held by capillary forces. Such menisci take the form of a cusp-like drop attached to the feeding tube (flow focusing: FF) or a Taylor cone (electrospray: ES). The issuing micro-jets are forced or ‘sucked’ from the parent meniscus either by pressure or electrohydrodynamic forces. Subsequent capillary breakup of the jet leads to fine sprays of remarkable quality. Here we describe the joint effect of pressurization and electrification in a flow focusing device, and the subsequent coupling of both ES and FF phenomena. For any given liquid and flow rate, the combined procedure gives rise to significantly smaller droplet sizes than observed in any of the source techniques. The co-flowing gas stream removes space charges; in addition, the perforated plate facing the feed tube provides an electric barrier, shielding the jet-meniscus or ‘production’ area from the spray or ‘product’ area. As a result, space charges and electrified droplets are removed from the production area, thus avoiding the ambient electric saturation which becomes a limiting factor in ES-spraying: a significantly enhanced spraying stability ensues, with a much wider operation range than FF or ES. Other unexpected outcomes from the combination are also shown. A theoretical model is developed to predict the emitted droplet size: a first integral of the momentum equation yielding a generalized Bernoulli equation, and an explicit approximation for the jet diameter and droplet size, accurate within a broad parametrical band.

  20. Chaotic mixing in microchannels via low frequency switching transverse electroosmotic flow generated on integrated microelectrodes.

    PubMed

    Song, Hongjun; Cai, Ziliang; Noh, Hongseok Moses; Bennett, Dawn J

    2010-03-21

    In this paper we present a numerical and experimental investigation of a chaotic mixer in a microchannel via low frequency switching transverse electroosmotic flow. By applying a low frequency, square-wave electric field to a pair of parallel electrodes placed at the bottom of the channel, a complex 3D spatial and time-dependence flow was generated to stretch and fold the fluid. This significantly enhanced the mixing effect. The mixing mechanism was first investigated by numerical and experimental analysis. The effects of operational parameters such as flow rate, frequency, and amplitude of the applied voltage have also been investigated. It is found that the best mixing performance is achieved when the frequency is around 1 Hz, and the required mixing length is about 1.5 mm for the case of applied electric potential 5 V peak-to-peak and flow rate 75 microL h(-1). The mixing performance was significantly enhanced when the applied electric potential increased or the flow rate of fluids decreased.

  1. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  2. Modelling of Seismic and Resistivity Responses during the Injection of CO2 in Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Omar, Muhamad Nizarul Idhafi Bin; Almanna Lubis, Luluan; Nur Arif Zanuri, Muhammad; Ghosh, Deva P.; Irawan, Sonny; Regassa Jufar, Shiferaw

    2016-07-01

    Enhanced oil recovery plays vital role in production phase in a producing oil field. Initially, in many cases hydrocarbon will naturally flow to the well as respect to the reservoir pressure. But over time, hydrocarbon flow to the well will decrease as the pressure decrease and require recovery method so called enhanced oil recovery (EOR) to recover the hydrocarbon flow. Generally, EOR works by injecting substances, such as carbon dioxide (CO2) to form a pressure difference to establish a constant productive flow of hydrocarbon to production well. Monitoring CO2 performance is crucial in ensuring the right trajectory and pressure differences are established to make sure the technique works in recovering hydrocarbon flow. In this paper, we work on computer simulation method in monitoring CO2 performance by seismic and resistivity model, enabling geoscientists and reservoir engineers to monitor production behaviour as respect to CO2 injection.

  3. High-energy redox-flow batteries with hybrid metal foam electrodes.

    PubMed

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  4. Pulsatile flow and mass transport over an array of cylinders: gas transfer in a cardiac-driven artificial lung.

    PubMed

    Chan, Kit Yan; Fujioka, Hideki; Bartlett, Robert H; Hirschl, Ronald B; Grotberg, James B

    2006-02-01

    The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.

  5. Pulsatile Flow Across a Cylinder--An Investigation of Flow in a Total Artificial Lung

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun

    2005-11-01

    The effect of pulsatility on flow across a single cylinder has been examined experimentally using particle image velocimetry. This work is motivated by the ongoing development of a total artificial lung (TAL), a device which would serve as a bridge to lung transplant. The prototype TAL consists of hollow microfibers through which oxygen-rich gas flows and blood flows around. Flow through the device is provided entirely by right heart and, therefore, is puslatile. The Peclet number of the flow is large and consequently the development of secondary flow affects the resulting gas exchange. The effects of frequency and average flow rate of pulsatile flow around a cylinder were investigated experimentally in a water tunnel and some of the results were compared with preliminary numerical results. Vortices developed behind the cylinder at lower Reynolds numbers in pulsatile flow than steady flow. The results indicate that there are critical values of the Reynolds number between 3 to 5 and Stokes numbers of 0.22, below which vortices were not observed. The findings suggest that higher Stokes and Reynolds numbers within the device could enhance vortex formation. However, this enhanced gas exchange could be at the expense of higher device resistance and increased likelihood of blood trauma. Intelligent TAL design will require consideration of these effects. This work is supported by NIH grant HL69420.

  6. Flow through triple helical microchannel

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Pravat; Ghatak, Animangsu

    2018-02-01

    Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.

  7. Enhancing cell-free layer thickness by bypass channels in a wall.

    PubMed

    Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T

    2016-07-26

    When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Experimental measurements of energy augmentation for mechanical circulatory assistance in a patient-specific Fontan model.

    PubMed

    Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L

    2014-09-01

    A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Nurses' Perceived Barriers to Bedside Handover and Their Implication for Clinical Practice.

    PubMed

    Tobiano, Georgia; Whitty, Jennifer A; Bucknall, Tracey; Chaboyer, Wendy

    2017-10-01

    Bedside handover during the change of shift allows nurses to visualize patients and facilitate patient participation, both purported to improve patient safety. But, bedside handover does not always occur and when it does, it may not involve the patient. To explore and understand barriers nurses perceive in undertaking bedside handover. A cross-sectional survey was administered to 200 nurses working on medical wards, recruited from two Australian hospitals, one private and one public. As part of the survey, there was one open-ended question asking about perceived barriers to bedside handover. Content analysis was used to analyze data. Barriers were assessed using a determinant framework. The open-ended question was answered by 176 (88%) participants. Three categories were identified. First, censoring the message showed nurses were concerned about patients and third-parties hearing sensitive information. In the second category, disrupting the communication flow, nurses perceived patients, family members, other nurses and external sources, interrupted the flow of handover and increased its duration. Finally, inhibiting characteristics demonstrated that individual patient and nurse views or capabilities hindered bedside handover. Barriers to bedside handover were determined to relate to individual nurse factors, patient factors, social, political and legal factors, and guideline factors. Suggestions for enhancing bedside handover include debunking nurses' misconceptions, reflecting on nurses' viewpoints, using active educational approaches, and promotion of legal requirements to heighten nurses' confidence dealing with sensitive information. Regular patient rounding, and standardized handover may enable patient involvement in handover. Finally, reviewing the local context to ensure organizational processes support bedside handover is recommended. © 2017 Sigma Theta Tau International.

  10. Perceived Factors Associated with Sustained Improvement Following Participation in a Multicenter Quality Improvement Collaborative.

    PubMed

    Stone, Sohini; Lee, Henry C; Sharek, Paul J

    2016-07-01

    The California Perinatal Quality Care Collaborative led the Breastmilk Nutrition Quality Improvement Collaborative from October 2009 to September 2010 to increase the percentage of very low birth weight infants receiving breast milk at discharge in 11 collaborative neonatal ICUs (NICUs). Observed increases in breast milk feeding and decreases in necrotizing enterocolitis persisted for 6 months after the collaborative ended. Eighteen to 24 months after the end of the collaborative, some sites maintained or further increased their gains, while others trended back toward baseline. A study was conducted to assess the qualitative factors that affect sustained improvement following participation. Collaborative leaders at each of the 11 NICUs that participated in the Breastmilk Nutrition Quality Improvement Collaborative were invited to participate in a site-specific one-hour phone interview. Interviews were recorded and transcribed and then analyzed using qualitative research analysis software to identify themes associated with sustained improvement. Eight of 11 invited centers agreed to participate in the interviews. Thematic saturation was achieved by the sixth interview, so further interviews were not pursued. Factors contributing to sustainability included physician involvement within the multidisciplinary teams, continuous education, incorporation of interventions into the daily work flow, and integration of a data-driven feedback system. Early consideration by site leaders of how to integrate best-practice interventions into the daily work flow, and ensuring physician commitment and ongoing education based in continuous data review, should enhance the likelihood of sustaining improvements. To maximize sustained success, future collaborative design should consider proactively identifying and supporting these factors at participating sites.

  11. A Factor Affecting Transonic Leading-edge Flow Separation

    NASA Technical Reports Server (NTRS)

    Wood, George P; Gooderum, Paul B

    1956-01-01

    A change in flow pattern that was observed as the free-stream Mach number was increased in the vicinity of 0.8 was described in NACA Technical Note 1211 by Lindsey, Daley, and Humphreys. The flow on the upper surface behind the leading edge of an airfoil at an angle of attack changed abruptly from detached flow with an extensive region of separation to attached supersonic flow terminated by a shock wave. In the present paper, the consequences of shock-wave - boundary layer interaction are proposed as a factor that may be important in determining the conditions under which the change in flow pattern occurs. Some experimental evidence in support of the importance of this factor is presented.

  12. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  13. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  14. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  15. Numerical analysis of flow in a centrifugal compressor with circumferential grooves: influence of groove location and number on flow instability

    NASA Astrophysics Data System (ADS)

    Chen, X.; Qin, G.; Ai, Z.; Ji, Y.

    2017-08-01

    As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.

  16. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Haas, Tjalling; Braat, Lisanne; Leuven, Jasper R. F. W.; Lokhorst, Ivar R.; Kleinhans, Maarten G.

    2015-09-01

    Predicting debris flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout distance and area depends on debris flow composition and rheology, but how is poorly understood. We experimentally investigated effects of composition on debris flow runout, depositional mechanisms, and deposit geometry. The small-scale experimental debris flows were largely similar to natural debris flows in terms of flow behavior, deposit morphology, grain size sorting, channel width-depth ratio, and runout. Deposit geometry (lobe thickness and width) in our experimental debris flows is largely determined by composition, while the effects of initial conditions of topography (i.e., outflow plain slope and channel slope and width) and volume are negligible. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse-material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. Runout increases with channel slope and width, outflow plain slope, debris flow volume, and water fraction. These results imply that debris flow runout depends at least as much on composition as on topography. This study improves understanding of the effects of debris flow composition on runout and may aid future debris flow hazard assessments.

  17. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.

    PubMed

    Marković, Tamara; Brkić, Željka; Larva, Ozren

    2013-08-01

    The Zagreb alluvial aquifer system is located in the southwest of the Pannonian Basin in the Sava Valley in Croatia. It is composed of Quaternary unconsolidated deposits and is highly utilised, primarily as a water supply for the more than one million inhabitants of the capital city of Croatia. To determine the origin and dynamics of the groundwater and to enhance the knowledge of groundwater flow and the interactions between the groundwater and surface water, extensive hydrogeological and hydrochemical investigations have been completed. The groundwater levels monitored in nested observation wells and the lithological profile indicate that the aquifer is a single hydrogeologic unit, but the geochemical characteristics of the aquifer indicate stratification. The weathering of carbonate and silicate minerals has an important role in groundwater chemistry, especially in the area where old meanders of the Sava River existed. Groundwater quality was observed to be better in the deeper parts of the aquifer than in the shallower parts. Furthermore, deterioration of the groundwater quality was observed in the area under the influence of the landfill. The stable isotopic composition of all sampled waters indicates meteoric origin. NETPATH-WIN was used to calculate the mixing proportions between initial waters (water from the Sava River and groundwater from "regional" flow) in the final water (groundwater sampled from observation wells). According to the results, the mixing proportions of "regional" flow and the river water depend on hydrological conditions, the duration of certain hydrological conditions and the vicinity of the Sava River. Moreover, although the aquifer system behaves as a single hydrogeologic unit from a hydraulic point of view, it still clearly demonstrates geochemical stratification, which could be a decisive factor in future utilisation strategies for the aquifer system. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Gyrokinetic Particle Simulations of Neoclassical Transport

    NASA Astrophysics Data System (ADS)

    Lin, Zhihong

    A time varying weighting (delta f) scheme based on the small gyro-radius ordering is developed and applied to a steady state, multi-species gyrokinetic particle simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Benchmark simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion -electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. In agreement with the existing analytical neoclassical theory, ion energy flux is enhanced by the toroidal mass flow and the neoclassical viscosity is a Pfirsch-Schluter factor times the classical viscosity in the banana regime. In addition, the poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Modifications of the neoclassical transport by the orbit squeezing effects due to the radial electric field associated with sheared toroidal flow are studied. Simulation results indicate a reduction of both ion thermal flux and neoclassical toroidal rotation. Neoclassical theory in the steep gradient profile regime, where conventional neoclassical theory fails, is examined by taking into account finite banana width effects. The relevance of these studies to interesting experimental conditions in tokamaks is discussed. Finally, the present numerical scheme is extended to general geometry equilibrium. This new formulation will be valuable for the development of new capabilities to address complex equilibria such as advanced stellarator configurations and possibly other alternate concepts for the magnetic confinement of plasmas. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  19. Cardiovascular adaptations supporting human exercise-heat acclimation.

    PubMed

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds.

    PubMed

    Asghari, Fateme; Jahanshahi, Mohsen

    2012-09-28

    Expanded bed adsorption (EBA), a promising and practical separation technique for adsorption of nanobioproduct/bioproduct, has been widely studied in the past two decades. The development of adsorbent with the special design for expanded bed process is a challenging course. To reduce the costs of adsorbent preparation, fine zinc powder was used as the inexpensive densifier. A series of matrices named Ag-Zn were prepared by water-in-oil emulsification method. The structure and morphology of the prepared matrix were studied by the optical microscope (OM) and scanning electron microscopy (SEM). The physical properties as a function of zinc powder ratio to agarose slurry were measured. The prepared matrices had regular spherical shape, and followed logarithmic normal size distribution with the range of 75-330 μm, mean diameter of 140.54-191.11 μm, wet density of 1.33-2.01 g/ml, water content of 0.45-0.75, porosity of 0.86-0.97 and pore size of about 40-90 nm. The bed expansion factor at the range of 2-3 was examined. The obtained results indicated that the expansion factor was decreased with increasing of matrix density. In addition, it was found that matrices with large particle size were suitable for high operation flow rate. The hydrodynamic properties were determined in expanded bed by the residence time distribution method (RTD). The effects of flow velocity, expansion factor and density of matrix on the hydrodynamic properties were also investigated. Moreover, the influence of particle size distribution on the performance of expanded bed has been studied. Therefore, three different particle size fractions (65-140, 215-280 and 65-280 μm) were assessed. The results indicated that dispersion in liquid-solid expanded beds increased with increasing flow rate and expansion factor; and matrix with a wide particle size distribution leaded to a reduced axial dispersion compared to matrices with a narrow size distribution. The axial dispersion coefficient also enhanced with the increasing of matrix density. It was found that flow rate was the most essential factor to effect on the hydrodynamic characteristics in the bed. For all the prepared matrices, the values of axial mixing coefficients (D(axl)) were smaller than 1.0 × 10⁻⁵ m²/s when flow velocities in expanded bed were less than 700 cm/h. All the results indicate that the prepared matrix show good expansion and stability in expanded bed; and it is suitable for expanded bed processes as an economical adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.

Top