EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-11-01
Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.
Sahraneshin Samani, Fazel; Moore, Jodene K; Khosravani, Pardis; Ebrahimi, Marzieh
2014-08-01
Flow cytometers designed to analyze large particles are enabling new applications in biology. Data analysis is a critical component of the process FCM. In this article we compare features of four free software packages including WinMDI, Cyflogic, Flowing software, and Cytobank.
NASA Technical Reports Server (NTRS)
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
Interactions between hyporheic flow produced by stream meanders, bars, and dunes
Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.
2013-01-01
Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.
SPOT satellite mapping of Ice Stream B
NASA Technical Reports Server (NTRS)
Merry, Carolyn J.
1993-01-01
Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.
Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements
NASA Astrophysics Data System (ADS)
Bakker, M.
2017-12-01
Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.
NASA Astrophysics Data System (ADS)
Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.
2014-12-01
Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.
2011-01-01
The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.
Erosion by catastrophic floods on Mars and Earth
Baker, V.R.; Milton, D.J.
1974-01-01
The large Martian channels, especially Kasei, Ares, Tiu, Simud, and Mangala Valles, show morphologic features strikingly similar to those of the Channeled Scabland of eastern Washington, produced by the catastrophic breakout floods of Pleistocene Lake Missoula. Features in the overall pattern include the great size, regional anastomosis, and low sinuosity of the channels. Erosional features are streamlined hills, longitudinal grooves, inner channel cataracts, scour upstream of flow obstacles, and perhaps marginal cataracts and butte and basin topography. Depositional features are bar complexes in expanding reaches and perhaps pendant bars and alcove bars. Scabland erosion takes place in exceedingly deep, swift floodwater acting on closely jointed bedrock as a hydrodynamic consequence of secondary flow phenomena, including various forms of macroturbulent votices and flow separations. If the analogy to the Channeled Scabland is correct, floods involving water discharges of millions of cubic meters per second and peak flow velocities of tens of meters per second, but perhaps lasting no more than a few days, have occurred on Mars. ?? 1974.
Why replication is important in landscape genetics: American black bear in the Rocky Mountains
Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.
2011-01-01
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.
Ducting arrangement for cooling a gas turbine structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Morrison, Jay A.
2015-07-21
A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72)more » is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).« less
NASA Technical Reports Server (NTRS)
Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.
1996-01-01
The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.
Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar
NASA Technical Reports Server (NTRS)
Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith
2011-01-01
The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.
NASA Technical Reports Server (NTRS)
1990-01-01
Hedland Flow Meters manufactures a complete line of flow meters used in industrial operations to monitor the flow of oil, water or other liquids, air and other compressed gases, including caustics or corrosive liquids/gases. The company produces more than 1,000 types of flow meters featuring rugged construction, simplicity of installation and the ability to operate in any position.
NASA Technical Reports Server (NTRS)
Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.
1997-01-01
Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of the origin of ancient diamictites. The recognition of characteristic features in clast populations in ancient diamictites may allow identification and discrimination of debris-flow deposits of various origins (e.g., impact glacial, tectonic) and may shed light on some climatic paradoxes, such as inferred Proterozoic glaciations at low paleolatitudes.
Shanthi, C; Pappa, N
2017-05-01
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.
2017-12-01
Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.
Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper
Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.
2007-01-01
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.
Flow diverter value and flow diversion method
NASA Technical Reports Server (NTRS)
Arline, S. B.; Carlson, R. L. (Inventor)
1964-01-01
A flow diverter valve applicable to any fluid flow system requiring rapid bleed or bypass is disclosed. Examples of application of the flow diverter valve to a liquid rocket and a turbojet aircraft engine are given. Features of the valve include: (1) an independent fluid source is used to activate the flow diverter valve toward its closed position during its initial stage of travel; (2) the flow diverter port area and size is unlimited and the valve travel is unlimited; and (3) the valve housing is fabricated such that the valve can be a one step valve, a two step valve, or include as many steps as are found desirable.
Cross Flow Parameter Calculation for Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Norman, David, Jr. (Inventor)
2014-01-01
A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.
An Evaluation of the NEKTON Program
1990-09-01
features could be studied. Test cases were chosen for which experimental data or analytic solutions exist. These test cases verify NEKTON’s unsteady flow ...including steady and unsteady incompressible flow problems in two or three spatial dimensions. NEKTON version 2.6, which was evaluated for this... unsteady flow decay of a free surface moderate [7] 2-D laminar flow flow past a cylinder 100 [7] 3-D Stokes flow spiral groove thrust bearing < 1 [8
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Arecibo radar imagery of Mars: The major volcanic provinces
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, Michael C.; Husmann, Diana I.; Campbell, Bruce A.
2012-08-01
We present Earth-based radar images of Mars obtained with the upgraded Arecibo S-band (λ = 12.6 cm) radar during the 2005-2012 oppositions. The imaging was done using the same long-code delay-Doppler technique as for the earlier (pre-upgrade) imaging but at a much higher resolution (˜3 km) and, for some regions, a more favorable sub-Earth latitude. This has enabled us to make a more detailed and complete mapping of depolarized radar reflectivity (a proxy for small-scale surface roughness) over the major volcanic provinces of Tharsis, Elysium, and Amazonis. We find that vast portions of these regions are covered by radar-bright lava flows exhibiting circular polarization ratios close to unity, a characteristic that is uncommon for terrestrial lavas and that is a likely indicator of multiple scattering from extremely blocky or otherwise highly disrupted flow surfaces. All of the major volcanoes have radar-bright features on their shields, although the brightness distribution on Olympus Mons is very patchy and the summit plateau of Pavonis Mons is entirely radar-dark. The older minor shields (paterae and tholi) are largely or entirely radar-dark, which is consistent with mantling by dust or pyroclastic material. Other prominent radar-dark features include: the "fan-shaped deposits", possibly glacial, associated with the three major Tharsis Montes shields; various units of the Medusae Fossae Formation; a region south and west of Biblis Patera where "Stealth" deposits appear to obscure Tharsis flows; and a number of "dark-halo craters" with radar-absorbing ejecta blankets deposited atop surrounding bright flows. Several major bright features in Tharsis are associated with off-shield lava flows; these include the Olympus Mons basal plains, volcanic fields east and south of Pavonis Mons, the Daedalia Planum flows south of Arsia Mons, and a broad expanse of flows extending east from the Tharsis Montes to Echus Chasma. The radar-bright lava plains in Elysium are concentrated mainly in Cerberus and include the fluvio-volcanic channels of Athabasca Valles, Grjotá Valles, and Marte Valles, as well as an enigmatic region at the southern tip of the Cerberus basin. Some of the Cerberus bright features correspond to the distinctive "platy-ridged" flows identified in orbiter images. The radar-bright terrain in Amazonis Planitia comprises two distinct but contiguous sections: a northern section formed of lavas and sediments debouched from Marte Valles and a southern section whose volcanics may derive, in part, from local sources. This South Amazonis region shows perhaps the most complex radar-bright structure on Mars and includes features that correspond to platy-ridged flows similar to those in Cerberus.
An investigation of chaotic Kolmogorov flows
NASA Technical Reports Server (NTRS)
Platt, N.; Sirovich, L.; Fitzmaurice, N.
1990-01-01
A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.
New insights into turbulent pedestrian movement pattern in crowd-quakes
NASA Astrophysics Data System (ADS)
Ma, J.; Song, W. G.; Lo, S. M.; Fang, Z. M.
2013-02-01
Video recordings right before the Love Parade disaster have been quantitatively analyzed to explore the bursts of unusual crowd movement patterns, crowd-quakes. The pedestrian movement pattern in this incident was special for the reason that it happened in a congested counter flow scenario, where stopped pedestrians were involved. No one was believed to have pushed others intentionally at the beginning, however, under this situation, the body contacts among the pedestrians still induced a force spread, which then led to velocity fluctuation. As indicated by the individual velocity-related features, the densely crowded pedestrian movement displayed turbulent flow features. Further analyzing the overall flow field, we also found that the pedestrian flow field shared typical patterns with turbulent fluid flow. As a result of the turbulent state, different clusters of pedestrians displayed different velocity features. Thus crowd pressure which took into account the velocity and density information was proved to be a good indicator of crowd disasters. Based on these essential features of pedestrian crowd-quakes, a minimal model, i.e., a pedestrian crowd-quake model, was established. Effects including pedestrian gait, stress conservation level and personal intention to escape were explored.
The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.
2008-12-01
The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.
NASA Technical Reports Server (NTRS)
Decker, A. J.
1984-01-01
The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Staiger, P. J.
1982-01-01
The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given.
McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; ...
2016-04-10
A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2009-01-01
The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.
Lin, Wen-Yen; Chou, Wen-Cheng; Chang, Po-Cheng; Chou, Chung-Chuan; Wen, Ming-Shien; Ho, Ming-Yun; Lee, Wen-Chen; Hsieh, Ming-Jer; Lin, Chung-Chih; Tsai, Tsai-Hsuan; Lee, Ming-Yih
2018-03-01
Seismocardiogram (SCG) or mechanocardiography is a noninvasive cardiac diagnostic method; however, previous studies used only a single sensor to detect cardiac mechanical activities that will not be able to identify location-specific feature points in a cardiac cycle corresponding to the four valvular auscultation locations. In this study, a multichannel SCG spectrum measurement system was proposed and examined for cardiac activity monitoring to overcome problems like, position dependency, time delay, and signal attenuation, occurring in traditional single-channel SCG systems. ECG and multichannel SCG signals were simultaneously recorded in 25 healthy subjects. Cardiac echocardiography was conducted at the same time. SCG traces were analyzed and compared with echocardiographic images for feature point identification. Fifteen feature points were identified in the corresponding SCG traces. Among them, six feature points, including left ventricular lateral wall contraction peak velocity, septal wall contraction peak velocity, transaortic peak flow, transpulmonary peak flow, transmitral ventricular relaxation flow, and transmitral atrial contraction flow were identified. These new feature points were not observed in previous studies because the single-channel SCG could not detect the location-specific signals from other locations due to time delay and signal attenuation. As the results, the multichannel SCG spectrum measurement system can record the corresponding cardiac mechanical activities with location-specific SCG signals and six new feature points were identified with the system. This new modality may help clinical diagnoses of valvular heart diseases and heart failure in the future.
A flow paradigm in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Yan, Li
2018-04-01
The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada
Optical coherence tomography for the quantitative study of cerebrovascular physiology
Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A
2011-01-01
Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599
Visualizing Human Migration Trhough Space and Time
NASA Astrophysics Data System (ADS)
Zambotti, G.; Guan, W.; Gest, J.
2015-07-01
Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.
High pressure flow-rate switch
NASA Technical Reports Server (NTRS)
Gale, G. P.
1970-01-01
Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.
Pulsed Flows Along a Cusp Structure Observed with SOO/AIA
NASA Technical Reports Server (NTRS)
Thompson, Barbara; Demoulin, P.; Mandrini, C. H.; Mays, M. L.; Ofman, L.; Driel-Gesztelyi, L. Van; Viall, N. M.
2011-01-01
We present observations of a cusp-shaped structure that formed after a flare and coronal mass ejection on 14 February 2011. Throughout the evolution of the cusp structure, blob features up to a few Mm in size were observed flowing along the legs and stalk of the cusp at projected speeds ranging from 50 to 150 km/sec. Around two dozen blob features, on order of 1 - 3 minutes apart, were tracked in multiple AlA EUV wavelengths. The blobs flowed outward (away from the Sun) along the cusp stalk, and most of the observed speeds were either constant or decelerating. We attempt to reconstruct the 3-D magnetic field of the evolving structure, discuss the possible drivers of the flows (including pulsed reconnect ion and tearing mode instability), and compare the observations to studies of pulsed reconnect ion and blob flows in the solar wind and the Earth's magnetosphere.
NASA Technical Reports Server (NTRS)
Decker, A. J.
1984-01-01
The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three-dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed. Previously announced in STAR as N84-21849
Korakianitis, Theodosios; Shi, Yubing
2006-09-01
Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.
NASA Astrophysics Data System (ADS)
Vye-Brown, C.; Self, S.; Barry, T. L.
2013-03-01
The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.
A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, G.; Gerstenberger, A.; Collis, S. S.
2013-01-01
We present a new approach to the simulation of gravity-driven viscous fingering instabilities in porous media flow. These instabilities play a very important role during carbon sequestration processes in brine aquifers. Our approach is based on a nonlinear implementation of the discontinuous Galerkin method, and possesses a number of key features. First, the method developed is inherently high order, and is therefore well suited to study unstable flow mechanisms. Secondly, it maintains high-order accuracy on completely unstructured meshes. The combination of these two features makes it a very appealing strategy in simulating the challenging flow patterns and very complex geometriesmore » of actual reservoirs and aquifers. This article includes an extensive set of verification studies on the stability and accuracy of the method, and also features a number of computations with unstructured grids and non-standard geometries.« less
Franz, Delbert D.; Melching, Charles S.
1997-01-01
The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The accuracy and convergence of the numerical routines in the model are demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed. The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady flow are presented. Assumptions and the limitations of the model also are presented. The schematization of the stream system and the conversion of the physical characteristics of the stream reaches and a wide range of special features into function tables for model applications are described. The modified dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor hydraulic structures and channel constrictions determined from an equivalent energy slope is developed. The matrix equation relating flows and depths at computational nodes throughout the stream system by the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages and warnings issued are presented.
Theoretical features of MHD equilibria with flow
NASA Astrophysics Data System (ADS)
Beklemishev, Alexei; Tessarotto, Massimo
2002-11-01
The effect produced on plasma dynamics by plasma flows, especially those produced by strong E× B-drifts represent an important theoretical issue in magnetic confinement. These include in particular Stellarator equilibria in the presence of weak flows, with velocity much smaller in magnitude than the ion thermal velocity [1]. Strong flows, however, more generally can be produced locally in a variety of physical situations (for example due to strong radial electric fields, neutral beams, RF heating, etc.). These flows can be important in establishing advanced operational regimes, such as the recently discovered HDH mode in the W7-AS Stellarator [2]. Goal of this work is to investigate theoretical features of the MHD equilibria in the presence of strong flows, with particular reference to conditions of existence of kinetic equilibria, particle adiabatic and/or bounce-averaged invariants. References 1 - M. Tessarotto, J.L. Johnson, R.B. White and L.J. Zheng, Phys. Plasmas 3, 2653 (1996); 2 - K. McCormick et al., Phys. Rev. Lett. 89, 15001 (2002).
Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences
Kean, J.W.; Smith, J.D.
2006-01-01
Small-scale topographic features are commonly found on the boundaries of natural rivers, streams, and floodplains. A simple method for determining the form drag on these features is presented, and the results of this model are compared to laboratory measurements. The roughness elements are modeled as Gaussian-shaped features defined in terms of three parameters: a protrusion height, H; a streamwise length scale, ??; and a spacing between crests, ??. This shape is shown to be a good approximation to a wide variety of natural topographic bank features. The form drag on an individual roughness element embedded in a series of identical elements is determined using the drag coefficient of the individual element and a reference velocity that includes the effects of roughness elements further upstream. In addition to calculating the drag on each element, the model determines the spatially averaged total stress, skin friction stress, and roughness height of the boundary. The effects of bank roughness on patterns of velocity and boundary shear stress are determined by combining the form drag model with a channel flow model. The combined model shows that drag on small-scale topographic features substantially alters the near-bank flow field. These methods can be used to improve predictions of flow resistance in rivers and to form the basis for fully predictive (no empirically adjusted parameters) channel flow models. They also provide a foundation for calculating the near-bank boundary shear stress fields necessary for determining rates of sediment transport and lateral erosion.
Study of Varying Boundary Layer Height on Turret Flow Structures
2011-06-01
fluid dynamics. The difficulties of the problem arise in modeling several complex flow features including separation, reattachment, three-dimensional...impossible. In this case, the approach is to create a model to calculate the properties of interest. The main issue with resolving turbulent flows...operation and their effect is modeled through subgrid scale models . As a result, the the most important turbulent scales are resolved and the
Toward an Efficient Icing CFD Process Using an Interactive Software Toolkit: Smagglce 2D
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Choo, Yung K.; Schilling, Herbert W.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.
2001-01-01
Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Adam; Merzari, Elia; Sofu, Tanju
2016-08-01
High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Keisuke; Nakayama, Katsuyuki
2017-11-01
Development or decay of a vortex in terms of the local flow topology has been shown to be highly correlated with its topological feature, i.e., vortical flow symmetry (skewness), in an isotropic homogeneous turbulence. Since a turbulent flow might include vortices in multi-scales, the present study investigates the characteristics of this relationships between the development or decay of a vortex and the vortical flow symmetry in several scales in an isotropic homogeneous turbulence in low Reynols number. Swirlity is a physical quantity of an intensity of swirling in terms of the geometrical average of the azimuthal flow, and represents the behavior of the development or decay of a vortex in this study. Flow scales are decomposed into three scales specified by the Fourier coefficients of the velocity applying the band-pass filter. The analysis shows that vortices in the different scales have a universal feature that the time derivative of swirlity and that of the symmetry have high correlation. Especially they have more stronger correlation at their birth and extinction.
An analytical model for highly seperated flow on airfoils at low speeds
NASA Technical Reports Server (NTRS)
Zunnalt, G. W.; Naik, S. N.
1977-01-01
A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.
Laminar flow burner system with infrared heated spray chamber and condenser.
Hell, A; Ulrich, W F; Shifrin, N; Ramírez-Muñoz, J
1968-07-01
A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.
Correlation of SASH1 expression and ultrasonographic features in breast cancer.
Gong, Xuchu; Wu, Jinna; Wu, Jian; Liu, Jun; Gu, Hailin; Shen, Hao
2017-01-01
SASH1 is a member of the SH3/SAM adapter molecules family and has been identified as a new tumor suppressor and critical protein in signal transduction. An ectopic expression of SASH1 is associated with decreased cell viability of breast cancer. The aim of this study was to explore the association between SASH1 expression and the ultrasonographic features in breast cancer. A total of 186 patients diagnosed with breast cancer were included in this study. The patients received preoperative ultrasound examination, and the expression of SASH1 was determined using immunohistochemistry methods. Spearman's rank correlation analysis was used to analyze the correlation between SASH1-positive expression and the ultrasonographic features. The positive expression of SASH1 was observed in 63 (33.9%) patients. The positive expression rate of SASH1 was significantly decreased in patients with breast cancer (63/186, 33.9%) compared with controls ( P <0.001). The positive expression rate of SASH1 was significantly decreased in patients with edge burr sign ( P =0.025), lymph node metastasis ( P =0.007), and a blood flow grade of III ( P =0.013) compared with patients without those adverse ultrasonographic features. The expression of SASH1 was negatively correlated with edge burr sign ( P =0.025), lymph node metastasis ( P =0.007), and blood flow grade ( P =0.003) of the patients with breast cancer. The expression of SASH1 was inversely correlated with some critical ultrasonographic features, including edge burr sign, lymph node metastasis, and blood flow grade in breast cancer, and decreased SASH1 expression appears to be associated with adverse clinical and imaging features in breast cancer.
Correlation of SASH1 expression and ultrasonographic features in breast cancer
Gong, Xuchu; Wu, Jinna; Wu, Jian; Liu, Jun; Gu, Hailin; Shen, Hao
2017-01-01
Objective SASH1 is a member of the SH3/SAM adapter molecules family and has been identified as a new tumor suppressor and critical protein in signal transduction. An ectopic expression of SASH1 is associated with decreased cell viability of breast cancer. The aim of this study was to explore the association between SASH1 expression and the ultrasonographic features in breast cancer. Patients and methods A total of 186 patients diagnosed with breast cancer were included in this study. The patients received preoperative ultrasound examination, and the expression of SASH1 was determined using immunohistochemistry methods. Spearman’s rank correlation analysis was used to analyze the correlation between SASH1-positive expression and the ultrasonographic features. Results The positive expression of SASH1 was observed in 63 (33.9%) patients. The positive expression rate of SASH1 was significantly decreased in patients with breast cancer (63/186, 33.9%) compared with controls (P<0.001). The positive expression rate of SASH1 was significantly decreased in patients with edge burr sign (P=0.025), lymph node metastasis (P=0.007), and a blood flow grade of III (P=0.013) compared with patients without those adverse ultrasonographic features. The expression of SASH1 was negatively correlated with edge burr sign (P=0.025), lymph node metastasis (P=0.007), and blood flow grade (P=0.003) of the patients with breast cancer. Conclusion The expression of SASH1 was inversely correlated with some critical ultrasonographic features, including edge burr sign, lymph node metastasis, and blood flow grade in breast cancer, and decreased SASH1 expression appears to be associated with adverse clinical and imaging features in breast cancer. PMID:28138250
LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)
NASA Astrophysics Data System (ADS)
Fujita, E.
2013-12-01
Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.
Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S
2017-12-01
The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Inverted Martian Craters in Lineated Glacial Valleys, Ismenius Lacus Region, Mars
NASA Technical Reports Server (NTRS)
McConnell, B. S.; Wilt, G. L.; Gillespie, A.; Newsom, H. E.
2005-01-01
We studied small, uniquely-shaped craters found on the surface of lineated terrain in the Ismenius Lacus region of Mars. By utilizing MOC and THEMIS satellite images, we located terrain including lineations (viscous flow features), smoothing of topography, and morphologic features such as polygons and gullies, which appear to be strong evidence of preexisting ice deposits.
3D-printed and CNC milled flow-cells for chemiluminescence detection.
Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S
2014-08-01
Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.
System and Method for Modeling the Flow Performance Features of an Object
NASA Technical Reports Server (NTRS)
Jorgensen, Charles (Inventor); Ross, James (Inventor)
1997-01-01
The method and apparatus includes a neural network for generating a model of an object in a wind tunnel from performance data on the object. The network is trained from test input signals (e.g., leading edge flap position, trailing edge flap position, angle of attack, and other geometric configurations, and power settings) and test output signals (e.g., lift, drag, pitching moment, or other performance features). In one embodiment, the neural network training method employs a modified Levenberg-Marquardt optimization technique. The model can be generated 'real time' as wind tunnel testing proceeds. Once trained, the model is used to estimate performance features associated with the aircraft given geometric configuration and/or power setting input. The invention can also be applied in other similar static flow modeling applications in aerodynamics, hydrodynamics, fluid dynamics, and other such disciplines. For example, the static testing of cars, sails, and foils, propellers, keels, rudders, turbines, fins, and the like, in a wind tunnel, water trough, or other flowing medium.
Criterion for Identifying Vortices in High-Pressure Flows
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2007-01-01
A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.
Detached Eddy Simulation of Flap Side-Edge Flow
NASA Technical Reports Server (NTRS)
Balakrishnan, Shankar K.; Shariff, Karim R.
2016-01-01
Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.
Analysis of a cryolava flow-like feature on Titan
Le, Corre L.; Le, Mouelic S.; Sotin, Christophe; Combe, J.-P.; Rodriguez, S.; Barnes, J.W.; Brown, R.H.; Buratti, B.J.; Jaumann, R.; Soderblom, J.; Soderblom, L.A.; Clark, R.; Baines, K.H.; Nicholson, P.D.
2009-01-01
This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 ??m). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.. ?? 2009 Elsevier Ltd.
Southward flow on the western flank of the Florida Current
NASA Astrophysics Data System (ADS)
Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.
2017-07-01
A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.
Implementation of density-based solver for all speeds in the framework of OpenFOAM
NASA Astrophysics Data System (ADS)
Shen, Chun; Sun, Fengxian; Xia, Xinlin
2014-10-01
In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.
Field Detection of Chemical Assimilation in A Basaltic Lava Flow
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.
2017-01-01
Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.
Boosting devices with integral features for recirculating exhaust gas
Wu, Ko -Jen
2015-09-15
According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.
Scaling laws in granular flow and pedestrian flow
NASA Astrophysics Data System (ADS)
Chen, Shumiao; Alonso-Marroquin, Fernando; Busch, Jonathan; Hidalgo, Raúl Cruz; Sathianandan, Charmila; Ramírez-Gómez, Álvaro; Mora, Peter
2013-06-01
We use particle-based simulations to examine the flow of particles through an exit. Simulations involve both gravity-driven particles (representing granular material) and velocity-driven particles (mimicking pedestrian dynamics). Contact forces between particles include elastic, viscous, and frictional forces; and simulations use bunker geometry. Power laws are observed in the relation between flow rate and exit width. Simulations of granular flow showed that the power law has little dependence on the coefficient of friction. Polydisperse granular systems produced higher flow rates than those produced by monodisperse ones. We extend the particle model to include the main features of pedestrian dynamics: thoracic shape, shoulder rotation, and desired velocity oriented towards the exit. Higher desired velocity resulted in higher flow rate. Granular simulations always give higher flow rate than pedestrian simulations, despite the values of aspect ratio of the particles. In terms of force distribution, pedestrians and granulates share similar properties with the non-democratic distribution of forces that poses high risks of injuries in a bottleneck situation.
Ice-Ridge Pile Up and the Genesis of Martian "Shorelines"
NASA Technical Reports Server (NTRS)
Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.
2005-01-01
Unique geomorphologic features such as basin terraces exhibiting topographic continuity have been found within several Martian craters as shown in Viking, MOC, and THEMIS images. These features, showing similarity to terrestrial shorelines, have been mapped and cataloged with significant effort [1]. Currently, open wave action on the surface of paleolakes has been hypothesized as the geomorphologic agent responsible for the generation of these features [2]. As consequence, feature interpretations, including shorelines, wave-cut benches, and bars are, befittingly, lacustrine. Because such interpretations and their formation mechanisms have profound implications for the climate and potential biological history of Mars, confidence is crucial. The insight acquired through linked quantitative modeling of geomorphologic agents and processes is key to accurately interpreting these features. In this vein, recent studies [3,4] involving the water wave energy in theoretical open water basins on Mars show minimal erosional effects due to water waves under Martian conditions. Consequently, sub-glacial lake flattens the surface, produces a local velocity increase over the lake, and creates a deviation of the ice flow from the main flow direction [11]. These consequences of ice flow are observed at Lake Vostok, Antarctica an excellent Martian analogue [11]. Martian observations include reticulate terrain exhibiting sharp inter-connected ridges speculated to reflect the deposition and reworking of ice blocks at the periphery of ice-covered lakes throughout Hellas [12]. Our model determines to what extent ice, a terrestrial geomorphologic agent, can alter the Martian landscape. Method: We study the evolution of crater ice plugs as the formation mechanism of surface features frequently identified as shorelines. In particular, we perform model integrations involving parameters such as ice slope and purity, atmospheric pressure and temperature, crater shape and composition, and an energy balance between solar flux, geothermal flux, latent heat, and ablation. Our ultimate goal is to understand how an intracrater ice plug could create the observed shoreline features and how these
NASA Astrophysics Data System (ADS)
Taneja, Ankur; Higdon, Jonathan
2018-01-01
A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.
NASA Astrophysics Data System (ADS)
Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Kuriakose, Jean; Hadjiiski, Lubomir; Patel, Smita; Kazerooni, Ella
2015-03-01
We are developing a computer-aided detection system to assist radiologists in detection of non-calcified plaques (NCPs) in coronary CT angiograms (cCTA). In this study, we performed quantitative analysis of arterial flow properties in each vessel branch and extracted flow information to differentiate the presence and absence of stenosis in a vessel segment. Under rest conditions, blood flow in a single vessel branch was assumed to follow Poiseuille's law. For a uniform pressure distribution, two quantitative flow features, the normalized arterial compliance per unit length (Cu) and the normalized volumetric flow (Q) along the vessel centerline, were calculated based on the parabolic Poiseuille solution. The flow features were evaluated for a two-class classification task to differentiate NCP candidates obtained by prescreening as true NCPs and false positives (FPs) in cCTA. For evaluation, a data set of 83 cCTA scans was retrospectively collected from 83 patient files with IRB approval. A total of 118 NCPs were identified by experienced cardiothoracic radiologists. The correlation between the two flow features was 0.32. The discriminatory ability of the flow features evaluated as the area under the ROC curve (AUC) was 0.65 for Cu and 0.63 for Q in comparison with AUCs of 0.56-0.69 from our previous luminal features. With stepwise LDA feature selection, volumetric flow (Q) was selected in addition to three other luminal features. With FROC analysis, the test results indicated a reduction of the FP rates to 3.14, 1.98, and 1.32 FPs/scan at sensitivities of 90%, 80%, and 70%, respectively. The study indicated that quantitative blood flow analysis has the potential to provide useful features for the detection of NCPs in cCTA.
NASA Astrophysics Data System (ADS)
Vasil'Ev, O. F.; Voropaeva, O. F.; Kurbatskii, A. F.
2011-06-01
Specific features of the turbulent transfer of the momentum and heat in stably stratified geophysical flows, as well as possibilities for including them into RANS turbulence models, are analyzed. The momentum (but not heat) transfer by internal gravity waves under conditions of strong stability is, for example, one such feature. Laboratory data and measurements in the atmosphere fix a clear dropping trend of the inverse turbulent Prandtl number with an increasing gradient Richardson number, which must be reproduced by turbulence models. Ignoring this feature can cause a false diffusion of heat under conditions of strong stability and lead, in particular, to noticeable errors in calculations of the temperature in the atmospheric boundary layer. Therefore, models of turbulent transfer must include the effect of the action of buoyancy and internal gravity waves on turbulent flows of the momentum. Such a strategy of modeling the stratified turbulence is presented in the review by a concrete RANS model and original results obtained during the modeling of stratified flows in the environment. Semiempirical turbulence models used for calculations of complex turbulent flows in deep stratified bodies of water are also analyzed. This part of the review is based on the data of investigations within the framework of the large international scientific Comparative Analysis and Rationalization of Second-Moment Turbulence Models (CARTUM) project and other publications of leading specialists. The most economical and effective approach associated with modified two-parameter turbulence models is a real alternative to classical variants of these models. A class of test problems and laboratory and full-scale experiments used by the participants of the CARTUM project for the approbation of numerical models are considered.
Far Hills Country Day, Far Hills, New Jersey.
ERIC Educational Resources Information Center
Moline, Julie
1999-01-01
Describes the minimalistic design features of a new addition to a suburban New Jersey elementary/middle school that expanded classroom space and created better traffic flow. Photos and a floorplan are included. (GR)
Automated Extraction of Secondary Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne M.; Haimes, Robert
2005-01-01
The use of Computational Fluid Dynamics (CFD) has become standard practice in the design and development of the major components used for air and space propulsion. To aid in the post-processing and analysis phase of CFD many researchers now use automated feature extraction utilities. These tools can be used to detect the existence of such features as shocks, vortex cores and separation and re-attachment lines. The existence of secondary flow is another feature of significant importance to CFD engineers. Although the concept of secondary flow is relatively understood there is no commonly accepted mathematical definition for secondary flow. This paper will present a definition for secondary flow and one approach for automatically detecting and visualizing secondary flow.
RIPPLE - A new model for incompressible flows with free surfaces
NASA Technical Reports Server (NTRS)
Kothe, D. B.; Mjolsness, R. C.
1991-01-01
A new free surface flow model, RIPPLE, is summarized. RIPPLE obtains finite difference solutions for incompressible flow problems having strong surface tension forces at free surfaces of arbitrarily complex topology. The key innovation is the continuum surface force model which represents surface tension as a (strongly) localized volume force. Other features include a higher-order momentum advection model, a volume-of-fluid free surface treatment, and an efficient two-step projection solution method. RIPPLE's unique capabilities are illustrated with two example problems: low-gravity jet-induced tank flow, and the collision and coalescence of two cylindrical rods.
ERIC Educational Resources Information Center
Lloyd, Rebecca
2015-01-01
Background: Physical Education (PE) programmes are expanding to include alternative activities yet what is missing is a conceptual model that facilitates how the learning process may be understood and assessed beyond the dominant sport-technique paradigm. Purpose: The purpose of this article was to feature the emergence of a Function-to-Flow (F2F)…
NASA Astrophysics Data System (ADS)
Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth
2016-11-01
Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.
Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen
2012-01-01
Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.
NASA Astrophysics Data System (ADS)
Anderson, William; Day, Kenzie; Kocurek, Gary
2016-11-01
Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.
NASA Astrophysics Data System (ADS)
Anderson, William
2017-04-01
Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).
CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models
Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.
2013-01-01
The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.
Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica
NASA Astrophysics Data System (ADS)
Pattyn, Frank; de Brabander, Sang; Huyghe, Ann
The Ragnhild glaciers are three enhanced-flow features situated between the Sør Rondane and Yamato Mountains in eastern Dronning Maud Land, Antarctica. We investigate the glaciological mechanisms controlling their existence and behavior, using a three-dimensional numerical thermomechanical ice-sheet model including higher-order stress gradients. This model is further extended with a steady-state model of subglacial water flow, based on the hydraulic potential gradient. Both static and dynamic simulations are capable of reproducing the enhanced ice-flow features. Although basal topography is responsible for the existence of the flow pattern, thermomechanical effects and basal sliding seem to locally soften and lubricate the ice in the main trunks. Lateral drag is a contributing factor in balancing the driving stress, as shear margins can be traced over a distance of hundreds of kilometers along west Ragnhild glacier. Different basal sliding scenarios show that central Ragnhild glacier stagnates as west Ragnhild glacier accelerates and progressively drains the whole catchment area by ice and water piracy.
Self-actuating and locking control for nuclear reactor
Chung, Dong K.
1982-01-01
A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level.
NASA Astrophysics Data System (ADS)
Shin, C.
2017-12-01
Permeability estimation has been extensively researched in diverse fields; however, methods that suitably consider varying geometries and changes within the flow region, for example, hydraulic fracture closing for several years, are yet to be developed. Therefore, in the present study a new permeability estimation method is presented based on the generalized Darcy's friction flow relation, in particular, by examining frictional flow parameters and characteristics of their variations. For this examination, computational fluid dynamics (CFD) simulations of simple hydraulic fractures filled with five layers of structured microbeads and accompanied by geometry changes and flow transitions are performed. Consequently, it was checked whether the main structures and shapes of each flow path are preserved, even for geometry variations within porous media. However, the scarcity and discontinuity of streamlines increase dramatically in the transient- and turbulent-flow regions. The quantitative and analytic examinations of the frictional flow features were also performed. Accordingly, the modified frictional flow parameters were successfully presented as similarity parameters of porous flows. In conclusion, the generalized Darcy's friction flow relation and friction equivalent permeability (FEP) equation were both modified using the similarity parameters. For verification, the FEP values of the other aperture models were estimated and then it was checked whether they agreed well with the original permeability values. Ultimately, the proposed and verified method is expected to efficiently estimate permeability variations in porous media with changing geometric factors and flow regions, including such instances as hydraulic fracture closings.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.
Boosting devices with integral features for recirculating exhaust gas
Wu, Ko-Jen
2015-12-22
According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.
The Sensitivity of Orographic Precipitation to Flow Direction
NASA Astrophysics Data System (ADS)
Mass, C.; Picard, L.
2015-12-01
An area of substantial interest is the sensitivity of orographic precipitation to the characteristics of the incoming flow and to the surrounding environment. Some studies have suggested substantial sensitivity of precipitation within individual river drainages for relatively small directional or stability variations of incoming flow. A characterization of such flow sensitivity would be of great value for hydrometeorological prediction, the determination of Probable Maximum Precipitation statistics, and for quantifying the uncertainty in precipitation and hydrological forecasts. To gain insight into this problem, an idealized version of the Weather Research and Forecasting (WRF) modeling system was created in which simulations are driven by a single vertical sounding, with the assumption of thermal wind balance. The actual terrain is used and the full physics complement of the modeling system. The presentation will show how precipitation over the Olympic Mountains of Washington State varies as flow direction changes. This analysis will include both the aggregate precipitation over the barrier and the precipitation within individual drainages or areas. The role of surrounding terrain and the nearby coastline are also examined by removing these features from simulations. Finally, the impact of varying flow stability and speed on the precipitation over this orographic feature will be described.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.
1988-01-01
A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.
Mixed-mode VLSI optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Barrows, Geoffrey Louis
We develop practical, compact optic flow sensors. To achieve the desired weight of 1--2 grams, mixed-mode and mixed-signal VLSI techniques are used to develop compact circuits that directly perform computations necessary to measure optic flow. We discuss several implementations, including a version fully integrated in VLSI, and several "hybrid sensors" in which the front end processing is performed with an analog chip and the back end processing is performed with a microcontroller. We extensively discuss one-dimensional optic flow sensors based on the linear competitive feature tracker (LCFT) algorithm. Hardware implementations of this algorithm are shown able to measure visual motion with contrast levels on the order of several percent. We argue that the development of one-dimensional optic flow sensors is therefore reduced to a problem of engineering. We also introduce two related two-dimensional optic flow algorithms that are amenable to implementation in VLSI. This includes the planar competitive feature tracker (PCFT) algorithm and the trajectory method. These sensors are being developed to solve small-scale navigation problems in micro air vehicles, which are autonomous aircraft whose maximum dimension is on the order of 15 cm. We obtain a proof-of-principle of small-scale navigation by mounting a prototype sensor onto a toy glider and programming the sensor to control a rudder or an elevator to affect the glider's path during flight. We demonstrate the determination of altitude by measuring optic flow in the downward direction. We also demonstrate steering to avoid a collision with a wall, when the glider is tossed towards the wall at a shallow angle, by measuring the optic flow in the direction of the glider's left and right side.
A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
McDonald, Michael G.; Harbaugh, Arlen W.; Guo, Weixing; Lu, Guoping
1988-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system
Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.
2001-01-01
Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
SAID-SAPS Paradigm: Beliefs and Reality
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2016-12-01
Enhanced westward flows are the dominant feature of the plasma convection in the perturbed subauroral geospace. These include latitudinally-narrow "polarization jets" (PJ) or "subauroral ion drifts" (SAID) observed mainly in the premidnight MLT sector and broad flow channels on the duskside. The generic term "sub-auroral polarization streams" (SAPS) was introduced to unite both (narrow and broad) flows, taking for granted that their underlying mechanisms are quite similar, if not the same. The concept of voltage and current generators is believed to explain the SAPS major features. The generator paradigm treats hot, ≥1 keV, plasma sheet (PS) particles as single (test) particles driven by the dawn-to-dusk and co-rotation electric fields and gradient-curvature drift disregarding charge neutrality and concomitant polarization fields, inherent in slow plasma processes. In this approach, the inner boundary of the hot ion trajectories on the duskside extends earthward of that of the PS electrons by some distance increasing toward dusk. However, magnetically conjugate observations in the evening sector reveal that the generator paradigm fails to explain the substorm SAID features and that they are rather explained in terms of a short-circuiting of substorm-injected hot plasma jets over the plasmapause. This report presents multispacecraft magnetically conjugate observations of substorm-enhanced flows on the duskside showing that their features are hardly compatible with the (test particle) generator paradigm. It is suggested that they are causally related to the two-loop system of the westward traveling surge.
The TechSat-21 Autonomous Sciencecraft Experiment
2003-06-01
indicating lava flow on Kilauea Volcano , Big Island, Hawaii . The changes in the highlighted areas of the image are indicative of lava flow that occurred in...recognizable features of interest such as craters and volcanoes . Such onboard science will enable retargeting and search, e.g., shifting the radar aim- point...phenomena at fine time-scales without overwhelming onboard caching or downlink capacities. Future examples can include: eruption of volcanoes on Io
Numerical simulation of helicopter engine plume in forward flight
NASA Technical Reports Server (NTRS)
Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.
1994-01-01
Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.
SHINE Tritium Nozzle Design: Activity 6, Task 1 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okhuysen, Brett S.; Pulliam, Elias Noel
In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommendmore » considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.« less
NASA Technical Reports Server (NTRS)
Chawla, Kalpana
1993-01-01
Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.
The rheology and composition of cryovolcanic flows on icy satellites
NASA Technical Reports Server (NTRS)
Kargel, Jeffrey S.
1993-01-01
The rheologic properties of terrestrial lavas have been related to morphologic features of their flows, such as levees, banked surfaces, multilobate structures, and compressible folds. These features also have been used to determine rheologies and constrain the compositions of extraterrestrial flows. However, with rare exceptions, such features are not resolvable in Voyager images of the satellites of outer planets. Often only flow length and edge thickness of cryovolcanic flows can be measured reasonably accurately from Voyager images. The semiempirical lava-flow model presented here is a renewed effort to extract useful information from such measurements.
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane
2002-01-01
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Flow and heat transfer experiments in the turbine airfoil/endwall region
NASA Astrophysics Data System (ADS)
Chung, Jin Taek
An experimental investigation of the three-dimensional flow and heat transfer near the junction between the endwall and suction wall of a gas turbine was performed. A large-scale, two-half-blade facility which simulates a turbine cascade was introduced. The simulator consists of two large half-blade sections, one wall simulating the pressure surface and the other wall simulating the suction surface. The advantage of this configuration is that the features of the secondary flow are large, because of the relatively large test section, and the flow is easily accessible with probes. Qualification of this simulator was by comparison to a multi-blade cascade flow. Various flow visualization techniques--oil and lampblack, ink and oil of wintergeeen, a single tuft probe, and a tuft grid--were employed to confirm that the important features of the cascade flow were replicated in this simulator. The triangular region on the suction surface, which was affected by the passage vortex, and the endwall secondary crossflow were observed by shear stress visualization and the liquid crystal measurement techniques. In order to investigate the effects of the turbulence level on the secondary flow in a turbine passage, a turbulence generator, designed to reproduce the characteristics of a combustor exit flow, was built. The generator was designed not only to generate a high turbulence level but to produce three main features of a combustor exit flow. The generator produced a turbulence intensity level of about 10 percent and an integral length scale of 5 centimeters. It was observed that the endwall secondary flow, including the passage vortex, is not significantly influenced by freestream turbulence levels up to 10 percent. A flow management technique using a boundary layer fence designed to reduce some harmful effects of secondary flow in the endwall region of a turbine passage was introduced. The boundary layer fence is effective in changing the passage of the vortex and reducing the influence of the vortex near the suction wall. The fence was even more effective in reducing secondary flows for high levels of freestream turbulence (approximately 10 percent).
NASA Astrophysics Data System (ADS)
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor); Thomas, Russell H. (Inventor)
2012-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter. Projections near a support pylon and/or associated heat shield can have particular configurations, including greater flow immersion than other projections.
Denlinger, R.P.; Iverson, R.M.
2001-01-01
Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
NASA Astrophysics Data System (ADS)
van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo
2016-11-01
The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.
Methods of blood flow measurement in the arterial circulatory system.
Tabrizchi, R; Pugsley, M K
2000-01-01
The most commonly employed techniques for the in vivo measurement of arterial blood flow to individual organs involve the use of flow probes or sensors. Commercially available systems for the measurement of in vivo blood flow can be divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic probes are used. The first type of flow probe measures blood flow-mediated Doppler shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the "transit time" required by an emitted ultrasound wave to traverse the vessel and are transit-time volume flow sensors. Measurement of blood flow in any vessel requires that the flow probe or sensor be highly accurate and exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional desirable features include compact design, size, and weight. An additional important feature for flow probes is that they exhibit good biocompatability; it is imperative for the sensor to behave in an inert manner towards the biological system. A sensitive and reliable method to assess blood flow in individual organs in the body, other than by the use of probes/sensors, is the reference sample method that utilizes hematogeneously delivered microspheres. This method has been utilized to a large extend to assess regional blood flow in the entire body. Obviously, the purpose of measuring blood flow is to determine the amount of blood delivered to a given region per unit time (milliliters per minute) and it is desirable to achieve this goal by noninvasive methodologies. This, however, is not always possible. This review attempts to offer an overview of some of the techniques available for the assessment of regional blood flow in the arterial circulatory system and discusses advantages and disadvantages of these common techniques.
Investigating Flow Features Near Abrupt Topography in the Mariana Basin
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigating Flow Features Near Abrupt Topography in...waves generated by flow over topography and mesoscale eddies generated by flow past islands. Having identified the prime locations in the region for such
Documenting Chemical Assimilation in a Basaltic Lava Flow
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C.; Whelley, P. L.; Scheidt, S.; Williams, D.; Rogers, A. D.; Glotch, T.
2017-01-01
Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon [1,2,3] but none have focused on how the compositional and structural characteristics of the substrate over which a flow was emplaced influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to lava rheology (a function of multiple factors including viscosity, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied [4,5,6] but less is understood about the relationship between a pre-flow terrain's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, lava erosion has been well-documented [i.e. 7,8,9,10]. Lava erosion is the process by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves. Though this process has been observed, there is only one instance of where it was been geochemically documented.
Flow in a centrifugal fan impeller at off-design conditions
NASA Astrophysics Data System (ADS)
Wright, T.; Tzou, K. T. S.; Madhavan, S.
1984-06-01
A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.
Relative ages of lava flows at Alba Patera, Mars
NASA Technical Reports Server (NTRS)
Schneeberger, Dale M.; Pieri, David C.
1987-01-01
Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves.
Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows
NASA Astrophysics Data System (ADS)
Peitersen, Matthew N.; Crown, David A.
2000-02-01
Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera exhibits a relatively large number of sudden width behavior occurrences.
Software Aids Visualization of Computed Unsteady Flow
NASA Technical Reports Server (NTRS)
Kao, David; Kenwright, David
2003-01-01
Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.
NASA Astrophysics Data System (ADS)
Sinha, Rishitosh K.; Vijayan, S.
2017-09-01
Evidence for mid-high latitude glacial episodes existing within the Late Amazonian history of Mars has been reported from analysis of variety of glacial/periglacial landforms and their stratigraphic relationships. In this study, using the Context Camera (CTX) images, we have surveyed the interior of craters within the Alba Mons region of Mars (30°-60°N; 80°-140°W) to decipher the presence of ice-related flow features. The primary goals of this study are to (1) suggest from observations that the flow features identified in the interior of Alba Mons craters have flow characteristic possibly different from concentric crater fill (CCF) landforms and (2) interpret the extent of glacial activity that led to formation of flow features with respect to previously described mid-latitude ice-related landforms. Our geomorphic investigation revealed evidence for the presence of tongue-like or lobate shaped ice-related flow feature from the interior of ∼346 craters in the study region. The presence of ring-mold crater morphologies and brain-terrain texture preserved on the surface of flow features suggests that they are possibly formed of near-surface ice-rich bodies. We found that these flow features tend to form inside both the smaller (<5 km) and larger (>5 km) diameter craters emplaced at a wide range of elevation (from ∼ -3.3 km to 6.1 km). The measurement of overall length and flow direction of flow features is suggestive that they are similar to pole-facing small-scale lobate debris apron (LDA) formed inside craters. Crater size-frequency distribution of these small-scale LDAs reveals a model age of ∼10-100 Ma. Together with topographic and geomorphic observations, orientation measurements, and distribution within the study region, we suggest that the flow features (identified as pole-facing small-scale LDAs in the interior of craters) have flow characteristic possibly different from CCF landforms. Our observations and findings support the results of previous analyses that suggests Mars to have preserved records of multiple debris-covered glacial episodes occurred in the Late Amazonian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less
Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; ...
2017-05-18
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less
NASA Astrophysics Data System (ADS)
Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; Harman, Todd; Nelson, Matthew A.; Brown, Michael J.; Pardyjak, Eric R.
2017-08-01
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H_d/H_u) and street canyon-width to building-width aspect ratio ( S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... coefficients, and poison effects. (2) General design features of the core, including core structure, fuel elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design... changes, and operating limitations and reasons for these operating characteristics. (6) Design, components...
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... coefficients, and poison effects. (2) General design features of the core, including core structure, fuel elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design... changes, and operating limitations and reasons for these operating characteristics. (6) Design, components...
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2012 CFR
2012-01-01
... coefficients, and poison effects. (2) General design features of the core, including core structure, fuel elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design... changes, and operating limitations and reasons for these operating characteristics. (6) Design, components...
Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2004-01-01
With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.
NASA Astrophysics Data System (ADS)
Hutnak, M.; Fisher, A. T.; Stauffer, P.; Gable, C. W.
2005-12-01
We use two-dimensional, finite-element models of coupled heat and fluid flow to investigate local and large-scale heat and fluid transport around and between basement outcrops on a young ridge flank. System geometries and properties are based on observations and measurements on the 3.4-3.6 Ma eastern flank of the Juan de Fuca Ridge. A small area of basement exposure (Baby Bare outcrop) experiences focused hydrothermal discharge, whereas a much larger feature (Grizzly Bare outcrop) 50 km to the south is a site of hydrothermal recharge. Observations of seafloor heat flow, subseafloor pressures, and basement fluid geochemistry at and near these outcrops constrain acceptable model results. Single-outcrop simulations suggest that local convection alone (represented by a high Nusselt number proxy) cannot explain the near-outcrop heat flow patterns; rapid through-flow is required. Venting of at least 5 L/s through the smaller outcrop, a volumetric flow rate consistent with earlier estimates based on plume and outcrop measurements, is needed to match seafloor heat flow patterns. Heat flow patterns are more variable and complex near the larger, recharging outcrop. Simulations that include 5-20 L/s of recharge through this feature can replicate first-order trends in the data, but small-scale variations are likely to result from heterogeneous flow paths and vigorous, local convection. Two-outcrop simulations started with a warm hydrostatic initial condition, based on a conductive model, result in rapid fluid flow from the smaller outcrop to the larger outcrop, inconsistent with observations. Flow can be sustained in the opposite (correct) direction if it is initially forced, which generates a hydrothermal siphon between the two features. Free flow simulations maintain rapid circulation at rates consistent with observations (specific discharge of m/yr to tens of m/yr), provided basement permeability is on the order of 10-10 m2 or greater. Lateral flow rates scale inversely with the thickness of the permeable basement layer. The differential pressure needed to drive this circulation, created by the siphon, is on the order of tens to hundreds of kPa, with greater differential pressure needed when basement permeability is lower.
Investigation of Preferential Flow in Low Impact Development Practice
NASA Astrophysics Data System (ADS)
Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.
2016-12-01
The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path
NASA Technical Reports Server (NTRS)
Nakamura, S.; Scott, J. N.
1993-01-01
A two-dimensional model to solve compressible Navier-Stokes equations for the flow through stator and rotor blades of a turbine is developed. The flow domains for the stator and rotor blades are coupled by the Chimera method that makes grid generation easy and enhances accuracy because the area of the grid that have high turning of grid lines or high skewness can be eliminated from the computational domain after the grids are generated. The results of flow computations show various important features of unsteady flows including the acoustic waves interacting with boundary layers, Karman vortex shedding from the trailing edge of the stator blades, pulsating incoming flow to a rotor blade from passing stator blades, and flow separation from both suction and pressure sides of the rotor blades.
Numerical investigation of separated nozzle flows
NASA Technical Reports Server (NTRS)
Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.
1994-01-01
A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.
1992-01-01
A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.
NASA Astrophysics Data System (ADS)
Tarafdar, Pratik; Das, Tapas K.
Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity κ with the Kerr parameter a. The κ-a relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the κ-a relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.
Ice Flow in the North East Greenland Ice Stream
NASA Technical Reports Server (NTRS)
Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug
1999-01-01
Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.
Factors influencing flow steadiness in laminar boundary layer shock interactions
NASA Astrophysics Data System (ADS)
Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.
2016-11-01
The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
A Volcanic Origin for Sinuous and Branching Channels on Mars: Evidence from Hawaiian Analogs
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; deWet, Andrew; Garry, W. Brent; Zimbelman, James R.
2012-01-01
Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends > 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust following the eruption. The lateral margins of the proximal sheet, past which all lava flowed to feed the extensive channel, currently display a thickness of < 20 cm. Were this area covered by a dust layer, as is the Tharsis region on Mars, the margins would be difficult to identify. The Pohue Bay flow forms a lava tube. Open roof sections experienced episodes of overflow and spill out. In several places the resultant surface flows appear to have moved as sheet flows that inundated the preexisting meter scale features. Here the flows developed pathways around topographic highs, and in so doing accreted lava onto those features. The results are small islands within the multiple branched channels that display steep, sometimes overhanging walls. None of these features alone proves that the martian channel networks are the result of volcanic processes, but analog studies such as these are the first step towards identifying which morphologies are truly diagnostic of fluvial and volcanic channels.
Theoretical analysis of tsunami generation by pyroclastic flows
Watts, P.; Waythomas, C.F.
2003-01-01
Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.
Buczkowski, D.L.; Schmidt, B.E.; Williams, D.A.; Mest, S.C.; Scully, J.E.C.; Ermakov, A.; Preusker, F.; Schenk, P.; Otto, K. A.; Hiesinger, H.; O'Brien, D.; Marchi, S.; Sizemore, H.G.; Hughson, K.; Chilton, H.; Bland, M.; Byrne, S.; Schorghofer, N.; Platz, T.; Jaumann, R.; Roatsch, T.; Sykes, M. V.; Nathues, A.; De Sanctis, M.C.; Raymond, C.A.; Russell, C.T.
2016-01-01
Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust.
Features of two-phase flow in a microchannel of 0.05×20 mm
NASA Astrophysics Data System (ADS)
Ronshin, Fedor
2017-10-01
We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.
Engineering nanoscale surface features to sustain microparticle rolling in flow.
Kalasin, Surachate; Santore, Maria M
2015-05-26
Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.
Volcanic features of Hawaii. A basis for comparison with Mars
NASA Technical Reports Server (NTRS)
Carr, M. H.; Greeley, R.
1980-01-01
Despite the difference in size Martian and Hawaiian volcanoes have numerous characteristics in common. Specific features such as lava channels, collapsed lava tubes, levees and flow fronts, all very common in Hawaii, are also abundant on the flanks of some of the Martian volcanoes. Striking differences also exist, such as the apparent lack of radial rift zones on some Martian volcanoes and the paucity of cinder and spatter cones. Some of the best photographs of Martian and Hawaiian volcanic features are presented. Descriptive legends are provided for each picture. An overview of the geological processes and structures depicted is included.
Method of plasma etching Ga-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2012-12-25
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
Islas-Granillo, H; Borges-Yañez, SA; Medina-Solís, CE; Galan-Vidal, CA; Navarrete-Hernández, JJ; Escoffié-Ramirez, M; Maupomé, G
2014-01-01
ABSTRACT Objective: To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. Subjects and Methods: A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Socio-demographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Results: Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. Conclusions: These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders. PMID:25867562
Islas-Granillo, H; Borges-Yañez, S A; Medina-Solís, C E; Galan-Vidal, C A; Navarrete-Hernández, J J; Escoffié-Ramirez, M; Maupomé, G
2014-12-01
To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Sociodemographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders.
Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow
NASA Astrophysics Data System (ADS)
Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.
2017-12-01
The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.
Investigation of the flow-field of two parallel round jets impinging normal to a flat surface
NASA Astrophysics Data System (ADS)
Myers, Leighton M.
The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2, was designed and fabricated with a 50% increase in nozzle exit diameter. The primary design improvement is the ability to quickly and easily exchange the nozzles of the model. This allowed experiments to be performed with rapid-prototyped nozzles that feature more realistic geometry to that of tactical military aircraft engines. One such nozzle, which was designed and demonstrated by previous researchers to reduce jet noise in a free-jet, was incorporated into the model. The nozzle, featuring deflected seals, was installed in the Generation 2 model and its effect on suckdown was evaluated.
NASA Technical Reports Server (NTRS)
Ko, Sung HO
1993-01-01
Separation and reattachment of turbulent shear layers is observed in many important engineering applications, yet it is poorly understood. This has motivated many studies on understanding and predicting the processes of separation and reattachment of turbulent shear layers. Both of the situations in which separation is induced by adverse pressure gradient, or by discontinuities of geometry, have attracted attention of turbulence model developers. Formulation of turbulence closure models to describe the essential features of separated turbulent flows accurately is still a formidable task. Computations of separated flows associated with sharp-edged bluff bodies are described. For the past two decades, the backward-facing step flow, the simplest separated flow, has been a popular test case for turbulence models. Detailed studies on the performance of many turbulence models, including two equation turbulence models and Reynolds stress models, for flows over steps can be found in the papers by Thangam & Speziale and Lasher & Taulbee). These studies indicate that almost all the existing turbulence models fail to accurately predict many important features of back step flow such as reattachment length, recovery rate of the redeveloping boundary layers downstream of the reattachment point, streamlines near the reattachment point, and the skin friction coefficient. The main objectives are to calculate flows over backward and forward-facing steps using the NRSM and to make use of the newest DNS data for detailed comparison. This will give insights for possible improvements of the turbulence model.
Large-scale volcanism associated with coronae on Venus
NASA Technical Reports Server (NTRS)
Roberts, K. Magee; Head, James W.
1993-01-01
The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated with them. In particular, we have examined the percentage of coronae associated with volcanic flow fields (i.e., a collection of digitate or sheet-like lava flows extending from the corona interior or annulus); the range in scale of these flow fields; the variations in diameter, structure and stratigraphy of coronae with flow fields; and the global distribution of coronae associated with flow fields.
In Vivo Flow Cytometry: A Horizon of Opportunities
Tuchin, Valery V.; Tárnok, Attila; Zharov, Vladimir P.
2012-01-01
Flow cytometry has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo flow cytometry which provides detection and imaging of circulating normal and abnormal cells directlyin blood or lymph flow. The goal of this mini-review is to provide a brief history, features and challenges of this new generation of flow cytometry methods and instruments. Spectrum of possibilities of in vivo flow cytometry in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform. PMID:21915991
High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey
2005-01-01
High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
NASA Astrophysics Data System (ADS)
Rusconi, Francisco Jose
A series of Plio-Pleistocene mass transport deposits (MTD) have been identified in the deepwater Taranaki Basin, in New Zealand, using the Romney 3D seismic survey, which covers an area of approximately 2000 km2. One of these MTDs has been chosen for description and interpretation based on high confidence mapping of its boundary surfaces. The deposit exhibits an array of interesting features similar to those documented by researchers elsewhere plus a unique basal feature unlike those previously observed. The basal shear surface exhibits erosional features such as grooves, "monkey fingers", and glide tracks. Internally, the MTD is typically characterized by low impedance, chaotic, semi-transparent reflectors surrounding isolated coherent packages of seismic facies interpreted as intact blocks rafted within the mass transport complex. Distally, the deposit presents outrunner blocks and pressure ridges. The new element described in this work consists of a composite feature that includes a protruding obstacle ("shield block") on the paleo-seafloor that acted as a barrier to subsequent flows as they advanced downslope. These blocks disrupt the incoming flow and result in elongate, downflow negative features ("erosional shadow scours"), which are then infilled by the mass transport deposit, and are preserved as elongate isochore thicks. Kinematic evidence provided by various structures suggests that the MTD flow direction was SE-NW toward bathyal depths. The features presented and the absence of extensional headwall structures, such as local arcuate glide planes and rotated slide blocks, suggest that this part of the deposit belongs to the translational to distal domain of the MTD, and its source area is expected to be somewhere toward the SE in a paleo continental slope.
Formative Assessment: Simply, No Additives
ERIC Educational Resources Information Center
Roskos, Kathleen; Neuman, Susan B.
2012-01-01
Among the types of assessment the closest to daily reading instruction is formative assessment. In contrast to summative assessment, which occurs after instruction, formative assessment involves forming judgments frequently in the flow of instruction. Key features of formative assessment include identifying gaps between where students are and…
Florida Journal of Communication Disorders, 1995.
ERIC Educational Resources Information Center
Langhans, Joseph J., Ed.
1995-01-01
This annual volume is a compilation of articles addressing evaluation, management, professional affairs, practice parameters, and clinical application of speech and language services. Featured articles include: (1) "Comparison of Pressure, Flow, and Resistance for Modal and Loft Register Productions" (Joseph L. Langhans and Peter J.…
Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico
NASA Astrophysics Data System (ADS)
von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.
2013-12-01
Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe. Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.
MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process
Harbaugh, Arlen W.
2005-01-01
This report presents MODFLOW-2005, which is a new version of the finite-difference ground-water model commonly called MODFLOW. Ground-water flow is simulated using a block-centered finite-difference approach. Layers can be simulated as confined or unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and rivers, also can be simulated. The report includes detailed explanations of physical and mathematical concepts on which the model is based, an explanation of how those concepts are incorporated in the modular structure of the computer program, instructions for using the model, and details of the computer code. The modular structure consists of a MAIN Program and a series of highly independent subroutines. The subroutines are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system that is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving the set of simultaneous equations resulting from the finite-difference method. Several solution methods are incorporated, including the Preconditioned Conjugate-Gradient method. The division of the program into packages permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program also are designed to permit maximum flexibility. The program is designed to allow other capabilities, such as transport and optimization, to be incorporated, but this report is limited to describing the ground-water flow capability. The program is written in Fortran 90 and will run without modification on most computers that have a Fortran 90 compiler.
MHD Instability and Turbulence in the Tachocline
NASA Technical Reports Server (NTRS)
Werne, Joe; Wagner, William J. (Technical Monitor)
2003-01-01
The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Gonul, Ali Saffet; Kula, Mustafa; Bilgin, Arzu Guler; Tutus, Ahmet; Oguz, Aslan
2004-09-01
Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.
Redox flow cell energy storage systems
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1979-01-01
NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.
NASA Astrophysics Data System (ADS)
MacDonald, E.; Heavner, M.; Kosar, B.; Case, N.; Donovan, E.; Spanswick, E.; Nishimura, Y.; Gallardo-Lacourt, B.
2017-12-01
Aurora has been observed and recorded by people for thousands of years. Recently, citizen scientists captured features of aurora-like arc events not previously described in the literature at subauroral latitudes. Amateur photo sequences show unusual flow, unstable composition changes, and field aligned structures. Observations from the Swarm satellite crossing the arc reveals thermal enhancement, density depletion, and strong westward ion flow. These signatures resemble features previously described from in situ observation however the optical manifestation is surprising and contains rich, unstable signatures as well. The relevant observations have presented important implications on a variety of open questions, including the fundamental definition of aurora, and limitations of jargon and subfield distinctions. This paper covers the discovery, its context, and the significant implications for the application of public participation measurement modes to the natural sciences whereby they can form a disruptive gap to expose new observing perspectives. Photo Credit: Notanee Bourassa, Alberta Aurora Chasers
Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava
2015-01-01
Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212
Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource
Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.
2018-03-26
The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.
Database of historically documented springs and spring flow measurements in Texas
Heitmuller, Franklin T.; Reece, Brian D.
2003-01-01
Springs are naturally occurring features that convey excess ground water to the land surface; they represent a transition from ground water to surface water. Water issues through one opening, multiple openings, or numerous seeps in the rock or soil. The database of this report provides information about springs and spring flow in Texas including spring names, identification numbers, location, and, if available, water source and use. This database does not include every spring in Texas, but is limited to an aggregation of selected digital and hard-copy data of the U.S. Geological Survey (USGS), the Texas Water Development Board (TWDB), and Capitol Environmental Services.
NASA Astrophysics Data System (ADS)
Leandro, J.; Schumann, A.; Pfister, A.
2016-04-01
Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).
Online feature selection with streaming features.
Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan
2013-05-01
We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.
Geometric quantification of features in large flow fields.
Kendall, Wesley; Huang, Jian; Peterka, Tom
2012-01-01
Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.
Assessment and Treatment of Blast-Induced Auditory and Vestibular Injuries
2016-06-01
Year 2: Q 1 – 2. Examine cochlear and vestibular tissue at 1d and 7d after bTBI Q 3 – 4. Examine cochlear and vestibular tissue at 30d and 60d...the key features of blast wave flow conditions, including the negative phase and secondary shock. However the ABS has not been previously utilized to...isoflurane can be easily adjusted by the flow control. However, due to movement artefact and nosecone constraints, it is a sub-optimal anesthetic
The influence of interfacial slip on two-phase flow in rough pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
Momentum rate probe for use with two-phase flows
NASA Astrophysics Data System (ADS)
Bush, S. G.; Bennett, J. B.; Sojka, P. E.; Panchagnula, M. V.; Plesniak, M. W.
1996-05-01
An instrument for measuring the momentum rate of two-phase flows is described, and design and construction details are provided. The device utilizes a conelike body to turn the flow from the axial to the radial direction. The force resulting from the change in momentum rate of the turning flow is measured using a strain-gage-instrumented cantilevered beam. The instrument is applicable to a wide range of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air-conditioning equipment, impingement cooling of small scale electronic hardware (computer chips are one example), supercritical fuel injection (in Diesel engines, for instance), and consumer product sprays (such as hair-care product sprays produced using effervescent atomizers). The latter application is discussed here. Features of the instrument include sensitivity to a wide range of forces and the ability to damp oscillations of the deflection cone. Instrument sensitivity allows measurement of momentum rates considerably lower (below 0.01 N) than those that could be obtained using previous devices. This feature is a direct result of our use of precision strain gages, capable of sensing strains below 20 μm/m, and the damping of oscillations which can overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance is easily varied by changing fluids. Data used to calibrate the instrument are presented to demonstrate the effectiveness of the technique. As an example of the instrument's utility, momentum rate data obtained using it will be valuable in efforts to explain entrainment of surrounding air into effervescent atomizer-produced sprays and also to model the effervescent atomization process.
The influence of interfacial slip on two-phase flow in rough pores
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...
2017-08-01
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
NASA Astrophysics Data System (ADS)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.
2017-08-01
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
NASA Astrophysics Data System (ADS)
Barnes, S. J.; Dering, G.
2016-12-01
Previous studies of large komatiite fields in Archean greenstone belts in Western Australia and elsewhere have led to the suggestion that komatiite lavas were emplaced by similar mechanisms to modern pahoehoe flows, notwithstanding the very low viscosities and sea-floor eruption setting. Of komatiites. We use UAV photogrammetry to identify and map inflation features characteristic of modern pahoehoe flows in Archean komatiites at the Gordon Sirdar Lake locality near Kalgoorlie. Komatiite lavas, forming part of the 2705 Ma old plume-related bimodal volcanic sequence of the Eastern Goldfields Superterrane, Yilgarn Craton, were emplaced within a sequence of dacitic lava flows and semi-consolidated tuffs. The sequence was tilted to the vertical on the flanks of a regional isoclinal fold, and is exposed as partially weathered outcrop in the bed of a playa lake. Komatiite lava lobes form characteristic lenticular cross sections ranging from 1-6 m thick and up to 20m long, in some cases with lower margins draped over pre-existing dacite flow tops, and in others showing invasive textures implying eruption onto or into wet sediment. Inflation features include tumuli, inflation clefts, breakouts, and terraced margins. Spinifex textures are preserved locally at flow tops and rarely at bases. High temperature (>1400 C) and low viscosities (<50 Pa s) of komatiites evidently do not preclude inflation as an emplacement mechanism of individual flows. Flow-top morphology has been used to identify inflation of basaltic lava flows in Martian environments. We suggest these criteria may be extended to the possible recognition of Martian komatiites.
Overland flow generation in two lithologically distinct rainforest catchments
Godsey, S.; Elsenbeer, H.; Stallard, R.
2004-01-01
Streams on uniformly rainforest-covered, but lithologically very diverse Barro Colorado Island in central Panama?? show remarkable differences in their runoff response to rainfall. This lithological diversity is reflected in equally diverse soilscapes, and our objective was to test the hypothesis that contrasting runoff responses derive from soilscape features that control the generation of overland flow. We determined the soil saturated hydraulic conductivity (Ks) of two neighboring, but hydrologically contrasting catchments (Lutz Creek with a flashy and Conrad Trail with a delayed response to rainfall), and quantified the spatial and temporal frequency of overland flow occurrence. The median Ks values at a depth of 12.5 cm are large enough to rule out Hortonian overland flow, but a marked decrease in K s in Lutz Creek catchment at 30 cm suggests the formation of a perched water table and the generation saturation overland flow; the decrease in Ks in the Conrad Trail catchment is more gradual, and a perched water table is expected to form only at depths below 50 cm. In Lutz Creek, overland flow was generated frequently in time and space and regardless of topographic position, including near the interfluve, with very low thresholds of storm magnitude, duration, intensity and antecedent wetness, whereas in Conrad Trail, overland flow was generated much less frequently and then only locally. We conclude that soilscape features and microtopography are important controls of overland flow generation in these catchments. Our results contribute to the growing evidence that overland flow and forests are not a priori a contradiction in terms. ?? 2004 Elsevier B.V. All rights reserved.
Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system
NASA Astrophysics Data System (ADS)
Ye, Jing; Guo, Liejin
2013-07-01
The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.
Integrated titer plate-injector head for microdrop array preparation, storage and transfer
Swierkowski, Stefan P.
2000-01-01
An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Chilton, H.; Hughson, K.; Scully, J. E. C.; Russell, C. T.; Sizemore, H. G.; Nathues, A.; Platz, T.; Bland, M. T.; Schenk, P.; Hiesinger, H.; Jaumann, R.; Byrne, S.; Schorghofer, N.; Ammannito, E.; Marchi, S.; O'Brien, D. P.; Sykes, M. V.; Le Corre, L.; Capria, M. T.; Reddy, V.; Raymond, C. A.; Mest, S. C.; Feldman, W. C.
2015-12-01
Five decades of observations of Ceres' albedo, surface composition, shape and density suggest that Ceres is comprised of both silicates and tens of percent of ice. Historical suggestions of surficial hydrated silicates and evidence for water emission, coupled with its bulk density of ~2100 kg/m3 and Dawn observations of young craters containing high albedo spots support this conclusion. We report geomorphological evidence from survey data demonstrating that evaporative and fluid-flow processes within silicate-ice mixtures are prevalent on Ceres, and indicate that its surface materials contain significant water ice. Here we highlight three classes of features that possess strong evidence for ground ice. First, ubiquitous scalloped and "breached" craters are characterized by mass wasting and by the recession of crater walls in asymmetric patterns; these appear analogous to scalloped terrain on Mars and protalus lobes formed by mass wasting in terrestrial glaciated regions. The degradation of crater walls appears to be responsible for the nearly complete removal of some craters, particularly at low latitudes. Second, several high latitude, high elevation craters feature lobed flows that emanate from cirque-shaped head walls and bear strikingly similar morphology to terrestrial rock glaciers. These similarities include lobate toes and indications of furrows and ridges consistent with ice-cored or ice-cemented material. Other lobed flows persist at the base of crater walls and mass wasting features. Many flow features evidently terminate at ramparts. Third, there are frequent irregular domes, peaks and mounds within crater floors that depart from traditional crater central peaks or peak complexes. In some cases the irregular domes show evidence for high albedo or activity, and thus given other evidence for ice, these could be due to local melt and extrusion via hydrologic gradients, forming domes similar to pingos. The global distribution of these classes of features, combined with latitudinal variation in their abundance and/or appearance, suggests that ground ice is a key controller of geology on Ceres, and that ice content within the surface and subsurface is spatially varied and/or activated by energetic events. Dawn high altitude mapping orbit (HAMO) data will provide better views.
One-Water Hydrologic Flow Model (MODFLOW-OWHM)
Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.
2014-01-01
The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply-constrained conditions. From large- to small-scale settings, MF-OWHM has the unique set of capabilities to simulate and analyze historical, present, and future conjunctive-use conditions. MF-OWHM is especially useful for the analysis of agricultural water use where few data are available for pumpage, land use, or agricultural information. The features presented in this IHM include additional linkages with SFR, SWR, Drain-Return (DRT), Multi-Node Wells (MNW1 and MNW2), and Unsaturated-Zone Flow (UZF). Thus, MF-OWHM helps to reduce the loss of water during simulation of the hydrosphere and helps to account for “all of the water everywhere and all of the time.” In addition to groundwater, surface-water, and landscape budgets, MF-OWHM provides more options for observations of land subsidence, hydraulic properties, and evapotranspiration (ET) than previous models. Detailed landscape budgets combined with output of estimates of actual evapotranspiration facilitates linkage to remotely sensed observations as input or as additional observations for parameter estimation or water-use analysis. The features of FMP have been extended to allow for temporally variable water-accounting units (farms) that can be linked to land-use models and the specification of both surface-water and groundwater allotments to facilitate sustainability analysis and connectivity to the Groundwater Management Process (GWM). An example model described in this report demonstrates the application of MF-OWHM with the addition of land subsidence and a vertically deforming mesh, delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in demand caused by deficiency in supply, and changes in multi-aquifer pumpage caused by constraints imposed through the Farm Process and the MNW2 Package, and changes in surface water such as runoff, streamflow, and canal flows through SFR and SWR linkages.
Passive flow regulators for drug delivery and hydrocephalus treatment
NASA Astrophysics Data System (ADS)
Chappel, E.; Dumont-Fillon, D.; Mefti, S.
2014-03-01
Passive flow regulators are usually intended to deliver or drain a fluid at a constant rate independently from pressure variations. New designs of passive flow regulators made of a stack of a silicon membrane anodically bonded to a Pyrex substrate are proposed. A first design has been built for the derivation of cerebrospinal fluid (CSF) towards peritoneum for hydrocephalus treatment. The device allows draining CSF at the patient production rate independently from postural changes. The flow rate is regulated at 20 ml/h in the range 10 to 40 mbar. Specific features to adjust in vivo the nominal flow rate are shown. A second design including high pressure shut-off feature has been made. The intended use is drug delivery with pressurized reservoir of typically 100 to 300 mbar. In both cases, the membrane comprises several holes facing pillars in the Pyrex substrate. These pillars are machined in a cavity which ensures a gap between the membrane and the pillars at rest. The fluid in the pressurized reservoir is directly in contact with the top surface of the membrane, inducing its deflection towards Pyrex substrate and closing progressively the fluidic pathway through each hole of the membrane. Since the membrane deflection is highly non-linear, FEM simulations have been performed to determine both radial position and diameter of the membrane holes that ensure a constant flow rate for a given range of pressure.
Buczkowski, D L; Schmidt, B E; Williams, D A; Mest, S C; Scully, J E C; Ermakov, A I; Preusker, F; Schenk, P; Otto, K A; Hiesinger, H; O'Brien, D; Marchi, S; Sizemore, H; Hughson, K; Chilton, H; Bland, M; Byrne, S; Schorghofer, N; Platz, T; Jaumann, R; Roatsch, T; Sykes, M V; Nathues, A; De Sanctis, M C; Raymond, C A; Russell, C T
2016-09-02
Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. Copyright © 2016, American Association for the Advancement of Science.
Verifying and Validating Proposed Models for FSW Process Optimization
NASA Technical Reports Server (NTRS)
Schneider, Judith
2008-01-01
This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms
Improvement and analysis of the hydrogen-cerium redox flow cell
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-09-01
The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.
NASA Astrophysics Data System (ADS)
George, D. L.; Iverson, R. M.
2012-12-01
Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.
NASA Astrophysics Data System (ADS)
Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.
2008-03-01
Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features formed by lava breakouts and sand diapir injections are presented.
Discontinuous Galerkin methods for modeling Hurricane storm surge
NASA Astrophysics Data System (ADS)
Dawson, Clint; Kubatko, Ethan J.; Westerink, Joannes J.; Trahan, Corey; Mirabito, Christopher; Michoski, Craig; Panda, Nishant
2011-09-01
Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability. Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution. The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh ( h) and polynomial order ( p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method. In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.
Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.
2005-01-01
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.
Jain, Anil K; Feng, Jianjiang
2011-01-01
Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
NASA Astrophysics Data System (ADS)
Kim, Kyung Chun; Lee, Sang Joon
2011-06-01
The 14th International Symposium on Flow Visualization (ISFV14) was held in Daegu, Korea, on 21-24 June 2010. There were 304 participants from 17 countries. The state of the art in many aspects of flow visualization was presented and discussed, and a total of 243 papers from 19 countries were presented. Two special lectures and four invited lectures, 48 paper sessions and one poster session were held in five session rooms and in a lobby over four days. Among the paper sessions, those on 'biological flows', 'micro/nano fluidics', 'PIV/PTV' and 'compressible and sonic flows' received great attention from the participants of ISFV14. Special events included presentations of 'The Asanuma Award' and 'The Leonardo Da Vinci Award' to prominent contributors. Awards for photos and movies were given to three scientists for their excellence in flow visualizations. Sixteen papers were selected by the Scientific Committee of ISFV14. After the standard peer review process of this journal, six papers were finally accepted for publication. We wish to thank the editors of MST for making it possible to publish this special feature from ISFV14. We also thank the authors for their careful and insightful work and cooperation in the preparation of revised papers. It will be our pleasure if readers appreciate the hot topics in flow visualization research as a result of this special feature. We also hope that the progress in flow visualization will create new research fields. The 15th International Symposium on Flow Visualization will be held in Minsk, Belarus in 2012. We would like to express sincere thanks to the staff at IOP Publishing for their kind support.
Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster
NASA Astrophysics Data System (ADS)
Eilers, Shannon
The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.
Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter
NASA Astrophysics Data System (ADS)
Ghose, Somdeb; Adhikari, R.
2014-03-01
Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.
High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff
2006-01-01
High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
Compound cooling flow turbulator for turbine component
Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J
2014-11-25
Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.
NASA Technical Reports Server (NTRS)
1997-01-01
This image shows features on Jupiter's moon Europa that may be 'flows' from ice volcanoes. It was taken by the Galileo spacecraft solid state imaging (CCD) system during its seventh orbit around Jupiter. North is to the top of the image. The sun illuminates the scene from the left, showing features with shapes similar to lava flows on Earth. Two such features can be seen in the northwest corner of the image. The southern feature appears to have flowed over a ridge along its western edge. Scientists use these types of relationships to determine which feature formed first. In this case, the ridge probably formed before the flow-like feature that covers it.
The image, centered at 22.6 degrees north latitude and 106.7 degrees west longitude, covers an area of 180 by 215 kilometers (112 by 134 miles). The smallest distinguishable features in the image are about 1.1 kilometers (0.7 miles) across. This image was obtained on April 28, 1997, when Galileo was 27,590 kilometers (16,830 miles) from Europa.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoCassini observations of flow-like features in western Tui Regio, Titan
Barnes, J.W.; Brown, R.H.; Radebaugh, J.; Buratti, B.J.; Sotin, Christophe; Le, Mouelic S.; Rodriguez, S.; Turtle, E.P.; Perry, J.; Clark, R.; Baines, K.H.; Nicholson, P.D.
2006-01-01
A large (>3 ?? 104 km2), lobate, 5-??m-bright region seen by Cassini on Titan's leading equatorial region is best explained as a flow field. We discuss observations from the Visual and Infrared Mapping Spectrometer and Imaging Science Subsystem of the feature and present a map of the field. We establish relative ages of flow features and discuss possible formation mechanisms and the implications of this finding for the evolution of Titan's surface. Copyright 2006 by the American Geophysical Union.
Beyond lognormal inequality: The Lorenz Flow Structure
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-11-01
Observed from a socioeconomic perspective, the intrinsic inequality of the lognormal law happens to manifest a flow generated by an underlying ordinary differential equation. In this paper we extend this feature of the lognormal law to a general ;Lorenz Flow Structure; of Lorenz curves-objects that quantify socioeconomic inequality. The Lorenz Flow Structure establishes a general framework of size distributions that span continuous spectra of socioeconomic states ranging from the pure-communism extreme to the absolute-monarchy extreme. This study introduces and explores the Lorenz Flow Structure, analyzes its statistical properties and its inequality properties, unveils the unique role of the lognormal law within this general structure, and presents various examples of this general structure. Beyond the lognormal law, the examples include the inverse-Pareto and Pareto laws-which often govern the tails of composite size distributions.
Patterns in the sky: Natural visualization of aircraft flow fields
NASA Technical Reports Server (NTRS)
Campbell, James F.; Chambers, Joseph R.
1994-01-01
The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.
The emplacement of long lava flows in Mare Imbrium, the Moon
NASA Astrophysics Data System (ADS)
Garry, W. B.
2012-12-01
Lava flow margins are scarce on the lunar surface. The best developed lava flows on the Moon occur in Mare Imbrium where flow margins are traceable nearly their entire flow length. The flow field originates in the southwest part of the basin from a fissure or series of fissures and cones located in the vicinity of Euler crater and erupted in three phases (Phases I, II, III) over a period of 0.5 Billion years (3.0 - 2.5 Ga). The flow field was originally mapped with Apollo and Lunar Orbiter data by Schaber (1973) and shows the flow field extends 200 to 1200 km from the presumed source area and covers an area of 2.0 x 10^5 km^2 with an estimated eruptive volume of 4 x 10^4 km^3. Phase I flows extend 1200 km and have the largest flow volume, but interestingly do not exhibit visible topography and are instead defined by difference in color from the surrounding mare flows. Phases II and III flows have well-defined flow margins (10 - 65 m thick) and channels (0.4 - 2.0 km wide, 40 - 70 m deep), but shorter flow lengths, 600 km and 400 km respectively. Recent missions, including Lunar Reconnaissance Orbiter (LRO), Kaguya (Selene), and Clementine, provide high resolution data sets of these lava flows. Using a combination of data sets including images from LRO Wide-Angle-Camera (WAC)(50-100 m/pixel) and Narrow-Angle-Camera (NAC) (up to 0.5m/pixel), Kaguya Terrain Camera (TC) (10 m/pixel), and topography from LRO Lunar Orbiter Laser Altimeter (LOLA), the morphology has been remapped and topographic measurements of the flow features have been made in an effort to reevaluate the emplacement of the flow field. Morphologic mapping reveals a different flow path for Phase I compared to the original mapping completed by Schaber (1973). The boundaries of the Phase I flow field have been revised based on Moon Mineralogy Mapper color ratio images (Staid et al., 2011). This has implications for the area covered and volume erupted during this stage, as well as, the age of Phase I. Flow features and margins have been identified in the Phase I flow within the LROC WAC mosaic and in Narrow Angle Camera (NAC) images. These areas have a mottled appearance. LOLA profiles over the more prominent flow lobes in Phase I reveal these margins are less 10 m thick. Phase II and III morphology maps are similar to previous flow maps. Phase III lobes near Euler are 10-12 km wide and 20-30 m thick based on measurements of the LOLA 1024ppd Elevation Digital Terrain Model (DTM) in JMoon. One of the longer Phase III lobes varies between 15 to 50 km wide and 25 to 60 m thick, with the thickest section at the distal end of the lobe. The Phase II lobe is 15 to 25 m thick and up to 35 km wide. The eruptive volume of the Mare Imbrium lava flows has been compared to terrestrial flood basalts. The morphology of the lobes in Phase II and III, which includes levees, thick flow fronts, and lobate margins suggests these could be similar to terrestrial aa-style flows. The Phase I flows might be more representative of sheet flows, pahoehoe-style flows, or inflated flows. Morphologic comparisons will be made with terrestrial flows at Askja volcano in Iceland, a potential analog to compare different styles of emplacement for the flows in Mare Imbrium.
Jena, Manas Kumar; Samantaray, Subhransu Ranjan
2016-01-01
This paper presents a data-mining-based intelligent differential relaying scheme for transmission lines, including flexible ac transmission system device, such as unified power flow controller (UPFC) and wind farms. Initially, the current and voltage signals are processed through extended Kalman filter phasor measurement unit for phasor estimation, and 21 potential features are computed at both ends of the line. Once the features are extracted at both ends, the corresponding differential features are derived. These differential features are fed to a data-mining model known as decision tree (DT) to provide the final relaying decision. The proposed technique has been extensively tested for single-circuit transmission line, including UPFC and wind farms with in-feed, double-circuit line with UPFC on one line and wind farm as one of the substations with wide variations in operating parameters. The test results obtained from simulation as well as in real-time digital simulator testing indicate that the DT-based intelligent differential relaying scheme is highly reliable and accurate with a response time of 2.25 cycles from the fault inception.
Choi, Jae-Won; Yamashita, Masaki; Sakakibara, Jun; Kaji, Yuichi; Oshika, Tetsuro; Wicker, Ryan B
2010-10-01
Microstereolithography (microSL) technology can fabricate complex, three-dimensional (3D) microstructures, although microSL has difficulty producing macrostructures with micro-scale features. There are potentially many applications where 3D micro-features can benefit the overall function of the macrostructure. One such application involves a medical device called a coaxial phacoemulsifier where the tip of the phacoemulsifier is inserted into the eye through a relatively small incision and used to break the lens apart while removing the lens pieces and associated fluid from the eye through a small tube. In order to maintain the eye at a constant pressure, the phacoemulsifier also includes an irrigation solution that is injected into the eye during the procedure through a coaxial sleeve. It has been reported, however, that the impinging flow from the irrigation solution on the corneal endothelial cells in the inner eye can damage these cells during the procedure. As a result, a method for reducing the impinging flow velocities and the resulting shear stresses on the endothelial cells during this procedure was explored, including the design and development of a complex, 3D micro-vane within the sleeve. The micro-vane introduces swirl into the irrigation solution, producing a flow with rapidly dissipating flow velocities. Fabrication of the sleeve and fitting could not be accomplished using microSL alone, and thus, a two-part design was accomplished where a sleeve with the micro-vane was fabricated with microSL and a threaded fitting used to attach the sleeve to the phacoemulsifier was fabricated using an Objet Eden 333 rapid prototyping machine. The new combined device was tested within a water container using particle image velocimetry, and the results showed successful swirling flow with an ejection of the irrigation fluid through the micro-vane in three different radial directions corresponding to the three micro-vanes. As expected, the sleeve produced a swirling flow with rapidly dissipating streamwise flow velocities where the maximum measured streamwise flow velocities using the micro-vane were lower than those without the micro-vane by 2 mm from the tip where they remained at approximately 70% of those produced by the conventional sleeve as the flow continued to develop. It is believed that this new device will reduce damage to endothelial cells during cataract surgery and significantly improve patient outcomes from this procedure. This unique application demonstrates the utility of combining microSL with a macro rapid prototyping technology for fabricating a real macro-scale device with functional, 3D micro-scale features that would be difficult and costly to fabricate using alternative manufacturing methods.
Well-balanced compressible cut-cell simulation of atmospheric flow.
Klein, R; Bates, K R; Nikiforakis, N
2009-11-28
Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-13
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.
Numerical modeling of a glow discharge through a supersonic bow shock in air
NASA Astrophysics Data System (ADS)
Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.
2017-03-01
The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.
Multiscale Simulations of ALD in Cross Flow Reactors
Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.
2014-08-13
In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2017-12-01
The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.
Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.
In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less
Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction
Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...
2016-08-01
In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
Study of the flow mixing in a novel ARID raceway for algae production
Xu, Ben; Li, Peiwen; Waller, P.
2014-07-31
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less
Study of the flow mixing in a novel ARID raceway for algae production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ben; Li, Peiwen; Waller, P.
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less
Screening Models of Aquifer Heterogeneity Using the Flow Dimension
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Roberts, R. M.; Valocchi, A. J.
2007-12-01
Despite advances in test interpretation and modeling, typical groundwater modeling studies only indirectly use the parameters and information inferred from hydraulic tests. In particular, the Generalized Radial Flow approach to test interpretation infers the flow dimension, a parameter describing the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling.
NASA Astrophysics Data System (ADS)
Long, Shen; Lau, Timothy C. W.; Chinnici, Alfonso; Tian, Zhao Feng; Dally, Bassam B.; Nathan, Graham J.
2017-10-01
We present a joint experimental and numerical study of the flow structure within a cylindrical chamber generated by planar-symmetric isothermal jets, under conditions of relevance to a wide range of practical applications, including the Hybrid Solar Receiver Combustor (HSRC) technology. The HSRC features a cavity with a coverable aperture to allow it to be operated as either a combustion chamber or a solar receiver, with multiple burners to direct a flame into the chamber and a heat exchanger that absorbs the heat from both energy sources. In this study, we assess the cases of two or four inlet jets (simulating the burners), configured in a planar-symmetric arrangement and aligned at an angle to the axis (αj) over the range of 0°-90°, at a constant inlet Reynolds number of ReD = 10 500. The jets were positioned in the same axial plane near the throat and interact with each other and the cavity walls. Measurements obtained with particle image velocimetry were used together with numerical modeling employing Reynolds-averaged Navier-Stokes methods to characterize the large-scale flow field within selected configurations of the device. The results reveal a significant dependence of the mean flow-field on αj and the number of inlet jets (Nj). Four different flow regimes with key distinctive features were identified within the range of αj and Nj considered here. It was also found that αj has a controlling influence on the extent of back-flow through the throat, the turbulence intensity, the flow stability, and the dominant recirculation zone, while Nj has a secondary influence on the turbulence intensity, the flow stability, and the transition between each flow regime.
Comparison of in-situ and optical current-meter estimates of rip-current circulation
NASA Astrophysics Data System (ADS)
Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.
2016-12-01
Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.
Fluvial geomorphology on Earth-like planetary surfaces: A review.
Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P
2015-09-15
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
NASA Astrophysics Data System (ADS)
Lee, Y. C.; Thompson, H. M.; Gaskell, P. H.
2009-12-01
FILMPAR is a highly efficient and portable parallel multigrid algorithm for solving a discretised form of the lubrication approximation to three-dimensional, gravity-driven, continuous thin film free-surface flow over substrates containing micro-scale topography. While generally applicable to problems involving heterogeneous and distributed features, for illustrative purposes the algorithm is benchmarked on a distributed memory IBM BlueGene/P computing platform for the case of flow over a single trench topography, enabling direct comparison with complementary experimental data and existing serial multigrid solutions. Parallel performance is assessed as a function of the number of processors employed and shown to lead to super-linear behaviour for the production of mesh-independent solutions. In addition, the approach is used to solve for the case of flow over a complex inter-connected topographical feature and a description provided of how FILMPAR could be adapted relatively simply to solve for a wider class of related thin film flow problems. Program summaryProgram title: FILMPAR Catalogue identifier: AEEL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 530 421 No. of bytes in distributed program, including test data, etc.: 1 960 313 Distribution format: tar.gz Programming language: C++ and MPI Computer: Desktop, server Operating system: Unix/Linux Mac OS X Has the code been vectorised or parallelised?: Yes. Tested with up to 128 processors RAM: 512 MBytes Classification: 12 External routines: GNU C/C++, MPI Nature of problem: Thin film flows over functional substrates containing well-defined single and complex topographical features are of enormous significance, having a wide variety of engineering, industrial and physical applications. However, despite recent modelling advances, the accurate numerical solution of the equations governing such problems is still at a relatively early stage. Indeed, recent studies employing a simplifying long-wave approximation have shown that highly efficient numerical methods are necessary to solve the resulting lubrication equations in order to achieve the level of grid resolution required to accurately capture the effects of micro- and nano-scale topographical features. Solution method: A portable parallel multigrid algorithm has been developed for the above purpose, for the particular case of flow over submerged topographical features. Within the multigrid framework adopted, a W-cycle is used to accelerate convergence in respect of the time dependent nature of the problem, with relaxation sweeps performed using a fixed number of pre- and post-Red-Black Gauss-Seidel Newton iterations. In addition, the algorithm incorporates automatic adaptive time-stepping to avoid the computational expense associated with repeated time-step failure. Running time: 1.31 minutes using 128 processors on BlueGene/P with a problem size of over 16.7 million mesh points.
Improvement and analysis of the hydrogen-cerium redox flow cell
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-08-03
In this paper, the H 2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm -2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50more » °C. Finally, the H 2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.« less
Rapid distortion theory and the 'problems' of turbulence
NASA Astrophysics Data System (ADS)
Hunt, J. C. R.; Carruthers, D. J.
1990-03-01
This paper describes some developments in the techniques of the rapid distortion theory (RDT) and in the general understanding of how it can be used. It is noted in particular that the theory provides a rational basis for analyzing rapidly changing turbulent flows (RCT), and a heuristic method for estimating certain features of slowly changing turbulent flows (SCT). Recent developments of the RDT are reviewed, including criteria for its validity and new solutions allowing for the effects of inhomogeneities and boundaries. The problems associated with analyzing different kinds of turbulent flow and different methods of solution are classified and discussed with reference to how the turbulent structure in a flow domain depends on the scale and geometry of the domain's boundary, and on the information provided in the boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichlacz, Paul Louis; Orr, Brennan
2002-08-01
The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual modelsmore » of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies conducted during the last 50 years.« less
High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow
2012-05-01
Reshotko[37], and Reda[ 73 ]. These reviews discuss how a number of different flow features and geometry can affect the transition location including the...MODELS 35 The species enthalpy is defined as hs = cvsT + Ps ρs + evs + h◦s = cpsT + evs + h ◦ s, where cps is the specific heat at constant pressure of...derived from the Lewis number, which is Le = κ ρcpD , where cp and κ are based on the gas mixture. The mixture value of cp is determined using a mass
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1993-01-01
The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.
Influences of Altered River Geomorphology on Channel-Floodplain Mass and Momentum Transfer
NASA Astrophysics Data System (ADS)
Byrne, C. F.; Stone, M. C.
2017-12-01
River management strategies, including both river engineering and restoration, have altered river geomorphology and associated lateral channel-floodplain connectivity throughout the world. This altered connectivity is known to drive changes in ecologic and geomorphic processes during floods, however, quantification of altered connectivity is difficult due to the highly dynamic spatial and temporal nature of flood wave conditions. The objective of this research was to quantify the physical processes of lateral mass and momentum transfer at the channel-floodplain interface. The objective was achieved with the implementation of novel scripting and high-resolution, two-dimensional hydrodynamic modeling techniques under unsteady flow conditions. The process-based analysis focused on three geomorphic feature types within the Middle Rio Grande, New Mexico, USA: (1) historical floodplain surfaces, (2) inset floodplain surfaces formed as a result of channel training and hydrologic alteration, and (3) mechanically restored floodplain surfaces. Results suggest that inset floodplain feature types are not only subject to greater mass and momentum transfer magnitudes, but those connections are also more heterogeneous in nature compared with historical feature types. While restored floodplain feature types exhibit transfer magnitudes and heterogeneity comparable to inset feature types, the surfaces are not of great enough spatial extent to substantially influence total channel-floodplain mass and momentum transfer. Mass and momentum transfer also displayed differing characteristic changes as a result of increased flood magnitude, indicating that linked hydrodynamic processes can be altered differently as a result of geomorphic and hydrologic change. The results display the potential of high-resolution modeling strategies in capturing the spatial and temporal complexities of river processes. In addition, the results have implications for other fields of river science including biogeochemical exchange at the channel-floodplain interface and quantification of process associated with environmental flow and river restoration strategies.
Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Zickefoose, Charles S.
This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…
Tropospheric Waves, Jet Streams, and United States Weather Patterns. Resource Paper No. 11.
ERIC Educational Resources Information Center
Harman, Jay R.
Intended as a supplement to undergraduate college geography courses, this resource paper reviews the mechanism by which surface weather features are linked with the mid-atmospheric circulation within the westerly wind belt. Specifically, vertical atmospheric motions associated with certain aspects of the upper tropospheric flow, including jet…
Revised Multi-Node Well (MNW2) Package for MODFLOW Ground-Water Flow Model
Konikow, Leonard F.; Hornberger, George Z.; Halford, Keith J.; Hanson, Randall T.; Harbaugh, Arlen W.
2009-01-01
Wells that are open to multiple aquifers can provide preferential pathways to flow and solute transport that short-circuit normal fluid flowlines. Representing these features in a regional flow model can produce a more realistic and reliable simulation model. This report describes modifications to the Multi-Node Well (MNW) Package of the U.S. Geological Survey (USGS) three-dimensional ground-water flow model (MODFLOW). The modifications build on a previous version and add several new features, processes, and input and output options. The input structure of the revised MNW (MNW2) is more well-centered than the original verion of MNW (MNW1) and allows the user to easily define hydraulic characteristics of each multi-node well. MNW2 also allows calculations of additional head changes due to partial penetration effects, flow into a borehole through a seepage face, changes in well discharge related to changes in lift for a given pump, and intraborehole flows with a pump intake located at any specified depth within the well. MNW2 also offers an improved capability to simulate nonvertical wells. A new output option allows selected multi-node wells to be designated as 'observation wells' for which changes in selected variables with time will be written to separate output files to facilitate postprocessing. MNW2 is compatible with the MODFLOW-2000 and MODFLOW-2005 versions of MODFLOW and with the version of MODFLOW that includes the Ground-Water Transport process (MODFLOW-GWT).
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2009-04-01
The QUAGMIRE model has recently been made freely available for public use. QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. This presentation describes the model's main features. QUAGMIRE uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
The right wing of the LEFT airplane
NASA Technical Reports Server (NTRS)
Powell, Arthur G.
1987-01-01
The NASA Leading-Edge Flight Test (LEFT) program addressed the environmental issues which were potential problems in the application of Laminar Flow Control (LFC) to transport aircraft. These included contamination of the LFC surface due to dirt, rain, insect remains, snow, and ice, in the critical leading-edge region. Douglas Aircraft Company designed and built a test article which was mounted on the right wing of the C-140 JetStar aircraft. The test article featured a retractable leading-edge high-lift shield for contamination protection and suction through perforations on the upper surface for LFC. Following a period of developmental flight testing, the aircraft entered simulated airline service, which included exposure to airborne insects, heavy rain, snow, and icing conditions both in the air and on the ground. During the roughly 3 years of flight testing, the test article has consistently demonstrated laminar flow in cruising flight. The experience with the LEFT experiment was summarized with emphasis on significant test findings. The following items were discussed: test article design and features; suction distribution; instrumentation and transition point reckoning; problems and fixes; system performance and maintenance requirements.
Catalytic nanoporous membranes
Pellin, Michael J; Hryn, John N; Elam, Jeffrey W
2013-08-27
A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.
From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration
NASA Astrophysics Data System (ADS)
Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans
2009-05-01
A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.
NASA Technical Reports Server (NTRS)
Hess, J. L.; Mack, D. P.; Stockman, N. O.
1979-01-01
A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented.
Optimally managing water resources in large river basins for an uncertain future
Edwin A. Roehl, Jr.; Conrads, Paul
2014-01-01
Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated
Identification of PARMA Models and Their Application to the Modeling of River flows
NASA Astrophysics Data System (ADS)
Tesfaye, Y. G.; Meerschaert, M. M.; Anderson, P. L.
2004-05-01
The generation of synthetic river flow samples that can reproduce the essential statistical features of historical river flows is essential to the planning, design and operation of water resource systems. Most river flow series are periodically stationary; that is, their mean and covariance functions are periodic with respect to time. We employ a periodic ARMA (PARMA) model. The innovation algorithm can be used to obtain parameter estimates for PARMA models with finite fourth moment as well as infinite fourth moment but finite variance. Anderson and Meerschaert (2003) provide a method for model identification when the time series has finite fourth moment. This article, an extension of the previous work by Anderson and Meerschaert, demonstrates the effectiveness of the technique using simulated data. An application to monthly flow data for the Frazier River in British Columbia is also included to illustrate the use of these methods.
High energy density redox flow device
Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
Separated two-phase flow and basaltic eruptions
NASA Astrophysics Data System (ADS)
Vergniolle, Sylvie; Jaupart, Claude
1986-11-01
Fluid dynamical models of volcanic eruptions are usually made in the homogeneous approximation where gas and liquid are constrained to move at the same velocity. Basaltic eruptions exhibit the characteristics of separated flows, including transitions in their flow regime, from bubbly to slug flow in Strombolian eruptions and from bubbly to annular flow in Hawaiian ones. These regimes can be characterized by a parameter called the melt superficial velocity, or volume flux per unit cross section, which takes values between 10-3 and 10-2 m/s for bubbly and slug flow, and about 1 m/s for annular flow. We use two-phase flow equations to determine under which conditions the homogeneous approximation is not valid. In the bubbly regime, in which many bubbles rise through the moving liquid, there are large differences between the two-phase and homogeneous models, especially in the predictions of gas content and pressure. The homogeneous model is valid for viscous lavas such as dacites because viscosity impedes bubble motion. It is not valid for basaltic lavas if bubble sizes are greater than 1 cm, which is the case. Accordingly, basaltic eruptions should be characterized by lower gas contents and lower values of the exit pressure, and they rarely erupt in the mist and froth regimes, which are a feature of more viscous lavas. The two-phase flow framework allows for the treatment of different bubble populations, including vesicles due to exsolution by pressure release in the volcanic conduit and bubbles from the magma chamber. This yields information on poorly constrained parameters including the effective friction coefficient for the conduit, gas content, and bubble size in the chamber. We suggest that the observed flow transitions record changes in the amount and size of gas bubbles in the magma chamber at the conduit entry.
Optical Flow Estimation for Flame Detection in Videos
Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen
2014-01-01
Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042
Amaral, Katrina E; Palace, Michael; O'Brien, Kathleen M; Fenderson, Lindsey E; Kovach, Adrienne I
2016-01-01
Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.
Amaral, Katrina E.; Palace, Michael; O’Brien, Kathleen M.; Fenderson, Lindsey E.; Kovach, Adrienne I.
2016-01-01
Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists. PMID:26954014
Turbulence sources in mountain terrain: results from MATERHORN program
NASA Astrophysics Data System (ADS)
Di Sabatino, Silvana; Leo, Laura S.; Fernando, Harindra J. S.; Pardyjak, Eric R.; Hocut, Chris M.
2016-04-01
Improving high-resolution numerical weather prediction in complex terrain is essential for the many applications involving mountain weather. It is commonly recognized that high intensity weather phenomena near mountains are a safety hazard to aircrafts and unmanned aerial vehicles, but the prediction of highly variable weather is often unsatisfactory due to inadequacy of resolution or lack of the correct dynamics in the model. Improving mountain weather forecasts has been the goal of the interdisciplinary Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program (2011-2016). In this paper, we will report some of the findings focusing on several mechanisms of generating turbulence in near surface flows in the vicinity of an isolated mountain. Specifically, we will discuss nocturnal flows under low synoptic forcing. It has been demonstrated that such calm conditions are hard to predict in typical weather predictions models where forcing is dominated by local features that are poorly included in numerical models. It is found that downslope flows in calm and clear nights develop rapidly after sunset and usually persists for few hours. Owing to multiscale flow interactions, slope flows appear to be intermittent and disturbed, with a tendency to decay through the night yet periodically and unexpectedly generated. One of the interesting feature herein is the presence of oscillations that can be associated to different types of waves (e.g. internal and trapping waves) which may break to produce extra mixing. Pulsations of katabatic flow at critical internal-wave frequency, flow intrusions arriving from different topographies and shear layers of flow fanning out from the gaps all contribute to the weakly or intermittently turbulent state. Understanding of low frequency contributions to the total kinetic energy represent a step forward into modelling sub-grid effects in numerical models used for aviation applications.
Flow of quasi-two dimensional water in graphene channels
NASA Astrophysics Data System (ADS)
Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui
2018-02-01
When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.
NASA Astrophysics Data System (ADS)
Mackay, D. Scott; Band, Lawrence E.
1998-04-01
This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.
Ice sculpture in the Martian outflow channels
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.
1982-01-01
Viking Orbiter and terrestrial satellite images are examined at similar resolution to compare features of the Martian outflow channels with features produced by the movement of ice on earth, and many resemblances are found. These include the anastomoses, sinuosities, and U-shaped cross profiles of valleys; hanging valleys; linear scour marks on valley walls; grooves and ridges on valley floors; and the streamlining of bedrock highs. Attention is given to the question whether ice could have moved in the Martian environment. It is envisaged that springs or small catastrophic outbursts discharged fluids from structural outlets or chaotic terrains. These fluids built icings that may have grown into substantial masses and eventually flowed like glaciers down preexisting valleys. An alternative is that the fluids formed rivers or floods that in turn formed ice jams and consolidated into icy masses in places where obstacles blocked their flow.
NASA Astrophysics Data System (ADS)
Uddin, Iftikhar; Khan, Muhammad Altaf; Ullah, Saif; Islam, Saeed; Israr, Muhammad; Hussain, Fawad
2018-03-01
This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution.
Egg phenotype differentiation in sympatric cuckoo Cuculus canorus gentes.
Antonov, Anton; Stokke, B G; Vikan, J R; Fossøy, F; Ranke, P S; Røskaft, E; Moksnes, A; Møller, A P; Shykoff, J A
2010-06-01
The brood parasitic common cuckoo Cuculus canorus consists of gentes, which typically parasitize only a single host species whose eggs they often mimic. Where multiple cuckoo gentes co-exist in sympatry, we may expect variable but generally poorer mimicry because of host switches or inter-gens gene flow via males if these also contribute to egg phenotypes. Here, we investigated egg trait differentiation and mimicry in three cuckoo gentes parasitizing great reed warblers Acrocephalus arundinaceus, marsh warblers Acrocephalus palustris and corn buntings Miliaria calandra breeding in close sympatry in partially overlapping habitat types. The three cuckoo gentes showed a remarkable degree of mimicry to their three host species in some but not all egg features, including egg size, a hitherto largely ignored feature of egg mimicry. Egg phenotype matching for both background and spot colours as well as for egg size has been maintained in close sympatry despite the possibility for gene flow.
Turbine airfoil having near-wall cooling insert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jr., Nicholas F.; Wiebe, David J.
A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less
The vanishing cryovolcanoes of Ceres
Sori, Michael M.; Byrne, Shane; Bland, Michael T.; Bramson, Ali; Ermakov, Anton; Hamilton, Christoper; Otto, Katharina; Ruesch, Ottaviano; Russell, Christopher
2017-01-01
Ahuna Mons is a 4 km tall mountain on Ceres interpreted as a geologically young cryovolcanic dome. Other possible cryovolcanic features are more ambiguous, implying that cryovolcanism is only a recent phenomenon or that other cryovolcanic structures have been modified beyond easy identification. We test the hypothesis that Cerean cryovolcanic domes viscously relax, precluding ancient domes from recognition. We use numerical models to predict flow velocities of Ahuna Mons to be 10–500 m/Myr, depending upon assumptions about ice content, rheology, grain size, and thermal parameters. Slower flow rates in this range are sufficiently fast to induce extensive relaxation of cryovolcanic structures over 108–109 years, but gradual enough for Ahuna Mons to remain identifiable today. Positive topographic features, including a tholus underlying Ahuna Mons, may represent relaxed cryovolcanic structures. A composition for Ahuna Mons of >40% ice explains the observed distribution of cryovolcanic structures because viscous relaxation renders old cryovolcanoes unrecognizable.
Magnetic field and electric current structure in the chromosphere
NASA Technical Reports Server (NTRS)
Dravins, D.
1974-01-01
The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.
2014-03-19
This image from NASA 2001 Mars Odyssey spacecraft shows a small portion of the lava flows from Alba Mons. The depression and collapse features within it are part of the large system of tectonic features created by the apparent collapse of the volcano.
Potential Flow Theory and Operation Guide for the Panel Code PMARC. Version 14
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1999-01-01
The theoretical basis for PMARC, a low-order panel code for modeling complex three-dimensional bodies, in potential flow, is outlined. PMARC can be run on a wide variety of computer platforms, including desktop machines, workstations, and supercomputers. Execution times for PMARC vary tremendously depending on the computer resources used, but typically range from several minutes for simple or moderately complex cases to several hours for very large complex cases. Several of the advanced features currently included in the code, such as internal flow modeling, boundary layer analysis, and time-dependent flow analysis, including problems involving relative motion, are discussed in some detail. The code is written in Fortran77, using adjustable-size arrays so that it can be easily redimensioned to match problem requirements and computer hardware constraints. An overview of the program input is presented. A detailed description of the input parameters is provided in the appendices. PMARC results for several test cases are presented along with analytic or experimental data, where available. The input files for these test cases are given in the appendices. PMARC currently supports plotfile output formats for several commercially available graphics packages. The supported graphics packages are Plot3D, Tecplot, and PmarcViewer.
Unsteady features of the flow on a bump in transonic environment
NASA Astrophysics Data System (ADS)
Budovsky, A. D.; Sidorenko, A. A.; Polivanov, P. A.; Vishnyakov, O. I.; Maslov, A. A.
2016-10-01
The study deals with experimental investigation of unsteady features of separated flow on a profiled bump in transonic environment. The experiments were conducted in T-325 wind tunnel of ITAM for the following flow conditions: P0 = 1 bar, T0 = 291 K. The base flow around the model was studied by schlieren visualization, steady and unsteady wall pressure measurements and PIV. The experimentally data obtained using PIV are analyzed by Proper Orthogonal Decomposition (POD) technique to investigate the underlying unsteady flow organization, as revealed by the POD eigenmodes. The data obtained show that flow pulsations revealed upstream and downstream of shock wave are correlated and interconnected.
Recent Glaciers on Mars: Description and Solar System Perspective
NASA Astrophysics Data System (ADS)
Kargel, J. S.
2001-11-01
Active or recently active ice deposits occur on Mars at middle and high latitudes in fretted terrain, around massifs in highlands east of Hellas and in southern Argyre, on crater walls in the highlands, and in the south polar cap. Most mid-latitude icy flows are debris covered, apparently stagnant, and eroded by partial sublimation. Others are scarred by fresh crevasses and gullies, thus suggesting recent deformation and surface melting. Erosional features include a variety of small-scale relief elements due mainly to sublimation, but sublimation has not obliterated evidence of flow. Similar to terrestrial glaciers in many respects, there are also notable differences, especially in the nature of accumulation. Deformation of the south polar cap is indicated by folding, boudinage, strike-slip or normal faulting, forebulge tectonics near scarps, and thrust faulting. The north polar cap locally also exhibits flow indicators. The south cap's glacial features suggest interbedding of two or more types of ice of differing volatility and rheology, plus a locally deforming surficial dry-ice cap overlying the other materials. Major ice types may include two (or more) of the following, in order of highest to lowest mechanical strength: CO2 clathrate hydrate, water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, and CO2 ice; dust is another variable. Within our Solar System, the closest geomorphic analog to icy Martian flows are Earth's alpine glaciers, rock glaciers, and continental ice sheets, though key differences are apparent. If made dominantly of water ice, important and recent climatic shifts seem to be implicated. Ice-flow landforms also occur on some outer planet satellites; among them are Io, Europa, Enceladus, Ariel, and Triton. Volatile flows on these bodies may involve diverse materials, such as sulfur, water ice, hydrated salts, ammonia-water ices, and nitrogen ice. Most of these would not be suitable materials on Mars. This work was funded by grants from the NASA Mars Data Analysis Program.
Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.
Duan, Lian; Cao, Zhen; Yobas, Levent
2017-09-19
Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.
NASA Astrophysics Data System (ADS)
Dietterich, H. R.; Cashman, K. V.
2011-12-01
Hawaiian lava channels are characterized by numerous bifurcations and confluences that have important implications for flow behavior. The ubiquity of anastomosing flows, and their detailed observation over time, makes Hawai`i an ideal place to investigate the formation of these features and their effect on simple models of lava flow emplacement. Using a combination of high-resolution LiDAR data from the Kilauea December 1974 and Mauna Loa 1984 flows, orthoimagery of the Mauna Loa 1859 flow, and historical and InSAR mapping of the current eruption of Kilauea (1983-present), we quantify the geometry of distributary, anastomosing, and simple channel networks and compare these to flow advance rates and lengths. We use a pre-eruptive DEM of the Mauna Loa 1984 flow created from aerial photographs to investigate the relationship between underlying topography and channel morphology. In the Mauna Loa 1984 flow, the slope of the pre-eruptive surface correlates with the number of parallel channels. Slopes >4° generate up to thirteen parallel channels in contrast to slopes of <4° that produce fewer than eight parallel channels. In the 1983-1986 lava flows erupted from Pu`u `O`o, average effusion rate correlates with the number of bifurcations, each producing a new parallel channel. Flows with a volume flux <60 m3/s only have one bifurcation at most in the entire flow, while flows with a volume flux >60 m3/s contain up to four bifurcations. These data show that the splitting and merging of individual flows is a product of both the underlying ground surface and eruption rate. Important properties of the pre-eruptive topography include both the slope and the scale of surface roughness. We suggest that a crucial control is the height of the flow front in comparison to the scale of local topography and roughness. Greater slopes may create more active channels because the reduced flow thickness allows interaction with local obstacles of a greater size range. Conversely, higher viscosities could reduce the number of active channels by increasing the flow thickness. The effusion rate also influences the degree of flow branching, possibly by generating overflows and widening the flow. Branched channels can also rejoin at confluences, which occur on the leeward sides of obstacles and where the flow is confined against large-scale features, including fault scarps and older flow margins. We expect the maintenance of parallel channels past an obstacle that splits the flow to be a function of the slope and flux, which drives the flow downhill and governs the formation of levees. Our data reveal that by controlling the effective lava flux, bifurcations slow flow advance and restrict flow length. We postulate that flow branching may therefore restrict most Mauna Loa flow lengths to ~25 km, despite a wide range of effusion rates. In contrast, both confluences and the shut off of an active branch accelerate the flow. The complexity of Hawaiian flows has largely been ignored in predictive models of flow emplacement in Hawaii, but the flow geometries must be incorporated to improve syn-eruptive prediction of lava flow behavior.
D GIS for Flood Modelling in River Valleys
NASA Astrophysics Data System (ADS)
Tymkow, P.; Karpina, M.; Borkowski, A.
2016-06-01
The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.
NASA Astrophysics Data System (ADS)
Cartwright, R. J.; Burr, D. M.
2017-03-01
Landforms on Titan include features hypothesized to be alluvial fans. Terrestrial alluvial fans form via two processes: fluid-gravity flows (sheetfloods) and sediment-gravity flows (debris flows). Along the Panamint Mountain Range in Death Valley, California, USA, seven fans formed primarily by debris flows are located adjacent to seven fans formed primarily by sheetfloods. The causal difference between these two groupings stems from their catchment lithologies; the debris flow fan catchments are clay-rich and relatively sand-poor, and the sheetflood fan catchments are clay-poor and sand-rich. On Titan, the low and mid latitudes are dominated by sand seas, demonstrating that sand is available for transport. At high latitudes, these sand seas are absent, suggesting that transportable sand is scarce. Based on the sedimentology of the two Panamint Range fan types, we hypothesize that possible fans at lower latitudes on Titan are formed by sheetfloods, whereas those at higher latitudes formed primarily by debris flows. To test these hypotheses, we measured and analyzed the mean normalized radar cross sections (σ°) and changes in σ° with downfan distance for debris flow and sheetflood fans along the Panamint Range. We then compared the results with the same measurements for possible fans on Titan. We find that, in the Panamint Range, debris flow fans are brighter than sheetflood fans and have greater change in σ° with downfan distance, and that on Titan, low-latitude possible fans are likewise brighter than the fans at high latitudes with greater change in σ° with downfan distance. Consequently, our findings suggest that low-latitude possible fans on Titan are formed primarily by debris flows, whereas high-latitude possible fans on Titan are formed primarily by sheetfloods. Thus, our results do not support our hypotheses. Scenarios to explain these results include: (1) high-latitude possible fans are dominated by radar-dark debris flow deposits, (2) low- and mid-latitude possible fans are dominated by radar-bright sheetflood deposits, (3) sand-sized sediments were relatively scarce at the time of low- and mid-latitude possible fan formation, (4) bedrock composition varies as a function of latitude on Titan, (5) alluvial fans form differently on Titan because of the lower gravity conditions, and (6) fan-like features may result from non-alluvial processes, such as form distributary fluvial systems on Earth.
[Research progress of ecosystem service flow.
Liu, Hui Min; Fan, Yu Long; Ding, Sheng Yan
2016-07-01
With the development of social economy, human disturbance has resulted in a variety of ecosystem service degradation or disappearance. Ecosystem services flow plays an important role in delivery, transformation and maintenance of ecosystem services, and becomes one of the new research directions. In this paper, based on the classification of ecosystem services flow, we analyzed ecosystem service delivery carrier, and investigated the mechanism of ecosystem service flow, including the information, property, scale features, quantification and cartography. Moreover, a tentative analysis on cost-effective of ecosystem services flow (such as transportation costs, conversion costs, usage costs and cost of relativity) was made to analyze the consumption cost in ecosystem services flow process. It aimed to analyze dissipation cost in ecosystem services flow process. To a certain extent, the study of ecosystem service flow solved the problem of "double counting" in ecosystem services valuation, which could make a contribution for the sake of recognizing hot supply and consumption spots of ecosystem services. In addition, it would be conducive to maximizing the ecosystem service benefits in the transmission process and putting forward scientific and reasonable ecological compensation.
Speech Synthesis Using Perceptually Motivated Features
2012-01-23
with others a few years prior (with the concurrence of the project’s program manager. Willard Larkin). The Perceptual Flow of Phonetic Information and...34The Perceptual Flow of Phonetic Processing," consonant confusion matrices are analyzed for patterns of phonetic-feature decoding errors conditioned...decoding) is also observed. From these conditional probability patterns, it is proposed that they reflect a temporal flow of perceptual processing
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-01
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193
A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.
Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A
2005-11-01
While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.
LFSTAT - An R-Package for Low-Flow Analysis
NASA Astrophysics Data System (ADS)
Koffler, D.; Laaha, G.
2012-04-01
When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1984-01-01
A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.
NASA Technical Reports Server (NTRS)
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). Highmore » energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.« less
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1988-01-01
A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.
Understanding and Mitigating Tip Leakage and Endwall Losses in High Pressure Ratio Cores
NASA Technical Reports Server (NTRS)
Christophel, Jesse
2015-01-01
Reducing endwall and tip secondary flow losses will be a key enabler for the next generation of commercial and military air transport and will be an improvement on the state-of-the-art in turbine loss reduction strategies. The objective of this research is three-fold: 1) To improve understanding of endwall secondary flow and tip clearance losses 2) To develop novel technologies to mitigate these losses and test them in low-speed cascade and rig environments 3) To validate predictive tools To accomplish these objectives, Pratt & Whitney (P&W) has teamed with Pennsylvania State University (PSU) to experimentally test new features designed by P&W. P&W will create new rim-cavity features to reduce secondary flow loss and improve purge flow cooling effectiveness and new blade tip features to manage leakage flows and reduce tip leakage secondary flow loss. P&W is currently developing technologies in these two areas that expect to be assimilated in the N+2/N+3 generation of commercial engines.
Willcox, Jon A L; Kim, Hyung J
2017-02-28
A molecular dynamics graphene oxide model is used to shed light on commonly overlooked features of graphene oxide membranes. The model features both perpendicular and parallel water flow across multiple sheets of pristine and/or oxidized graphene to simulate "brick-and-mortar" microstructures. Additionally, regions of pristine/oxidized graphene overlap that have thus far been overlooked in the literature are explored. Differences in orientational and hydrogen-bonding features between adjacent layers of water in this mixed region are found to be even more prominent than differences between pristine and oxidized channels. This region also shows lateral water flow in equilibrium simulations and orthogonal flow in non-equilibrium simulations significantly greater than those in the oxidized region, suggesting it may play a non-negligible role in the mechanism of water flow across graphene oxide membranes.
Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming
In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at themore » surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.« less
Article coated with flash bonded superhydrophobic particles
Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN
2010-07-13
A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.
Fluvial geomorphology on Earth-like planetary surfaces: A review
Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.
2017-01-01
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917
Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface
NASA Astrophysics Data System (ADS)
Cutler, B. B.; Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott K.; Pandey, Sachin; Karra, Satish
2017-04-13
CHROTRAN is a fork of the widely-used PFLOTRAN flow and reactive transport numerical simulation code. It implements custom physics and chemistry appropriate to the design of in-situ reduction of heavy metals such as Cr(VI) in groundwater. CHROTRAN includes full dynamics for five species: the metal to be remediated, an electron donor, biofilm, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, and biofilm inactivation. The software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injectionmore » points, and features full coupling between flow and reactive transport, allowing for assessment of the effect of bio-fouling.« less
Schlieren image velocimetry measurements in a rocket engine exhaust plume
NASA Astrophysics Data System (ADS)
Morales, Rudy; Peguero, Julio; Hargather, Michael
2017-11-01
Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Takeshi, E-mail: ishiyama@ee.tut.ac.jp; Nakane, Takaya, E-mail: ishiyama@ee.tut.ac.jp; Fujii, Tsutomu, E-mail: ishiyama@ee.tut.ac.jp
Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nmmore » and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.« less
HYDJET++ for ultra-relativistic HIC’s: A hot cocktail of hydrodynamics, resonances and jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravina, L. V.; Johansson, B. H. Brusheim; Crkovska, J.
An ultra-relativistic heavy-ion collision at LHC energies is a mixture of soft and hard processes. For comparison with data we employ the HYDJET++ model, which combines the description of soft processes with the treatment of hard partons propagating hot and dense nuclear medium. Importance of the interplay of ideal hydrodynamics, final state interactions and jets for the description of harmonics of the anisotropic flow is discussed. Jets are found to be the main source of violation of the number-of-constituent-quark (NCQ) scaling at LHC energies. Many features of higher flow harmonics and dihadron angular correlations, including ridge, can be described bymore » the interference of elliptic and triangular flows.« less
Fox, Timothy; Schilp, Reinhard
2012-09-25
A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.
Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaniol, B.; Isler, R. C.; Brooks, N. H.
2001-10-01
Certain transitions of C IV (C{sup 3+}) from n=7 to n=6 ({approx}7226 {angstrom}) and from n=6 to n=5 ({approx}4660 {angstrom}) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C{sup 4+}) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II--C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling ofmore » the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].« less
Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas
NASA Astrophysics Data System (ADS)
Zaniol, B.; Isler, R. C.; Brooks, N. H.; West, W. P.; Olson, R. E.
2001-10-01
Certain transitions of C IV (C3+) from n=7 to n=6 (≈7226 Å) and from n=6 to n=5 (≈4660 Å) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C4+) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II-C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling of the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
NASA Astrophysics Data System (ADS)
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-08-01
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-08-26
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-01-01
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388
DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake
NASA Technical Reports Server (NTRS)
Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.
1993-01-01
Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.
The flying hot wire and related instrumentation
NASA Technical Reports Server (NTRS)
Coles, D.; Cantnell, B.; Wadcock, A.
1978-01-01
A flying hot-wire technique is proposed for studies of separated turbulent flow in wind tunnels. The technique avoids the problem of signal rectification in regions of high turbulence level by moving the probe rapidly through the flow on the end of a rotating arm. New problems which arise include control of effects of torque variation on rotor speed, avoidance of interference from the wake of the moving arms, and synchronization of data acquisition with rotation. Solutions for these problems are described. The self-calibrating feature of the technique is illustrated by a sample X-array calibration.
A review of developments in the theory of elasto-plastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1973-01-01
The theory of elasto-plastic flow is developed so that it may accommodate features such as work-hardening, anisotropy, plastic compressibility, non-continuous loading including local or global unloading, and others. A complete theory is given in quasi-linear form; as a result, many useful attributes are accessible. Several integral theorems may be written, finite deformations may be incorporated, and efficient methods for solving problems may be developed; these and other aspects are described in some detail. The theory is reduced to special forms for 2-space, and extensive experience in solving such problems is cited.
Current status and future prospects for enabling chemistry technology in the drug discovery process.
Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Ogden, F. L.; Zhu, J.
2016-12-01
Bioturbated soil layers (BTLs) play a significant role in hydrological response and provisioning of ecosystem services in steep, saprolitic, tropical lowlands catchments. In this study, a new physically-based model formulation was developed for testing of runoff generation hypotheses. A main feature in the model formulation is explicit simulation of hydrological processes in the BTL including macropores, which our field observations show are ubiquitous, and deep groundwater stores that provide streamflow during the dry season The numerical model developed includes two main flow paths in the BTL, including one-dimensional (1D) vertical infiltration and two-dimensional (2D) lateral flows in both macropores and the soil matrix. Hydrological processes incorporated along with the BTL processes include intercepted rainfall, evapotranspiration, 2D surface flow and 1D deep groundwater discharge. This model was first tested in a 6.5 ha secondary succession catchment, that is under study by the Smithsonian Tropical Research Institute, Agua Salud project in Panama, which is dominated by steep slopes. With the incorporation of lateral macropore flow mechanism in the BTL, the model performs better than only including soil matrix flow in the BTL especially in simulating baseflow dynamics, which illustrates the importance of preferential flow from the BTL to stream discharge dynamics. The increase in the BTL thickness promotes more flow through the BTL and increases storage in both the BTL and the deep groundwater reservoir, but decreases the total streamflow and overland flow. Lateral macropore diameter distribution influences flows more than the macropore number or distribution type. The model has thus far passed falsification tests during the early wet season. Complexity in subsurface storage and base flow generation offer a new challenge for this model. The overall objective is to develop a model formulation that is useful in practical applications related to land-use management, provisioning of ecosystem services, and water security in similar tropical settings with distinct dry and wet seasons or in the humid tropics during periods of drought.
NASA Technical Reports Server (NTRS)
Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.
2015-01-01
Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.
NASA Astrophysics Data System (ADS)
Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin
2009-11-01
The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.
Hierarchical streamline bundles.
Yu, Hongfeng; Wang, Chaoli; Shene, Ching-Kuang; Chen, Jacqueline H
2012-08-01
Effective 3D streamline placement and visualization play an essential role in many science and engineering disciplines. The main challenge for effective streamline visualization lies in seed placement, i.e., where to drop seeds and how many seeds should be placed. Seeding too many or too few streamlines may not reveal flow features and patterns either because it easily leads to visual clutter in rendering or it conveys little information about the flow field. Not only does the number of streamlines placed matter, their spatial relationships also play a key role in understanding the flow field. Therefore, effective flow visualization requires the streamlines to be placed in the right place and in the right amount. This paper introduces hierarchical streamline bundles, a novel approach to simplifying and visualizing 3D flow fields defined on regular grids. By placing seeds and generating streamlines according to flow saliency, we produce a set of streamlines that captures important flow features near critical points without enforcing the dense seeding condition. We group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through clustered yet not cluttered display. This selective visualization strategy effectively reduces visual clutter while accentuating visual foci, and therefore is able to convey the desired insight into the flow data.
Choi, Jungyill; Harvey, Judson W.
2014-01-01
Surface water flow controls water velocities, water depths, and residence times, and influences sediment and nutrient transport and other ecological processes in shallow aquatic systems. Flow through wetlands is substantially influenced by drag on vegetation stems but is also affected by microtopography. Our goal was to use microtopography data directly in a widely used wetland model while retaining the advantages of the model’s one-dimensional structure. The base simulation with no explicit treatment of microtopography only performed well for a period of high water when vegetation dominated flow resistance. Extended simulations using microtopography can improve the fit to low-water conditions substantially. The best fit simulation had a flow conductance parameter that decreased in value by 70 % during dry season such that mcrotopographic features blocked 40 % of the cross sectional width for flow. Modeled surface water became ponded and flow ceased when 85 % of the cross sectional width became blocked by microtopographic features. We conclude that vegetation drag dominates wetland flow resistance at higher water levels and microtopography dominates at low water levels with the threshold delineated by the top of microtopographic features. Our results support the practicality of predicting flow on floodplains using relatively easily measured physical and biological variables.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ludwig, F.; Street, R.
2003-12-01
The Advanced Regional Prediction System (ARPS) was used to simulate weak synoptic wind conditions with stable stratification and pronounced drainage flow at night in the vicinity of the Jordan Narrows at the south end of Salt Lake Valley. The simulations showed the flow to be quite complex with hydraulic jumps and internal waves that make it essential to use a complete treatment of the fluid dynamics. Six one-way nested grids were used to resolve the topography; they ranged from 20-km grid spacing, initialized by ETA 40-km operational analyses down to 250-m horizontal resolution and 200 vertically stretched levels to a height of 20 km, beginning with a 10-m cell at the surface. Most of the features of interest resulted from interactions with local terrain features, so that little was lost by using one-way nesting. Canyon, gap, and over-terrain flows have a large effect on mixing and vertical transport, especially in the regions where hydraulic jumps are likely. Our results also showed that the effect of spatial resolution on simulation performance is profound. The horizontal resolution must be such that the smallest features that are likely to have important impact on the flow are spanned by at least a few grid points. Thus, the 250 m minimum resolution of this study is appropriate for treating the effects of features of about 1 km or greater extent. To be consistent, the vertical cell dimension must resolve the same terrain features resolved by the horizontal grid. These simulations show that many of the interesting flow features produce observable wind and temperature gradients at or near the surface. Accordingly, some relatively simple field measurements might be made to confirm that the mixing phenomena that were simulated actually take place in the real atmosphere, which would be very valuable for planning large, expensive field campaigns. The work was supported by the Atmospheric Sciences Program, Office of Biological and Environmental Research, U.S. Department of Energy. The National Energy Research Scientific Computing Center (NERSC) provided computational time. We thank Professor Ming Xue and others at the University of Oklahoma for their help.
Learning partial differential equations via data discovery and sparse optimization
NASA Astrophysics Data System (ADS)
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
Learning partial differential equations via data discovery and sparse optimization.
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
Learning partial differential equations via data discovery and sparse optimization
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection. PMID:28265183
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
The effects of surface topography control using liquid crystal elastomers on bodies in flow
NASA Astrophysics Data System (ADS)
Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory
2018-03-01
Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.
NASA Astrophysics Data System (ADS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.
Hjalmarson, H.W.
1994-01-01
Flood hazards of distributary-flow areas in Maricopa County, Arizona, can be distinguished on the basis of morphological features. Five distributary-flow areas represent the range of flood-hazard degree in the study area. Descriptive factors, including the presence of desert varnish and the absence of saguaro cactus, are more useful than traditional hydraulic-based methods in defining hazards. The width, depth, and velocity exponents of the hydraulic-geometry relations at the primary diffluences of the sites are similar to theoretical exponents for streams with cohesive bank material and the average exponents of stream channels in other areas in the United States. Because of the unexplained scatter of the values of the exponent of channel width, however, the use of average hydraulic-geometry relations is con- sidered inappropriate for characterizing flood hazards for specific distributary-flow in Maricopa County. No evidence has been found that supports the use of stochastic modeling of flows or flood hazards of many distributary-flow areas. The surface of many distributary-flow areas is stable with many distributary channels eroded in the calcreted surface material. Many distributary- flow areas do not appear to be actively aggrading today, and the paths of flow are not changing.
NASA Astrophysics Data System (ADS)
Schubert, J.; Sanders, B. F.; Andreadis, K.
2013-12-01
The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).
Effect of canopy and topography induced wakes on land-atmosphere fluxes of momentum and scalars
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porté-Agel, F.; Stefan, H. G.
2012-04-01
Wakes shed from natural and anthropogenic landscape features affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases (e.g. CO2). Canopies and bluff bodies, such as forests, buildings and topography, cause boundary layer flow separation, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances (>100 typical length scales) and affect a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere models, and little is known about how heterogeneity of wake-generating features affect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous flow requirements for the standard eddy correlation (EC) method. This phenomenon, often referred to as wind sheltering, has been shown to affect momentum and kinetic energy fluxes at the lake-atmosphere interface (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using particle image velocimetry (PIV) and custom x-wire/cold-wire anemometry, to understand how the physical structure of upstream bluff bodies and porous canopies as well as how thermal stability affect the flow separation zone, boundary layer recovery and surface fluxes. We have found that there is a nonlinear relationship between canopy length/porosity and flow separation downwind of a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for the EC measurements over open fields, lakes, and wetlands. Key words: Atmospheric boundary layer; Wakes; Stratification; Land-Atmosphere Parameterization; Canopy
Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis
2016-01-01
Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.
Fluid flows and forces in development: functions, features and biophysical principles
Freund, Jonathan B.; Goetz, Jacky G.; Hill, Kent L.; Vermot, Julien
2012-01-01
Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways. PMID:22395739
Hypervelocity atmospheric flight: Real gas flow fields
NASA Technical Reports Server (NTRS)
Howe, John T.
1990-01-01
Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.
Hypervelocity atmospheric flight: Real gas flow fields
NASA Technical Reports Server (NTRS)
Howe, John T.
1989-01-01
Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.
The Payun-Matru lava field: a source of analogues for Martian long lava flows
NASA Astrophysics Data System (ADS)
Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.
2007-08-01
The Payun Matru Volcanic complex is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). The eastern portion of the volcanic structure is covered by a basaltic field of pahoehoe lava flows advanced over more than 180 km from the fissural feeding vents that are aligned with a E-W fault system (Carbonilla fault). Thanks to their widespread extension, these flows represent some of the largest lava flows in the world and the Pampas Onduladas flow can be considered the longest sub-aerial individual lava flow on the Earth surface [1,2]. These gigantic flows propagated over the nearly flat surface of the Pampean foreland, moving on a 0.3 degree slope. The very low viscosity of the olivine basalt lavas, coupled with the inflation process and an extensive system of lava tubes are the most probable explanation for their considerable length. The inflation process likely develop under a steady flow rate sustained for a long time [3]. A thin viscoelastic crust, built up at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The crust is progressively thickened by accretion from below and spreading is due to the continuous creation of new inflated lobes, which develop at the front of the flow. Certain morphological features are considered to be "fingerprints" of inflation [4, 5, 6]; these include tumuli, lava rises, lava lobes and ridges. All these morphologies are present in the more widespread Payun Matru lava flows that, where they form extensive sheetflows, can reach a maximum thickness of more than 20 meters. After the emplacement of the major flows, a second eruptive cycle involved the Payun Matru volcanic structure. During this stage thick and channelized flows of andesitic and dacitic lavas, accompanied the formation of two trachitic and trachiandesitic strato-volcanoes (Payun Matru and Payun Liso) culminated with the Payun Matru summit caldera development [7]. Finally a new phase of basaltic volcanism developed from Carbonilla Fault and was associated again with pahoehoe lavas and, at the final stage, by very long "aa" lava flows characterized by spectacular channel-levees systems. Hence, the Payun Matru lava field shows a multiplicity of flow surface morphologies linked to different lava types and related emplacement mechanisms, therefore it can represent an outstanding analogue of several Martian flows. In addition, the understanding of propagation processes of Payun Matru exceptionally widespread flows can give important clues in the comprehension of emplacement mechanisms of the long flows on Mars. Remote sensing data used to map and observe the Payun Matru can be compared with data acquired by similar instruments from various scientific missions to Mars. Mars Global Surveyor's Mars Orbiter Camera (MOC) data has been used to observe the morphology of the Martian lava flows with a resolution of about 10 meters per pixel in order to compare them with the Payn Matru lava flows. The Mars Orbiter Laser Altimeter (MOLA) was used to investigate the topographic environment over which flows propagated, whereas HRSC data are needed to possibly determine flow thickness and morphological variability. Arsia Mons lava field that includes the longest flows on Mars [8] shows many analogues of the Payun Matru lava flows since it is mainly characterized by sheet-flows with uniform ridged surface texture locally showing features like lava rises and lava tubes. In particular the extensive flow field in Daedalia Planum, at about 300 km south-west of Arsia Mons, is characterized by lobes reaching several kilometeres in length, although the slope of the region is generally minor of 0,5 degree [9]. Therefore it is very likely that inflation is the main emplacement process of these long flows. The presence of tumuli and lava ridges, detected in several areas of the lava field, seems to support this hypothesis. According to this view some linear features at the flow surface can be interpreted as squeeze-ups. They can be generated by vertical growth and fracturing of the sealing crust followed by effusion of hot lava continuously injected beneath the flow surface. In addition some lava tubes were also detected thanks to several aligned pits produced by partial tube collapse. Tumuli are certainly one of the most representative features of inflation mechanism [5], but their unambiguous detection is very difficult for the inadequate resolution of the available images. Nonetheless some tumuli like features has been already detected by Glaze and co-workers (2005) [10] in the regions surroundings Elysium Mons and in this work we have detect similar features in the Tharsis region, at Ascraeus Mons lava field. Finally Zephyria and Elysium Planitia show particular platy flows that can be compared with flat topped lava rise found on Payun flows. In addition in Zephyria flows as well in the Payun ones elongated narrow ridges can be observed near the border of the sheetflow and especially near the isolated pre-existent hills surrounded by the lava flow. Their spatial arrangements suggests that they originated from lateral compression inside the visco-elastic deformation of lava crust under the influence of the above mentioned obstacles. In this case these features should correspond to pressure ridges in the sense of MacDonald (1972) [11]. All these examples suggest that inflation. spreading mechanism is present also for some Martian flows. By contrast, the Olympus Mons slopes are mainly covered by lava flows with lobes, tubes (often partially collapsed) and numerous channels that are very similar to channelized flows developed from Carbonilla Fault during the last eruption cycles of Payun Matru complex. References [1]Pasquarè G., Bistacchi A., Mottana A., 2005. Gigantic individual lava flows in the Andean foothills near Malargüe (Mendoza, Argentina). Rendiconti dell'Accademia dei Lincei, 9, 16 (3), 127-135.[2]Pasquaré G., Bistacchi A., Francalanci L.. Gigantic self-confined pahoehoe inflated lava flows in Argentina. Submitted to Terra Nova. [3]Self, S., Keszthelyi, L., Thordarson, Th., 1998. The Importance of Pahoehoe. Annual Review of Earth and Planetary Science, 26, 81-110. [4]Anderson T., 1910. The volcano of Matavanu in Savaii. Geological Society of London Quarterly Journal, 66, 621-639. [5] Walker, G.P.L., 1991. Structure and origin by injection of lava under surface crust, of tumuli, "lava rises", "lava rise pits", and "lava inflation clefts" in Hawaii. Bulletin of Volcanology, 53, 546-558. [6] Hon, K, Kauahikaua, J., Denlinger, R., Mackay, K., 1994. Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 106, 351-370. [7] Llambias, E., 1966. Geología y petrográfica del Volcán Payún-Matru. Acta Geológica Lill., VIII: 265-310. Instituto Lillo, Universidad Nacional Tucumán. Tucumán. [8] Zimbelman, J. R., 1998. Emplacement of long lava flows on planetary surface. J. Geophys. Res., 103, 27503- 27516. [9] Smith, D. E. et al., 1999. The global topography of Mars and implications for surface evolution. Science, 284, 1495-1503. [10] Glaze L.S., Anderson S.W., Stofan E.R., Baloga S., Smrekar S. E, 2005. Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential application to lava flows on Mars. Journal of Geophysical Research, v. 110, B08202, doc: 10.1029/2004JB003564. [11] MacDonald, 1972. Volcanoes. Prentice-Hall Inc., Englewood Cliffs. 510 pp.
NASA Technical Reports Server (NTRS)
Weren, S. L.; Sakimoto, S. E. H.; Hughes, S. S.; Gregg, T. K. P.
2004-01-01
The Eastern Snake River Plains (ESRP) in Idaho have long been considered a terrestrial analog for the plains volcanism like that evident in Syria Planum and Tempe Terra, Mars. Both the ESRP and Tempe Terra are sediment-blanketed volcanic fields in areas with significant extensional faulting. Similar volcanic features can be observed throughout both study areas using field analysis and DEMs of the ESRP and the Mars Global Surveyor (MGS) data from Mars. These features include flow fields, low shields, shields with steep summits, and fissure eruptions. A few other volcanic features, such as cinder cones, which suggest variable compositions, volatile interactions, and multiple volcanic events can be seen in both areas. The eruptions in both the ESRP and Tempe Terra generally originate from the fissures creating elongate, multi-vent shields as well as isolated or aligned single vent shields. Many of these show evidence of radial flow patterns from summit craters as well as lava tube fed flows. The volcanoes of Tempe Terra display some of the global latitudinal parameter trends of small volcanoes on Mars. Some of these trends may be explained by the variation of volatile content and compositional variation across Mars. However, within Tempe Terra no significant local latitudinal trends can be seen in edifice attributes and not all variations are explained by global trends. This study builds upon previous studies of the Tempe Terra region and the ESRP in order to develop a more detailed representation of features and topographic data. Using these data we attempt to help constrain the composition and eruptive style of the Tempe Terra volcanoes by correlating them with the similar and quantified ESRP variations.
The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate
NASA Astrophysics Data System (ADS)
Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.
2017-12-01
Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.
NASA Astrophysics Data System (ADS)
Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.
2014-11-01
The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a local scale. Information on the functional mechanisms linking porpoise distribution to static and dynamic physical habitat variables is extremely valuable to the monitoring and management of the species within the context of European conservation policies and marine renewable energy infrastructure development.
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
High-Resolution AUV Mapping Reveals Structural Details of Submarine Inflated Lava Flows
NASA Astrophysics Data System (ADS)
Paduan, J.; Clague, D. A.; Caress, D. W.; Thomas, H.; Thompson, D.; Conlin, D.
2009-12-01
The MBARI mapping AUV D. Allan B. has now been used to map volcanic terrain at mid-ocean ridges, back-arc spreading centers, and seamounts. These include the summit caldera and upper south rift zone at Axial Volcano, the summit of Davidson Seamount, the Endeavour hydrothermal fields, the Northeast Lau Spreading Center and West Mata Volcano, and, most recently, the CoAxial, North Cleft and North Gorda historic eruption sites on the Juan de Fuca and Gorda Ridges. ROV and submersible dives at most of these sites have provided groundtruth for the textures and features revealed in the roughly 1-m resolution maps. A prominent feature in the maps from four of the sites are inflated flows that did not deflate or drain. These resemble subaerial tumuli but differ in being located on level terrain, apparently atop or very near eruptive vents instead of being in the distal portions of flows. The largest inflated flow at Axial Volcano is on the caldera floor. The main part is 500 by 300 m, and up to 30 m high, with a lobe that extends another 750 m in a sinuous path. It and two nearby, medium-sized inflated flows were first described from sidescan imagery and a submersible dive by Appelgate and Embley (Bull. Volcanol., 54, 447-458, 1992). The AUV maps show clearly the smooth, gently domed relief of the large inflated flow and its sinuous shape on the seafloor, the medium-sized nearby inflated flows, and several additional smaller ones. Particularly striking is a network of 4 to 10 m deep cracks along the crest of each inflation. The cracks occur 30 to 50 m from the margins on all sides of the wider parts of the inflated flows, and become medial cracks along the entire length of the narrow parts, which are nearly triangular in cross-section. An inflation pit 35 m in diameter has a depth equal to the surrounding lava fields. ROV Doc Ricketts dove on these flows in August 2009 and photographed the deeply cracked, uplifted, once flat-lying lineated and ropy sheet flows that form the inflated flows. An even larger, 2.3 km long, up to 550 m wide, and up to 25 m high, inflated flow lies in the axial valley at North Cleft. Its cross-section is similar to the large one at Axial, but has been subsequently rifted by long tectonic fractures parallel to the axis of spreading. Five small inflated flows also occur within two large sheet flows at CoAxial. An inflated flow at Davidson Seamount off California is 690 by 180 m, and stands 18m above the floor of a steep valley 430 m below the summit. It differs from all the others mapped in that downslope is a part of the same flow that has complex collapse features within pillowed margins. The lava composition here is viscous mugearite rather than MORB.
NASA Astrophysics Data System (ADS)
Krank, Benjamin; Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin
2017-11-01
We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ = 180 as well as 590.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.
What Was Learned in Predicting Slender Airframe Aerodynamics with the F16-XL Aircraft
NASA Technical Reports Server (NTRS)
Rizzi, Arthur; Lucking, James M.
2014-01-01
The CAWAPI-2 coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with the F-16XL aircraft for comparison and verification. These conditions, a low-speed high angle-of-attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In re-visiting these two cases, approaches for improved results include better, denser grids using more grid adaptation to local flow features as well as unsteady higher-fidelity physical modeling like hybrid RANS/URANS-LES methods. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations where some authors investigate other possible factors that could explain the discrepancies in agreement, e.g. effects due to deflected control surfaces during the flight tests, as well as static aeroelastic deflection of the outer wing. This paper presents the synthesis of all the results and findings and draws some conclusions that lead to an improved understanding of the underlying flow physics, and finally making the connections between the physics and aircraft features.
Handbook for Implementing Agile in Department of Defense Information Technology Acquisition
2010-12-15
Wire-frame Mockup of iTunes Cover Flow Feature (source: http://www.balsamiq.com/products/mockups/examples#mytunez...programming. The JOPES customer was included early in the development process in order to understand requirements management (story cards ), observe...transition by teaching the new members Agile processes, such as story card development, refactoring, and pair programming. Additionally, the team worked to
Why replication is important in landscape genetics: American black bear in the Rocky Mountains
R. A. Short Bull; Samuel Cushman; R. Mace; T. Chilton; K. C. Kendall; E. L. Landguth; Michael Schwartz; Kevin McKelvey; Fred W. Allendorf; G. Luikart
2011-01-01
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation,...
Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking
NASA Astrophysics Data System (ADS)
Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.
2008-12-01
Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide transport at two potential repository sites for high-level radioactive waste will be used to demonstrate the potential of the method. The simulations considered approximately 1000 source locations, multiple radionuclides with contrasting sorption properties, and abrupt changes in groundwater velocity associated with future glacial scenarios. Transport pathways linking the source locations to the accessible environment were extracted from discrete feature flow models that include detailed representations of the repository construction (tunnels, shafts, and emplacement boreholes) embedded in stochastically generated fracture networks. Acknowledgment The authors are grateful to SwRI Advisory Committee for Research, the Swedish Nuclear Fuel and Waste Management Company, and Posiva Oy for financial support.
Geisinger, K R; Silverman, J F; Cappellari, J O; Dabbs, D J
1990-07-01
A hemangiopericytoma (HPC) is an uncommon soft-tissue neoplasm that may arise in many body sites. The cytologic features of fine-needle aspirates (FNAs) of HPCs have only rarely been described in the literature. We examined FNAs of malignant HPCs from the head and neck region (three) and the retroperitoneum (one) in four adults (aged 38 to 83 years). All four FNAs yielded cellular specimens that consisted of uninuclear tumor cells with high nuclear-cytoplasmic ratios. The cytomorphological spectrum included nuclei that were oval to elongate and had very finely granular, evenly distributed chromatin with one or two small but distinct nucleoli. Hemangiopericytomas yield aspirates that may be considered malignant and may suggest sarcoma. Histologically, all four neoplasms manifested high mitotic activity. The ultrastructural features of all four tumors were supportive of the diagnosis of HPC. Although a specific primary diagnosis of HPC on FNA of a soft-tissue mass is unlikely, cytologic analysis may allow diagnosis of recurrent or metastatic HPC. We were able to perform flow cytometric determinations of tumor DNA content on three of the resected neoplasms. In two, an aneuploid pattern was found, including the neoplasm with the most marked pleomorphism in the FNA. The third was diploid.
NASA Astrophysics Data System (ADS)
Holt, John; Levy, Joseph; Petersen, Eric; Larsen, Chris; Fahnestock, Mark
2016-04-01
Debris-covered glaciers and rock glaciers encompass a range of compositions and activity, and can be useful paleoclimate indicators. They also respond differently to ongoing climate change than glaciers without a protective cover. Their flow dynamics are not well understood, and their unique surface morphologies, including lobate fronts and arcuate ridges, likely result from viscous flow influenced by a combination of composition, structure, and climatic factors. However, basic connections between flow kinematics and surface morphology have not yet been established, limiting our ability to understand these features. In order to begin to address this problem we have undertaken airborne and surface studies of multiple debris-covered glaciers in Alaska and the western U.S. Sourdough Rock Glacier in the St. Elias Mountains, Alaska, is completely debris-covered and exhibits numerous transverse compressional ridges. Its trunk also exhibits highly regular bumps and swales with a wavelength of ~175 m and amplitudes up to 12 m. In the middle trunk, lineations (boulder trains and furrows) bend around a point roughly 200m from the eastern edge. We acquired five high-resolution airborne surveys of Sourdough Rock Glacier between late 2013 and late 2015 using lidar and photogrammetry to assess annual and seasonal change at the sub-meter level. Differencing the DTMs provides vertical change while feature tracking in orthophotos provide horizontal velocities that indicate meters of annual motion. The flow field is highly correlated with surface features; in particular, compressional ridges in the lower lobe. Stranded, formerly active lobes are also apparent. Surface geophysical studies were undertaken to constrain internal structure and composition using a combination of ground-penetrating radar (GPR) at 50 and 100 MHz in six transects, and time-domain electromagnetic (TDEM) measurements at 47 locations, primarily in an along-flow transect and two cross-flow transects. We infer from the GPR and TDEM data that Sourdough Rock Glacier is 40-50 m thick and consists of a core of relatively pure glacier ice preserved under a 2.5-3 m thick debris mantle. In conclusion, Sourdough is actively flowing, with surface velocities that correlate with surface slope and thickness. A bedrock restriction is inferred from bending flow lines, low surface velocities, and localized thinning of the ice. This comprehensive suite of observations provides the potential to model ice flow and to ultimately link details of the surface morphology to accumulation and rheology through flow kinematics and internal structure.
Shang, Yu; Li, Ting; Yu, Guoqiang
2017-01-01
Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219
Earth Observations taken by the Expedition 10 crew
2005-01-15
ISS010-E-13393 (15 January 2005) --- Mt. Damavand, Iran is featured in this image photographed by an Expedition 10 crewmember on the International Space Station (ISS). Located approximately 50 kilometers to the northeast of Tehran, Mt. Damavand is an impressive stratovolcano that reaches 5,670 meters (18,598 feet) in elevation. Damavand, which is part of the Alborz mountain range that borders the Caspian Sea to the north, is believed by scientists to be a young volcano that has mostly formed during the Holocene Epoch (over approximately the last 10,000 years). The western flank of the volcano includes solidified lava flows with flow levees walls formed as the side edges of flowing lava cooled rapidly, forming a chute that channeled the hotter interior lava. Two such flows with well-defined levees are highlighted by snow on the mountainside (center). Damavand is the highest peak in Iran and the highest volcano in the Middle East.
NASA Astrophysics Data System (ADS)
Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.
2016-09-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.
The harmonic oscillator and nuclear physics
NASA Technical Reports Server (NTRS)
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Ion conducting membranes for aqueous flow battery systems.
Yuan, Zhizhang; Zhang, Huamin; Li, Xianfeng
2018-06-07
Flow batteries, aqueous flow batteries in particular, are the most promising candidates for stationary energy storage to realize the wide utilization of renewable energy sources. To meet the requirement of large-scale energy storage, there has been a growing interest in aqueous flow batteries, especially in novel redox couples and flow-type systems. However, the development of aqueous flow battery technologies is at an early stage and their performance can be further improved. As a key component of a flow battery, the membrane has a significant effect on battery performance. Currently, the membranes used in aqueous flow battery technologies are very limited. In this feature article, we first cover the application of porous membranes in vanadium flow battery technology, and then the membranes in most recently reported aqueous flow battery systems. Meanwhile, we hope that this feature article will inspire more efforts to design and prepare membranes with outstanding performance and stability, and then accelerate the development of flow batteries for large scale energy storage applications.
LROC Observations of Geologic Features in the Marius Hills
NASA Astrophysics Data System (ADS)
Lawrence, S.; Stopar, J. D.; Hawke, R. B.; Denevi, B. W.; Robinson, M. S.; Giguere, T.; Jolliff, B. L.
2009-12-01
Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera [NAC] imagery[1]. The Marius Hills, located in Oceanus Procellarum (centered at ~13.4°N, -55.4°W), represent the largest concentration of these volcanic features on the Moon including sinuous rilles, volcanic cones, domes, and depressions [e.g., 2-7]. The Marius region is thus a high priority for future human lunar exploration, as signified by its inclusion in the Project Constellation list of notional future human lunar exploration sites [8], and will be an intense focus of interest for LROC science investigations. Previous studies of the Marius Hills have utilized telescopic, Lunar Orbiter, Apollo, and Clementine imagery to study the morphology and composition of the volcanic features in the region. Complementary LROC studies of the Marius region will focus on high-resolution NAC images of specific features for studies of morphology (including flow fronts, dome/cone structure, and possible layering) and topography (using stereo imagery). Preliminary studies of the new high-resolution images of the Marius Hills region reveal small-scale features in the sinuous rilles including possible outcrops of bedrock and lobate lava flows from the domes. The observed Marius Hills are characterized by rough surface textures, including the presence of large boulders at the summits (~3-5m diameter), which is consistent with the radar-derived conclusions of [9]. Future investigations will involve analysis of LROC stereo photoclinometric products and coordinating NAC images with the multispectral images collected by the LROC WAC, especially the ultraviolet data, to enable measurements of color variations within and amongst deposits and provide possible compositional insights, including the location of possibly related pyroclastic deposits. References: [1] J. D. Stopar et al. (2009), LRO Science Targeting Meeting, Abs. 6039 [2] Greeley R (1971) Moon, 3, 289-314 [3] Guest J. E. (1971) Geol. and Phys. of the Moon, p. 41-53. [4] McCauley J. F. (1967) USGS Geologic Atlas of the Moon, Sheet I-491 [5] Weitz C. M. and Head J. W. (1999) JGR, 104, 18933-18956 [6] Heather D. J. et al. (2003) JGR, doi:10.1029/2002JE001938 [7] Whitford-Stark, J. L., and J. W. Head (1977) Proc. LSC 8th, 2705-2724 [8] Gruener J. and Joosten B. K. (2009) LRO Science Targeting Meeting, Abs. 6036 [9] Campbell B. A. et al. (2009) JGR, doi:10.1029/2008JE003253.
Hypersonic separated flows about "tick" configurations with sensitivity to model design
NASA Astrophysics Data System (ADS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-12-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design
NASA Technical Reports Server (NTRS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-01-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
Ice Flow in Debris Aprons and Central Peaks, and the Application of Crater Counts
NASA Astrophysics Data System (ADS)
Hartmann, W. K.; Quantin, C.; Werner, S. C.; Popova, O.
2009-03-01
We apply studies of decameter-scale craters to studies of probable ice-flow-related features on Mars, to interpret both chronometry and geological processes among the features. We find losses of decameter-scale craters relative to nearby plains, probably due to sublimation.
NASA Astrophysics Data System (ADS)
Haitjema, Henk M.
1985-10-01
A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.
Cosma, Georgina; McArdle, Stéphanie E; Reeder, Stephen; Foulds, Gemma A; Hood, Simon; Khan, Masood; Pockley, A Graham
2017-01-01
Determining whether an asymptomatic individual with Prostate-Specific Antigen (PSA) levels below 20 ng ml -1 has prostate cancer in the absence of definitive, biopsy-based evidence continues to present a significant challenge to clinicians who must decide whether such individuals with low PSA values have prostate cancer. Herein, we present an advanced computational data extraction approach which can identify the presence of prostate cancer in men with PSA levels <20 ng ml -1 on the basis of peripheral blood immune cell profiles that have been generated using multi-parameter flow cytometry. Statistical analysis of immune phenotyping datasets relating to the presence and prevalence of key leukocyte populations in the peripheral blood, as generated from individuals undergoing routine tests for prostate cancer (including tissue biopsy) using multi-parametric flow cytometric analysis, was unable to identify significant relationships between leukocyte population profiles and the presence of benign disease (no prostate cancer) or prostate cancer. By contrast, a Genetic Algorithm computational approach identified a subset of five flow cytometry features ( CD 8 + CD 45 RA - CD 27 - CD 28 - ( CD 8 + Effector Memory cells); CD 4 + CD 45 RA - CD 27 - CD 28 - ( CD 4 + Terminally Differentiated Effector Memory Cells re-expressing CD45RA); CD 3 - CD 19 + (B cells); CD 3 + CD 56 + CD 8 + CD 4 + (NKT cells)) from a set of twenty features, which could potentially discriminate between benign disease and prostate cancer. These features were used to construct a prostate cancer prediction model using the k-Nearest-Neighbor classification algorithm. The proposed model, which takes as input the set of flow cytometry features, outperformed the predictive model which takes PSA values as input. Specifically, the flow cytometry-based model achieved Accuracy = 83.33%, AUC = 83.40%, and optimal ROC points of FPR = 16.13%, TPR = 82.93%, whereas the PSA-based model achieved Accuracy = 77.78%, AUC = 76.95%, and optimal ROC points of FPR = 29.03%, TPR = 82.93%. Combining PSA and flow cytometry predictors achieved Accuracy = 79.17%, AUC = 78.17% and optimal ROC points of FPR = 29.03%, TPR = 85.37%. The results demonstrate the value of computational intelligence-based approaches for interrogating immunophenotyping datasets and that combining peripheral blood phenotypic profiling with PSA levels improves diagnostic accuracy compared to using PSA test alone. These studies also demonstrate that the presence of cancer is reflected in changes in the peripheral blood immune phenotype profile which can be identified using computational analysis and interpretation of complex flow cytometry datasets.
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1994-01-01
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1992-01-01
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.
NASA Astrophysics Data System (ADS)
Monson, D. J.; Seegmiller, H. L.; McConnaughey, P. K.
1990-06-01
In this paper experimental measurements are compared with Navier-Stokes calculations using seven different turbulence models for the internal flow in a two-dimensional U-duct. The configuration is representative of many internal flows of engineering interst that experience strong curvature. In an effort to improve agreement, this paper tests several versions of the two-equation k-epsilon turbulence model including the standard version, an extended version with a production range time scale, and a version that includes curvature time scales. Each is tested in its high and low Reynolds number formulations. Calculations using these new models and the original mixing length model are compared here with measurements of mean and turbulence velocities, static pressure and skin friction in the U-duct at two Reynolds numbers. The comparisons show that only the low Reynolds number version of the extended k-epsilon model does a reasonable job of predicting the important features of this flow at both Reynolds numbers tested.
Inertial particle manipulation in microscale oscillatory flows
NASA Astrophysics Data System (ADS)
Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha
2017-11-01
Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.
Numerical simulation of base flow of a long range flight vehicle
NASA Astrophysics Data System (ADS)
Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis
2012-05-01
Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.; Itikawa, Y.
1976-01-01
The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Pelletier, Margery G. H.; Szymczak, Klaudia; Barbeau, Anna M.; Prata, Gianna N.; O’Fallon, Kevin S.; Gaines, Peter
2016-01-01
Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo nuclear morphologic changes during maturation. During this process, both cell types acquire critical innate immune functions that include phagocytosis of pathogens, and for neutrophils the release of nuclear material called nuclear extracellular traps (NETs). Primary cells used to study these functions are typically purified from mature mouse tissues, but bone marrow-derived ex vivo cultures provide more abundant numbers of progenitors and functionally mature cells. Routine analyses of these cells use conventional microscopy and flow cytometry, which present limitations; microscopy is laborious and subjective, whereas flow cytometry lacks spatial resolution. Here we describe methods to generate enriched populations of neutrophils or macrophages from cryopreserved mouse bone marrow cultured ex vivo, and to use imaging flow cytometry that combines the resolution of microscopy with flow cytometry to analyze cells for morphologic features, phagocytosis, and NETosis. PMID:27663441
Jet engine nozzle exit configurations and associated systems and methods
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor)
2011-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.
Jet Engine Nozzle Exit Configurations and Associated Systems and Methods
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor)
2013-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.
Current status and future prospects for enabling chemistry technology in the drug discovery process
Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094
Natural Flood Management Plus: Scaling Up Nature Based Solutions to Larger Catchments
NASA Astrophysics Data System (ADS)
Quinn, Paul; Nicholson, Alex; Adams, Russ
2017-04-01
It has been established that networks NFM features, such as ponds and wetlands, can have a significant effect on flood flow and pollution at local scales (less than 10km2). However, it is much less certain that NFM and NBS can impact at larger scales and protect larger cities. This is especially true for recent storms in the UK such as storm Desmond that caused devastation across the north of England. It is possible using observed rainfall and runoff data to estimate the amounts of storage that would be required to impact on extreme flood events. Here we will how a toolkit that will estimate the amount of storage that can be accrued through a dense networks of NFM features. The analysis suggest that the use of many hundreds of small NFM features can have a significant impact on peak flow, however we still require more storage in order to address extreme events and to satisfy flood engineers who may propose more traditional flood defences. We will also show case studies of larger NFM feature positioned on flood plains that can store significantly more flood flow. Examples designs of NFM plus feature will be shown. The storage aggregation tool will then show the degree to which storing large amounts of flood flow in NFM plus features can contribute to flood management and estimate the likely costs. Together smaller and larger NFM features if used together can produce significant flood storage and at a much lower cost than traditional schemes.
OFF-DESIGN PERFORMANCE OF RADIAL INFLOW TURBINES
NASA Technical Reports Server (NTRS)
Wasserbauer, C. A.
1994-01-01
This program calculates off design performance of radial inflow turbines. The program uses a one dimensional solution of flow conditions through the turbine along the main streamline. The loss model accounts for stator, rotor, incidence, and exit losses. Program features include consideration of stator and rotor trailing edge blockage and computation of performance to limiting load. Stator loss (loss in kinetic energy across the stator) is proportional to the average kinetic energy in the blade row and is represented in the program by an equation which includes a stator loss coefficient determined from design point performance and then assumed to be constant for the off design calculations. Minimum incidence loss does not occur at zero incidence angle with respect to the rotor blade, but at some optimum flow angle. At high pressure ratios the level of rotor inlet velocity seemed to have an excessive influence on the loss. Using the component of velocity in the direction of the optimum flow angle gave better correlations with experimental results. Overall turbine geometry and design point values of efficiency, pressure ratio, and mass flow are needed as input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The program has been implemented on the IBM 7094 and operates in batch mode.
Greene, H.D.; Maher, N.M.; Paull, C.K.
2002-01-01
Combined EM-300 multibeam bathymetric data and satellite photography reveal the physiography of the continental margin between 35°50′ and 37°03′N and from the shoreline west of 122°40′ and 122°37′W, which includes Monterey Bay, in a previously unprecedented detail. Patterns in these images clearly reveal the processes that are actively influencing the current geomorphology of the Monterey Bay region, including the Monterey Bay National Marine Sanctuary (MBNMS). Our data indicates that seafloor physiography within the MBNMS results from plate margin tectonic deformation, including uplift and erosion along structural lineaments, and from fluid flow. Mass wasting is the dominant process active within the Ascension–Monterey and Sur–Partington submarine canyon systems and along the lower slopes. Meanders, slump dams, and constricted channels within the submarine canyons, especially within Monterey Canyon, slow and interrupt down-canyon sediment transport. We have identified for the first time thin sediment flows, rotational slumps, rills, depressions that may be associated with pipes, and other fluid-induced features we call ‘scallops’ off the Ascension slope, and suggest that fluid flow has sculptured the seafloor morphologies here. These unusual seafloor morphologies are similar to morphologies found in terrestrial areas modified by ground-water flow.
2017-05-02
Ceres surface shows evidence for different types of flows that indicate the presence of ice in the regolith. One type of flow encircles the large impact crater at right in this image taken by NASA Dawn spacecraft. One type of flow encircles the large impact crater at right in this image. Scientists see features in this flow that indicate a low degree of internal friction within its material, meaning it was able to flow easily and far from its source. This could be due to the incorporation of a significant amount of liquid water or water vapor into the ejecta blanket. This flow also shows a large ridge along its edge (seen most clearly just to the left of the large crater). These features are commonly associated with flows on Mars called "fluidized ejecta blankets." This feature is located southwest of Kerwan crater at 40 degrees south latitude, 109 degrees east longitude. This is in the vicinity of the latitudes where Dawn's gamma ray and neutron spectrometer (GRaND) instrument sensed the presence of ice in the first meter of Ceres' regolith. The image was taken on August, 7, 2016 from an altitude of about 240 miles (390 kilometers) above Ceres. The image resolution is about 120 feet (35 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21404
DiLeo, Michelle F; Siu, Jenna C; Rhodes, Matthew K; López-Villalobos, Adriana; Redwine, Angela; Ksiazek, Kelly; Dyer, Rodney J
2014-08-01
Pollen-mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site-specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape-level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at-site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at-site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at-site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at-site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between-site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape-level measures of contemporary gene flow. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zou, Zongxing; Tang, Huiming; Xiong, Chengren; Su, Aijun; Criss, Robert E.
2017-10-01
The Jiweishan rockslide of June 5, 2009 in China provides an important opportunity to elucidate the kinetic characteristics of high-speed, long-runout debris flows. A 2D discrete element model whose mechanical parameters were calibrated using basic field data was used to simulate the kinetic behavior of this catastrophic landslide. The model output shows that the Jiweishan debris flow lasted about 3 min, released a gravitational potential energy of about 6 × 10^13 J with collisions and friction dissipating approximately equal amounts of energy, and had a maximum fragment velocity of 60-70 m/s, almost twice the highest velocity of the overall slide mass (35 m/s). Notable simulated characteristics include the high velocity and energy of the slide material, the preservation of the original positional order of the slide blocks, the inverse vertical grading of blocks, and the downslope sorting of the slide deposits. Field observations that verify these features include uprooted trees in the frontal collision area of the air-blast wave, downslope reduction of average clast size, and undamaged plants atop huge blocks that prove their lack of downslope tumbling. The secondary acceleration effect and force chains derived from the numerical model help explain these deposit features and the long-distance transport. Our back-analyzed frictions of the motion path in the PFC model provide a reference for analyzing and predicting the motion of similar geological hazards.
Scale-invariant feature extraction of neural network and renormalization group flow
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Shiba, Shotaro; Yokoo, Sumito
2018-05-01
Theoretical understanding of how a deep neural network (DNN) extracts features from input images is still unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse graining. It reminds us of the basic renormalization group (RG) concept in statistical physics. In order to explore possible relations between DNN and RG, we use the restricted Boltzmann machine (RBM) applied to an Ising model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that the unsupervised RBM trained by spin configurations at various temperatures from T =0 to T =6 generates a flow along which the temperature approaches the critical value Tc=2.2 7 . This behavior is the opposite of the typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM, we discuss why it flows towards Tc and how the RBM learns to extract features of spin configurations.
Investigating Mars: Pavonis Mons
2017-11-06
his image shows part of the eastern flank of Pavonis Mons. Surface lava flows run down hill from the upper left of the image towards the bottom right. Perpendicular to that trend are several linear features. These are faults that encircle the volcano and also run along the linear trend through the three Tharsis volcanoes. This image shows a collapsed lava tube where a flow followed the trend of a graben and then "turned" to flow down hill. Graben are linear features, so lava flows in them are linear. Where the lava flow is running along the surface of the volcano it has sinuosity just like a river. The mode of formation of a lava tube starts with a surface lava flow. The sides and top of the flow cool faster than the center, eventually forming a solid, non-flowing cover of the still flowing lava. The surface flow may have followed the deeper fault block graben (a lower surface than the surroundings). Once the flow stops there remains the empty space lower than the surroundings, and collapse of the top of the tube starts in small pits which coalesce in the linear features. Pavonis Mons is one of the three aligned Tharsis Volcanoes. The four Tharsis volcanoes are Ascreaus Mons, Pavonis Mons, Arsia Mons, and Olympus Mars. All four are shield type volcanoes. Shield volcanoes are formed by lava flows originating near or at the summit, building up layers upon layers of lava. The Hawaiian islands on Earth are shield volcanoes. The three aligned volcanoes are located along a topographic rise in the Tharsis region. Along this trend there are increased tectonic features and additional lava flows. Pavonis Mons is the smallest of the four volcanoes, rising 14km above the mean Mars surface level with a width of 375km. It has a complex summit caldera, with the smallest caldera deeper than the larger caldera. Like most shield volcanoes the surface has a low profile. In the case of Pavonis Mons the average slope is only 4 degrees. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 32751 Latitude: 0.338236 Longitude: 248.74 Instrument: VIS Captured: 2009-05-03 01:57 https://photojournal.jpl.nasa.gov/catalog/PIA22022
Method and apparatus for fringe-scanning chromosome analysis
Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.
1983-08-31
Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.
The Origin of Ina: Evidence for Inflated Lava Flows on the Moon
NASA Technical Reports Server (NTRS)
Garry, W. B.; Robinson, M. S.; Zimbelman, J. R.; Bleacher, J. E.; Hawke, B. R.; Crumpler, L. S.; Braden, S. E.; Sato, H.
2012-01-01
Ina is an enigmatic volcanic feature on the Moon known for its irregularly shaped mounds, the origin of which has been debated since the Apollo Missions. Three main units are observed on the floor of the depression (2.9 km across, < or =64 m deep) located at the summit of a low-shield volcano: irregularly shaped mounds up to 20 m tall, a lower unit 1 to 5 m in relief that surrounds the mounds, and blocky material. Analyses of Lunar Reconnaissance Orbiter Camera images and topography show that features in Ina are morphologically similar to terrestrial inflated lava flows. Comparison of these unusual lunar mounds and possible terrestrial analogs leads us to hypothesize that features in Ina were formed through lava flow inflation processes. While the source of the lava remains unclear, this new model suggests that as the mounds inflated, breakouts along their margins served as sources for surface flows that created the lower morphologic unit. Over time, mass wasting of both morphologic units has exposed fresh surfaces observed in the blocky unit. Ina is different than the terrestrial analogs presented in this study in that the lunar features formed within a depression, no vent sources are observed, and no cracks are observed on the mounds. However, lava flow inflation processes explain many of the morphologic relationships observed in Ina and are proposed to be analogous with inflated lava flows on Earth.
Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows
NASA Astrophysics Data System (ADS)
Wang, Zimeng; Shang, Helen; Zhang, Junfeng
2017-06-01
Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip
This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip
This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Oldenburg, C.M.; Moridis, G.J.
1999-11-01
TOUGH2 is a numerical simulator for nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, environmental assessment and remediation, and unsaturated and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers was added to allow a more efficient solution of large problems. The current Version 2.0 features several new fluid property modules and offers enhanced process modeling capabilities, such asmore » coupled reservoir-wellbore flow, precipitation and dissolution effects, and multiphase diffusion. Numerous improvements in previously released modules have been made and new user features have been added, such as enhanced linear equation solvers, and writing of graphics files. The T2VOC module for three-phase flows of water, air and a volatile organic chemical (VOC), and the T2DM module for hydrodynamic dispersion in 2-D flow systems have been integrated into the overall structure of the code and are included in the Version 2.0 package. Data inputs are upwardly compatible with the previous version. Coding changes were generally kept to a minimum, and were only made as needed to achieve the additional functionalities desired. TOUGH2 is written in standard FORTRAN77 and can be run on any platform, such as workstations, PCs, Macintosh, mainframe and supercomputers, for which appropriate FORTRAN compilers are available. This report is a self-contained guide to application of TOUGH2 to subsurface flow problems. It gives a technical description of the TOUGH2 code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Illustrative sample problems are presented along with detailed instructions for preparing input data.« less
Use of DES in mildly separated internal flow: dimples in a turbulent channel
NASA Astrophysics Data System (ADS)
Tay, Chien Ming Jonathan; Khoo, Boo Cheong; Chew, Yong Tian
2017-12-01
Detached eddy simulation (DES) is investigated as a means to study an array of shallow dimples with depth to diameter ratios of 1.5% and 5% in a turbulent channel. The DES captures large-scale flow features relatively well, but is unable to predict skin friction accurately due to flow modelling near the wall. The current work instead relies on the accuracy of DES to predict large-scale flow features, as well as its well-documented reliability in predicting flow separation regions to support the proposed mechanism that dimples reduce drag by introducing spanwise flow components near the wall through the addition of streamwise vorticity. Profiles of the turbulent energy budget show the stabilising effect of the dimples on the flow. The presence of flow separation however modulates the net drag reduction. Increasing the Reynolds number can reduce the size of the separated region and experiments show that this increases the overall drag reduction.
Saturn's Magnetospheric Plasma Flow Encountered by Titan
NASA Astrophysics Data System (ADS)
Sillanpää, I.
2017-09-01
Titan has been a major target of the ending Cassini mission to Saturn. 126 flybys have sampled, measured and observed a variety of Titan's features and processes from the surface features to atmospheric composition and upper atmospheric processes. Titan's interaction with the magnetospheric plasma flow it is mostly embedded in is highly dependent on the characteristics of the ambient plasma. The density, velocity and even the composition of the plasma flow can have great variance from flyby to flyby. Our purpose is the present the plasma flow conditions for all over 70 flybys of which we have Cassini Plasma Spectrometer (CAPS) measurements.
Water quality monitor. [spacecraft potable water
NASA Technical Reports Server (NTRS)
West, S.; Crisos, J.; Baxter, W.
1979-01-01
The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.
Potential flow theory and operation guide for the panel code PMARC
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steve K.; Browne, Lindsey; Katz, Joseph
1991-01-01
The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices.
Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade
NASA Astrophysics Data System (ADS)
Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz
2016-08-01
This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.
1998-12-05
This false color picture of Saturn’s northern hemisphere was assembled from ultraviolet, violet and green images obtained Aug. 19 by Voyager 2 from a range of 7.1 million kilometers (4.4 million miles). The several weather patterns evident include three spots flowing westward at about 15 meters-per-second (33 mph). Although the cloud system associated with the western-most spot is part of this flow, the spot itself moves eastward at about 30 meters-per-second (65 mph). Their joint flow shows the anti-cyclonic rotation of the spot, which is about 3,000 km. (1,900 mi.) in diameter. The ribbon- like feature to the north marks a high-speed jet where wind speeds approach 150 meters-per-second (330 mph). http://photojournal.jpl.nasa.gov/catalog/PIA01365
Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid.
Meruane, C; Tamburrino, A; Roche, O
2012-08-01
Dense grain flows in nature consist of a mixture of solid constituents that are immersed in an ambient fluid. In order to obtain a good representation of these flows, the interaction mechanisms between the different constituents of the mixture should be considered. In this article, we study the dynamics of a dense granular flow composed of a binary mixture of small and large grains immersed in an ambient fluid. In this context, we extend the two-phase approach proposed by Meruane et al. [J. Fluid Mech. 648, 381 (2010)] to the case of flowing dense binary mixtures of solid particles, by including in the momentum equations a constitutive relation that describes the interaction mechanisms between the solid constituents in a dense regime. These coupled equations are solved numerically and validated by comparing the numerical results with experimental measurements of the front speed of gravitational granular flows resulting from the collapse, in ambient air or water, of two-dimensional granular columns that consisted of mixtures of small and large spherical particles of equal mass density. Our results suggest that the model equations include the essential features that describe the dynamics of grains flows of binary mixtures in an ambient fluid. In particular, it is shown that segregation of small and large grains can increase the front speed because of the volumetric expansion of the flow. This increase in flow speed is damped by the interaction forces with the ambient fluid, and this behavior is more pronounced in water than in air.
NASA Astrophysics Data System (ADS)
Gou, Rui-bin; Dan, Wen-jiao; Zhang, Wei-gang; Yu, Min
2017-07-01
To investigate the flow properties of constituent grains in ferrite-martensite dual phase steel, both the flow curve of individual grain and the flow behavior difference among different grains were investigated both using a classical dislocation-based model and nanoindentation technique. In the analysis of grain features, grain size, grain shape and martensite proximity around ferrite grain were parameterized by the diameter of area equivalent circular of the grain d, the grain shape coefficient λ and the martensite proximity coefficient p, respectively. Three grain features influenced significantly on the grain initial strength which increases when the grain size d decreases and when grain shape and martensite proximity coefficients enlarge. In describing the flow behavior of single grain, both single-parameter and multi-parameter empirical formulas of grain initial strength were proposed by defining three grain features as the evaluation parameters. It was found that the martensite proximity is an important determinant of ferrite initial strength, while the influence of grain size is minimal. The influence of individual grain was investigated using an improved flow model of overall stress on the overall flow curve of the steel. It was found that the predicted overall flow curve was in good agreement with the experimental one when the flow behaviors of all the constituent grains in the evaluated region were fully considered.
Duct flow nonuniformities: Effect of struts in SSME HGM II(+)
NASA Technical Reports Server (NTRS)
Burke, Roger
1988-01-01
A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.
CFD methodology and validation for turbomachinery flows
NASA Astrophysics Data System (ADS)
Hirsch, Ch.
1994-05-01
The essential problem today, in the application of 3D Navier-Stokes simulations to the design and analysis of turbomachinery components, is the validation of the numerical approximation and of the physical models, in particular the turbulence modelling. Although most of the complex 3D flow phenomena occurring in turbomachinery bladings can be captured with relatively coarse meshes, many detailed flow features are dependent on mesh size, on the turbulence and transition models. A brief review of the present state of the art of CFD methodology is given with emphasis on quality and accuracy of numerical approximations related to viscous flow computations. Considerations related to the mesh influence on solution accuracy are stressed. The basic problems of turbulence and transition modelling are discussed next, with a short summary of the main turbulence models and their applications to representative turbomachinery flows. Validations of present turbulence models indicate that none of the available turbulence models is able to predict all the detailed flow behavior in complex flow interactions. In order to identify the phenomena that can be captured on coarser meshes a detailed understanding of the complex 3D flow in compressor and turbines is necessary. Examples of global validations for different flow configurations, representative of compressor and turbine aerodynamics are presented, including secondary and tip clearance flows.
Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.
1981-01-01
Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
A Catchment Systems Engineering (CSE) approach to managing intensively farmed land
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg
2014-05-01
Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.
Kinetic simulations of scrape-off layer physics in the DIII-D tokamak
Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...
2016-12-27
Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total- f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flowsmore » at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations. The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels ( Mi ~0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/T e ~ 3–4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. Finally, these two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.« less
Similarities in basalt and rhyolite lava flow emplacement processes
NASA Astrophysics Data System (ADS)
Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte
2016-04-01
Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This range in breakout morphologies is in stark contrast to breakouts observed at Cordón Caulle. We also compare the cooled crusts that form on the surface of the flows; in basalts this is of order tens of centimetres thick, in rhyolite flows the crust is of order several metres thick (based on field observations and theoretical values). This surface crust may control the flow advance in the latter phases of the flow evolution, causing stalling of the flow front and subsequent breakout formation. The similarities in flow features between compositional end members hints at a more universal model for lava flow emplacement.
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
The role of bedrock in creating habitat in temperate watercourses
NASA Astrophysics Data System (ADS)
Entwistle, N. S.; Heritage, G. L.; Milan, D. J.
2016-12-01
Bedrock influenced rivers are a relatively common yet little studied river type across temperate regions, occurring predominantly in upland areas and in areas where isostatic rebound has promoted rapid watercourse downcutting through resistant bedrock. The presence of bedrock in the bed and banks exerts a major influence on channel development, controlling local flow hydraulics and subsequently influencing in-channel and valley bottom sedimentary feature development. This paper summarises extensive field audit evidence of bedrock influenced features on watercourses in the UK to characterise the diverse morphology of bedrock influenced channels and reviews the bedrock induced hydraulic influences on their development and maintenance. Such features include bedrock waterfalls, steps, rapids and cascades and associated alluvial deposits forming lee bars, bedrock obstruction bars, plunge pool bars and fine sediment drapes and veneers. Bedrock influence on valley bottom features is also reviewed and a functional typology is developed for this river type based on the feature assemblage and degree of bedrock/alluvial influence.
Experimental Investigation of the Flow Structure over a Delta Wing Via Flow Visualization Methods.
Shen, Lu; Chen, Zong-Nan; Wen, Chihyung
2018-04-23
It is well known that the flow field over a delta wing is dominated by a pair of counter rotating leading edge vortices (LEV). However, their mechanism is not well understood. The flow visualization technique is a promising non-intrusive method to illustrate the complex flow field spatially and temporally. A basic flow visualization setup consists of a high-powered laser and optic lenses to generate the laser sheet, a camera, a tracer particle generator, and a data processor. The wind tunnel setup, the specifications of devices involved, and the corresponding parameter settings are dependent on the flow features to be obtained. Normal smoke wire flow visualization uses a smoke wire to demonstrate the flow streaklines. However, the performance of this method is limited by poor spatial resolution when it is conducted in a complex flow field. Therefore, an improved smoke flow visualization technique has been developed. This technique illustrates the large-scale global LEV flow field and the small-scale shear layer flow structure at the same time, providing a valuable reference for later detailed particle image velocimetry (PIV) measurement. In this paper, the application of the improved smoke flow visualization and PIV measurement to study the unsteady flow phenomena over a delta wing is demonstrated. The procedure and cautions for conducting the experiment are listed, including wind tunnel setup, data acquisition, and data processing. The representative results show that these two flow visualization methods are effective techniques for investigating the three-dimensional flow field qualitatively and quantitatively.
Catalytic nanoporous membranes
Pellin, Michael J [Naperville, IL; Hryn, John N [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL
2009-12-01
A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, D.L.; Wagner, J.B.
1988-09-01
Before siting oil and gas platforms on the sea floor as artificial reefs offshore Louisiana, potentially hazardous and unstable geologic conditions must be identified and evaluated to assess their possible impacts on platform stability. Geologic and man-made features can be identified and assessed from high-resolution geophysical techniques (3.5-7.0 kHz echograms, single-channel seismic, and side-scan sonar). Such features include faults, diapirs, scarps, channels, gas seeps, irregular sea floor topography, mass wasting deposits (slumps, slides, and debris flows), pipelines, and other subsea marine equipment. Geotechnical techniques are utilized to determine lithologic and physical properties of the sediments for correlation with the geophysicalmore » data. These techniques are used to develop a series of geologic maps, cross sections, and pipeline and platform-location maps. Construction of echo-character maps from 3.5-kHz data provides an analysis of near-bottom sedimentation processes (turbidity currents and debris flows).« less
Features of flow around the flying wing model at various attack and slip angle
NASA Astrophysics Data System (ADS)
Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.
2017-10-01
Experimental study of flow features around aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicleswas carried out. Hot-wire anemometry and flow visualization techniques were used in the investigation to get quantitative data and streamlines pictures ofthe flow near the model surface. Evolution of vortex structures depending on the attack and slip angle was demonstrated. The possibility of flow control and reduction of flow separation zones on the wing surface by means of ledges in the form of cones was also investigated. It was shown, that the laminar-turbulent transition scenario on the flying wing model is identical to the one on a straight wing and occurs through the development of a package of unstable oscillations in the boundary layer separation.
Paleohydraulics and hydrodynamics of Scabland floods
NASA Technical Reports Server (NTRS)
Baker, V. R.
1978-01-01
The last major episode of scabland flooding (approx. 18,000-13,000 years B.P.) left considerable high-water mark evidence in the form of: (1) eroded channel margins; (2) depositional features; (3) ice-rafter erratics; and (4) divide crossings. These were used to reconstruct maximum flood stages and water-surface gradients. Engineering hydraulic calculation procedures allowed the analyses of flood discharges and mean velocities from these data. Secondary flow phenomena, including various forms of vortices and flow separations, are considered to have been the principal erosive processes. The intense pressure and velocity gradients of vortices along the irregular channel boundaries produced the plucking-type erosion.
A simple spectral model of the dynamics of the Venus ionosphere
NASA Technical Reports Server (NTRS)
Singhal, R. P.; Whitten, R. C.
1987-01-01
A two-dimensional model of the ionosphere of Venus has been constructed by expanding pertinent quantities in Legendre polynomials. The model is simplified by including only a single ion species, O(+). Horizontal plasma flow velocity and plasma density have been calculated as a coupled system. The calculated plasma flow velocity is found to be in good agreement with observations and the results of earlier studies. Solar zenith angle dependence of plasma density, particularly on the nightside, shows some features which differ from results of earlier studies and observed values. Effects of raising or lowering the ionopause height and changing the nightside neutral atmosphere have been discussed.
2015-12-10
Like Earth's water table, Mars has an ice table. Sometimes, the ice table coincides with the ground's surface as it does here. The knobby, pitted terrain is caused when ice is deposited and then sublimates over and over again. This geologic process is called "accrescence" and "decrescence" and also occurs on Neptune's moon Triton and on Pluto, though in the outer Solar System the ice is not water ice. Other evidence for ice here includes the rope-like, curved flow feature that resembles glacial flow. Solis Planum -- a huge mound south of Valles Marineris -- is the location of this image. http://photojournal.jpl.nasa.gov/catalog/PIA20208
Wind wheel electric power generator
NASA Technical Reports Server (NTRS)
Kaufman, J. W. (Inventor)
1980-01-01
Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.
Numerical and experimental investigation of VG flow control for a low-boom inlet
NASA Astrophysics Data System (ADS)
Rybalko, Michael
The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)
Patrick, John W.
2013-01-01
The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields. PMID:23802003
An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements
NASA Astrophysics Data System (ADS)
Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.
2015-12-01
As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.
Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits
NASA Astrophysics Data System (ADS)
Scanlon, Kathleen E.; Head, James W.; Wilson, Lionel; Marchant, David R.
2014-07-01
Fan-shaped deposits (FSD) superposed on the sides of the Tharsis Montes volcanic edifices are widely interpreted to have been formed by cold-based glaciation during the Late Amazonian, a period when the Tharsis Montes were volcanically active. We survey the ∼166,000 km2 Arsia Mons FSD using new, high-resolution image and topography data and describe numerous landforms indicative of volcano-ice interactions. These include (1) steep-sided mounds, morphologically similar to terrestrial tindar that form by subglacial eruptions under low confining pressure; (2) steep-sided, leveed flow-like landforms with depressed centers, interpreted to be subglacial lava flows with chilled margins; (3) digitate flows that we interpret as having resulted from lava flow interaction with glacial ice at the upslope margin of the glacier; (4) a plateau with the steep sides and smooth capping flow of a basaltic tuya, a class of feature formed when subglacial eruptions persist long enough to melt through the overlying ice; and (5) low, areally extensive mounds that we interpret as effusions of pillow lava, formed by subglacial eruptions under high confining pressure. Together, these eruptions involved hundreds of cubic kilometers of subglacially erupted lava; thermodynamic relationships indicate that this amount of lava would have produced a similar volume of subglacial liquid meltwater, some of which carved fluvial features in the FSD. Landforms in the FSD also suggest that glaciovolcanic heat transfer induced local wet-based flow in some parts of the glacier. Glaciovolcanic environments are important microbial habitats on Earth, and the evidence for widespread liquid water in the Amazonian-aged Arsia Mons FSD makes it one of the most recent potentially habitable environments on Mars. Such environments could have provided refugia for any life that developed on Mars and survived on its surface until the Amazonian.
Thermal infrared data of active lava surfaces using a newly-developed camera system
NASA Astrophysics Data System (ADS)
Thompson, J. O.; Ramsey, M. S.
2017-12-01
Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
NASA Astrophysics Data System (ADS)
Ferreira, Rui M. L.; Oliveira, Rodrigo P.; Conde, Daniel
2016-04-01
On the 20th February 2010, heavy rainfall was registered at Madeira Island, North Atlantic. Stony debris flows, mudflows and mudslides ensued causing severe property loss, 1.5 m thick sediment deposits at downtown Funchal including 16th century monuments, and a death toll of 47 lives. Debris-flow fronts propagated downstream while carrying very high concentrations of solid material. These two-phase solid-fluid flows were responsible for most of the infrastructural damage across the island, due to their significantly increased mass and momentum. The objective of the present modelling work is to validate a 2DH model for torrential flows featuring the transport and interaction of several size fractions of a poorly-sorted granular mixture typical of stony debris flow in Madeira. The module for the transport of poorly-sorted material was included in STAV-2D (CERIS-IST), a shallow-water and morphology solver based on a finite-volume method using a flux-splitting technique featuring a reviewed Roe-Riemann solver, with appropriate source-term formulations to ensure full conservativeness. STAV-2D also includes formulations of flow resistance and bedload transport adequate for debris-flows with natural mobile beds (Ferreira et al., 2009) and has been validated with both theoretical solutions and laboratory data (Soares-Frazão et al., 2012; Canelas et al., 2013). The modelling of the existing natural and built environment is fully explicit. All buildings, streets and channels are accurately represented within the mesh geometry. Such detail is relevant for the reliability of the validation using field data, since the major sedimentary deposits within the urban meshwork of Funchal were identified and characterized in terms of volume and grain size distribution during the aftermath of the 20th February of 2010 event. Indeed, the measure of the quality of the numerical results is the agreement between simulated and estimated volume of deposited sediment and between estimated and modelled grain-size distribution of the deposits. The formulations expressing closures for size fraction interaction and active layer dynamics are discussed. The simulation tool resulting from this modelling effort is expected to help the establishment of new methodologies and parameters for hydraulic design and hazard assessment in the Island of Madeira. Acknowledgements This work was partially funded by FEDER, program COMPETE, and by national funds through Portuguese Foundation for Science and Technology (FCT) project RECI/ECM-HID/0371/2012. References Canelas, R.; Murillo, J. & Ferreira, R.M.L. (2013). Two-dimensional depth-averaged modelling of dambreak flows over mobile beds. Journal of Hydraulic Research, 51(4), 392-407. Ferreira, R. M. L., Franca, M. J., Leal, J. G., & Cardoso, A. H. (2009). Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics. Canadian Journal of Civil Engineering, 36(10), 1605-1621. Soares-Frazão and IAHR Working group for Dam-break flows over mobile beds (2012) Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models. Journal of Hydraulic Research, 50(4), 364-375. DOI: 10.1080/00221686.2012.689682
2017-04-19
NASA's Dawn spacecraft has revealed many landslides on Ceres, which researchers interpret to have been shaped by a significant amount of water ice. A 2017 study in the journal Nature Geoscience classifies three types of these debris flows. Image 1 (left in the montage) shows an example of "Type I" flow features, which are relatively round and large, have thick "toes" at their ends. They look similar to rock glaciers and icy landslides on Earth. Type I landslides are mostly found at high latitudes, which is also where the most ice is thought to reside near Ceres' surface. Image 2 (center) shows an example of a "Type II" flow feature. Type II features are often thinner and longer than Type I, and are the most common type of landslide on Ceres. They appear more like the avalanches seen on Earth. Image 3 (right) shows an example of a "Type III" flow feature at Datan Crater. The study authors interpret Ceres' Type III landslides to involve melted ice, although scientists do not know if they actually contain liquid water. The authors think Type III landslides are related to impact craters, and may have formed during impact events into the ice on Ceres. The features resemble fluid material ejected from craters in the icy regions of Mars and Jupiter's moon Ganymede. https://photojournal.jpl.nasa.gov/catalog/PIA21471
Vascular plugs - A key companion to Interventionists - 'Just Plug it'.
Ramakrishnan, Sivasubramanian
2015-01-01
Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.
Recent Developments on the Turbulence Modeling Resource Website (Invited)
NASA Technical Reports Server (NTRS)
Rumssey, Christopher L.
2015-01-01
The NASA Langley Turbulence Model Resource (TMR) website has been active for over five years. Its main goal of providing a one-stop, easily accessible internet site for up-to-date information on Reynolds-averaged Navier-Stokes turbulence models remains unchanged. In particular, the site strives to provide an easy way for users to verify their own implementations of widely-used turbulence models, and to compare the results from different models for a variety of simple unit problems covering a range of flow physics. Some new features have been recently added to the website. This paper documents the site's features, including recent developments, future plans, and open questions.
Granular flows in constrained geometries
NASA Astrophysics Data System (ADS)
Murthy, Tejas; Viswanathan, Koushik
Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.
Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control
NASA Astrophysics Data System (ADS)
Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh
2017-11-01
Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.
Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Shouse, D. T.; Roquemore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.
2001-01-01
The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL (Rich burn/Quick mix/Lean burn) modes of combustion. The present work describes the operational principles of the TVC, and provides detailed performance data on a configuration featuring a tri-pass diffusion system. Performance data include EINOx (NO(sub x) emission index) results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable in comparison to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.
Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy).
NASA Astrophysics Data System (ADS)
Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.
2017-04-01
The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own structural surveys of the area to better identify the major fault features (e.g., type of fractures, statistical properties, geometrical and petro-physical characteristics). In our model the damage zones of the fault are described as discretely fractured medium, while the core of the fault as a porous one. Our model utilizes the dfnWorks code, a parallelized computational suite, developed at Los Alamos National Laboratory (LANL), that generates three dimensional Discrete Fracture Network (DFN) of the damage zones of the fault and characterizes its hydraulic parameters. The challenge of the study is the coupling between the discrete domain of the damage zones and the continuum one of the core. The field investigations and the basic computational workflow will be described, along with preliminary results of fluid flow simulation at the scale of the fault.
Triep, Michael; Hess, David; Chaves, Humberto; Brücker, Christoph; Balmert, Alexander; Westhoff, Guido; Bleckmann, Horst
2013-01-01
The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels. PMID:23671569
Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
Sadeghi, Hossein; Kniesburges, Stefan; Kaltenbacher, Manfred; Schützenberger, Anne; Döllinger, Michael
2018-02-07
Human phonation is based on the interaction between tracheal airflow and laryngeal dynamics. This fluid-structure interaction is based on the energy exchange between airflow and vocal folds. Major challenges in analyzing the phonatory process in-vivo are the small dimensions and the poor accessibility of the region of interest. For improved analysis of the phonatory process, numerical simulations of the airflow and the vocal fold dynamics have been suggested. Even though most of the models reproduced the phonatory process fairly well, development of comprehensive larynx models is still a subject of research. In the context of clinical application, physiological accuracy and computational model efficiency are of great interest. In this study, a simple numerical larynx model is introduced that incorporates the laryngeal fluid flow. It is based on a synthetic experimental model with silicone vocal folds. The degree of realism was successively increased in separate computational models and each model was simulated for 10 oscillation cycles. Results show that relevant features of the laryngeal flow field, such as glottal jet deflection, develop even when applying rather simple static models with oscillating flow rates. Including further phonatory components such as vocal fold motion, mucosal wave propagation, and ventricular folds, the simulations show phonatory key features like intraglottal flow separation and increased flow rate in presence of ventricular folds. The simulation time on 100 CPU cores ranged between 25 and 290 hours, currently restricting clinical application of these models. Nevertheless, results show high potential of numerical simulations for better understanding of phonatory process. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gase, A.; Brand, B. D.; Bradford, J.
2016-12-01
The causes and consequences of substrate erosion are among the least understood attributes of pyroclastic density current (PDC) dynamics. Field evidence of substrate erosion is often limited by the location and quality of exposed PDC deposits. Here we present evidence for one of the most spatially extensive cases of PDC erosion to date, found within the 18 May 1980 deposits of Mt. St. Helens, Washington (USA). An 8 m deep and 300 m wide PDC scour and fill feature, which extends into PDC deposits from earlier in the eruption, is exposed along a distal outcrop of the shallow-dipping (<15º) pumice plain. Near surface geophysical techniques allow us to investigate the nature, extent, and cause of this large scour. We used 50 MHz ground-penetrating radar to track the distal scour from outcrop toward its source. Beginning 700 m up-flow from the large scour and fill exposure, the feature progressively widens from 205 m to 280 m and deepens from 10 m to 13 m, suggesting the PDCs became more erosive along the length of the scour. We extended our transects across the pumice plain to locate additional scours and to establish the topography at the time of erosion. We found a second 420 m wide and 11 m deep scour that extends at least 500 m from its inception point. Apparent dips of the sides of both channels are asymmetrical, due to pronounced erosion on the up-slope side of the flow in cross-section. Our data show no evidence of subsurface topographic irregularities or high slope angles up-flow from either erosional feature. These features imply large PDCs from semi-sustained or fluctuating eruptions can self-channelize by erosional mechanisms. Our findings suggest that (1) concentrated PDCs are capable of producing large scours on shallow slopes with negligible surface roughness, analogous to the erosional channels of submarine turbidity currents, (2) substrate properties, including partial fluidization of fresh PDC deposits, may facilitate substrate erosion during semi-sustained eruptions, and (3) large PDCs can undergo self-channelization, whereby axial zones of high flow energy erode channels that confine subsequent flows. Erosion and self-channelization of this nature is not accounted for in models of concentrated PDCs, which may result in underestimates of run-out distance.
Particle migration and sorting in microbubble streaming flows
Thameem, Raqeeb; Hilgenfeldt, Sascha
2016-01-01
Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble. PMID:26958103
The oblique impingement of an axisymmetric jet. [flow characteristics of jet flow over flat plates
NASA Technical Reports Server (NTRS)
Foss, J. F.; Kleis, S. J.
1976-01-01
The mechanics of the oblique impingement of an axisymmetric jet on a plane surface are examined in detail. The stagnation point is discussed. A schematic drawing of the problem and coordinate system used to describe the flow field are given. The kinematic features of the flow above the plate are examined in the context of the conservation of mass, the vorticity of the jet, and the vorticity introduced by the jetplate interaction. The dynamic features of the flow are examined in terms of the surface pressure distribution and the cause-effect relationships which exist between the pressure and velocity/vorticity distributions. Flow calculations performed are given. The investigation is relevant to the flow resulting from the interaction of the propulsion jet with the main airfoil (STOL aircraft), and is appropriate to an over- or under- wing configuration.
Comparison of Tomo-PIV Versus Dual Plane PIV on a Synthetic Jet Flow
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
2017-01-01
Particle Imaging Velocimetry (PIV) is a planar velocity measurement technique that has found widespread use across a wide class of engineering disciplines. Tomographic PIV (tomoPIV) is an extension of the traditional PIV technique whereby the velocity across a volume of fluid is measured. TomoPIV provides additional fluid mechanical properties of the flow due to the adjacent planes of velocity information that are extracted. Dual Plane PIV is another approach for providing cross-plane flow field properties. Dual Plane PIV and tomoPIV provide all of the same flow properties, albeit through very different routes with significantly different levels of effort, hence a comparison of their application and performance would prove beneficial in a well-known, highly three dimensional flow field. A synthetic jet flow which has a wide range of flow field features including high velocity gradients and regions of high vorticity was used as a rigorous test bed to determine the capabilities limitations of the Dual Plane PIV and tomoPIV techniques. The results show that compressing 3D particle field information down to a limited number of views does not permit the accurate reconstruction of the flow field. The traditional thin sheet techniques are the best approach for accurate flow field measurements.
A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels
NASA Astrophysics Data System (ADS)
Zerihun, Yebegaeshet T.
2017-06-01
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
NASA Astrophysics Data System (ADS)
Socias, Alvaro; Oyarzun, Diego; Guzman, Amador
2014-11-01
The electroosmotic flow (EOF) pattern characteristics in cross-shaped microchannels flow are important features when either suppressing or enhancing flow features for injection and separation or mixing of multiple species are the wanted objectives. There are situations in EOF in cross-shaped microchannels where the fluid flows toward unexpected and unwanted directions under a given external electric field that depends of both the applied electric field and lengths of the different channels. This article describes the effect of the electric field ratio, defined as the ratio between longitudinal nominal electric field ELong = (VE-VW) /(LW + LE) and the nominal electric field E a = (VS-VE) /(VS + VE) , where E, S and W define the east, south and west directions of the cross-shaped microchannel; V is the externally applied voltage and L is the length, on the EOF characteristics in a cross-shaped microchannel. We use the lattice-Boltzmann method (LBM) for solving the discretized Boltzmann Transport Equation (BTE) describing the coupled processes of hydrodynamics and electrodynamic. Our numerical simulations allow us to determine the EOF pattern for a wide range of the electric field ratio and Ea such that inverted flow features are captured and described, which are very important to determine for flow separation or mixing.
Characterization of Unsteady Flow Structures Near Landing-Edge Slat. Part 2; 2D Computations
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi; Choudhari, Meelan M.; Jenkins, Luther N.
2004-01-01
In our previous computational studies of a generic high-lift configuration, quasi-laminar (as opposed to fully turbulent) treatment of the slat cove region proved to be an effective approach for capturing the unsteady dynamics of the cove flow field. Combined with acoustic propagation via Ffowes Williams and Hawkings formulation, the quasi-laminar simulations captured some important features of the slat cove noise measured with microphone array techniques. However. a direct assessment of the computed cove flow field was not feasible due to the unavailability of off-surface flow measurements. To remedy this shortcoming, we have undertaken a combined experiment and computational study aimed at characterizing the flow structures and fluid mechanical processes within the slat cove region. Part I of this paper outlines the experimental aspects of this investigation focused on the 30P30N high-lift configuration; the present paper describes the accompanying computational results including a comparison between computation and experiment at various angles of attack. Even through predictions of the time-averaged flow field agree well with the measured data, the study indicates the need for further refinement of the zonal turbulence approach in order to capture the full dynamics of the cove's fluctuating flow field.
NASA Technical Reports Server (NTRS)
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah
2007-01-01
We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.
NASA Astrophysics Data System (ADS)
Schäppi, B.; Molnar, P.; Perona, P.; Tockner, K.; Burlando, P.
2009-04-01
Healthy floodplain ecosystems are characterized by high habitat diversity which tends to be lost in straightened channelized rivers. River restoration projects aim to increase habitat heterogeneity by re-establishing natural flow conditions and/or re-activating geomorphic processes in straightened reaches. The success of such projects is usually measured by means of structural and functional hydrogeomorphic and ecological indicators. Important indicators include flow variables and morphological features such as flow depth, velocity, shore line length, exposed gravel area and wetted river width. Also important are the rates at which these variables and features change under varying streamflow. A high spatial variability in the indicators is generally connected with high habitat diversity. The temporal availability and spatial distribution of both aquatic and riparian habitats control the composition and diversity of benthic organisms, fish, and riparian communities. Spatial heterogeneity provides refugia, i.e. areas from which recolonization after a disturbance event may occur. In addition, it facilitates the transfer of organisms and matter across the aquatic and terrestrial interface, thereby increasing the overall functional performance of coupled river-riparian ecosystems. However the habitat diversity can be maintained over time only if there are frequent disturbances such as periodic floods that reset the system and create new germination sites for pioneer vegetation and rework the channel bed to form new aquatic habitat. Therefore the flow and morphology indicators need to be investigated on spatial as well as on temporal scales. Traditionally, these indicators are measured in the field albeit most measurements can be carried out only at low flow conditions. We propose that flow simulations with a 2d hydrodynamic model may be used for a fast and convenient assessment of indicators of flow variables and morphological features with relatively little calibration required and we illustrate an example thereof. The advantage of using computer simulations as compared to field observations is that a range of discharges can be investigated. Using a flood frequency analysis the return period of simulated flows can be estimated and translated into frequency-dependent habitat types. In order to investigate how flow variables change, we conducted a series of 2d flow simulations at different flow rates along the prealpine Thur River (Switzerland) consisting of both restored and straight reaches. Restoration basically consisted of widening the river cross-section and allowing a natural morphology to form. The simulated flow variables (flow depth and velocity) were then analyzed separately for the two reaches. The distributions of the both variables for the restored reach were significantly different from the straight reach, most notably an increase in the variance was observed. In order to analyze the temporal variability we investigated the development of the riverbed morphology over time using different digital elevation models combined with cross section data measured at annual intervals. Spatially explicit erosion and deposition patterns were derived from this analysis. The riverbed topography at different dates was then used to analyze the temporal evolution of the flow indicators for the different flow conditions. Comparisons between the restored and straight reaches allow us to assess the success of river restoration in terms of flow variability and morphological complexity.
Determination of feature generation methods for PTZ camera object tracking
NASA Astrophysics Data System (ADS)
Doyle, Daniel D.; Black, Jonathan T.
2012-06-01
Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.
Spectral features of solar plasma flows
NASA Astrophysics Data System (ADS)
Barkhatov, N. A.; Revunov, S. E.
2014-11-01
Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less
Magnetohydrodynamic and gasdynamic theories for planetary bow waves
NASA Technical Reports Server (NTRS)
Spreiter, John R.; Stahara, Stephen S.
1985-01-01
A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.
Simulations of Turbine Cooling Flows Using a Multiblock-Multigrid Scheme
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Ameri, Ali A.; Rigby, David L.
1996-01-01
Results from numerical simulations of air flow and heat transfer in a 'branched duct' geometry are presented. The geometry contains features, including pins and a partition, as are found in coolant passages of turbine blades. The simulations were performed using a multi-block structured grid system and a finite volume discretization of the governing equations (the compressible Navier-Stokes equations). The effects of turbulence on the mean flow and heat transfer were modeled using the Baldwin-Lomax turbulence model. The computed results are compared to experimental data. It was found that the extent of some regions of high heat transfer was somewhat under predicted. It is conjectured that the underlying reason is the local nature of the turbulence model which cannot account for upstream influence on the turbulence field. In general, however, the comparison with the experimental data is favorable.
Magnetohydrodynamic and gasdynamic theories for planetary bow waves
NASA Technical Reports Server (NTRS)
Spreiter, J. R.; Stahara, S. S.
1983-01-01
A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.
Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium
NASA Astrophysics Data System (ADS)
Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.
2018-06-01
The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.
Experimental and numerical study of the British Experimental Rotor Programme blade
NASA Technical Reports Server (NTRS)
Brocklehurst, Alan; Duque, Earl P. N.
1990-01-01
Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.
Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.
Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea
2018-02-21
As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft
NASA Technical Reports Server (NTRS)
Maddalon, D. V.; Wagner, R. D.
1976-01-01
Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri
2015-01-01
A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.
NASA Technical Reports Server (NTRS)
Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.
2012-01-01
A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.
A novel method for unsteady flow field segmentation based on stochastic similarity of direction
NASA Astrophysics Data System (ADS)
Omata, Noriyasu; Shirayama, Susumu
2018-04-01
Recent developments in fluid dynamics research have opened up the possibility for the detailed quantitative understanding of unsteady flow fields. However, the visualization techniques currently in use generally provide only qualitative insights. A method for dividing the flow field into physically relevant regions of interest can help researchers quantify unsteady fluid behaviors. Most methods at present compare the trajectories of virtual Lagrangian particles. The time-invariant features of an unsteady flow are also frequently of interest, but the Lagrangian specification only reveals time-variant features. To address these challenges, we propose a novel method for the time-invariant spatial segmentation of an unsteady flow field. This segmentation method does not require Lagrangian particle tracking but instead quantitatively compares the stochastic models of the direction of the flow at each observed point. The proposed method is validated with several clustering tests for 3D flows past a sphere. Results show that the proposed method reveals the time-invariant, physically relevant structures of an unsteady flow.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Digital Geologic Map Database of Medicine Lake Volcano, Northern California
NASA Astrophysics Data System (ADS)
Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.
2010-12-01
Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
Modeling of pulsating heat pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Givler, Richard C.; Martinez, Mario J.
This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. Themore » physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.« less
Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres
NASA Astrophysics Data System (ADS)
Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.
2016-04-01
Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the source of impact melt flows is diffusely distributed but many of the observed flows originate from district sources in the crater interior and the flows, however, are well defined. The compositional differences derived from the color ratio and possible time variable effects related to cryo-processes either volcanic or glacial [1,2]. Furthermore, the suggestion of an occurrence ice within the Cerean crust [5] as well as possible salts incorporated into a regolith layer [4,5,6] indicates similar geological processes as seen on other icy bodies. Some lobate flow-like deposits on Ganymede such as at Sippar Sulcus are suggested to be formed by volcanic eruptions creating a channel and flow, and cutting down into the surface forming a depression. Thus, an endogenic formation process cannot be excluded. References: [1] Jaumann R. et al. (2015) EPSC X, Abstract #2015-83. [2] Jaumann R. et al. (2015) AGU, Abstract #P42A-05. [3] Krohn K. et al. (2016) LPSC XLVII, this issue. [4] Jaumann R. et al. (2016) LPSC XLVII, this issue. [5] McCord T.B. and Sotin C. (2005) J. Geophys. Res., 110, E05009. [6] Castillo-Rogez J.C. and McCord T.B. (2010) Icarus 203, 443-459.
Adaptive Numerical Dissipation Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2005-01-01
The required type and amount of numerical dissipation/filter to accurately resolve all relevant multiscales of complex MHD unsteady high-speed shock/shear/turbulence/combustion problems are not only physical problem dependent, but also vary from one flow region to another. In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numerical error for high order shock-capturing methods poses extra requirements for the considered type of CPU intensive computations. The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multiresolution wavelets (WAV) (for the above types of flow feature). These filters also provide a natural and efficient way for the minimization of Div(B) numerical error.
What Was Learned in Predicting Slender Airframe Aerodynamics with the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Rizzi, Arthur; Luckring, James M.
2016-01-01
The second Cranked-Arrow Wing Aerodynamics Project, International, coordinated project has been underway to improve high-fidelity computational-fluid-dynamics predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with the F-16XL aircraft for comparison and validation. These conditions, a low-speed high-angle-of-attack case and a transonic low-angle-of-attack case, were selected from a prior prediction campaign wherein the computational fluid dynamics failed to provide acceptable results. In revisiting these two cases, approaches for improved results include better, denser grids using more grid adaptation to local flow features as well as unsteady higher-fidelity physical modeling like hybrid Reynolds-averaged Navier-Stokes/unsteady Reynolds-averaged Navier-Stokes/large-eddy simulation methods. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations where some authors investigate other possible factors that could explain the discrepancies in agreement (e.g., effects due to deflected control surfaces during the flight tests as well as static aeroelastic deflection of the outer wing). This paper presents the synthesis of all the results and findings and draws some conclusions that lead to an improved understanding of the underlying flow physics, finally making the connections between the physics and aircraft features.
Pozdeeva, O G
2005-01-01
Hemodynamic parameters were studied in the ophthalmic artery, short posterior ciliary arteries (SPCA), long posterior ciliary arteries (LPCA), and central artery of the retina (CAR). Doppler ultrasound study (DUSS) was performed on an Acuson Aspen multipurpose diagnostic system using a linear transducer at a frequency of 7.5 MHz in the pulse mode. Chelyabinsk students aged 17-25 years were examined. A number of specific features of retinal blood supply were detected in young persons with dystrophic diseases of the periphery of the fundus oculi. These included decreased blood flow velocities and less systolic flow acceleration time in SPCA, LPCA, and CAR in peripheral vitreochorioretinal dystrophies (PVCRD). The higher pulsatile index (PI) in the LPCA system characterized a possible mechanism responsible for compensation of impaired blood supply in the retinal periphery in the development of PVCRD. The high values of the pulsatile index and the vascular wall resistivity index in CAR reflected the changes determining the absence of complications as retinal ruptures and detachment. There were neither changes in ophthalmic arterial blood flow depending on the type of PVCRD and the nature of its course nor significant differences in blood supply to the eye in different types of refraction.
Subaqueous rhyolite block lavas in the Miocene Ushikiri Formation, Shimane Peninsula, SW Japan
NASA Astrophysics Data System (ADS)
Kano, Kazuhiko; Takeuchi, Keiji; Yamamoto, Takahiro; Hoshizumi, Hideo
1991-06-01
A rhyolite mass of the Miocene Ushikiri Formation in the western part of the Shimane Peninsula, SW Japan, is a small subaqueous edifice about 600 m high and 4 km wide, formed at water depths between 200 and 1000 m. It consists mainly of three relatively flat, lava-flow units 50-300 m in maximum thickness, each of which includes lobes and their polyhedral fragments. The lava lobes are poorly to well vesiculated, glassy to microcrystalline and flow-banded and -folded. Compared with mafic pillows, they are large, having thick, quenched and brecciated, glassy crusts because of their high viscosity, surface tension and thermal conductivity. Their surfaces disintegrate into polyhedral fragments and grade into massive volcanic breccia. The massive volcanic breccia composed of the lobe fragments is poorly sorted and covered with stratified volcanic breccia of the same rock type. The rhyolite lavas commonly bifurcate in a manner similar to mafic pillow lavas. However, they are highly silicic with 1-5 vol.% phenocrysts and have elongated vesicles and flow-folds, implying that they were visco-plastic during flowage. Their surface features are similar to those of subaerial block lava. With respect to rheological and morphological features, they are subaqueous equivalents of block lava.
NASA Astrophysics Data System (ADS)
Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico
2017-04-01
Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the unsaturated zone to evaluate the effect of transient flow conditions on solute mobilization. Our preliminary results indicate that residence times ranging from 0.5 to 250 hours are influenced by meander geometry, as well as the size of the intra-meander area. In general, we found that larger intra-meander areas lead to longer flow paths and higher mean intra-meander residence times (MRTs). The shortest RTs were observed near the meander neck in all scenarios, a feature most predominant in more developed meander resulting shorter MRTs. Transient modelling results show that fluctuations in stream hydraulic head influence the transport and zonation of the solute concentration in the intra-meander area with higher and longer stream discharge events leading to stronger mobilization and removal of solutes dominated mainly around meander neck area.
Irreversible entropy production in two-phase flows with evaporating drops
NASA Technical Reports Server (NTRS)
Bellan, J.; Okong'o, N. A.
2002-01-01
A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.
Electroosmotic pumps for microflow analysis
Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong
2009-01-01
With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021
Examining the Effect of Organizational Roles in Shaping Network Traffic Activity
2012-08-01
absolute value, and are presented in Table 3. Role Correlation Feature Admin 0.3004 bpp 0.2845 portsPerFlow 0.2063 addrDist -0.1869...OS Correlation Feature XP 0.4783 notTcpUdp 0.2867 addrDist -0.2389 bpp 0.1933 protocol -0.1852 flowInt Windows 7 0.3884 portDist 0.2367...addrDist 0.2001 direction 0.1751 bpp 0.1653 portsPerFlow Mac -0.2376 notTcpUdp 0.1978 UDP 0.1885 duration -0.1783 addrDist -0.1736 countEmpties
General-Purpose Electronic System Tests Aircraft
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1989-01-01
Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.
GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.R.; Cooper, A.K.; Gardner, J.V.
1987-05-01
During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slidesmore » and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.« less
ERIC Educational Resources Information Center
Alku, Paavo; Vilkman, Erkki; Laukkanen, Anne-Maria
1998-01-01
A new method is presented for the parameterization of glottal volume velocity waveforms that have been estimated by inverse filtering acoustic speech pressure signals. The new technique combines two features of voice production: the AC value and the spectral decay of the glottal flow. Testing found the new parameter correlates strongly with the…
Landscape Features Shape Genetic Structure in Threatened Northern Spotted Owls
Funk, W. Chris; Forsman, Eric D.; Mullins, Thomas D.; Haig, Susan M.
2008-01-01
Several recent studies have shown that landscape features can strongly affect spatial patterns of gene flow and genetic variation. Understanding landscape effects on genetic variation is important in conservation for defining management units and understanding movement patterns. The landscape may have little effect on gene flow, however, in highly mobile species such as birds. We tested for genetic breaks associated with landscape features in the northern spotted owl (Strix occidentalis caurina), a threatened subspecies associated with old forests in the U.S. Pacific Northwest and extreme southwestern Canada. We found little evidence for distinct genetic breaks in northern spotted owls using a large microsatellite dataset (352 individuals from across the subspecies' range genotyped at 10 loci). Nonetheless, dry low-elevation valleys and the Cascade and Olympic Mountains restrict gene flow, while the Oregon Coast Range facilitates it. The wide Columbia River is not a barrier to gene flow. In addition, inter-individual genetic distance and latitude were negatively related, likely reflecting northward colonization following Pleistocene glacial recession. Our study shows that landscape features may play an important role in shaping patterns of genetic variation in highly vagile taxa such as birds.
Hierarchical Engine for Large-scale Infrastructure Co-Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-04-24
HELICS is designed to support very-large-scale (100,000+ federates) cosimulations with off-the-shelf power-system, communication, market, and end-use tools. Other key features include cross platform operating system support, the integration of both event driven (e.g., packetized communication) and time-series (e.g., power flow) simulations, and the ability to co-iterate among federates to ensure physical model convergence at each time step.
Video to Text (V2T) in Wide Area Motion Imagery
2015-09-01
microtext) or a document (e.g., using Sphinx or Apache NLP ) as an automated approach [102]. Previous work in natural language full-text searching...language processing ( NLP ) based module. The heart of the structured text processing module includes the following seven key word banks...Features Tracker MHT Multiple Hypothesis Tracking MIL Multiple Instance Learning NLP Natural Language Processing OAB Online AdaBoost OF Optic Flow
Nature of the Congested Traffic and Quasi-steady States of the General Motor Models
NASA Astrophysics Data System (ADS)
Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher
2015-03-01
We look at the general motor (GM) class microscopic traffic models and analyze some of the universal features of the (multi-)cluster solutions, including the emergence of an intrinsic scale and the quasisoliton dynamics. We show that the GM models can capture the essential physics of the real traffic dynamics, especially the phase transition from the free flow to the congested phase, from which the wide moving jams emerges (the F-S-J transition pioneered by B.S. Kerner). In particular, the congested phase can be associated with either the multi-cluster quasi-steady states, or their more homogeneous precursor states. In both cases the states can last for a long time, and the narrow clusters will eventually grow and merge, leading to the formation of the wide moving jams. We present a general method to fit the empirical parameters so that both quantitative and qualitative macroscopic empirical features can be reproduced with a minimal GM model. We present numerical results for the traffic dynamics both with and without the bottleneck, including various types of spontaneous and induced ``synchronized flow,'' as well as the evolution of wide moving jams. We also discuss its implications to the nature of different phases in traffic dynamics.
Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST
Charlton, Scott R.; Parkhurst, David L.
2013-01-01
Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.
Effect of wakes on land-atmosphere fluxes
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.
2011-12-01
Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.
NASA Astrophysics Data System (ADS)
Yousefzadeh, M.; Battiato, I.
2017-12-01
Flow and reactive transport problems in porous media often involve complex geometries with stationary or evolving boundaries due to absorption and dissolution processes. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying these problems. Yet, implementing these methods requires one to answer a very first question of what type of grid is to be used. Among different possible answers, Cartesian grids are one of the most attractive options as they possess simple discretization stencil and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of the structured grids while exhibiting a high-level resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues and severe time-step restriction due to explicit-time implementation combined with limited studies on the implementation of Neumann (constant flux) and linear and non-linear Robin (e.g. reaction) boundary conditions (BCs) have significantly limited the applicability of IBMs to transport in porous media. We have developed an implicit IBM capable of handling all types of BCs and addressed some numerical issues, including unconditional stability criteria, compactness and reduction of spurious oscillations near the immersed boundary. We tested the method for several transport and flow scenarios, including dissolution processes in porous media, and demonstrate its capabilities. Successful validation against both experimental and numerical data has been carried out.
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Pore network properties of sandstones in a fault damage zone
NASA Astrophysics Data System (ADS)
Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier
2018-05-01
The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.
LTCC based bioreactors for cell cultivation
NASA Astrophysics Data System (ADS)
Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.
2016-01-01
LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.
NASA Astrophysics Data System (ADS)
Watanabe, Koji; Matsuno, Kenichi
This paper presents a new method for simulating flows driven by a body traveling with neither restriction on motion nor a limit of a region size. In the present method named 'Moving Computational Domain Method', the whole of the computational domain including bodies inside moves in the physical space without the limit of region size. Since the whole of the grid of the computational domain moves according to the movement of the body, a flow solver of the method has to be constructed on the moving grid system and it is important for the flow solver to satisfy physical and geometric conservation laws simultaneously on moving grid. For this issue, the Moving-Grid Finite-Volume Method is employed as the flow solver. The present Moving Computational Domain Method makes it possible to simulate flow driven by any kind of motion of the body in any size of the region with satisfying physical and geometric conservation laws simultaneously. In this paper, the method is applied to the flow around a high-speed car passing through a hairpin curve. The distinctive flow field driven by the car at the hairpin curve has been demonstrated in detail. The results show the promising feature of the method.
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans; ...
2016-11-09
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.
2015-01-01
Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.
NASA Astrophysics Data System (ADS)
Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.
2015-01-01
Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.
Action recognition via cumulative histogram of multiple features
NASA Astrophysics Data System (ADS)
Yan, Xunshi; Luo, Yupin
2011-01-01
Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.
Superoleophilic particles and coatings and methods of making the same
Simpson, John T; D& #x27; Urso, Brian
2013-07-30
Superoleophilic particles and surfaces and methods of making the same are described. The superoleophilic particles can include porous particles having a hydrophobic coating layer deposited thereon. The coated porous particles are characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m and a plurality of nanopores. Some of the nanopores provide flow through porosity. The superoleophilic particles also include oil pinned within the nanopores of the porous particles The plurality of porous particles can include (i) particles including a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material, (ii) diatomaceous earth particles, or (iii) both. The surfaces can include the superoleophilic particles coupled to the surface.
Geologic Mapping of the Ac-H-6 Quadrangle of Ceres from Nasa's Dawn Mission: Compositional Changes
NASA Astrophysics Data System (ADS)
Krohn, Katrin; Jaumann, Ralf; Tosi, Federico; Nass, Andrea; Otto, Katharina A.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland J.; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; von der Gathen, Isabel; Kersten, Elke; Matz, Klaus-Dieter; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria Cristina; Zambon, Francesca
2016-04-01
Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the source of impact melt flows is diffusely distributed but many of the observed flows originate from district sources in the crater interior and the flows, however, are well defined. The compositional differences derived from the color ratio and possible time variable effects related to cryo-processes either volcanic or glacial [1,2]. Furthermore, the suggestion of an occurrence ice within the Cerean crust [5] as well as possible salts incorporated into a regolith layer [4,5,6] indicates similar geological processes as seen on other icy bodies. Some lobate flow-like deposits on Ganymede such as at Sippar Sulcus are suggested to be formed by volcanic eruptions creating a channel and flow, and cutting down into the surface forming a depression. Thus, an endogenic formation process cannot be excluded. References: [1] Jaumann R. et al. (2015) EPSC X, Abstract #2015-83. [2] Jaumann R. et al. (2015) AGU, Abstract #P42A-05. [3] Krohn K. et al. (2016) LPSC XLVII, this issue. [4] Jaumann R. et al. (2016) LPSC XLVII, this issue. [5] McCord T.B. and Sotin C. (2005) J. Geophys. Res., 110, E05009. [6] Castillo-Rogez J.C. and McCord T.B. (2010) Icarus 203, 443-459.
Clinical and ultrasonographic features of male breast tumors: A retrospective analysis.
Yuan, Wei-Hsin; Li, Anna Fen-Yau; Chou, Yi-Hong; Hsu, Hui-Chen; Chen, Ying-Yuan
2018-01-01
The purpose of this study was to determine clinical and ultrasonographic characteristics of male breast tumors. The medical records of male patients with breast lesions were retrieved from an electronic medical record database and a pathology database and retrospectively reviewed. A total of 112 men (125 breast masses) with preoperative breast ultrasonography (US) were included (median age, 59.50 years; age range, 15-96 years). Data extracted included patient age, if the lesions were bilateral, palpable, and tender, and the presence of nipple discharge. Breast lesion features on static US images were reviewed by three experienced radiologists without knowledge of physical examination or pathology results, original breast US image interpretations, or surgical outcomes. The US features were documented according to the BI-RADS (Breast Imaging-Reporting and Data System) US lexicons. A forth radiologist compiled the data for analysis. Of the 125 breast masses, palpable tender lumps and bilateral synchronous masses were more likely to be benign than malignant (both, 100% vs 0%, P < 0.05). Advanced age and bloody discharge from nipples were common in malignant lesions (P <0.05). A mass eccentric to a nipple, irregular shape, the presence of an echogenic halo, predominantly internal vascularity, and rich color flow signal on color Doppler ultrasound were significantly related to malignancy (all, P < 0.05). An echogenic halo and the presence of rich color flow signal were independent predictors of malignancy. Specific clinical and US characteristics of male breast tumors may help guide treatment, and determine if surgery or conservative treatment is preferable.
Clinical and ultrasonographic features of male breast tumors: A retrospective analysis
Li, Anna Fen-Yau; Chou, Yi-Hong; Hsu, Hui-Chen; Chen, Ying-Yuan
2018-01-01
Objective The purpose of this study was to determine clinical and ultrasonographic characteristics of male breast tumors. Methods The medical records of male patients with breast lesions were retrieved from an electronic medical record database and a pathology database and retrospectively reviewed. A total of 112 men (125 breast masses) with preoperative breast ultrasonography (US) were included (median age, 59.50 years; age range, 15–96 years). Data extracted included patient age, if the lesions were bilateral, palpable, and tender, and the presence of nipple discharge. Breast lesion features on static US images were reviewed by three experienced radiologists without knowledge of physical examination or pathology results, original breast US image interpretations, or surgical outcomes. The US features were documented according to the BI-RADS (Breast Imaging-Reporting and Data System) US lexicons. A forth radiologist compiled the data for analysis. Results Of the 125 breast masses, palpable tender lumps and bilateral synchronous masses were more likely to be benign than malignant (both, 100% vs 0%, P < 0.05). Advanced age and bloody discharge from nipples were common in malignant lesions (P <0.05). A mass eccentric to a nipple, irregular shape, the presence of an echogenic halo, predominantly internal vascularity, and rich color flow signal on color Doppler ultrasound were significantly related to malignancy (all, P < 0.05). An echogenic halo and the presence of rich color flow signal were independent predictors of malignancy. Conclusion Specific clinical and US characteristics of male breast tumors may help guide treatment, and determine if surgery or conservative treatment is preferable. PMID:29558507
Modelling atmospheric flows with adaptive moving meshes
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas
2012-04-01
An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.
We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study ismore » conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.« less
NASA Technical Reports Server (NTRS)
Deese, J. E.; Agarwal, R. K.
1989-01-01
Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.
Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization
NASA Astrophysics Data System (ADS)
Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin
2018-05-01
Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.
Gas network model allows full reservoir coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Methnani, M.M.
The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less
Sources of sound in fluid flows
NASA Technical Reports Server (NTRS)
Williams, J. E. F.
1974-01-01
Some features of a flow that produce acoustic radiation, particularly when the flow is turbulent and interacting with solid surfaces such as turbine or compressor blades are discussed. Early theoretical ideas on the subject are reviewed and are shown to be inadequate at high Mach number. Some recent theoretical developments that form the basis of a description of sound generation by supersonic flows interacting with surfaces are described. At high frequencies the problem is treated as one of describing the surface-induced diffraction field of adjacent aerodynamic quadrupole sources. This approach has given rise to distinctly new features of the problem that seem to have bearing on the radiating properties of relatively large aerodynamic surfaces.
Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi
2002-01-01
Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.
Multigrid calculation of internal flows in complex geometries
NASA Technical Reports Server (NTRS)
Smith, K. M.; Vanka, S. P.
1992-01-01
The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi
2003-01-01
Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.
Theoretical research of helium pulsating heat pipe under steady state conditions
NASA Astrophysics Data System (ADS)
Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.
2015-12-01
As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Mello, Andrew J.
2015-01-01
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the down-scaled platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency. PMID:26258119
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
NASA Astrophysics Data System (ADS)
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew
2015-07-01
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.
Anderman, Evan R.; Hill, Mary Catherine
2001-01-01
Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity-equation approach; the equations are derived by taking the partial derivatives of the semi-analytical particle-tracking equation with respect to the parameters. The ADV2 Package is verified by showing that parameter estimation using advective-transport observations produces the true parameter values in a small but complicated test case when exact observations are used. To demonstrate how the ADV2 Package can be used in practice, a field application is presented. In this application, the ADV2 Package is used first in the Sensitivity-Analysis mode of MODFLOW-2000 to calculate measures of the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Cape Cod, Massachusetts. The ADV2 Package is then used in the Parameter-Estimation mode of MODFLOW-2000 to determine best-fit parameter values. It is concluded that, for this problem, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and the use of formal parameter-estimation methods and related techniques produced significant insight into the physical system.
Flow in water-intake pump bays: A guide for utility engineers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettema, R.
1998-09-01
This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how themore » vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes.« less
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-442, 4 August 2003
The Marte Vallis system, located east of Cerberus and west of Amazonis Planitia, is known for its array of broken, platy flow features. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a close-up view of some of these plates; they appear to be like puzzle pieces that have been broken apart and moved away from each other. The Mars science community has been discussing these features for the past several years--either the flows in Marte Vallis are lava flows, or mud flows. In either case, the material was very fluid and had a thin crust on its surface. As the material continued to flow through the valley system, the crust broke up into smaller plates that were then rafted some distance down the valley. This picture is located near 6.9oN, 182.8oW. It is illuminated by sunlight from the left.CFD Validation with LDV Test Data for Payload/Fairing Internal Flow
NASA Technical Reports Server (NTRS)
Kandula, max; Hammad, Khaled; Schallhorn, Paul
2005-01-01
Flowfield testing of a 1/5th scale model of a payload/fairing configuration, typical of an expendable launch vehicle, has been performed. Two-dimensional (planar) velocity measurements were carried out in four planes with the aid of Laser Doppler Velocimetry (LDV). Computational Fluid Dynamics (CFD) analysis results for the scale model flowfleld are compared with the test data. The CFD results are in general agreement with the test data. The ability of the CFD methodology in identifying the global flow features (including critical points such as vortex, saddle point, etc.) has been demonstrated. Practical problems and difficulties associated with the LDV method applied to the complex geometry under consideration have been summarized.
A static investigation of several STOVL exhaust system concepts
NASA Technical Reports Server (NTRS)
Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.
1989-01-01
A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.
Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow
NASA Astrophysics Data System (ADS)
Aida-zade, K. R.; Ashrafova, E. R.
2017-12-01
An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.
Evidence for Recent Extension and Volcanism inside the Southern Margin of Mare Frigoris
NASA Astrophysics Data System (ADS)
Albin, Edward F.; Harris, R. Scott
2014-11-01
We report the identification of possible recent volcanic activity inside the southern margin of Mare Frigoris. Evidence includes two elliptical constructs with associated dark flows found at 56.6° N, - 19.7° W, north of the La Condamine J impact crater. They were discovered on high resolution (0.5 m/pixel) LROC WAC and NAC imagery (e.g., M188379739R and M142393589L) by the first author while performing a systematic geologic overview of the area.The constructs occur along a 3.2 km lineament trending southwest to northwest. The southwestern construct is the largest, measuring approximately 1.4 km in diameter by 65 m in height while the northeastern structure measures 1.2 km wide by 40 m high. The summits appear to be concave and contain well-defined pits 190 m and 120 m in diameter, respectively, each encircled by a deposit of raised material. Distinct dark deposits, exhibiting flow lobes, emanate from the pits. In addition, rubbly, flow-like dark deposits are found sporadically along the flanks of each feature.We interpret these structures as low profile steep-sided volcanic domes. Hawke et al. (2014) discussed volcanic constructs in the eastern part of Mare Frigoris; however, the features described in this study appear to be significantly younger. The domes may represent upwelling along a localized rift. Continued extension on the flanks appears to have released discrete dark flows. Well-defined flows crossing the floors of summit pits appear to have flowed uphill. We suggest that the evacuation of the magma chambers beneath these flows caused subsidence, forming the pits and giving the illusion that the lava flowed up and over the rims. Although the age of these constructs and flows is unknown, the paucity of impact craters suggests that they are relatively young. These could represent very recent eruptions of evolved magma on the Moon, similar to those reported by Jolliff et al. (2011). References: B. R. Hawke et al., 2014, LPSC, 45, 1318. Jolliff et al., 2012, Nature Geoscience, 4, 566-571.
NASA Technical Reports Server (NTRS)
Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.
2003-01-01
Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.
Solid rocket booster internal flow analysis by highly accurate adaptive computational methods
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.
1991-01-01
The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.
Flow dynamics analyses of pathophysiological liver lobules using porous media theory
NASA Astrophysics Data System (ADS)
Hu, Jinrong; Lü, Shouqin; Feng, Shiliang; Long, Mian
2017-08-01
Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.
Numerical simulations of drainage flows on Mars
NASA Technical Reports Server (NTRS)
Parish, Thomas R.; Howard, Alan D.
1992-01-01
Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.
Fluid outflows from Venus impact craters - Analysis from Magellan data
NASA Technical Reports Server (NTRS)
Asimow, Paul D.; Wood, John A.
1992-01-01
Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.
NASA Astrophysics Data System (ADS)
Houjoh, Haruo
1992-12-01
One specific feature of the aerodynamic sound produced at the face end region is that the radiation becomes equally weak by filling root spaces as by shortening the center distance. However, one can easily expect that such actions make the air flow faster, and consequently make the sound louder. This paper attempts to reveal the reason for such a feature. First, air flow induced by the pumping action of the gear pair was analyzed regarding a series of root spaces as volume varying cavities which have channels to adjacent cavities as well as the exit/inlet at the face ends. The numerical analysis was verified by the hot wire anemometer measurement. Next, from the obtained flow response, the sound source was estimated to be a combination of symmetrically distributed simple sources. Taking the effect of either the center distance or root filling into consideration, it is shown that the simplified model can explain such a feature rationally.
The effect of coherent stirring on the advection–condensation of water vapour
Vanneste, Jacques
2017-01-01
Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417
The effect of coherent stirring on the advection-condensation of water vapour
NASA Astrophysics Data System (ADS)
Tsang, Yue-Kin; Vanneste, Jacques
2017-06-01
Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.
The effect of coherent stirring on the advection-condensation of water vapour.
Tsang, Yue-Kin; Vanneste, Jacques
2017-06-01
Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.
NASA Astrophysics Data System (ADS)
Boyce, S. E.; Hanson, R. T.
2015-12-01
The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. MF-OWHM fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 combined with Local Grid Refinement, Streamflow Routing, Surface-water Routing Process, Seawater Intrusion, Riparian Evapotranspiration, and the Newton-Raphson solver. MF-OWHM also includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of MF-OWHM, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, the conduit flow process for karst aquifers and leaky pipe networks, a new subsidence and aquifer compaction package, and additional features and enhancements to enable more integration and cross communication between traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, MF-OWHM accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems such as evaluation of conjunctive-use alternatives and sustainability analysis, including potential adaptation and mitigation strategies, and best management practices. By Scott E. Boyce and Randall T. Hanson
NASA Astrophysics Data System (ADS)
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Automatic Spatio-Temporal Flow Velocity Measurement in Small Rivers Using Thermal Image Sequences
NASA Astrophysics Data System (ADS)
Lin, D.; Eltner, A.; Sardemann, H.; Maas, H.-G.
2018-05-01
An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow velocity measurement in small rivers using imagery from a thermal camera.
NASA Astrophysics Data System (ADS)
Bristow, N.; Blois, G.; Kim, T.; Anderson, W.; Day, M. D.; Kocurek, G.; Christensen, K. T.
2017-12-01
Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter > 10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.
NASA Astrophysics Data System (ADS)
Sosik, H. M.; Olson, R. J.; Brownlee, E.; Brosnahan, M.; Crockford, E. T.; Peacock, E.; Shalapyonok, A.
2016-12-01
Imaging FlowCytobot (IFCB) was developed to fill a need for automated identification and monitoring of nano- and microplankton, especially phytoplankton in the size range 10 200 micrometer, which are important in coastal blooms (including harmful algal blooms). IFCB uses a combination of flow cytometric and video technology to capture high resolution (1 micrometer) images of suspended particles. This proven, now commercially available, submersible instrument technology has been deployed in fixed time series locations for extended periods (months to years) and in shipboard laboratories where underway water is automatically analyzed during surveys. Building from these successes, we have now constructed and evaluated three new prototype IFCB designs that extend measurement and deployment capabilities. To improve cell counting statistics without degrading image quality, a high throughput version (IFCB-HT) incorporates in-flow acoustic focusing to non-disruptively pre-concentrate cells before the measurement area of the flow cell. To extend imaging to all heterotrophic cells (even those that do not exhibit chlorophyll fluorescence), Staining IFCB (IFCB-S) incorporates automated addition of a live-cell fluorescent stain (fluorescein diacetate) to samples before analysis. A horizontally-oriented IFCB-AV design addresses the need for spatial surveying from surface autonomous vehicles, including design features that reliably eliminate air bubbles and mitigate wave motion impacts. Laboratory evaluation and test deployments in waters near Woods Hole show the efficacy of each of these enhanced IFCB designs.
Deviations of Atmospheric Coastal Flow from the Open-channel Hydraulics Analogy
NASA Astrophysics Data System (ADS)
Rahn, D. A.; Parish, T. R.; Juliano, T. W.
2017-12-01
Low-level atmospheric flow along the coast of California bears resemblance to open-channel engineering applications referred to as hydraulic flow. During the warm season, strong equatorward wind is common near the surface. A marked temperature inversion separates the cool, moist marine air and the warm, dry free troposphere aloft. The low-level flow is bounded laterally by the coastal topography. Given the high wind speed in the shallow marine layer, the flow is often supercritical (Fr > 1). Features resembling oblique compression jumps and expansion fans occur near concave and convex bends in the coastline and impact wind energy production, wind stress on the ocean surface, and propagation of electromagnetic waves by modifying the vertical refractivity gradient. An aircraft collected fine-scale measurements offshore of southern California to test how well the observed features conform to the single-layer hydraulic approximation. Although the open-channel framework captures major features of the flow as indicated by prior work, the detailed measurements reveal when the analogy breaks down. The assumption of a passive upper layer can be violated due to mesoscale pressure gradients aloft and lee troughing associated with offshore flow, which can enhance the thinning of the marine layer associated with the expansion fan. The sharp interface between layers can be eroded when Ri becomes low, Kelvin-Helmholtz instability develops, and the structure of the lower atmosphere is drastically altered. This is poorly simulated in operational weather forecast models due to their relatively coarse grid spacing. The layer associated with the expansion fan rarely keeps its identity into the Santa Barbara Channel. An increase of surface heat flux and vertical mixing as the flow moves over warmer sea surface temperatures in the channel rapidly erodes the layer. Only one flight captured a hydraulic jump between the supercritical flow in the expansion fan and the subcritical flow downstream, but its features correspond well to predicted values. The lack of hydraulic jumps on other days is likely due to the loss of layer identity before the jump can be realized.
Investigating Mars: Pavonis Mons
2017-11-03
This image shows part of the southeastern flank of Pavonis Mons. Surface lava flows run down hill from the top left of the image to the bottom right. Perpendicular to that trend are several linear features. These are faults that encircle the volcano and also run along the linear trend through the three Tharsis volcanoes. This image illustrates how subsurface lava tubes collapse into the free space of the empty tube. Just to the top of the deepest depression are a series of circular pits. The pits coalesce into a linear feature near the left side of the deepest depression. The mode of formation of a lava tube starts with a surface lava flow. The sides and top of the flow cool faster than the center, eventually forming a solid, non-flowing cover of the still flowing lava. The surface flow may have followed the deeper fault block graben (a lower surface than the surroundings). Once the flow stops there remains the empty space lower than the surroundings, and collapse of the top of the tube starts in small pits which coalesce in the linear features. Pavonis Mons is one of the three aligned Tharsis Volcanoes. The four Tharsis volcanoes are Ascreaus Mons, Pavonis Mons, Arsia Mons, and Olympus Mars. All four are shield type volcanoes. Shield volcanoes are formed by lava flows originating near or at the summit, building up layers upon layers of lava. The Hawaiian islands on Earth are shield volcanoes. The three aligned volcanoes are located along a topographic rise in the Tharsis region. Along this trend there are increased tectonic features and additional lava flows. Pavonis Mons is the smallest of the four volcanoes, rising 14km above the mean Mars surface level with a width of 375km. It has a complex summit caldera, with the smallest caldera deeper than the larger caldera. Like most shield volcanoes the surface has a low profile. In the case of Pavonis Mons the average slope is only 4 degrees. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 31330 Latitude: -1.26587 Longitude: 247.705 Instrument: VIS Captured: 2009-01-05 23:32 https://photojournal.jpl.nasa.gov/catalog/PIA22021
Quantitative Analysis of Intracellular Motility Based on Optical Flow Model
Li, Heng
2017-01-01
Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574
Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.
Yoshida, Jun-ichi
2010-10-01
This article addresses a fascinating aspect of flash chemistry, high-resolution reaction-time control by virtue of a flow microreactor system, and its applications. The length of time that the solution remains inside the reactor is called the residence time. The residence time between the addition of a reagent and that of a quenching agent or the next reagent in a flow microreactor is the reaction time, and the reaction time can be greatly reduced by adjusting the length of a reaction channel in a flow microreactor. This feature is quite effective for conducting reactions involving short-lived reactive intermediates. A reactive species can be generated and transferred to another location to be used in the next reaction before it decomposes by adjusting the residence time in the millisecond to second timescale. The principle of such high-resolution reaction-time control, which can be achieved only by flow microreactors, and its applications to synthetic reactions including Swern-Moffatt-type oxidation, as well as the generation and reactions of aryllithium compounds bearing electrophilic substituents, such as alkoxycarbonyl groups, are presented. Integration of such reactions using integrated flow microreactor systems is also demonstrated. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow
NASA Astrophysics Data System (ADS)
Horner-Devine, Alexander R.; Chickadel, C. Chris
2017-05-01
Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant.
Multithreaded hybrid feature tracking for markerless augmented reality.
Lee, Taehee; Höllerer, Tobias
2009-01-01
We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
Jaspers, M E H; Stekelenburg, C M; Simons, J M; Brouwer, K M; Vlig, M; van den Kerckhove, E; Middelkoop, E; van Zuijlen, P P M
2017-08-01
In hypertrophic scar assessment, laser Doppler imaging (LDI), colorimetry and subjective assessment (POSAS) can be used to evaluate blood flow, erythema and redness, respectively. In addition, the microvasculature (i.e. presence of microvessels) can be determined by immunohistochemistry. These measurement techniques are frequently used in clinical practice and/or in research to evaluate treatment response and monitor scar development. However, until now it has not been tested to what extent the outcomes of these techniques are associated, whilst the outcome terms are frequently used interchangeably or replaced by the umbrella term 'vascularization'. This is confusing, as every technique seems to measure a specific feature. Therefore, we evaluated the correlations of the four measurement techniques. We included 32 consecutive patients, aged ≥18 years, who underwent elective resection of a hypertrophic scar. Pre-operatively, we performed LDI (measuring blood flow), colorimetry (measuring erythema) and the POSAS (subjective redness) within the predefined scar area of interest (∼1.5cm). Subsequently, the scar was excised and the area of interest was sent for immunohistochemistry, to determine the presence of microvessels. Only a statistically significant correlation was found between erythema values (colorimetry) and subjective redness assessment (POSAS) (r=0.403, p=0.030). We found no correlations between the outcomes of LDI, immunohistochemistry and colorimetry. Blood flow, the presence of microvessels and erythema appear to be different hypertrophic scar features because they show an absence of correlation. Therefore, in the field of scar assessment, these outcome terms cannot be used interchangeably. In addition, we conclude that the term 'vascularization' does not seem appropriate to serve as an umbrella term. The use of precise definitions in research as well as in clinical practice is recommended. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Glacial geology of the Shingobee River headwaters area, north-central Minnesota
Melchior, Robert C.
2014-01-01
During middle and late Wisconsin time in the Shingobee River headwaters area, the Laurentide Wadena lobe, Hewitt and Itasca phases, produced terminal and ground moraine along with a variety of associated glacial features. The stratigraphic record is accessible and provides details of depositional mode as well as principal glacial events during the advance and retreat of middle and late Wisconsin ice tongues. Geomorphic features such as tunnel valleys, stream terraces, and postglacial stream cuts formed by erosional events persist to the present day. Middle Wisconsin Hewitt phase deposits are the oldest and include drumlins, ground moraine, boulder pavements, and outwash. Together, these deposits suggest a wet-based, periodically surging glacier in a subpolar thermal state. Regional permafrost and deposition from retreating ice are inferred between the end of the Hewitt phase and the advance of late Wisconsin Itasca phase ice. Itasca phase glaciation occurred as a contemporaneous pair of adjacent ice tongues whose contrasting moraine styles suggest independent flow modes. The western (Shingobee) portion of the Itasca moraine contains composite ridges, permafrost phenomena, hill-hole pairs, and debris flows. By contrast, eastern (Onigum) moraine deposits generally lack glaciotectonic features and consist almost exclusively of mud and debris flows. Near the end of the Itasca phase, large-scale hill-hole pairs developed in the Shingobee division, and debris flows from the Onigum division blocked the preexisting Shingobee tunnel valley to form glacial lake Willobee. Postglacial streams formed deep valleys as glacial lake Willobee catastrophically drained. Dates based on temperature trends in Greenland ice cores are proposed for prominent glacial events in the Shingobee area. This report proposes that Hewitt phase glaciation occurred between 27.2 and 23.6 kiloannum and Itasca phase glaciation between 22.8 and 14.7 kiloannum. Des Moines lobe (Younger Dryas) glaciation, which had only secondary effects on the Shingobee headwaters area, occurred between 13.5 and 11.6 kiloannum.