Sample records for flow field density

  1. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  2. The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing

    NASA Astrophysics Data System (ADS)

    Herrero, Horacio S.; Díaz Lozada, José M.; García, Carlos M.; Szupiany, Ricardo N.; Best, Jim; Pagot, Mariana

    2018-03-01

    The goal of this study is to evaluate the influence of tributary flow density differences on hydrodynamics and mixing at a confluent meander bend. A detailed field characterization is performed using an Acoustic Doppler Current Profiler (ADCP) for quantification of the 3D flow field, flow discharge and bathymetry, as well as CTD measurements (conductivity, temperature, depth) to characterize the patterns of mixing. Satellite images of the confluence taken at complementary times to the field surveys were analyzed to evaluate the confluence hydrodynamics at different flow conditions. The results illustrate the differences in hydrodynamics and mixing length in relation to confluences with equal density tributaries. At low-density differences, and higher discharge ratio (Qr) between the two rivers, the flow is similar to equi-density confluent meander bends. In contrast, at high-density differences (low Qr), the tributary flow is confined to near the confluence but the density difference causes the flow to move across channel. In this case, the density difference causes the lateral spread of the tributary flow to be greater than at a greater Qr when the density difference is less. These results illustrate the potential importance of density differences between tributaries in determining the rate and spatial extent of mixing and sediment dispersal at confluent meander bends.

  3. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  4. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  5. The `Henry Problem' of `density-driven' groundwater flow versus Tothian `groundwater flow systems' with variable density: A review of the influential Biscayne aquifer data.

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2017-12-01

    Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields. At the Biscayne site density-driven flow of seawater did and does not exist. Instead this site and the Florida coast line in general are the end points of local fresh and regional saline groundwater flow systems driven by gravity forces and not by density differences.

  6. Properties of two-fluid flowing equilibria observed in double-pulsing coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2013-10-01

    Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.

  7. Demonstration of Imaging Flow Diagnostics Using Rayleigh Scattering in Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Herring, G. C.; Barros, Toya

    1999-01-01

    The feasibility of using the Rayleigh scattering technique for molecular density imaging of the free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel has been experimentally demonstrated. The Rayleigh scattering was viewed with a near-backward geometry with a frequency-doubled output from a diode-pumped CW Nd:YAG laser and an intensified charge-coupled device camera. Measurements performed in the range of free-stream densities from 3 x 10(exp 25) to 24 x 10(exp 25) molecules/cu m indicate that the observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute signal levels agree (within approx. 30 percent) with the expected signal levels computed based on the well-known quantities of flow field density, Rayleigh scattering cross section for N2, solid angle of collection, transmission of the optics, and the independently calibrated camera sensitivity. These results show that the flow field in this facility is primarily molecular (i.e., not contaminated by clusters) and that Rayleigh scattering is a viable technique for quantitative nonintrusive diagnostics in this facility.

  8. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a resistance of unknown origin, was shown to directly or indirectly scale with Pt loading. A lack of understanding of the mechanism responsible for such resistance is noted, and several possible theories have been proposed. This lack of fundamental understanding of the origins of this resistance adds complexity to computational models which are designed to capture performance behavior with ultra-low loading electrodes. By employing the OME flow field as a tool to study this phenomena, the origins of the transport resistance appearing at ultra-low Platinum (Pt) loading is proposed to be an increase in oxygen dilution resistance through water film.

  9. Characteristic of Secondary Flow Caused by Local Density Change in Standing Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Tonsho, Kazuyuki; Hirosawa, Takuya; Kusakawa, Hiroshi; Kuwahara, Takuo; Tanabe, Mitsuaki

    Secondary flow is a flow which is caused by the interference between standing acoustic fields and local density change. The behavior of the secondary flow depends on the location of the given local density change in the standing acoustic fields. When the density change is given at the middle of a velocity node and the neighboring velocity anti-node (middle point) or when it is given at the velocity anti-node in standing acoustic fields, the secondary flow shows particular behavior. Characteristic of the secondary flow at the two positions was predicted by numerical simulations. It was examined from these simulations whether the driving mechanism of the flow can be explained by the kind of acoustic radiation force that has been proposed so far. The predicted secondary flow was verified by experiments. For both the simulations and experiments, the standing acoustic fields generated in a cylinder are employed. In the experiments, the acoustic fields are generated by two loud speakers that are vibrated in same phase in a chamber. The employed resonance frequency is about 1000 Hz. The chamber is filled with air of room temperature and atmospheric pressure. In the numerical simulations and experiments, the local density change is given by heating or cooling. Because the secondary flow is influenced by buoyancy, the numerical simulations were done without taking gravity force into account and a part of the experiments were done by the microgravity condition using a drop tower. As a result of the simulations, at the middle point, the heated air was blown toward the node and the cooled air was blown toward the anti-node. It is clarified that the secondary flow is driven by the expected kind of acoustic radiation force. At the anti-node, both the heated and cooled air expands perpendicular to the traveling direction of the sound wave. The driving mechanism of the secondary flow can not be explained by the acoustic radiation force, and a detailed analysis is done. Through the comparison between experimental and numerical results, it was verified that the secondary flow is qualitatively predictable by the numerical simulations.

  10. A Navier-Stokes phase-field crystal model for colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  11. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  12. Relationships Between Watershed Emergy Flow and Coastal New England Salt Marsh Structure, Function, and Condition

    EPA Science Inventory

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI. The field-collected data wer...

  13. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.

  14. The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field

    NASA Technical Reports Server (NTRS)

    Anderson, Jennifer L. B.; Schultz, P. H.

    2005-01-01

    The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.

  15. Revising the `Henry Problem' of density-driven groundwater flow: A review of historic Biscayne aquifer data.

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2016-12-01

    Coastal groundwater flow investigations at the Cutler site of the Biscayne Bay south of Miami, Florida, gave rise to the dominating concept of density-driven flow of sea water into coastal aquifers indicated as a saltwater wedge. Within that wedge convection type return flow of seawater and a dispersion zone were concluded by Cooper et al. (1964, USGS Water Supply Paper 1613-C) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was merely based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program has to be able to simulate to be considered acceptable. Revisiting the above summarizing publication with its record of piezometric field data (heads) showed that the so-called sea water wedge was actually caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be backed up by head data as energy indicators of flow fields. At the Biscayne site density driven flow of seawater did and does not exist. Instead this site and the Florida coast line in general are the end points of local fresh and regional saline groundwater flow systems driven by gravity forces and not by density differences.

  16. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  17. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  18. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    NASA Astrophysics Data System (ADS)

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  19. Influence of system size and solvent flow on the distribution of wormlike micelles in a contraction-expansion geometry

    NASA Astrophysics Data System (ADS)

    Stukan, M. R.; Boek, E. S.; Padding, J. T.; Crawshaw, J. P.

    2008-05-01

    Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.

  20. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  1. Flow over gravel beds with clusters

    NASA Astrophysics Data System (ADS)

    Little, M.; Venditti, J. G.

    2014-12-01

    The structure of a gravel bed has been shown to alter the entrainment threshold. Structures such as clusters, reticulate stone cells and other discrete structures lock grains together, making it more difficult for them to be mobilized. These structures also generate form drag, reducing the shear stress available for mobilization. Form drag over gravel beds is often assumed to be negligible, but this assumption is not well supported. Here, we explore how cluster density and arrangement affect flow resistance and the flow structure over a fixed gravel bed in a flume experiment. Cluster density was varied from 6 to 68.3 clusters per square meter which corresponds to areal bed coverages of 2 to 17%. We used regular, irregular and random arrangements of the clusters. Our results show that flow resistance over a planar gravel bed initially declines, then increases with flow depth. The addition of clusters increases flow resistance, but the effect is dependent on cluster density, flow depth and arrangement. At the highest density, clusters can increase flow resistance as by as much as 8 times when compared to flat planar bed with no grain-related form drag. Spatially resolved observations of flow over the clusters indicate that a well-defined wake forms in the lee of each cluster. At low cluster density, the wakes are isolated and weak. As cluster density increases, the wakes become stronger. At the highest density, the wakes interact and the within cluster flow field detaches from the overlying flow. This generates a distinct shear layer at the height of the clusters. In spite of this change in the flow field at high density, our results suggest that flow resistance simply increases with cluster density. Our results suggest that the form drag associated with a gravel bed can be substantial and that it depends on the arrangement of the grains on the bed.

  2. The rotating movement of three immiscible fluids - A benchmark problem

    USGS Publications Warehouse

    Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.

    2004-01-01

    A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.

  3. The design of an electron gun switchable between immersed and Brillouin flow.

    PubMed

    Becker, R; Kester, O

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A∕cm(2) at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB(6) as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A∕cm(2). By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself--remember the "super-compression" reported on CRYEBIS-I--any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  4. Online capacitive densitometer

    DOEpatents

    Porges, K.G.

    1988-01-21

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.

  5. Online capacitive densitometer

    DOEpatents

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  6. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  7. Gas density field imaging in shock dominated flows using planar laser scattering

    NASA Astrophysics Data System (ADS)

    Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran

    2018-07-01

    Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.

  8. Simultaneous measurements of density field and wavefront distortions in high speed flows

    NASA Astrophysics Data System (ADS)

    George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin

    2017-09-01

    This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.

  9. Ion flow experiments in a multipole discharge chamber

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Frisa, L. E.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. Ion flow measurements in a multipole discharge chamber have shown that this assumption is not true. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions.

  10. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  11. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  12. Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Horvath, Thomas J.

    2002-01-01

    A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.

  13. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  14. Magnetosheath Flow Anomalies in 3-D

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; hide

    2000-01-01

    Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.

  15. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  16. The design of an electron gun switchable between immersed and Brillouin flowa)

    NASA Astrophysics Data System (ADS)

    Becker, R.; Kester, O.

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A/cm2 at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB6 as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A/cm2. By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself - remember the "super-compression" reported on CRYEBIS-I - any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  17. The Initial Flow of Classical Gluon Fields in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao

    2015-03-01

    Using analytic solutions of the Yang-Mills equations we calculate the initial flow of energy of the classical gluon field created in collisions of large nuclei at high energies. We find radial and elliptic flow which follows gradients in the initial energy density, similar to a simple hydrodynamic behavior. In addition we find a rapidity-odd transverse flow field which implies the presence of angular momentum and should lead to directed flow in final particle spectra. We trace those energy flow terms to transverse fields from the non-abelian generalization of Gauss' Law and Ampere's and Faraday's Laws.

  18. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  19. Thermospheric neutral density estimates from heater-induced ion up-flow at EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Ogawa, Yasunobu; Yamazaki, Yosuke; Vickers, Hannah; Blagoveshchenskaya, Nataly

    We exploit a recently-developed technique to estimate the upper thermospheric neutral density using measurements of ionospheric plasma parameters made by the EISCAT UHF radar during ionospheric modification experiments. Heating the electrons changes the balance between upward plasma pressure gradient and downward gravity, resulting in ion up-flow up to ~200 m/s. This field-aligned flow is retarded by collisions, which is directly related to the neutral density. Whilst the ion up-flow is consistent with the plasma pressure gradient, the estimated thermospheric neutral density depends on the assumed composition, which varies with altitude. Results in the topside ionosphere are presented.

  20. Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    2001-01-01

    A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.

  1. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2000-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  2. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2001-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  3. Particle flow within a transonic compressor rotor passage with application to laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.

    1975-01-01

    A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.

  4. A new car-following model for autonomous vehicles flow with mean expected velocity field

    NASA Astrophysics Data System (ADS)

    Wen-Xing, Zhu; Li-Dong, Zhang

    2018-02-01

    Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.

  5. Shock formation induced by poloidal flow and its effects on the edge stability in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, J.; Aydemir, A. Y.; Shaing, K. C.

    2016-04-15

    In the high confinement mode of tokamaks, magnitude of the radial electric field increases at the edge. Thus, the poloidal flow inside the transport barrier can be sonic when the edge pressure gradient is not steep enough to make the poloidal flow subsonic. When the poloidal Mach number is close to unity, a shock appears in the low field side and causes a large density perturbation. In this study, we describe a shock induced by the sonic poloidal plasma flow. Then, an entropy production across the shock is calculated. Finally, we introduce a simple model for Type III edge localizedmore » modes using the poloidal density variation driven by the sonic poloidal flow.« less

  6. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  7. Incompressible variable-density turbulence in an external acceleration field

    DOE PAGES

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; ...

    2017-08-24

    Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less

  8. Incompressible variable-density turbulence in an external acceleration field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel

    Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less

  9. Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Yang, Di-Lun

    2016-03-01

    We investigate the magnetohydrodynamics in the presence of an external magnetic field following the power-law decay in proper time and having spatial inhomogeneity characterized by a Gaussian distribution in one of transverse coordinates under the Bjorken expansion. The leading-order solution is obtained in the weak-field approximation, where both energy density and fluid velocity are modified. It is found that the spatial gradient of the magnetic field results in transverse flow, where the flow direction depends on the decay exponents of the magnetic field. We suggest that such a magnetic-field-induced effect might influence anisotropic flow in heavy ion collisions.

  10. Plasma Flow During RF Discharges in VASIMR

    NASA Technical Reports Server (NTRS)

    Jacobson, V. T.; Chang Diaz, F. R.; Squire, J. P.; Ilin, A. V.; Bengtson, R. D.; Carter, M. D.; Goulding, R. H.

    1999-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) plasma source consists of a helical antenna, driven at frequencies of 4 to 19 MHz with powers up to 1 kW, in a magnetic field up to 3 kG. Helium is the current test gas, and future experiments with hydrogen are planned. Plasma density and temperature profiles were measured by a reciprocating Langmuir probe, and plasma flow profiles were measured with a reciprocating Mach probe. Both probes were located about 0.5 m downstream from the helical antenna. The plasma source operated in capacitive and inductive modes in addition to a helicon mode. During capacitive and inductive modes, densities were low and plasma flow was < 0.5 Cs. When the plasma operated in a helicon mode, the densities measured downstream from the source were higher [10(exp 12) / cubic cm ] and plasma flow along the magnetic field was of the order Mach 1. Details of the measurements will be shown.

  11. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.

  12. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  13. Simulation of a shock tube with a small exit nozzle

    NASA Astrophysics Data System (ADS)

    Luan, Yigang; Olzmann, Matthias; Magagnato, Franco

    2018-02-01

    Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related thermodynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and validated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with analytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are investigated. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.

  14. Numerical simulation of current-free double layers created in a helicon plasma device

    NASA Astrophysics Data System (ADS)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-01

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  15. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang

    2016-12-01

    Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. Our results are generally applicable if τ < 1 /Qs. The transverse energy flow of the gluon field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density. In addition, a rapidity-odd energy flow also emerges from the non-abelian analog of Gauss' Law and generates non-vanishing angular momentum of the field. We will discuss the space-time picture that emerges from our analysis and its implications for observables in heavy ion collisions.

  16. Survey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomsen, M. F.; Coates, A. J.; Jackman, C. M.

    A new Cassini magnetosheath data set is introduced that is based on a comprehensive survey of intervals in which the observed magnetosheath flow was encompassed within the plasma analyzer field of view and for which the computed numerical moments are therefore expected to be accurate. The data extend from 2004 day 299 to 2012 day 151 and comprise 19,155 416-s measurements. In addition to the plasma ion moments (density, temperature, and flow velocity), merged values of the plasma electron density and temperature, the energetic particle pressure, and the magnetic field vector are included in the data set. Statistical properties ofmore » various magnetosheath parameters, including dependence on local time, are presented. The magnetosheath field and flow are found to be only weakly aligned, primarily because of a relatively large z-component of the magnetic field, attributable to the field being pulled out of the equatorial orientation by flows at higher latitudes. A new procedure for using magnetosheath properties to estimate the upstream solar wind speed is proposed and used to determine that the amount of electron heating at Saturn's high Mach-number bow shock is ~4% of the dissipated flow energy. The data set is available as an electronic supplement to this paper.« less

  17. Survey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions

    DOE PAGES

    Thomsen, M. F.; Coates, A. J.; Jackman, C. M.; ...

    2018-03-01

    A new Cassini magnetosheath data set is introduced that is based on a comprehensive survey of intervals in which the observed magnetosheath flow was encompassed within the plasma analyzer field of view and for which the computed numerical moments are therefore expected to be accurate. The data extend from 2004 day 299 to 2012 day 151 and comprise 19,155 416-s measurements. In addition to the plasma ion moments (density, temperature, and flow velocity), merged values of the plasma electron density and temperature, the energetic particle pressure, and the magnetic field vector are included in the data set. Statistical properties ofmore » various magnetosheath parameters, including dependence on local time, are presented. The magnetosheath field and flow are found to be only weakly aligned, primarily because of a relatively large z-component of the magnetic field, attributable to the field being pulled out of the equatorial orientation by flows at higher latitudes. A new procedure for using magnetosheath properties to estimate the upstream solar wind speed is proposed and used to determine that the amount of electron heating at Saturn's high Mach-number bow shock is ~4% of the dissipated flow energy. The data set is available as an electronic supplement to this paper.« less

  18. Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy

    2018-01-01

    Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  19. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    NASA Technical Reports Server (NTRS)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  20. Relationships between field-aligned currents, electric fields, and particle precipitation as observed by Dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1984-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  1. Relationships between field-aligned currents, electric fields and particle precipitation as observed by dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1983-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  2. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    NASA Technical Reports Server (NTRS)

    Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.

    2000-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the potential core. However, experiments have not succeeded in identifying the direct physical cause of the instability. For example, the theory predicts an oscillating mode for S<0.62 in the limit of zero momentum thickness, which contradicts with the experimental findings of Kyle and Sreenivasan. The analyses of momentum-dominated jets neglect buoyancy effects because of the small Richardson number. Although this assumption is appropriate in the potential core, the gravitational effects are important in the annular region surrounding the jet, where the density and velocity gradients are large. This reasoning provides basis for the hypothesis that the instability in low Richardosn number jets studied by Kyle and Sreenivasan and Monkewitz et al. is caused by buoyancy. The striking similarity in characteristics of the instability and virtually the identical conclusions reached by Subbarao and Cantwell in buoyant (Ri>0.5) helium jets on one hand and by Kyle and Sreenivasan in momentum-dominated (Ri<1x10(exp -3)) helium jets on the other support this hypothesis. However, quantitative experiments in normal and microgravity are necessary to obtain direct physical evidence of buoyancy effects on the flow instability and structure of momentum-dominated low-density jets. The primary objective of this new research project is to quantify how buoyancy affects the flow instability and structure in the near field of low-density jets. The flow will be described by the spatial and temporal evolutions of the instability, length and time scales of the oscillating mode, and the mean and fluctuating concentration fields. To meet this objective, concentration measurements will be obtained across the whole field using quantitative Rainbow Schlieren Deflectometry, providing spatial resolution of 0.1mm and temporal resolution of 0.017s to 1ms. The experimental effort will be supplemented with linear stability analysis of low-density jets by considering buoyancy. The first objective of this research is to investigate the effects of gravity on the flow instability and structure of low-density jets. The flow instability in these jets has been attributed to buoyancy. By removing buoyancy in our experiments, we seek to obtain the direct physical evidence of the instability mechanism. In the absence of the instability, the flow structure will undergo a significant change. We seek to quantify these changes by mapping the flow field (in terms of the concentration profiles) of these jets at non-buoyant conditions. Such information is presently lacking in the existing literature. The second objective of this research is to determine if the instability in momentum-driven, low-density jets is caused by buoyancy. At these conditions, the buoyancy effects are commonly ignored because of the small Richardson based on global parameters. By eliminating buoyancy in our experiments, globally as well as locally, we seek to examine the possibility that the instability mechanism in self-excited, buoyant or momentum-driven jets is the same. To meet this objective, we would quantify the jet flow in normal and microgravity, while systematically decreasing the Richardson number from buoyancy-driven to momentum driven flow regime. The third objective of this research is to perform a linear stability analysis of low-density gas jets by including the gravitational effects. The flow oscillations in these jets are attributed to an absolute instability, whereby the disturbance grows exponentially at the site to ultimately contaminate the entire flow field. We seek to study the characteristics of both convective and absolute instabilities and demarcate the boundary between them.

  3. Scalar Measurements and Analysis of Helium Jets in Earth Gravity and Microgravity using Rainbow Schlieren Deflectometry

    NASA Technical Reports Server (NTRS)

    Yep, Tze Wing

    2001-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density gas undergo an instability mode leading to highly periodic oscillations in the flow field. The transition from laminar to turbulent flow in these jets is abrupt, without a gradual change in scales. Although this type of instability at high Richardson numbers has been attributed to buoyancy, direct physical evidence was not acquired through experiments. In this study, several experiments were conducted in Earth gravity and microgravity to acquire qualitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The operating parameters of this study included the tube inside diameter, the jet Reynolds number, and the jet Richardson number. Tubes with inside diameters of 19.05 mm and 31.75 mm were used in the experiments conducted in the drop tower. The jet flow was analyzed using quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and the resulting helium mole fraction obtained from color schlieren images taken at 60 Hz. Three sets of experimental data with respect to three schlieren fields of view were acquired for each tube. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low-density jet was buoyancy-induced. This study provides quantitative details of temporal flow evolution as the experiments undergo change in gravity in the drop tower.

  4. Toward the Experimental Characterization of an Unmanned Air System Flow Field

    NASA Astrophysics Data System (ADS)

    Velarde, John-Michael; Connors, Jacob; Glauser, Mark

    2017-11-01

    The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.

  5. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.

  6. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Sretenović, Goran B.; Guaitella, Olivier; Sobota, Ana; Krstić, Ivan B.; Kovačević, Vesna V.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-03-01

    The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave decreases as it approaches to the exit of the tube. The values obtained under presented experimental conditions are in the range of 5-11 kV/cm. It was found that the increase in gas flow above 1500 SCCM could induce substantial changes in the discharge operation. This is reflected through the formation of the brighter discharge region and appearance of the electric field maxima. Furthermore, using the measured values of the electric field strength in the streamer head, it was possible to estimate electron densities in the streamer channel. Maximal density of 4 × 1011 cm-3 is obtained in the vicinity of the grounded ring electrode. Similar behaviors of the electron density distributions to the distributions of the electric field strength are found under the studied experimental conditions.

  7. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  8. Prediction of Particle Number Density and Particle Properties in the Flow Field Observed by the Nephelometer Experiment on the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.

    1998-01-01

    This report summarizes the work performed to assist in the analysis of data returned from the Galileo Probe's Nephelometer instrument. A computation of the flow field around the Galileo Probe during its descent through the Jovian atmosphere was simulated. The behavior of cloud particles that passed around the Galileo probe was then computed and the number density in the vicinity of the Nephelometer instrument was predicted. The results of our analysis support the finding that the number density of cloud particles was not the same in each of the four sampling volumes of the Nephelometer instrument. The number densities calculated in this study are currently being used to assist in the reanalysis of the data returned from the Galileo Probe.

  9. Energy density and energy flow of surface waves in a strongly magnetized graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  10. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M} ∼ 50, M{sub S} ∼ 5, M{sub A} ∼ 8, V{sub flow} ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface ofmore » a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ω{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.« less

  11. Effect of Seeding Particles on the Shock Structure of a Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Porta, David; Echeverría, Carlos; Stern, Catalina

    2012-11-01

    The original goal of our work was to measure. With PIV, the velocity field of a supersonic flow produced by the discharge of air through a 4mm cylindrical nozzle. The results were superposed to a shadowgraph and combined with previous density measurements made with a Rayleigh scattering technique. The idea was to see if there were any changes in the flow field, close to the high density areas near the shocks. Shadowgraphs were made with and without seeding particles, (spheres of titanium dioxide). Surprisingly, it was observed that the flow structure with particles was shifted in the direction opposite to the flow with respect to the flow structure obtained without seeds. This result might contradict the belief that the seeding particles do not affect the flow and that the speed of the seeds correspond to the local speed of the flow. We acknowledge support from DGAPA UNAM through project IN117712 and from Facultad de Ciencias UNAM.

  12. Tracing the Pathway from Drift-Wave Turbulence with Broken Symmetry to the Production of Sheared Axial Mean Flow

    NASA Astrophysics Data System (ADS)

    Hong, R.; Li, J. C.; Chakraborty Thakur, S.; Hajjar, R.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device—the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin. Taken together, these findings constitute the first simultaneous demonstration of the causal link between the density gradient, turbulence, and stress with broken spectral symmetry and the mean axial flow.

  13. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.

    PubMed

    Zu, Y Q; He, S

    2013-04-01

    A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.

  14. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  15. Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Mielke, Amy F.; Elam, Kristie A.

    2009-10-01

    A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  16. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  17. Direct measurements of classical and enhanced gradient-aligned cross-field ion flows in a helicon plasma source using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.

    2015-12-15

    Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients ismore » sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.« less

  18. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  19. Investigation of the Arcjet near Field Plume Using Electrostatic Probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plume of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in.) and 15 cm (5.9 in.) and radial distances extending to 10 cm (3.9 in.) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in.) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  20. Investigation of the arcjet plume near field using electrostatic probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plum of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in) and 15 cm (5.9 in) and radial distances extending to 10 cm (3.9 in) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  1. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.

  2. Observed nonpotential magnetic fields and the inferred flow of electric currents at a location of repeated flaring

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.

    1988-01-01

    The vector magnetic field of an active region at a location of repeated flaring is studied in order to explore the nature of the currents flowing in the areas where the flares initiated. The observed transverse component of the magnetic field is used to obtain the component of electric current density crossing the photosphere along the line-of-sight. It is found that currents flow out of an area of positive magnetic polarity and across the magnetic inversion line into two areas of negative polarity. Characteristics of the calculated source field are discussed.

  3. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  4. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  5. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.

  6. Dielectric barrier structure with hollow electrodes and its recoil effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gasmore » flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.« less

  7. Electric Field Screening with Backflow at Pulsar Polar Cap

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Asano, Katsuaki; Terasawa, Toshio

    2016-09-01

    Recent γ-ray observations suggest that particle acceleration occurs at the outer region of the pulsar magnetosphere. The magnetic field lines in the outer acceleration region (OAR) are connected to the neutron star surface (NSS). If copious electron-positron pairs are produced near the NSS, such pairs flow into the OAR and screen the electric field there. To activate the OAR, the electromagnetic cascade due to the electric field near the NSS should be suppressed. However, since a return current is expected along the field lines through the OAR, the outflow extracted from the NSS alone cannot screen the electric field just above the NSS. In this paper, we analytically and numerically study the electric field screening at the NSS, taking into account the effects of the backflowing particles from the OAR. In certain limited cases, the electric field is screened without significant pair cascade if only ultra-relativistic particles (γ \\gg 1) flow back to the NSS. On the other hand, if electron-positron pairs with a significant number density and mildly relativistic temperature, expected to distribute in a wide region of the magnetosphere, flow back to the NSS, these particles adjust the current and charge densities so that the electric field can be screened without pair cascade. We obtain the condition needed for the number density of particles to screen the electric field at the NSS. We also find that in the ion-extracted case from the NSS, bunches of particles are ejected to the outer region quasi-periodically, which is a possible mechanism of observed radio emission.

  8. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  9. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.

  10. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  11. The mantle flow field beneath western North America.

    PubMed

    Silver, P G; Holt, W E

    2002-02-08

    Although motions at the surface of tectonic plates are well determined, the accompanying horizontal mantle flow is not. We have combined observations of surface deformation and upper mantle seismic anisotropy to estimate this flow field for western North America. We find that the mantle velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in mantle density associated with the former Farallon oceanic plate beneath North America.

  12. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second

    NASA Technical Reports Server (NTRS)

    Jones, W. L., Jr.; Cross, A. E.

    1972-01-01

    Unique plasma diagnostic measurements at high altitudes from two geometrically similar blunt body reentry spacecraft using electrostatic probe rakes are presented. The probes measured the positive ion density profiles (shape and magnitude) during the two flights. The probe measurements were made at eight discrete points (1 cm to 7 cm) from the vehicle surface in the aft flow field of the spacecraft over the altitude range of 85.3 to 53.3 km (280,000 to 175,000 ft) with measured densities of 10 to the 8th power to 10 to the 12th power electrons/cu cm, respectively. Maximum reentry velocity for each spacecraft was approximately 7620 meters/second (25,000 ft/sec). In the first flight experiment, water was periodically injected into a flow field which was contaminated by ablation products from the spacecraft nose region. The nonablative nose of the second spacecraft thereby minimized flow field contamination. Comparisons of the probe measured density profiles with theoretical calculations are presented with discussion as to the probable cause of significant disagreement. Also discussed are the correlation of probe measurements with vehicle angle of attack motions and the good high altitude agreement between electron densities inferred from the probe measurements, VHF antenna measurements, and microwave reflectometer diagnostic measurements.

  13. Numerical simulation of current-free double layers created in a helicon plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-15

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E{sub Up-Tack }) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E{sub Up-Tack} on the high potential side of the double layer in the CFDL. Themore » accelerated ions are trapped near the conical surface, where E{sub Up-Tack} reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop ({phi}{sub Double-Vertical-Line Double-Vertical-Line o}) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.« less

  14. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed inmore » an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.« less

  15. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow.

  16. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  17. Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi

    2007-11-01

    Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.

  18. A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Gnoffo, Peter A.

    2000-01-01

    A method to obtain coupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC), 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.

  19. Simulation of turbid underflows generated by the plunging of a river

    NASA Astrophysics Data System (ADS)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  20. A tomographic technique for aerodynamics at transonic speeds

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1985-01-01

    Computer aided tomography (CAT) provides a means of noninvasively measuring the air density distribution around an aerodynamic model. This technique is global in that a large portion of the flow field can be measured. A test of the applicability of CAT to transonic velocities was studied. A hemispherical-nose cylinder afterbody model was tested at a Mach number of 0.8 with a new laser holographic interferometer at the 2- by 2-Foot Transonic Wind Tunnel. Holograms of the flow field were taken and were reconstructed into interferograms. The fringe distribution (a measure of the local densities) was digitized for subsequent data reduction. A computer program based on the Fourier-transform technique was developed to convert the fringe distribution into three-dimensional densities around the model. Theoretical aerodynamic densities were calculated for evaluating and assessing the accuracy of the data obtained from the tomographic method.

  1. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  2. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  3. Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2014-11-01

    Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.

  4. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    PubMed

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  5. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less

  6. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE PAGES

    GS, Sidharth; Candler, Graham V.

    2018-05-08

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  7. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GS, Sidharth; Candler, Graham V.

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  8. A simulation of dielectrophoresis force actuated liquid lens

    NASA Astrophysics Data System (ADS)

    Yao, Xiaoyin; Xia, Jun

    2009-11-01

    Dielectrophoresis (DEP) and electrowetting on dielectric (EWOD) are based on the electrokinetic mechanisms which have great potential in microfluidic manipulation. DEP dominate the movement of particles induced by polarization effects in nonuniform electric field ,while EWOD has become one of the most widely used tools for manipulating tiny amounts of liquids on solid surfaces. Liquid lens driven by EWOD have been well studied and developed. But liquid lens driven by DEP has not been studied adequately. This paper focuses on modeling liquid lens driven by DEP force. A simulation of DEP driven droplet dynamics was performed by coupling of the electrostatic field and the two-phase flow field. Two incompressible and dielectric liquids with different permittivity were chosen in the two-phase flow field. The DEP force density, in direct proportion to gradient of the square of the electric field intensity, was used as a body force density in Navier-Stokes equation. When voltage applied, the liquid with high permittivity flowed to the place where the gradient of the square of the electric field intensity was higher, and thus change the curvature of interface between two immiscible liquid. The differences between DEP and EWOD liquid lens were also presented.

  9. Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.

    2015-06-15

    Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less

  10. Gene flow in maize fields with different local pollen densities.

    PubMed

    Goggi, A Susana; Lopez-Sanchez, Higinio; Caragea, Petrutza; Westgate, Mark; Arritt, Raymond; Clark, Craig A

    2007-08-01

    The development of maize (Zea mays L.) varieties as factories of pharmaceutical and industrial compounds has renewed interest in controlling pollen dispersal. The objective of this study was to compare gene flow into maize fields of different local pollen densities under the same environmental conditions. Two fields of approximately 36 ha were planted with a nontransgenic, white hybrid, in Ankeny, Iowa, USA. In the center of both fields, a 1-ha plot of a yellow-seeded stacked RR/Bt transgenic hybrid was planted as a pollen source. Before flowering, the white receiver maize of one field was detasseled in a 4:1 ratio to reduce the local pollen density (RPD). The percentage of outcross in the field with RPD was 42.2%, 6.3%, and 1.3% at 1, 10, and 35 m from the central plot, respectively. The percentage of outcross in the white maize with normal pollen density (NPD) was 30.1%, 2.7%, and 0.4%, respectively, at these distances. At distances greater than 100 m, the outcross frequency decreased below 0.1 and 0.03% in the field with RPD and NPD, respectively. A statistical model was used to compare pollen dispersal based on observed outcross percentages. The likelihood ratio test confirmed that the models of outcrossing in the two fields were significantly different (P is practically 0). Results indicated that when local pollen is low, the incoming pollen has a competitive advantage and the level of outcross is significantly greater than when the local pollen is abundant.

  11. [Application of asymmetrical flow field-flow fractionation for size characterization of low density lipoprotein in egg yolk plasma].

    PubMed

    Zhang, Wenhui; Cai, Chunxue; Wang, Jing; Mao, Zhen; Li, Yueqiu; Ding, Liang; Shen, Shigang; Dou, Haiyang

    2017-08-08

    Home-made asymmetrical flow field-flow fractionation (AF4) system, online coupled with ultraviolet/visible (UV/Vis) detector was employed for the separation and size characterization of low density lipoprotein (LDL) in egg yolk plasma. At close to natural condition of egg yolk, the effects of cross flow rate, sample loading, and type of membrane on the size distribution of LDL were investigated. Under the optimal operation conditions, AF4-UV/Vis provides the size distribution of LDL. Moreover, the precision of AF4-UV/Vis method proposed in this work for the analysis of LDL in egg yolk plasma was evaluated. The intra-day precisions were 1.3% and 1.9% ( n =7) and the inter-day precisions were 2.4% and 2.3% ( n =7) for the elution peak height and elution peak area of LDL, respectively. Results reveal that AF4-UV/Vis is a useful tool for the separation and size characterization of LDL in egg yolk plasma.

  12. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, C. E.; Cassak, P. A., E-mail: Paul.Cassak@mail.wvu.edu; Swisdak, M.

    2016-08-15

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields,more » simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.« less

  13. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  14. Determining integral density distribution in the mach reflection of shock waves

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.

    2017-05-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  15. Characterizing a December 2005 density current event in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Jackson, P.R.; Oberg, K.A.; Johnson, K.K.; Garcia, M.H.

    2007-01-01

    During the winter months, the Chicago River in Chicago, Illinois is subject to bi-directional flows, and density currents are thought to be responsible for these flow variations. This paper presents detailed field measurements using three acoustic Doppler current profiler instruments and simultaneous water-quality measurements made during December 2005. Observations indicate that the formation of density currents within the Chicago River and density differences are mostly due to salinity differences between the North Branch and the main stem of the Chicago River, whereas temperature difference does not appreciably affect the creation of density currents. Sources of higher water temperature, conductivity, and salinity values should be addressed in future studies. ?? 2007 ASCE.

  16. Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2014-10-01

    Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the E × B drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the E × B drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.

  17. Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows

    NASA Technical Reports Server (NTRS)

    He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.

  18. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  19. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  20. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley

    2015-11-01

    Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  1. Properties of planetward ion flows in Venus' magnetotail

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.; Collinson, G.; Rong, Z. J.; Futaana, Y.; Zhang, T. L.

    2016-08-01

    Venus is gradually losing some of its atmosphere in the form of ions through its induced magnetotail. Some of these ions have been reported previously to flow back to the planet. Proposed drivers are magnetic reconnection and deflection of pickup ions in the magnetic field. We analyze protons and oxygen ions with eV to keV energies acquired by the ASPERA-4/IMA instrument throughout the entire Venus Express mission. We find that venusward flowing ions are important in the sense that their density and deposition rate into the atmosphere is of the same order of magnitude as the density and escape rate of downtail flowing ions. Our analysis shows that during strong EUV irradiance, which occurs during solar maximum, the flux of venusward flowing protons is weaker and of oxygen ions is stronger than during weak irradiance. Since such a behavior was observed when tracing oxygen ions through a MHD model, the ultimate driver of the venusward flowing ions may simply be the magnetic field configuration around Venus. Although the pure downtail oxygen flux stays mostly unchanged for all observed EUV conditions, the increase in venusward oxygen flux for high irradiance results in a lower net atmospheric escape rate. Venusward bulk flows are mostly found in locations where the magnetic field is weak relative to the interplanetary conditions. Although a weak field is generally an indicator of proximity to the magnetotail current sheet, these flows do not cluster around current sheet crossings, as one may expect if they would be driven by magnetic reconnection.

  2. Numerical investigation of the spreading of self-excited stratified jets

    NASA Technical Reports Server (NTRS)

    Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.

    1990-01-01

    The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.

  3. Large Eddy Simulation of a Forced Round Turbulent Buoyant Plume in Neutral Surroundings

    NASA Technical Reports Server (NTRS)

    Basu, A. J.; Mansour, N. N.; Koga, Dennis (Technical Monitor)

    1999-01-01

    Buoyant flows play an important role in various technological and environmental issues. For example, dispersal of pollutants, smoke, or volcano exhaust in the atmosphere, vertical motion of air, formation of clouds and other weather systems, and flows in cooling towers and fires are all determined primarily by buoyancy effects. The buoyancy force in such flows can originate from either a heat source or due to different densities between a fluid and its surroundings. Whatever the cause, the flow can be understood by studying the effects of the tight coupling between the thermal and the velocity fields since density differences can be characterized as temperature differences.

  4. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  5. Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel

    NASA Astrophysics Data System (ADS)

    Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang

    2016-09-01

    The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).

  6. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  7. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  8. Sheared-flow induced confinement transition in a linear magnetized plasma

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  9. Magnetic field generation from shear flow in flux ropes

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.

    2012-10-01

    In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.

  10. Forebody and afterbody solutions of the Navier-Stokes equations for supersonic flow over blunt bodies in a generalized orthogonal coordinate system

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1978-01-01

    A coordinate transformation, which can approximate many different two-dimensional and axisymmetric body shapes with an analytic function, is used as a basis for solving the Navier-Stokes equations for the purpose of predicting 0 deg angle of attack supersonic flow fields. The transformation defines a curvilinear, orthogonal coordinate system in which coordinate lines are perpendicular to the body and the body is defined by one coordinate line. This system is mapped in to a rectangular computational domain in which the governing flow field equations are solved numerically. Advantages of this technique are that the specification of boundary conditions are simplified and, most importantly, the entire flow field can be obtained, including flow in the wake. Good agreement has been obtained with experimental data for pressure distributions, density distributions, and heat transfer over spheres and cylinders in supersonic flow. Approximations to the Viking aeroshell and to a candidate Jupiter probe are presented and flow fields over these shapes are calculated.

  11. Observation of improved and degraded confinement with driven flow on the LAPD

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2012-10-01

    External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.

  12. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  13. Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Szofran, F. R.; Volz, M. P.

    1999-01-01

    Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.

  14. Stratified flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Retallack, Charles

    The focus of this dissertation is the study of stratified atmospheric flows in the presence of complex terrain. Two large-scale field study campaigns were carried out, each with a focus on a specific archetypal terrain. Each field study involved the utilization of remote and in-situ atmospheric monitoring devices to collect experimental data. The first of the two field studies focused on pollution transport mechanisms near an escarpment. The analysis aimed to determine the combined effect of the escarpment and ambient density stratification on the flow and aerosol pollution transport. It was found that under specific atmospheric conditions, the escarpment prompted the channeling, down-mixing, and trapping of aerosol pollutant plumes. The objective of the second field campaign was the study of stratified flows in a mountain valley. Analysis revealed that buoyancy driven katabatic currents originating on the surrounding valley slopes created a scenario in which a down-slope gravity current transitioned into an intrusive gravity current. The intrusive gravity current propagated near the interface of a density stratified lower ambient layer and a non-stratified upper ambient layer. A combination of shallow water theory and energy arguments is used to produce a model for the propagation of a gravity current moving along the interface of a homogeneous ambient layer and a linearly stratified layer. It is found that the gravity current propagating entirely within the homogeneous layer travels at the greatest speed. As the relative density of the gravity current is increased, the gravity current begins to slump below the interface of the two layers and the propagation speed decreases.

  15. On performing of interference technique based on self-adjusting Zernike filters (SA-AVT method) to investigate flows and validate 3D flow numerical simulations

    NASA Astrophysics Data System (ADS)

    Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.

    2017-10-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  16. Numerical Experiments on the Role of the Lower Crust in the Development of Extension-driven Gneiss Domes

    NASA Astrophysics Data System (ADS)

    Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.

    2016-12-01

    Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in boudinage of the whole crust, which generates significant upward flow from the buoyant asthenosphere.

  17. Direct evidence for magnetic reconnection in the solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Skoug, R. M.; McComas, D. J.; Smith, C. W.

    2005-01-01

    We have obtained direct evidence for local magnetic reconnection in the solar wind using solar wind plasma and magnetic field data obtained by the Advanced Composition Explorer (ACE). The prime evidence consists of accelerated ion flow observed within magnetic field reversal regions in the solar wind. Here we report such observations obtained in the interior of an interplanetary coronal mass ejection (ICME) or at the interface between two ICMEs on 23 November 1997 at a time when the magnetic field was stronger than usual. The observed plasma acceleration was consistent with the Walen relationship, which relates changes in flow velocity to density-weighted changes in the magnetic field vector. Pairs of proton beams having comparable densities and counterstreaming relative to one another along the magnetic field at a speed of ˜1.4VA, where VA was the local Alfven speed, were observed near the center of the accelerated flow event. We infer from the observations that quasi-stationary reconnection occurred sunward of the spacecraft and that the accelerated flow occurred within a Petschek-type reconnection exhaust region bounded by Alfven waves and having a cross section width of ˜4 × 105 km as it swept over ACE. The counterstreaming ion beams resulted from solar wind plasma entering the exhaust region from opposite directions along the reconnected magnetic field lines. We have identified a limited number (five) of other accelerated flow events in the ACE data that are remarkably similar to the 23 November 1997 event. All such events identified occurred at thin current sheets associated with moderate to large changes in magnetic field orientation (98°-162°) in plasmas characterized by low proton beta (0.01-0.15) and high Alfven speed (51-204 km/s). They also were all associated with ICMEs.

  18. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  19. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  20. Venus' nighttime horizontal plasma flow, 'magnetic congestion', and ionospheric hole production

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Mayr, H. G.; Curtis, S. A.; Taylor, H. A., Jr.

    1983-01-01

    A simple rectilinear, two-dimensional MHD model is used to investigate the effects of field-aligned plasma loss and cooling on a dense plasma convecting across a weak magnetic field, in order to illumine the Venus nighttime phenomena of horizontal plasma flow, magnetic congestion and ionospheric hole production. By parameterizing field-aligned variations and explicitly solving for cross magnetic field variations, it is shown that the abrupt horizontal enhancements of the vertical magnetic field, as well as sudden decreases of the plasma density to very low values (which are characteristic of ionospheric holes), can be produced in the presence of field-aligned losses.

  1. Concentration Measurements in Self-Excited Momentum Dominated Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Pasumarthi, K. S.; Agrawal, A. K.

    2004-01-01

    Flow structure of self-excited, laminar, axisymmetric, momentum-dominated helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry technique. Measurements were obtained at temporal resolution of 1 ms and spatial resolution of 0.19 mm for two test cases with Richardson number of 0.034 and 0.018. Power spectra revealed that the oscillation frequency was independent of spatial coordinates, suggesting global oscillations in the flow. Abel inversion algorithm was used to reconstruct the concentration field of helium. Instantaneous concentration contours revealed changes in the flow field and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial locations provided detailed information about the instability in the flow field.

  2. Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi

    2013-10-01

    Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.

  3. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.

    1996-04-01

    We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic fluctuations within those features are closely aligned, representing Alfvén waves propagating locally downstream. The flux tubes surround a low-density channel of hot gas that contains most of the excess entropy generated through the relaxation process.

  4. Wind Tunnel Seeding Systems for Laser Velocimeters

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Compiler); Nichols, C. E., Jr. (Compiler)

    1985-01-01

    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field.

  5. Infrared characteristics and flow field of the exhaust plume outside twin engine nozzle

    NASA Astrophysics Data System (ADS)

    Feng, Yun-song

    2016-01-01

    For mastery of infrared radiation characteristics and flow field of exhaust plume of twin engine nozzles, first, a physical model of the double rectangular nozzles is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the twin engine nozzles, and the datum of flow field, such as temperature, pressure and density, are obtained. Finally, based on the plume temperature, the exhaust plume space is divided. The exhaust plume is equivalent to a gray-body. A calculating model of the plume infrared radiation is established, and the plume infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. The result improves that with the height increasing the temperature, press and infrared radiant intensity diminish. Compared with engine afterburning condition, temperature and infrared radiant intensity increases and press has no obvious change.

  6. Electric force on plasma ions and the momentum of the ion-neutrals flow

    NASA Astrophysics Data System (ADS)

    Makrinich, G.; Fruchtman, A.; Zoler, D.; Boxman, R. L.

    2018-05-01

    The electric force on ions in plasma and the momentum flux carried by the mixed ion-neutral flow were measured and found to be equal. The experiment was performed in a direct-current gas discharge of cylindrical geometry with applied radial electric field and axial magnetic field. The unmagnetized plasma ions, neutralized by magnetized electrons, were accelerated radially outward transferring part of the gained momentum to neutrals. Measurements were taken for various argon gas flow rates between 13 and 100 Standard Cubic Centimeter per Minute, for a discharge current of 1.9 A and a magnetic field intensity of 136 G. The plasma density, electron temperature, and plasma potential were measured at various locations along the flow. These measurements were used to determine the local electric force on the ions. The total electric force on the plasma ions was then determined by integrating radially the local electric force. In parallel, the momentum flux of the mixed ion-neutral flow was determined by measuring the force exerted by the flow on a balance force meter (BFM). The maximal plasma density was between 6 × 1010 cm-3 and 5 × 1011 cm-3, the maximal electron temperature was between 8 eV and 25 eV, and the deduced maximal electric field was between 2200 V/m and 5800 V/m. The force exerted by the mixed ion-neutral flow on the BFM agreed with the total electric force on the plasma ions. This agreement showed that it is the electric force on the plasma ions that is the source of the momentum acquired by the mixed ion-neutral flow.

  7. Application of holography to flow visualization

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1984-01-01

    Laser holographic interferometry is being applied to many different types of aerodynamics problems. These include two and three dimensional flows in wind tunnels, ballistic ranges, rotor test chambers and turbine facilities. Density over a large field is measured and velocity, pressure, and mach number can be deduced.

  8. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Background-Oriented Schlieren for Large-Scale and High-Speed Aerodynamic Phenomena

    NASA Technical Reports Server (NTRS)

    Mizukaki, Toshiharu; Borg, Stephen; Danehy, Paul M.; Murman, Scott M.; Matsumura, Tomoharu; Wakabayashi, Kunihiko; Nakayama, Yoshio

    2015-01-01

    Visualization of the flow field around a generic re-entry capsule in subsonic flow and shock wave visualization with cylindrical explosives have been conducted to demonstrate sensitivity and applicability of background-oriented schlieren (BOS) for field experiments. The wind tunnel experiment suggests that BOS with a fine-pixel imaging device has a density change detection sensitivity on the order of 10(sup -5) in subsonic flow. In a laboratory setup, the structure of the shock waves generated by explosives have been successfully reconstructed by a computed tomography method combined with BOS.

  10. Stochastic density waves of granular flows: strong-intermittent dissipation fields with self-organization

    NASA Astrophysics Data System (ADS)

    Bershadskii, A.

    1994-10-01

    The quantitative (scaling) results of a recent lattice-gas simulation of granular flows [1] are interpreted in terms of Kolmogorov-Obukhov approach revised for strong space-intermittent systems. Renormalised power spectrum with exponent '-4/3' seems to be an universal spectrum of scalar fluctuations convected by stochastic velocity fields in dissipative systems with inverse energy transfer (some other laboratory and geophysic turbulent flows with this power spectrum as well as an analogy between this phenomenon and turbulent percolation on elastic backbone are pointed out).

  11. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  12. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  13. Effect of DC magnetic field on atmospheric pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Safari, R.; Sohbatzadeh, F.

    2015-05-01

    In this work, external DC magnetic field effect on the atmospheric pressure plasma jet has been investigated, experimentally. The magnetic field has been produced using a Helmholtz coil configuration. It has been applied parallel and transverse to the jet flow. The strength of the DC magnetic field is 0-0.28 and 0-0.57 Tesla between the two coils in parallel and transverse applications, respectively. It has been shown that the plasma gas flow plays the main role in magneto-active collision-dominated plasma. The effect of plasma fluid velocity on the jet emission has been discussed, qualitatively. It has been observed that the external DC magnetic field has different trends in parallel and transverse applications. The measurements reveal that the plasma jet irradiance increases in parallel field, while it decreases in transverse field. The former has been attributed to increasing plasma number density and the latter to loss of plasma species that reduces the magneto-plasma jet irradiance and in turn shrinks plasma jet number density. As a result, the plasma fluid velocity is responsible for such trends though the magneto-active plasma remains isotropic.

  14. A measurement of perpendicular current density in an aurora

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Mozer, F. S.

    1975-01-01

    A Nike Tomahawk sounding rocket was launched into a 400-gamma auroral substorm from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir-probe plasma-velocity detector and a double-probe electric-field detector. Above 140-km altitude, the electric field deduced from the ion-flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral-wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth angle of 276 deg. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward.

  15. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  16. Linking the micro and macro: L-H transition dynamics and threshold physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.

    2015-03-15

    The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less

  17. Azimuthal swirl in liquid metal electrodes and batteries

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan; Kelley, Douglas

    2016-11-01

    Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.

  18. Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2015-11-01

    Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.

  19. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle.

    PubMed

    Takahashi, Kazunori; Ando, Akira

    2017-06-02

    An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100  μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.

  20. Unfolding the atmospheric and deep internal flows on Jupiter and Saturn using the Juno and Cassini gravity measurements

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Kaspi, Yohai

    2016-10-01

    In light of the first orbits of Juno at Jupiter, we discuss the Juno gravity experiment and possible initial results. Relating the flow on Jupiter and Saturn to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecraft during 2016-17. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Current observations for the flow on these planets exists only at the cloud-level (0.1-1 bar). The observed cloud-level wind might be confined to the upper layers, or be a manifestation of deep cylindrical flows. Moreover, it is possible that in the case where the observed wind is superficial, there exists deep interior flow that is completely decoupled from the observed atmospheric flow.In this talk, we present a new adjoint based inverse model for inversion of the gravity measurements into flow fields. The model is constructed to be as general as possible, allowing for both cloud-level wind extending inward, and a decoupled deep flow that is constructed to produce cylindrical structures with variable width and magnitude, or can even be set to be completely general. The deep flow is also set to decay when approaching the upper levels so it has no manifestation there. The two sources of flow are then combined to a total flow field that is related to the density anomalies and gravity moments via a dynamical model. Given the measured gravitational moments from Jupiter and Saturn, the dynamical model, together with the adjoint inverse model are used for optimizing the control parameters and by this unfolding the deep and surface flows. Several scenarios are examined, including cases in which the surface wind and the deep flow have comparable effects on the gravity field, cases in which the deep flow is dominating over the surface wind, and an extreme case where the deep flow can have an unconstrained pattern. The method enables also the calculation of the uncertainties associated with each solution. We discuss the physical limitations to the method in view of the measurement uncertainties.

  1. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  2. Analysis of Mid-Latitude Plasma Density Irregularities in the Presence of Finite Larmor Radius Effects

    NASA Astrophysics Data System (ADS)

    Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.

    2017-12-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641

  3. Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Bergsaker, H.

    2005-10-01

    The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -ρμ0 + ]Vφr where Vφ is the mean ExB toroidal flow, ρ the mean mass density and b and v the fluctuations of velocity and magnetic field respectively. Both the radial profiles and the temporal evolution of P have been measured in the edge region of Extrap-T2R Reversed Field Pinch experiment. The results support the existence of oscillating energy exchange process between fluctuations and mean flow.

  4. Postfragmentation density function for bacterial aggregates in laminar flow

    PubMed Central

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John

    2014-01-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. PMID:21599205

  5. Influence of turbulent fluctuations on non-equilibrium chemical reactions in the flow

    NASA Astrophysics Data System (ADS)

    Molchanov, A. M.; Yanyshev, D. S.; Bykov, L. V.

    2017-11-01

    In chemically nonequilibrium flows the problem of calculation of sources (formation rates) in equations for chemical species is of utter importance. Formation rate of each component is a non-linear function of mixture density, temperature and concentration of species. Thus the suggestion that the mean rate may be determined via mean values of the flow parameters could lead to significant errors. One of the most accurate approaches here is utilization of probability density function (PDF). In this paper the method for constructing such PDFs is developed. The developed model was verified by comparison with the experimental data. On the example of supersonic combustion it was shown that while the overall effect on the averaged flow field is often negligible, the point of ignition can be considerably shifted up the flow.

  6. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  7. Free flux flow in two single crystals of V3Si with differing pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2011-10-01

    Results of measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data have confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual electrical resistivity ratio, (ii) very low critical current densities Jc, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted down for the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). Large Lorentz forces are applied on mixed-state vortices via large currents, in order to induce the highly ordered free flux flow (FFF) phase, using experimental methods developed previously. The traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H) ˜ H/Hc2, presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes into account the effects of magnetic field on core size, and predict a clear deviation from the linear BS dependence. In this study, ρf(H) is confirmed to be consistent with predictions of KZ.

  8. Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.

  9. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance <ρ'2> (<·> denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density <ρ>, if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance <ρ'2> is generated by the large mean density variation ∂<ρ> coupled with the turbulent mass flux <ρ'u'>. This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂<ρ> and the mean magnetic field B may contribute to the EMF as ≈χ B×∂<ρ> with the turbulent transport coefficient χ proportional to the density variance (χ <ρ'2>). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow shock, the magnetic reconnection rate may be enhanced by this effect. Physical origin of this effect is discussed in some possible geophysical applications.

  10. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  11. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.

    PubMed

    Hansen, Matthew; Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-11-01

    Polyethylene glycol (PEG) is an important tool for increasing the biocompatibility of nanoparticle therapeutics. Understanding how these potential nanomedicines will react after they have been introduced into the bloodstream is a critical component of the preclinical evaluation process. Hence, it is paramount that better methods for separating, characterizing, and analyzing these complex and polydisperse formulations are developed. We present a method for separating nominal 30-nm gold nanoparticles coated with various molecular weight PEG moieties that uses only phosphate-buffered saline as the mobile phase, without the need for stabilizing surfactants. The optimized asymmetric-flow field-flow fractionation technique using in-line multiangle light scattering, dynamic light scattering, refractive index, and UV-vis detectors allowed successful separation and detection of a mixture of nanoparticles coated with 2-, 5-, 10-, and 20-kDa PEG. The particles coated with the larger PEG species (10 and 20 kDa) were eluted at times significantly earlier than predicted by field-flow fractionation theory. This was attributed to a lower-density PEG shell for the higher molecular weight PEGylated nanoparticles, which allows a more fluid PEG surface that can be greater influenced by external forces. Hence, the apparent particle hydrodynamic size may fluctuate significantly depending on the overall density of the stabilizing surface coating when an external force is applied. This has considerable implications for PEGylated nanoparticles intended for in vivo application, as nanoparticle size is important for determining circulation times, accumulation sites, and routes of excretion, and highlights the importance and value of the use of secondary size detectors when one is working with complex samples in asymmetric-flow field-flow fractionation.

  12. Advanced ballistic range technology

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    Optical images, such as experimental interferograms, schlieren, and shadowgraphs, are routinely used to identify and locate features in experimental flow fields and for validating computational fluid dynamics (CFD) codes. Interferograms can also be used for comparing experimental and computed integrated densities. By constructing these optical images from flow-field simulations, one-to-one comparisons of computation and experiment are possible. During the period from February 1, 1992, to November 30, 1992, work has continued on the development of CISS (Constructed Interferograms, Schlieren, and Shadowgraphs), a code that constructs images from ideal- and real-gas flow-field simulations. In addition, research connected with the automated film-reading system and the proposed reactivation of the radiation facility has continued.

  13. Reverse flow events and small-scale effects in the cusp ionosphere

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Clausen, L. B. N.; Moen, J. I.; Abe, T.; Saito, Y.

    2016-10-01

    We report in situ measurements of plasma irregularities associated with a reverse flow event (RFE) in the cusp F region ionosphere. The Investigation of Cusp Irregularities 3 (ICI-3) sounding rocket, while flying through a RFE, encountered several regions with density irregularities down to meter scales. We address in detail the region with the most intense small-scale fluctuations in both the density and in the AC electric field, which were observed on the equatorward edge of a flow shear, and coincided with a double-humped jet of fast flow. Due to its long-wavelength and low-frequency character, the Kelvin-Helmholtz instability (KHI) alone cannot be the source of the observed irregularities. Using ICI-3 data as inputs, we perform a numerical stability analysis of the inhomogeneous energy-density-driven instability (IEDDI) and demonstrate that it can excite electrostatic ion cyclotron waves in a wide range of wave numbers and frequencies for the electric field configuration observed in that region, which can give rise to the observed small-scale turbulence. The IEDDI can seed as a secondary process on steepened vortices created by a primary KHI. Such an interplay between macroprocesses and microprocesses could be an important mechanism for ion heating in relation to RFEs.

  14. Initial angular momentum and flow in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  15. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    USGS Publications Warehouse

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  16. Subtidal circulation on the Alabama shelf during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Dzwonkowski, Brian; Park, Kyeong

    2012-03-01

    Water column velocity and hydrographic measurements on the inner Alabama shelf are used to examine the flow field and its forcing dynamics during the Deepwater Horizon oil spill disaster in the spring and summer of 2010. Comparison between two sites provides insight into the flow variability and dynamics of a shallow, highly stratified shelf in the presence of complicating geographic and bathymetric features. Seasonal currents reveal a convergent flow with strong, highly sheared offshore flow near a submarine bank just outside of Mobile Bay. At synoptic time scales, the flow is relatively consistent with typical characteristics of wind-driven Ekman coastal circulation. Analysis of the depth-averaged along-shelf momentum balance indicates that both bottom stress and along-shelf pressure gradient act to counter wind stress. As a consequence of the along-shelf pressure gradient and thermal wind shear, flow reversals in the bottom currents can occur during periods of transitional winds. Despite the relatively short distance between the two sites (14 km), significant spatial variability is observed. This spatial variability is argued to be a result of local variations in the bathymetry and density field as the study region encompasses a submarine bank near the mouth of a major freshwater source. Given the physical parameters of the system, along-shelf flow in this region would be expected to separate from the local isobaths, generating a mean offshore flow. The local, highly variable density field is expected to be, in part, responsible for the differences in the vertical variability in the current profiles.

  17. The effect of different methods to compute N on estimates of mixing in stratified flows

    NASA Astrophysics Data System (ADS)

    Fringer, Oliver; Arthur, Robert; Venayagamoorthy, Subhas; Koseff, Jeffrey

    2017-11-01

    The background stratification is typically well defined in idealized numerical models of stratified flows, although it is more difficult to define in observations. This may have important ramifications for estimates of mixing which rely on knowledge of the background stratification against which turbulence must work to mix the density field. Using direct numerical simulation data of breaking internal waves on slopes, we demonstrate a discrepancy in ocean mixing estimates depending on the method in which the background stratification is computed. Two common methods are employed to calculate the buoyancy frequency N, namely a three-dimensionally resorted density field (often used in numerical models) and a locally-resorted vertical density profile (often used in the field). We show that how N is calculated has a significant effect on the flux Richardson number Rf, which is often used to parameterize turbulent mixing, and the turbulence activity number Gi, which leads to errors when estimating the mixing efficiency using Gi-based parameterizations. Supported by ONR Grant N00014-08-1-0904 and LLNL Contract DE-AC52-07NA27344.

  18. Free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2010-10-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.

  19. Retrieving cosmological signal using cosmic flows

    NASA Astrophysics Data System (ADS)

    Bouillot, V.; Alimi, J.-M.

    2011-12-01

    To understand the origin of the anomalously high bulk flow at large scales, we use very large simulations in various cosmological models. To disentangle between cosmological and environmental effects, we select samples with bulk flow profiles similar to the observational data Watkins et al. (2009) which exhibit a maximum in the bulk flow at 53 h^{-1} Mpc. The estimation of the cosmological parameters Ω_M and σ_8, done on those samples, is correct from the rms mass fluctuation whereas this estimation gives completely false values when done on bulk flow measurements, hence showing a dependance of velocity fields on larger scales. By drawing a clear link between velocity fields at 53 h^{-1} Mpc and asymmetric patterns of the density field at 85 h^{-1} Mpc, we show that the bulk flow can depend largely on the environment. The retrieving of the cosmological signal is achieved by studying the convergence of the bulk flow towards the linear prediction at very large scale (˜ 150 h^{-1} Mpc).

  20. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    PubMed

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  1. Debris flow susceptibility assessment after the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Fan, Xuanmei; van Westen, Cees; Tang, Chenxiao; Tang, Chuan

    2014-05-01

    Due to a tremendous amount of loose material from landslides that occurred during the Wenchuan earthquake, the frequency and magnitude of debris flows have been immensely increased, causing many casualties and economic losses. This study attempts to assess the post-earthquake debris flow susceptibility based on catchment units in the Wenchuan county, one of the most severely damaged county by the earthquake. The post earthquake debris flow inventory was created by RS image interpretation and field survey. According to our knowledge to the field, several relevant factors were determined as indicators for post-earthquake debris flow occurrence, including the distance to fault surface rupture, peak ground acceleration (PGA), coseismic landslide density, rainfall data, internal relief, slope, drainage density, stream steepness index, existing mitigation works etc. These indicators were then used as inputs in a heuristic model that was developed by adapting the Spatial Multi Criteria Evaluation (SMCE) method. The relative importance of the indicators was evaluated according to their contributions to the debris flow events that have occurred after the earthquake. The ultimate goal of this study is to estimate the relative likelihood of debris flow occurrence in each catchment, and use this result together with elements at risk and vulnerability information to assess the changing risk of the most susceptible catchment.

  2. Smooth invariant densities for random switching on the torus

    NASA Astrophysics Data System (ADS)

    Bakhtin, Yuri; Hurth, Tobias; Lawley, Sean D.; Mattingly, Jonathan C.

    2018-04-01

    We consider a random dynamical system obtained by switching between the flows generated by two smooth vector fields on the 2d-torus, with the random switchings happening according to a Poisson process. Assuming that the driving vector fields are transversal to each other at all points of the torus and that each of them allows for a smooth invariant density and no periodic orbits, we prove that the switched system also has a smooth invariant density, for every switching rate. Our approach is based on an integration by parts formula inspired by techniques from Malliavin calculus.

  3. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    PubMed

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  4. A Concept of Cross-Ferroic Plasma Turbulence

    PubMed Central

    Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.

    2016-01-01

    The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218

  5. A complex-lamellar description of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Kolla, Maureen Louise

    Flow transition is important, in both practical and phenomenological terms. However, there is currently no method for identifying the spatial locations associated with transition, such as the start and end of intermittency. The concept of flow stability and experimental correlations have been used, however, flow stability only identifies the location where disturbances begin to grow in the laminar flow and experimental correlations can only give approximations as measuring the start and end of intermittency is difficult. Therefore, the focus of this work is to construct a method to identify the start and end of intermittency, for a natural boundary layer transition and a separated flow transition. We obtain these locations by deriving a complex-lamellar description of the velocity field that exists between a fully laminar and fully turbulent boundary condition. Mathematically, this complex-lamellar decomposition, which is constructed from the classical Darwin-Lighthill-Hawthorne drift function and the transport of enstrophy, describes the flow that exists between the fully laminar Pohlhausen equations and Prandtl's fully turbulent one seventh power law. We approximate the difference in enstrophy density between the boundary conditions using a power series. The slope of the power series is scaled by using the shape of the universal intermittency distribution within the intermittency region. We solve the complex-lamellar decomposition of the velocity field along with the slope of the difference in enstrophy density function to determine the location of the laminar and turbulent boundary conditions. Then from the difference in enstrophy density function we calculate the start and end of intermittency. We perform this calculation on a natural boundary layer transition over a flat plate for zero pressure gradient flow and for separated shear flow over a separation bubble. We compare these results to existing experimental results and verify the accuracy of our transition model.

  6. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  7. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    NASA Astrophysics Data System (ADS)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one capturing the entire jet at near Taylor microscale resolution, and the other, thanks to the careful refractive index matching of the liquids, resolving the Taylor scale at near Kolmogorov scale resolution. This is accomplished using a combination of TR-PIV and long-distance micro-PIV. The turbulence statistics obtained at various downstream locations and magnifications are obtained for density differences of 0%, 1%, and 3%. To validate the experimental methodology and provide a reference case for validation, the effect of initial velocity profile on the neutrally buoyant jet in the self-preserving regime is studied at two Reynolds numbers of 10,000 and 20,000. For the neutrally buoyant jet, it is found that independent of initial conditions the jet follows a self-similar behavior in the far-field; however, the spreading rate is strongly dependent on initial velocity profile. High magnification analysis at the small turbulent length scales shows a flow field where the mean statistics compare well to the larger field of view case. Investigation of the near-field shows the jet is strongly influenced by buoyancy, where an increase in vortex ring formation frequency and number of pairings occur. The buoyant jet with a 1% density difference shows an alteration of the centerline velocity decay, but the radial distribution of the mean axial velocity collapses well at all measurement locations. Jet formation dramatically changes for a buoyant jet with a 3% density difference, where the jet reaches a terminal height and spreads out horizontally at its neutral buoyancy location. Analysis of both the mean axial velocity and strain rates show the jet is no longer self-similar; for example, the mean centerline velocity does not decay uniformly as the jet develops. The centerline strain rates at this density difference also show trends which are strongly influenced by the altered centerline velocity. The overall centerline analysis shows that turbulence suppression occurs as a result of the stratification for both the 1% and 3% density difference. Analysis on the kinetic energy budget shows that the mean convection, production, transportation, and dissipation of energy is altered from stratification. High resolution data of the jet enable flow structures to be captured in the neutrally buoyant region of the flow. Vortices of different sizes are identified. Longer data sets are necessary to perform a statistical analysis of their distribution and to compare them to homogeneous environment case. This multi-scale analysis shows potential for studying energy transfer between length scales.

  8. Plasma flow in peripheral region of detached plasma in linear plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less

  9. Investigation of nose bluntness and angle of attack effects on slender bodies in viscous hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sehgal, A. K.; Tiwari, S. N.; Singh, D. J.

    1991-01-01

    Hypersonic flows over cones and straight biconic configurations are calculated for a wide range of free stream conditions in which the gas behind the shock is treated as perfect. Effect of angle of attack and nose bluntness on these slender cones in air is studied extensively. The numerical procedures are based on the solution of complete Navier-Stokes equations at the nose section and parabolized Navier-Stokes equations further downstream. The flow field variables and surface quantities show significant differences when the angle of attack and nose bluntness are varied. The complete flow field is thoroughly analyzed with respect to velocity, temperature, pressure, and entropy profiles. The post shock flow field is studied in detail from the contour plots of Mach number, density, pressure, and temperature. The effect of nose bluntness for slender cones persists as far as 200 nose radii downstream.

  10. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic steps with superimposed antidunes form fining-upwards successions with decreasing antidune wavelengths, indicating waning flows. Such cyclic step-antidune successions form the characteristic basal infill of mid-fan channels, and are inferred to be related to successive supercritical high-density turbidity flows triggered by retrogressive slope failures.

  11. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun

    2016-06-15

    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.« less

  12. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  13. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-01-01

    Impact of gyrotactic microorganisms on two-dimensional (2D) stratified flow of an Oldroyd-B nanomaterial is highlighted. Applied magnetic field along with mixed convection is considered in the formulation. Theory of microorganisms is utilized just to stabilize the suspended nanoparticles through bioconvection induced by combined effects of buoyancy forces and magnetic field. Convergent series solutions for the obtained nonlinear differential systems are derived. Impacts of different emerging parameters on velocity, temperature, concentration, motile microorganisms density, density number of motile microorganisms and local Nusselt and Sherwood numbers are graphically addressed. It is observed that thermal, concentration and motile density stratification parameters result in reduction of temperature, concentration and motile microorganisms density distributions respectively.

  14. Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.

    2007-01-01

    Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.

  15. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Edwards, K. Michelle

    2003-01-01

    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable-density ground-water flow simulations suggest that upconing is of utmost concern, and lateral encroachment is of second-most concern. This interpretation is uncertain, however, because the predominance of saltwater intrusion through leaky artesian wells with connection to deeper, more saline, and higher pressure aquifers was difficult to establish. Effective management of ground-water resources in southwestern Florida requires an understanding of the potential extent of saltwater intrusion in the lower Tamiami aquifer near Bonita Springs. Variable-density, ground-water flow simulations suggest that when saltwater is at dynamic equilibrium with 1996 seasonal stresses, the extent of saltwater intrusion is about 100 square kilometers areally and 70,000 hectare-meters volumetrically. The volumetric extent of saltwater intrusion was most sensitive to changes in recharge, ground-water pumpage, sea level, salinity of the Gulf of Mexico, and the potentiometric surface of the sandstone aquifer, respectively.

  16. Mathematical theory of cylindrical isothermal blast waves in a magnetic field. [with application to supernova remnant evolution

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1981-01-01

    An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.

  17. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  18. Two-lane traffic-flow model with an exact steady-state solution.

    PubMed

    Kanai, Masahiro

    2010-12-01

    We propose a stochastic cellular-automaton model for two-lane traffic flow based on the misanthrope process in one dimension. The misanthrope process is a stochastic process allowing for an exact steady-state solution; hence, we have an exact flow-density diagram for two-lane traffic. In addition, we introduce two parameters that indicate, respectively, driver's driving-lane preference and passing-lane priority. Due to the additional parameters, the model shows a deviation of the density ratio for driving-lane use and a biased lane efficiency in flow. Then, a mean-field approach explicitly describes the asymmetric flow by the hop rates, the driving-lane preference, and the passing-lane priority. Meanwhile, the simulation results are in good agreement with an observational data, and we thus estimate these parameters. We conclude that the proposed model successfully produces two-lane traffic flow particularly with the driving-lane preference and the passing-lane priority.

  19. Low to high confinement transition theory of finite-beta drift-wave driven shear flow and its comparison with data from DIII-D

    NASA Astrophysics Data System (ADS)

    Guzdar, P. N.; Kleva, R. G.; Groebner, R. J.; Gohil, P.

    2004-03-01

    Shear flow stabilization of edge turbulence in tokamaks has been the accepted paradigm for the improvement in confinement observed in high (H) confinement mode plasmas. Results on the generation of zonal flow and fields in finite β plasmas are presented. This theory yields a criterion for bifurcation from low to high (L-H) confinement mode, proportional to Te/√Ln , where Te is the electron temperature and Ln is the density scale-length at the steepest part of the density gradient. When this parameter exceeds a critical value (mostly determined by the strength of the toroidal magnetic field), the transition occurs. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D [J. L. Luxon, R. Anderson, F. Batty et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter due to the differences in the density gradient scale-lengths in the edge. The theory also provides a possible explanation for lowered threshold power, pellet injection H modes in DIII-D, thereby providing a unified picture of the varied observations on the L-H transition.

  20. Low Reynolds number flow near tiny leaves, stems, and trichomes

    NASA Astrophysics Data System (ADS)

    Strickland, Christopher; Pasour, Virginia; Miller, Laura

    2016-11-01

    In terrestrial and aquatic environments such as forest canopies, grass fields, and seagrass beds, the density and shape of trunks, branches, stems, leaves and trichomes (the hairs or fine outgrowths on plants) can drastically alter both the average wind speed and profile through these environments and near each plant. While many studies of flow in these environments have focused on bulk properties of the flow at scales on the order of meters, the low Reynolds number flow close to vegetative structures is especially complex and relevant to nutrient exchange. Using three-dimensional immersed boundary simulations, we resolve the flow around trichomes and small leaves and quantify velocities, shear stresses, and mixing while varying the height and density of idealized structures. National Science Foundation Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute, and the Army Research Office.

  1. High energy density Z-pinch plasmas using flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.« less

  2. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  3. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  4. A FORTRAN program for calculating three dimensional, inviscid and rotational flows with shock waves in axial compressor blade rows: User's manual

    NASA Technical Reports Server (NTRS)

    Thompkins, W. T., Jr.

    1982-01-01

    A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.

  5. Study on aggregation behavior of low density lipoprotein in hen egg yolk plasma by asymmetrical flow field-flow fractionation coupled with multiple detectors.

    PubMed

    Dou, Haiyang; Magnusson, Emma; Choi, Jaeyeong; Duan, Fei; Nilsson, Lars; Lee, Seungho

    2016-02-01

    In this study, asymmetrical flow field-flow fractionation (AF4) coupled online with UV, multiangle light scattering (MALS), and fluorescence (FS) detectors (AF4-UV-MALS-FS) was employed for separation and characterization of egg yolk plasma. AF4 provided separation of three major components of the egg yolk plasma i.e. soluble proteins, low density lipoproteins (LDL) and their aggregates, based on their respective hydrodynamic sizes. Identification of LDL was confirmed by staining the sample with a fluorescent dye, Nile Red. The effect of carrier liquids on aggregation of LDL was investigated. Collected fractions of soluble proteins were characterized using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). Moreover, the effect of heat and enzymatic treatment on egg yolk plasma was investigated. The results suggest that enzymatic treatment with phospholipase A2 (PLA2) significantly enhances the heat stability of LDL. The results show that AF4-UV-MALS-FS is a powerful tool for the fractionation and characterization of egg yolk plasma components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.; Zhou, R.; Yang, X. Q., E-mail: yyxxqq-mail@163.com

    Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition thatmore » the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10{sup 5 }V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.« less

  7. Effects of charge density waves on flux dynamics in weak-pinning single crystals of NbSe2 : free flux flow, flux-core size effects, and unexpected doubling of Jc(H) `peak effect'

    NASA Astrophysics Data System (ADS)

    Favreau, Peter; Gapud, Albert A.; Moraes, Sunhee; Delong, Lance; Reyes, Arneil P.; Thompson, James R.; Christen, David K.

    2010-03-01

    The interaction of two different ordering schemes -- charge density waves (CDWs) and superconductivity -- is studied in high-quality samples of NbSe2, particularly in the motion of magnetic flux quanta. More specifically, the study is on the effect of ``switching off'' the CDW phase -- effected by doping with Ta -- on the magnetic-field H dependence of: (i) the Lorentz-force-driven free flux flow (FFF) resistivity ρf associated with the ordered motion of vortices, and (ii) critical current density Jc. FFF is achieved for the first time in this material. The field dependence of ρf deviates from traditional Bardeen-Stephen flux flow and is more consistent with effects of flux core size as predicted by Kogan and Zelezhina. However, the suppression of CDW's seems to have no significant effect on these properties. On the other hand, Jc(H) shows a surprising double peak for the CDW-suppressed sample --contrary to previous studies in which the Jc peak was shown to disappear. Possible mechanisms are discussed.

  8. Modification of turbulence and turbulent transport associated with a confinement transition in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, Troy

    2009-11-01

    Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.

  9. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  10. Numerical simulation of the compressible Orszag-Tang vortex. Interim report, June 1988-February 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, R.B.; Picone, J.M.

    Results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. Initial conditions consist of a nonrandom, periodic field in which the magnetic and velocity fields contain X-points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure-field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average flow Mach number of the flow. In the numerical simulations, this initial Mach number is varied from 0.2 to 0.6. These values correspond to average plasma beta valuesmore » ranging from 30.0 to 3.3, respectively. Compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as mass density and nonsolenoidal flow field. These effects include (1) retardation of growth of correlation between the magnetic field and the velocity field, (2) emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible-flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less

  11. On axisymmetric resistive MHD equilibria with flow free of Pfirsch-Schlüter diffusion

    NASA Astrophysics Data System (ADS)

    Throumoulopoulos, George N.; Tasso, Henri

    2002-11-01

    The equilibrium of an axisymmetric magnetically confined plasma with anisotropic electrical conductivity and flows parallel to the magnetic field is investigated within the framework of the MHD theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order partial differential equation for the poloidal magnetic flux function along with a Bernoulli equation for the density identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the conductivities σ_allel and σ_⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic conductivity and parallel flows (see [1]) the equilibrium is compatible with non-vanishing poloidal currents. For incompressible flows exact solutions of the above mentioned set of equations can be constructed with σ_allel and σ_⊥ profiles compatible with collisional conductivity profiles, i.e. profiles peaked close to the magnetic axis, vanishing on the boundary and such that σ_allel> σ_⊥. In particular, an exact equilibrium describing a toroidal plasma of arbitrary aspect ratio being contained within a perfectly conducting boundary of rectangular cross-section and peaked toroidal current density profile vanishing on the boundary is further considered. For this equilibrium in the case of vanishing flows the difference σ_allel-σ_⊥ for the reversed field pinch scaling Bp Bt (where Bp and Bt are the poloidal and toroidal magnetic field components) is nearly two times larger than that for the tokamak scaling B_p 0.1 B_t. [1] G. N. Throumoulopoulos, H. Tasso, J. Plasma Physics 64, 601 (2000).

  12. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  13. Relative distribution of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  14. Mantle Flow in the Western United States Constrained by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Niday, W.; Humphreys, E.

    2017-12-01

    Shear wave splitting, caused by the lattice preferred orientation (LPO) of olivine crystals under shear deformation, provide a useful constraint on numerical models of mantle flow. Although it is sometimes assumed that shear wave splitting fast directions correspond with mantle flow directions, this is only true in simple shear flows that do not vary strongly with space or time. Observed shear wave splitting in the western United States is complex and inconsistent with simple shear driven by North American and Pacific plate motion, suggesting that the effects of time-dependent subduction history and spatial heterogeneity are important. Liu and Stegman (2011) reproduce the pattern of fast seismic anomalies below the western US from Farallon subduction history, and Chaparro and Stegman (2017) reproduce the circular anisotropy field below the Great Basin. We extend this to consider anisotropic structure outside the Great Basin and evaluate the density and viscosity of seismic anomalies such as slabs and Yellowstone. We use the mantle convection code ASPECT to simulate 3D buoyancy-driven flow in the mantle below the western US, and predict LPO using the modeled flow fields. We present results from a suite of models varying the sub-lithospheric structures of the western US and constraints on density and viscosity variations in the upper mantle.

  15. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  16. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine efficiency. However negative angle of attack decreases when inlet swirl is anti-clockwise and efficiency of low pressure turbine can be increased by 3% compared to inlet condition of clockwise swirl. Consequently flow simulation and analysis are able to aid in figuring out interaction mechanism of turbine system and optimizing turbine system design.

  17. Plasma Properties of Microwave Produced Plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Edwards, W. F.; Held, Eric

    2011-10-01

    We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.

  18. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less

  19. Low Dimensional Study of a Supersonic Multi-Stream Jet Flow

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Berry, Matthew; Aycock-Rizzo, Halley; Glauser, Mark; Lewalle, Jacques

    2017-11-01

    In this study, the near field of a two stream supersonic jet flow is examined using low dimensional tools. The flow issues from a multi-stream nozzle as described in A near-field investigation of a supersonic, multi-stream jet: locating turbulence mechanisms through velocity and density measurements by Magstadt et al., with the bulk flow Mach number, M1, being 1.6, and the second stream Mach number, M2, reaching the sonic condition. The flow field is visualized using Particle Image Velocimetry (PIV), with frames captured at a rate of 4Hz. Time-resolved pressure measurements are made just aft of the nozzle exit, as well as in the far-field, 86.6 nozzle hydraulic diameters away from the exit plane. The methodologies used in the analysis of this flow include Proper Orthogonal Decomposition (POD), and the continuous wavelet transform. The results from this ``no deck'' case are then compared to those found in the study conducted by Berry et al. From this comparison, we draw conclusions about the effects of the presence of an aft deck on the low dimensional flow description, and near field spectral content. Supported by AFOSR Grant FA9550-15-1-0435, and AFRL, through an SBIR Grant with Spectral Energies, LLC.

  20. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  1. Variability in sublingual microvessel density and flow measurements in healthy volunteers.

    PubMed

    Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C

    2009-02-01

    As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.

  2. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  3. Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field

    PubMed Central

    Wang, Shunqiang; Zhou, Yihua; Tan, Jifu; Xu, Jiang; Yang, Jie; Liu, Yaling

    2014-01-01

    A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs’ targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system. PMID:24653546

  4. Free flux flow: a probe into the field dependence of vortex core size in clean single crystals

    NASA Astrophysics Data System (ADS)

    Gapud, A. A.; Gafarov, O.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2012-02-01

    The free-flux-flow (FFF) phase has been attained successfully in a number of clean, weak-pinning, low-anisotropy, low-Tc, single-crystal samples as a unique probe into type II superconductivity that is independent of composition. The ``clean'' quality of the samples have been confirmed by reversible magnetization, high residual resistivity ratio, and low critical current densities Jc with a re-entrant ``peak'' effect in Jc(H) just below the critical field Hc2. The necessity of high current densities presented technical challenges that had been successfully addressed, and FFF is confirmed by a field-dependent ohmic state that is also well below the normal state. In these studies, the FFF resistivity ρf(H) has been measured in order to observe the field-dependent core size of the quantized magnetic flux vortices as modeled recently by Kogan and Zelezhina (KZ) who predicted a specific deviation from Bardeen-Stephen flux flow, dependent on normalized temperature and scattering parameter λ. The compounds studied are: V3Si, LuNi2B2C, and NbSe2, and results have shown consistency with the KZ model. Other applications of this method could also be used to probe normal-state properties, especially for the new iron arsenides, as will be discussed.

  5. Postfragmentation density function for bacterial aggregates in laminar flow.

    PubMed

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M

    2011-04-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society

  6. Sound Sources Identified in High-Speed Jets by Correlating Flow Density Fluctuations With Far-Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2003-01-01

    Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.

  7. High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels.

    PubMed

    Kim, Daejoong; Darve, Eric

    2009-02-01

    We report molecular dynamics simulation results of high-ionic-strength electroosmotic flows inside uncharged nanochannels. The possibility of this unusual electrokinetic phenomenon has been discussed by Dukhin et al. [A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21 (2005) 9990]. Our computed velocity profiles clearly indicate the presence of a net flow with a maximum velocity around 2 m/s. We found the apparent zeta potential to be -29.7+/-6.8 mV, using the Helmholtz-Smoluchowski relation and the measured mean velocity. This value is comparable to experimentally measured values in Dukhin et al. and references therein. We also investigate the orientations of water molecules in response to an electric field by computing polarization density. Water molecules in the bulk region are oriented along the direction of the external electric field, while their near-wall orientation shows oscillations. The computation of three-dimensional density distributions of sodium and chloride ions around each individual water molecule show that chloride ions tend to concentrate near a water molecule, whereas sodium ions are diffusely distributed.

  8. Macromolecular geometries determined with field-flow fractionation and their impact on the overlap concentration.

    PubMed

    Rojas, Cinthia Carola; Wahlund, Karl-Gustav; Bergenståhl, Björn; Nilsson, Lars

    2008-06-01

    In this paper we aim to understand the size/conformation relationship in waxy barley starch, a polydisperse and ultrahigh molar mass biomacromolecule. Characterizations are performed with asymmetrical flow field-flow fractionation (AsFlFFF). Furthermore, we study the effect of homogenization on the molar mass, rms radius (r rms) and hydrodynamic radius (r h). For the untreated sample, the macromolecules are elongated objects with low apparent density. As a result of homogenization, molar mass, and r rms decrease, while r h remains unaffected. The process also induces an increase, and scaling with size, of apparent density as well as changes in conformation, represented qualitatively by r rms/ r h. Finally, results from AsFlFFF are compared with viscosimetry and discussed in terms of concentration and close-packing in relation to macromolecular shape and conformation. Hence, the results show that AsFlFFF and our novel methodology enable the determination of several physical properties with high relevance for the solution behavior of polydisperse macromolecules.

  9. Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man

    2015-10-01

    The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.

  10. Analytical and numerical study of the transverse Kelvin-Helmholtz instability in tokamak edge plasmas

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...

    2016-04-11

    Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less

  11. Extended MHD modeling of tearing-driven magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Sovinec, C. R.

    2017-05-01

    Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.

  12. Investigation of Density Fluctuations in Supersonic Free Jets and Correlation with Generated Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2000-01-01

    The air density fluctuations in the plumes of fully-expanded, unheated free jets were investigated experimentally using a Rayleigh scattering based technique. The point measuring technique used a continuous wave laser, fiber-optic transmission and photon counting electronics. The radial and centerline profiles of time-averaged density and root-mean-square density fluctuation provided a comparative description of jet growth. To measure density fluctuation spectra a two-Photomultiplier tube technique was used. Crosscorrelation between the two PMT signals significantly reduced electronic shot noise contribution. Turbulent density fluctuations occurring up to a Strouhal number (Sr) of 2.5 were resolved. A remarkable feature of density spectra, obtained from the same locations of jets in 0.5< M<1.5 range, is a constant Strouhal frequency for peak fluctuations. A detailed survey at Mach numbers M = 0.95, 1.4 and 1.8 showed that, in general, distribution of various Strouhal frequency fluctuations remained similar for the three jets. In spite of the similarity in the flow fluctuation the noise characteristics were found to be significantly different. Spark schlieren photographs and near field microphone measurements confirmed that the eddy Mach wave radiation was present in Mach 1.8 jet, and was absent in Mach 0.95 jet. To measure correlation between the flow and the far field sound pressure fluctuations, a microphone was kept at a distance of 50 diameters, 30 deg. to the flow direction, and the laser probe volume was moved from point to point in the flow. The density fluctuations in the peripheral shear layer of Mach 1.8 jet showed significant correlation up to the measurement limit of Sr = 2.5, while for Mach 0.95 jet no correlation was measured. Along the centerline measurable correlation was found from the end of the potential core and at the low frequency range (Sr less than 0.5). Usually the normalized correlation values increased with an increase of the jet Mach number. The experimental data point out eddy Mach waves as a strong source of sound generation in supersonic jets and fail to locate the primary noise mechanism in subsonic jets.

  13. Topology of two-dimensional turbulent flows of dust and gas

    NASA Astrophysics Data System (ADS)

    Mitra, Dhrubaditya; Perlekar, Prasad

    2018-04-01

    We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, St<1 . We solve for the particles using both a Lagrangian and an Eulerian approach (with a shock-capturing scheme). In the latter, the particles are described by a dust-density field and a dust-velocity field. We find the following: the dust-density field in our Eulerian simulations has the same correlation dimension d2 as obtained from the clustering of particles in the Lagrangian simulations for St<1 ; the cumulative probability distribution function of the dust density coarse grained over a scale r , in the inertial range, has a left tail with a power-law falloff indicating the presence of voids; the energy spectrum of the dust velocity has a power-law range with an exponent that is the same as the gas-velocity spectrum except at very high Fourier modes; the compressibility of the dust-velocity field is proportional to St2. We quantify the topological properties of the dust velocity and the gas velocity through their gradient matrices, called A and B , respectively. Our DNS confirms that the statistics of topological properties of B are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust density. We use this correspondence to study the statistics of topological properties of A in the Lagrangian frame from our Eulerian simulations by calculating density-weighted probability distribution functions. We further find that in the Lagrangian frame, the mean value of the trace of A is negative and its magnitude increases with St approximately as exp(-C /St) with a constant C ≈0.1 . The statistical distribution of different topological structures that appear in the dust flow is different in Eulerian and Lagrangian (density-weighted Eulerian) cases, particularly for St close to unity. In both of these cases, for small St the topological structures have close to zero divergence and are either vortical (elliptic) or strain dominated (hyperbolic, saddle). As St increases, the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the Lagrangian (density-weighted Eulerian) case has less outward spirals and more converging saddles. Inward spirals are the least probable topological structures in both cases.

  14. Computer simulation of supersonic rarefied gas flow in the transition region, about a spherical probe; a Monte Carlo approach with application to rocket-borne ion probe experiments

    NASA Technical Reports Server (NTRS)

    Horton, B. E.; Bowhill, S. A.

    1971-01-01

    This report describes a Monte Carlo simulation of transition flow around a sphere. Conditions for the simulation correspond to neutral monatomic molecules at two altitudes (70 and 75 km) in the D region of the ionosphere. Results are presented in the form of density contours, velocity vector plots and density, velocity and temperature profiles for the two altitudes. Contours and density profiles are related to independent Monte Carlo and experimental studies, and drag coefficients are calculated and compared with available experimental data. The small computer used is a PDP-15 with 16 K of core, and a typical run for 75 km requires five iterations, each taking five hours. The results are recorded on DECTAPE to be printed when required, and the program provides error estimates for any flow field parameter.

  15. Onset of density-driven instabilities in fractured aquifers

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  16. Modeling of the reactant conversion rate in a turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  17. Classical Hall Effect without Magnetic Field

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas; Tao, Chiao-Yu; Schuster, David; Nagel, Sidney

    We show that the sign and density of charge carriers in a material can be obtained without the presence of a magnetic field. This effect, analogous to the classical Hall effect, is due solely to the geometry of the current-carrying wire. When current flows, surface charges along the wire create small electric fields that direct the current to follow the path of the conductor. In a curved wire, the charge carriers must experience a centripetal force, which arises from an electric field perpendicular to the drift velocity. This electric field produces a potential difference between the sides of the wire that depends on the sign and density of the charge carriers. We experimentally investigate circuits made from superconductors or graphene to find evidence for this effect.

  18. Constant-concentration boundary condition: Lessons from the HYDROCOIN variable-density groundwater benchmark problem

    USGS Publications Warehouse

    Konikow, Leonard F.; Sanford, W.E.; Campbell, P.J.

    1997-01-01

    In a solute-transport model, if a constant-concentration boundary condition is applied at a node in an active flow field, a solute flux can occur by both advective and dispersive processes. The potential for advective release is demonstrated by reexamining the Hydrologic Code Intercomparison (HYDROCOIN) project case 5 problem, which represents a salt dome overlain by a shallow groundwater system. The resulting flow field includes significant salinity and fluid density variations. Several independent teams simulated this problem using finite difference or finite element numerical models. We applied a method-of-characteristics model (MOCDENSE). The previous numerical implementations by HYDROCOIN teams of a constant-concentration boundary to represent salt release by lateral dispersion only (as stipulated in the original problem definition) was flawed because this boundary condition allows the release of salt into the flow field by both dispersion and advection. When the constant-concentration boundary is modified to allow salt release by dispersion only, significantly less salt is released into the flow field. The calculated brine distribution for case 5 depends very little on which numerical model is used, as long as the selected model is solving the proper equations. Instead, the accuracy of the solution depends strongly on the proper conceptualization of the problem, including the detailed design of the constant-concentration boundary condition. The importance and sensitivity to the manner of specification of this boundary does not appear to have been recognized previously in the analysis of this problem.

  19. Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties.

    PubMed

    Li, Weiyang; Liang, Zheng; Lu, Zhenda; Tao, Xinyong; Liu, Kai; Yao, Hongbin; Cui, Yi

    2015-11-11

    Large-scale energy storage systems are of critical importance for electric grids, especially with the rapid increasing deployment of intermittent renewable energy sources such as wind and solar. New cost-effective systems that can deliver high energy density and efficiency for such storage often involve the flow of redox molecules and particles. Enhancing the mass and electron transport is critical for efficient battery operation in these systems. Herein, we report the design and characterization of a novel proof-of-concept magnetic field-controlled flow battery using lithium metal-polysulfide semiliquid battery as an example. A biphasic magnetic solution containing lithium polysulfide and magnetic nanoparticles is used as catholyte, and lithium metal is used as anode. The catholyte is composed of two phases of polysulfide with different concentrations, in which most of the polysulfide molecules and the superparamagnetic iron oxide nanoparticles can be extracted together to form a high-concentration polysulfide phase, in close contact with the current collector under the influence of applied magnetic field. This unique feature can help to maximize the utilization of the polysulfide and minimize the polysulfide shuttle effect, contributing to enhanced energy density and Coulombic efficiency. Additionally, owing to the effect of the superparamagnetic nanoparticles, the concentrated polysulfide phase shows the behavior of a ferrofluid that is flowable with the control of magnetic field, which can be used for a hybrid flow battery without the employment of any pumps. Our innovative design provides new insight for a broad range of flow battery chemistries and systems.

  20. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.

  1. The down canyon evolution of submarine sediment density flows

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  2. A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification

    NASA Technical Reports Server (NTRS)

    Sinha, S. K.; Sundararajan, T.; Garg, V. K.

    1993-01-01

    A generalized anisotropic porous medium approach is developed for modelling the flow, heat and mass transport processes during binary mixture solidification. Transient predictions are obtained using FEM, coupled with an implicit time-marching scheme, for solidification inside a two-dimensional rectangular enclosure. A parametric study focusing attention on the effects of solutal buoyancy and thermal buoyancy is presented. It is observed that three parameters, namely the thermal Rayleigh number, the solutal Rayleigh number, and the relative density change parameter, significantly alter the flow fields in the liquid and the mushy regions. Depending upon the nature of these flow fields, the solute enrichment caused by macrosegregation may occur in the top or the bottom region of the enclosure.

  3. Early-time dynamics of gluon fields in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Chen, Guangyao; Fries, Rainer J.; Kapusta, Joseph I.; Li, Yang

    2015-12-01

    Nuclei colliding at very high energy create a strong, quasiclassical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromoelectric and chromomagnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves as pL/pT=-[1 -3/2 a (Qτ ) 2] /[1 -1/a (Qτ ) 2] +O (Qτ ) 4 , where τ is the longitudinal proper time, Q is related to the saturation scales Qs of the two nuclei, and a =ln(Q2/m̂2) with m ̂ a scale to be defined later. Our results are generally applicable if τ ≲1 /Q . As already discussed in a previous paper, the transverse energy flow Si of the gluon field exhibits hydrodynamiclike contributions that follow transverse gradients of the energy density ∇iɛ . In addition, a rapidity-odd energy flow also emerges from the non-Abelian analog of Gauss' law and generates nonvanishing angular momentum of the field. We discuss the space-time picture that emerges from our analysis and its implications for observables in heavy-ion collisions.

  4. Comparison of free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Gapud, Albert A.; Moraes, Sunhee; Thompson, James R.; Christen, David K.; Reyes, Arneil P.

    2011-03-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3 Si are presented. Magnetization and transport data confirm the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which also has higher critical current density Jc (H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf (H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predicts a deviation from BS. In this study, ρf (H) is confirmed to be consistent with predictions of KZ, as will be discussed. Funded by Research Corporation and the National Science Foundation.

  5. Thrust and efficiency model for electron-driven magnetic nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Justin M.; Choueiri, Edgar Y.

    2013-10-15

    A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is foundmore » that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.« less

  6. Refraction of Sound Emitted Near Solid Boundaries from a Sheared Jet

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Oyedrian, Ayo A.; Krejsa, Eugene A.

    1998-01-01

    A mathematical model is developed to describe the sound emitted from an arbitrary point within a turbulent flow near solid boundaries. A unidirectional, transversely sheared mean flow is assumed, and the cross-section of the cold jet is of arbitrary shape. The analysis begins with Lilley's formulation of aerodynamic noise and, depending upon the specific model of turbulence used, leads via Fourier analysis to an expression for the spectral density of the intensity of the far-field sound emitted from a unit volume of turbulence. The expressions require solution of a reduced Green's function of Lilley's equation as well as certain moving axis velocity correlations of the turbulence. Integration over the entire flow field is required in order to predict the sound emitted by the complete flow. Calculations are presented for sound emitted from a plugflow jet exiting a semi-infinite flat duct. Polar plots of the far-field directivity show the dependence upon frequency and source position within the duct. Certain model problems are suggested to investigate the effect of duct termination, duct geometry, and mean flow shear upon the far-field sound.

  7. An experimental investigation of a three dimensional wall jet. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.

    1977-01-01

    One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).

  8. Aerobrake plasmadynamics - Macroscopic effects

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1990-01-01

    The flow around an aerobraking spacecraft (such as the Aeroassist Flight Experiment reentry vehicle) will contain a region of partially ionized gas, that is, a plasma. It is shown here by numerical simulation that macroscopic plasmadynamic effects (which are not included in standard aerothermodynamic simulations) will have a noticeable effect on the reentry flow field. In particular, there are thermoelectric phenomena which can have a major influence in flow dynamics at the front of an ionizing bowshock. These thermoelectric phenomena arise because of the presence of large density and temperature gradients at the front of a reentry bowshock, and they include strong local magnetic fields, electric currents, and ohmic heating. One important result is the dramatic increase in temperature (over the case where plasma effects are neglected) at a reentry shock front; the implication is that macroscopic plasmadynamic effects can no longer be neglected in simulations of hypersonic reentry flow fields.

  9. Laser-Raman/Rayleigh Flow Diagnostic Techniques Applied to Subsonic Flow

    DTIC Science & Technology

    1980-10-01

    the problem of interpreting test results. Advances in electronics and laser technology have made it possible to perform measurements (which formerly...will increase with increasing gas density. It was the latter quality that made the prospect for successful subsonic flow-field measurements very...elements in the optical system were made of fused silica. An aperture was located at the entrance slit of the spectrometer and adjusted so that a 0.25-in

  10. Numerical Study of High Speed Viscous Flows.

    DTIC Science & Technology

    1986-12-01

    freestream Renolds number p density (7 arbitrary saftey factor used in equation (48) T local temperature t time shear stress u velocity component tangent...field, where the undisturbed flow conditions are used. The third boundary condition is applied far downstream of the body where the flow is weakly...8217(xy) (24) where and 𔄁 are defined in the List of Symbols. When the above transformation is applied to equation (16) the following equation

  11. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  12. Tidal variations of flow convergence, shear, and stratification at the Rio de la Plata estuary turbidity front

    NASA Astrophysics Data System (ADS)

    FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.

    2008-08-01

    Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.

  13. Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2008-01-01

    A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  14. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    NASA Astrophysics Data System (ADS)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  15. Four Point Measurements of the Foreshock

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Omidi, N.; Angelopoulos, V.

    2008-01-01

    Hybrid code numerical simulations accurately predict the properties of the Earth's foreshock, a region populated by solar wind particles heated and reflected by their interaction with the bow shock. The thermal pressures associated with the reflected population suffice to substantially modify the oncoming solar wind, substantially reducing densities, velocities, and magnetic field strengths, but enhance temperatures. Enhanced thermal pressures cause the foreshock to expand at the expense of the ambient solar wind, creating a boundary that extends approx.10 RE upstream which is marked by enhanced densities and magnetic field strengths, and flows deflected away from the foreshock. We present a case study of Cluster plasma and magnetic field observations of this boundary.

  16. Schlieren System and method for moving objects

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1995-01-01

    A system and method are provided for recording density changes in a flow field surrounding a moving object. A mask having an aperture for regulating the passage of images is placed in front of an image recording medium. An optical system is placed in front of the mask. A transition having a light field-of-view and a dark field-of-view is located beyond the test object. The optical system focuses an image of the transition at the mask such that the aperture causes a band of light to be defined on the image recording medium. The optical system further focuses an image of the object through the aperture of the mask so that the image of the object appears on the image recording medium. Relative motion is minimized between the mask and the transition. Relative motion is also minimized between the image recording medium and the image of the object. In this way, the image of the object and density changes in a flow field surrounding the object are recorded on the image recording medium when the object crosses the transition in front of the optical system.

  17. Simulation study of overtaking in pedestrian flow using floor field cellular automaton model

    NASA Astrophysics Data System (ADS)

    Fu, Zhijian; Xia, Liang; Yang, Hongtai; Liu, Xiaobo; Ma, Jian; Luo, Lin; Yang, Lizhong; Chen, Junmin

    Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.

  18. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  19. Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence.

    PubMed

    Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C

    2004-06-08

    Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.

  20. Control of ion gyroscale fluctuations via electrostatic biasing and sheared E×B flow in the C-2 field reversed configuration

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.

    2016-03-01

    Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.

  1. Partially coherent axiconic surface plasmon polariton fields

    NASA Astrophysics Data System (ADS)

    Chen, Yahong; Norrman, Andreas; Ponomarenko, Sergey A.; Friberg, Ari T.

    2018-04-01

    We introduce a class of structured polychromatic surface electromagnetic fields, reminiscent of conventional optical axicon fields, through a judicious superposition of partially correlated surface plasmon polaritons. We show that such partially coherent axiconic surface plasmon polariton fields are structurally stable and statistically highly versatile with regard to spectral density, polarization state, energy flow, and degree of coherence. These fields can be created by plasmon coherence engineering and may prove instrumental broadly in surface physics and in various nanophotonics applications.

  2. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  3. Experimental Determination of Bed Conditions in Concentrated Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Winner, A.; Ferrier, K.; Dufek, J.

    2016-12-01

    Pyroclastic density currents (PDCs) are ground-hugging mixtures of hot gas and rock that can reach temperatures > 800 oC and speeds of 200 m/s. These flows are capable of eroding and entraining the underlying bed material into the flow, which can strongly influence flow momentum, runout distance, and hazards associated with PDCs. However, the mechanism of erosion remains poorly constrained, with proposed mechanisms including under-pressure following the head of the fluidized current, force chain enhanced stresses at the bed, and discrete particle impacts and friction. The interactions between PDCs and the bed have been difficult to observe in the field, as their infrequent occurrence, opacity, and hostile environment make real-time measurement difficult. This study is aimed at obtaining a better understanding of the interactions between PDCs and the bed through a quantitative analysis of bed forces. Our experimental apparatus consists of a rotating cylindrical flume of radius 22 cm, within which gas-rich granular material flows along the interior of the cylinder as it rotates. By using a rotating cylinder, we are able to simulate long-duration flows, allowing us to observe impact forces at the bed over timescales comparable to the flow duration of natural PDCs. To measure the distribution and evolution of forces imparted by the flow on the bed, we constructed a cylindrical insert with a non-erodible bed in which we embedded force sensor arrays parallel and perpendicular to the direction of flow. To measure the forces felt by the particles in the flow, we added "smart particles" 25 to 50 mm in diameter to the flow. Each smart particle contains a three-axis accelerometer and a micro SD card enclosed in a spherical plastic casing, and possesses a density similar to that of the pumice in the experimental flow. Each smart particle also contains a three-axis magnetometer which permits its location to be tracked by means of a unique applied magnetic field. Ultimately, data from these experiments will provide a robust basis for describing the distribution of basal forces given a set of macroscopic flow properties such as grain size, particle concentration, shear rate, and particle elasticity.

  4. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.

  5. Mesoscale density variability in the mesosphere and thermosphere: Effects of vertical flow accelerations

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.

  6. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  7. Evolution of the Orszag-Tang vortex system in a compressible medium. I - Initial average subsonic flow

    NASA Technical Reports Server (NTRS)

    Dahlburg, R. B.; Picone, J. M.

    1989-01-01

    The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.

  8. Evolution of the Orszag--Tang vortex system in a compressible medium. I. Initial average subsonic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, R.B.; Picone, J.M.

    In this paper the results of fully compressible, Fourier collocation, numerical simulations of the Orszag--Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2--0.6. Thesemore » values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less

  9. Numerical investigations in the backflow region of a vacuum plume

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1992-01-01

    The objective of this research is to numerically simulate the vacuum plume flow field in the backflow region of a low thrust nozzle exit. In space applications, the low thrust nozzles are used as a propulsion device to control the vehicle attitude, or to maneuver the vehicle flight trajectory. When the spacecraft is deployed in the orbit or cruising in a planetary mission, the vacuum plume is created behind the nozzle exit (so called backflow region), by the exhausting gas of the propulsion system or by venting internal gas to the extremely low density ambient. The low density vacuum plume flow regions cover the continuum, transitional and free molecular flow regimes, which were characterized by the Knudsen number K(sub n), K(sub n) = lambda(sub m)/L where lambda(sub m) is the mean free path of the gas molecules and L is the characteristic length of the flow field. The transitional regime is defined by 0.01 is less than or equal to K(sub n) is less than or equal to 10. The conventional Navier-Stokes equations are valid only in the flow region close to the nozzle exit since the validity of the Navier-Stokes equations fails asymptotically as the Knudsen number increases. The vacuum plume characteristics prediction is primarily a problem of transitional aerodynamics.

  10. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    NASA Astrophysics Data System (ADS)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.

  11. Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.

    1999-01-01

    Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the north reflects the southern flank of a structural dome that led to the Pavant Range homocline and whose southern edge lies along the Clear Creek downwarp.

  12. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  13. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  14. Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge

    NASA Astrophysics Data System (ADS)

    Guan, Yifei; Vaddi, Ravi Sankar; Aliseda, Alberto; Novosselov, Igor

    2018-04-01

    An electrohydrodynamic (EHD) flow in a point-to-ring corona configuration is investigated experimentally and via a multiphysics computational model. The model couples the ion transport equation and the Navier-Stokes equations (NSE) to solve for the spatiotemporal distribution of electric field, flow field, and charge density. The numerical simulation results are validated against experimental measurements of the cathode voltage, ion concentration, and velocity profiles. The maximum flow velocity is at the centerline, and it decays rapidly with radial distance due to the viscous and electric forces acting on the partially ionized gas. To understand this coupling, a nondimensional parameter, X , is formulated as the ratio of the local electric force to the inertial term in the NSE. In the region of X ≥1 , the electric force dominates the flow dynamics, while in the X ≪1 region, the balance of viscous and inertial terms yields traditional pipe flow characteristics. This approach expands on the analytical model of Guan et al. by adding a description of the developing flow region. The approach allows the model to be used for the entire EHD domain, providing insights into the near-field flow in the corona region.

  15. Nature of convection-stabilized dc arcs in dual-flow nozzle geometry. I - The cold flow field and dc arc characteristics. II - Optical diagnostics and theory

    NASA Astrophysics Data System (ADS)

    Serbetci, Ilter; Nagamatsu, H. T.

    1990-02-01

    Steady-state low-current air arcs in a dual-flow nozzle system are studied experimentally. The cold flow field with no arc is investigated using a 12.7-mm diameter dual-flow nozzle in a steady-flow facility. Mach number and mass flux distributions are determined for various nozzle-pressure ratios and nozzle-gap spacing. It is found that the shock waves in the converging-diverging nozzles result in a decrease in overal resistance by about 15 percent. Also, Schlieren and differential interferometry techniques are used to visualize the density gradients within the arc plasma and thermal mantle. Both optical techniques reveal a laminar arc structure for a reservoir pressure of 1 atm at various current levels. Experimentally determined axial static pressure and cold-flow mass flux rate distributions and a channel-flow model with constant arc temperatre are used to solve the energy integral for the arc radius as a function of axial distance. The arc electric field strength, voltage, resistance, and power are determined with Ohm's law and the total heat transfer is related to arc power.

  16. Towards an understanding of flows in avalanche transport phenomena

    NASA Astrophysics Data System (ADS)

    Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.

    2017-10-01

    Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  17. Probability density function of a puff dispersing from the wall of a turbulent channel

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2015-11-01

    Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.

  18. Study on antidiabetic activity of wheat and barley starch using asymmetrical flow field-flow fractionation coupled with multiangle light scattering.

    PubMed

    Dou, Haiyang; Zhou, Bing; Jang, Hae-Dong; Lee, Seungho

    2014-05-02

    The ability of asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and refractive index detector (RI) (AF4-MALS-RI) for monitoring of change in molecular conformation of wheat and barley starch during germination process was evaluated. AF4 provides separation of starch molecules based on their hydrodynamic sizes, and MALS yields the molar mass and molecular size (radius of gyration, Rg). In vitro and in vivo anti-hyperglycemic effect of germinated wheat and barley was studied. The relationship between antidiabetic activity and molecular conformation was, for the first time, investigated. The ratio of Rg to the hydrodynamic radius (Rh) and the apparent density were proven to be important parameters as they offer an insight into molecular conformation. Results showed that, when geminated, the apparent density and the antidiabetic activity of barley were significantly increased, suggesting germination makes the molecules more compact which could contribute to enhancement of their antidiabetic activity. The information obtained by AF4-MALS-RI is valuable for understanding of germination mechanism, and thus for developing functional foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spatial electron density and electric field strength measurements in microwave cavity experiments

    NASA Technical Reports Server (NTRS)

    Peters, M.; Rogers, J.; Whitehair, S.; Asmussen, J.; Kerber, R.

    1984-01-01

    Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub 3 calculated from measured plasma conductivity. Additional measurements of n sub 3 as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.

  20. Flow stagnation at Enceladus: The effects of neutral gas and charged dust

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.

    2012-06-01

    Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.

  1. Focused Schlieren flow visualization studies of multiple venturi fuel injectors in a high pressure combustor

    NASA Technical Reports Server (NTRS)

    Chun, K. S.; Locke, R. J.; Lee, C. M.; Ratvasky, W. J.

    1994-01-01

    Multiple venturi fuel injectors were used to obtain uniform fuel distributions, better atomization and vaporization in the premixing/prevaporizing section of a lean premixed/prevaporized flame tube combustor. A focused Schlieren system was used to investigate the fuel/air mixing effectiveness of various fuel injection configurations. The Schlieren system was focused to a plane within the flow field of a test section equipped with optical windows. The focused image plane was parallel to the axial direction of the flow and normal to the optical axis. Images from that focused plane, formed by refracted light due to density gradients within the flow field, were filmed with a high-speed movie camera at framing rates of 8,000 frames per second (fps). Three fuel injection concepts were investigated by taking high-speed movies of the mixture flows at various operating conditions. The inlet air temperature was varied from 600 F to 1000 F, and inlet pressures from 80 psia to 150 psia. Jet-A fuel was used typically at an equivalence ratio of 0.5. The intensity variations of the digitized Schlieren images were analytically correlated to spatial density gradients of the mixture flows. Qualitative measurements for degree of mixedness, intensity of mixing, and mixing completion time are shown. Various mixing performance patterns are presented with different configurations of fuel injection points and operating conditions.

  2. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  3. Electric field effects on a near-critical fluid in microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.

    1994-01-01

    The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.

  4. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  5. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the inertial-range energy dissipation fields of experimental turbulent flows at Re(sub lambda) = 110 and 1100. Based on this agreement, and the expectation that both dissipation and particle concentration are controlled by the same cascade process, we hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of the spatially averaged statistical properties of preferentially concentrated particles in higher Re(sub lambda) turbulent flows.

  6. Fatigue effect on phase transition of pedestrian movement: experiment and simulation study

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fu, Zhijian; Zhou, Xiaodong; Zhu, Kongjin; Yang, Hongtai; Yang, Lizhong

    2016-10-01

    How to model pedestrian movement is an intriguing problem in the area of statistical physics. As a common phenomenon of pedestrian movement, fatigue has a significant negative effect on pedestrian movement, especially when pedestrians move or run with heavy luggage, rescue the wounded in disaster, climb stairs and etc. According to the field observations and previous researches, fatigue coefficient is defined as the decrease of desired velocity in this study. However, previous researches lacked quantitative analysis of the effect of fatigue on pedestrian speed. It has been a great challenge to study the effect of fatigue on pedestrian flow, since pedestrians of heterogeneous walking abilities and the change of pedestrians’ moving properties need to be taken into consideration. Thus, at first, a series of pedestrian experiments, under three different conditions, were conducted to formulate the empirical relationship among fatigue, average free velocity, and walking distance. Then the empirical formulation of pedestrian fatigue was imported into the multi-velocity field floor cellular automata (FFCA) model for following pedestrian dynamics analysis. The velocity ratio was adjusted dynamically to adapt the change of pedestrians’ velocity due to fatigue. The fatigue, entrance flow rate and pedestrian’s initial desired velocity are found to have significant effects on the pedestrian flow. The space-time distributions of pedestrian density and velocity were explored in detail, with phase transition analyses from a free flow phase to a congestion phase. Additionally, the ‘density wave’ in the system can be observed if a certain ratio of burdened pedestrians lay in the high density region. The envelope of the ‘density wave’ reaches its maximum amplitude around the entrance position, and gradually diminishes away from the entrance.

  7. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Mitchell, Travis; Leonardi, Christopher; Bolster, Diogo

    2017-11-01

    Based on phase-field theory, we introduce a robust lattice-Boltzmann equation for modeling immiscible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying the method proposed by Zu and He [Phys. Rev. E 87, 043301 (2013), 10.1103/PhysRevE.87.043301] in such a way as to improve efficiency and numerical stability. In particular, we employ a different interface-tracking equation based on the so-called conservative phase-field model, a simplified equilibrium distribution that decouples pressure and velocity calculations, and a local scheme based on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two distribution functions for interface tracking and recovery of hydrodynamic properties, the only nonlocal variable in the proposed model is the phase field. Moreover, within our framework there is no need to use biased or mixed difference stencils for numerical stability and accuracy at high density ratios. This not only simplifies the implementation and efficiency of the model, but also leads to a model that is better suited to parallel implementation on distributed-memory machines. Several benchmark cases are considered to assess the efficacy of the proposed model, including the layered Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble in a duct. The numerical results are in good agreement with available numerical and experimental data.

  8. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  9. Magnetohydrodynamics Nanofluid Flow Containing Gyrotactic Microorganisms Propagating Over a Stretching Surface by Successive Taylor Series Linearization Method

    NASA Astrophysics Data System (ADS)

    Shahid, A.; Zhou, Z.; Bhatti, M. M.; Tripathi, D.

    2018-03-01

    Nanofluid dynamics with magnetohydrodynamics has tremendously contributed in industrial applications recently since presence of nanoparticle in base fluids enhances the specific chemical and physical properties. Owing to the relevance of nanofluid dynamics, we analyze the nanofluid flow in the presence of gyrotactic microorganism and magnetohydrodynamics through a stretching/shrinking plate. The impacts of chemical reaction and thermal radiation on flow characteristics are also studied. To simplify the governing equations of microorganisms, velocity, concentration and temperature, the similarity transformations are employed. The couple governing equations are numerically solved using Successive Taylor Series Linearization Method (STSLM). The velocity profile, motile microorganism density profile, concentration profile, temperature profile as well as Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are discussed using tables and graphs against all the sundry parameters. A numerical comparison is also given for Nusselt number, Sherwood number, skin friction, and density number of motile microorganisms with previously published results to validate the present model. The results show that Nusselt number, Sherwood number and density number diminish with increasing the magnetic field effects.

  10. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  11. Density-driven transport process following the seawater indundation of the freshwater lens of the island of Baltrum, Germany

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Houben, Georg J.

    2017-04-01

    Due to the growing vulnerability of low-lying coastal zones to flooding by seawater, there is a need for more studies of the impact of inundations on fresh groundwater resources. We present previously unpublished data collected on the island of Baltrum following a devastating storm in 1962, which uniquely show the impact of seawater inundation on a freshwater lens in a siliciclastic aquifer. The field data show that elevated salinities persisted for at least 4 years at the measurement depths of 4 and 6 m, and at least for 6 years at greater depths. Numerical models confirm the importance of density-driven salt fingering. Models that did not consider density effects failed to simulate the observed breakthrough curves. Transient recharge, model dimension and lateral flow modify the details of the simulation results, but in all models density-driven flow dominates the overall system behaviour. The sequestration of intruded seawater into the deeper parts of the flow system, prolongs recovery and enhances the risk of upconing when pumping is resumed too early.

  12. An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleimann, Jens; Fichtner, Horst; Röken, Christian, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de

    A previously published analytical magnetohydrodynamic model for the local interstellar magnetic field in the vicinity of the heliopause (Röken et al. 2015) is extended from incompressible to compressible, yet predominantly subsonic flow, considering both isothermal and adiabatic equations of state. Exact expressions and suitable approximations for the density and the flow velocity are derived and discussed. In addition to the stationary induction equation, these expressions also satisfy the momentum balance equation along stream lines. The practical usefulness of the corresponding, still exact, analytical magnetic field solution is assessed by comparing it quantitatively to results from a fully self-consistent magnetohydrodynamic simulationmore » of the interstellar magnetic field draping around the heliopause.« less

  13. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  14. Evolution of mixing width induced by general Rayleigh-Taylor instability.

    PubMed

    Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin

    2016-06-01

    Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.

  15. Schlieren visualization of flow-field modification over an airfoil by near-surface gas-density perturbations generated by a nanosecond-pulse-driven plasma actuator

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takashima, Keisuke; Konno, Kaiki; Tanaka, Naoki; Nonomura, Taku; Kaneko, Toshiro; Ando, Akira; Asai, Keisuke

    2017-06-01

    Gas-density perturbations near an airfoil surface generated by a nanosecond dielectric-barrier-discharge plasma actuator (ns-DBDPA) are visualized using a high-speed Schlieren imaging method. Wind-tunnel experiments are conducted for a wind speed of 20 m s-1 with an NACA0015 airfoil whose chord length is 100 mm. The results show that the ns-DBDPA first generates a pressure wave and then stochastic perturbations of the gas density near the leading edge of the airfoil. Two structures with different characteristics are observed in the stochastic perturbations. One structure propagates along the boundary between the shear layer and the main flow at a speed close to that of the main flow. The other propagates more slowly on the surface of the airfoil and causes mixing between the main and shear flows. It is observed that these two heated structures interact with each other, resulting in a recovery in the negative pressure coefficient at the leading edge of the airfoil.

  16. Compressible cavitation with stochastic field method

    NASA Astrophysics Data System (ADS)

    Class, Andreas; Dumond, Julien

    2012-11-01

    Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.

  17. The role of the large scale convection electric field in erosion of the plasmasphere during moderate and strong storms

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.

    2015-12-01

    The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.

  18. Polar Plasma at Ganymede: Ionospheric outflow and discovery of the plasma sheet

    NASA Astrophysics Data System (ADS)

    Collinson, G.; Paterson, W.; Dorelli, J.; Glocer, A.; Sarantos, M.; Wilson, R. J.; Bard, C.

    2017-12-01

    On the 27th of June 1996, the NASA Galileo spacecraft made humanities first flyby of Jupiter's largest moon, Ganymede, discovering that it is unique to science in being the only moon known to possess an internally generated magnetic dynamo field. Although Galileo carried a plasma spectrometer, the Plasma Subsystem (PLS), converting its highly complex raw data stream into meaningful plasma moments (density, temperature, velocity) is extremely challenging, and was only ever performed for the second (out of six) Ganymede flybys. Resurrecting the original Galileo PLS data analysis software, we processed the raw PLS data from G01, and for the first time present the properties of plasmas encountered. Dense, cold ions were observed outflowing from the moon's north pole (presumed to be dominated by H+ from the icy surface), with more diffuse, warmer field-aligned outflows in the lobes. Dropouts in plasma density combined with velocity perturbations either side of this suggest that Galileo briefly crossed the cusps onto closed magnetic field lines. PLS observations show that upon entry into the magnetosphere, Galileo crossed through the plasma sheet, observing plasma flows consistent with reconnection-driven convection, highly energized 105 eV ions, and a reversal in the magnetic field. The densities of plasmas flowing upwards from Ganymede's ionosphere were higher on open "lobe" field lines than on closed field lines, suggesting that the ionospheric source of these plasmas may be denser at the poles, there may be additional acceleration mechanisms at play, or the balance of ions were outside the energy range of PLS.

  19. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  20. Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields.

    PubMed

    Wang, Wei; Takeda, Mitsuo

    2006-09-01

    A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.

  1. A new approach to the current distribution in field cooled superconductors disks

    NASA Astrophysics Data System (ADS)

    Bernstein, P.; Colson, L.; Dupont, L.; Noudem, J.

    2018-01-01

    The Bean model considers that in field cooled superconducting cylinders with diameter R, the currents flow over all the thickness of the superconductor along circular paths, the minimum radius of which depends on the magnetizing field and the critical current density. A combination of trapped field and levitation force measurements reported recently has shown, however, that in YBCO and MgB2 disks the current flows in fact in a restricted region with thickness t of the superconductor. In this contribution, from measurements carried out on two YBCO and two MgB2 disks, we report the dependence on temperature of t and J p, the current density in this region, as well as that of the field trapped by the samples. The results confirm that t decreases as the temperature decreases. This behaviour is ascribed to the conservation of the magnetic energy stored in the superconductor, which depends on the magnetizing source and not on the measurement temperature. As a consequence, t behaves as {{J}{{p}}}-2/3, while the field trapped along the axis of the cylinder behaves as {{J}{{p}}}1/3. These claims are substantiated by the experimental results. The possibility that J p is equal to the depairing current is investigated.

  2. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.

    2018-02-01

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n  =  30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are  ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.

  3. Investigations of turbulent scalar fields using probability density function approach

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1991-01-01

    Scalar fields undergoing random advection have attracted much attention from researchers in both the theoretical and practical sectors. Research interest spans from the study of the small scale structures of turbulent scalar fields to the modeling and simulations of turbulent reacting flows. The probability density function (PDF) method is an effective tool in the study of turbulent scalar fields, especially for those which involve chemical reactions. It has been argued that a one-point, joint PDF approach is the one to choose from among many simulation and closure methods for turbulent combustion and chemically reacting flows based on its practical feasibility in the foreseeable future for multiple reactants. Instead of the multi-point PDF, the joint PDF of a scalar and its gradient which represents the roles of both scalar and scalar diffusion is introduced. A proper closure model for the molecular diffusion term in the PDF equation is investigated. Another direction in this research is to study the mapping closure method that has been recently proposed to deal with the PDF's in turbulent fields. This method seems to have captured the physics correctly when applied to diffusion problems. However, if the turbulent stretching is included, the amplitude mapping has to be supplemented by either adjusting the parameters representing turbulent stretching at each time step or by introducing the coordinate mapping. This technique is still under development and seems to be quite promising. The final objective of this project is to understand some fundamental properties of the turbulent scalar fields and to develop practical numerical schemes that are capable of handling turbulent reacting flows.

  4. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  5. Self-synchronizing Schlieren photography and interferometry for the visualization of unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Kadlec, R.

    1979-01-01

    The use of self synchronizing stroboscopic Schlieren and laser interferometer systems to obtain quantitative space time measurements of distinguished flow surfaces, steakline patterns, and the density field of two dimensional flows that exhibit a periodic content was investigated. A large field single path stroboscopic Schlieren system was designed, constructed and successfully applied to visualize four periodic flows: near wake behind an oscillating airfoil; edge tone sound generation; 2-D planar wall jet; and axisymmetric pulsed sonic jet. This visualization technique provides an effective means of studying quasi-periodic flows in real time. The image on the viewing screen is a spatial signal average of the coherent periodic motion rather than a single realization, the high speed motion of a quasi-periodic flow can be reconstructed by recording photographs of the flow at different fixed time delays in one cycle. The preliminary design and construction of a self synchronizing stroboscopic laser interferometer with a modified Mach-Zehnder optical system is also reported.

  6. Experiments in free shear flows: Status and needs for the future

    NASA Technical Reports Server (NTRS)

    Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.

    1973-01-01

    Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.

  7. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeferacos, P.; Rigby, A.; Bott, A. F. A.

    Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Heremore » in this paper, we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.« less

  8. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

    DOE PAGES

    Tzeferacos, P.; Rigby, A.; Bott, A. F. A.; ...

    2018-02-09

    Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Heremore » in this paper, we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.« less

  9. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma.

    PubMed

    Tzeferacos, P; Rigby, A; Bott, A F A; Bell, A R; Bingham, R; Casner, A; Cattaneo, F; Churazov, E M; Emig, J; Fiuza, F; Forest, C B; Foster, J; Graziani, C; Katz, J; Koenig, M; Li, C-K; Meinecke, J; Petrasso, R; Park, H-S; Remington, B A; Ross, J S; Ryu, D; Ryutov, D; White, T G; Reville, B; Miniati, F; Schekochihin, A A; Lamb, D Q; Froula, D H; Gregori, G

    2018-02-09

    Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.

  10. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  11. Topological sound in active-liquid metamaterials

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; van Zuiden, Benjamin C.; Bartolo, Denis; Vitelli, Vincenzo

    2017-11-01

    Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.

  12. Sublingual microcirculatory blood flow and vessel density in Sherpas at high altitude

    PubMed Central

    Coppel, Jonny; Court, Jo; van der Kaaij, Jildou; Vercueil, Andre; Feelisch, Martin; Levett, Denny; Mythen, Monty; Grocott, Michael P.; Martin, Daniel

    2017-01-01

    Anecdotal reports suggest that Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, despite exhibiting lower arterial oxygen content than acclimatized lowlanders. This study tested the hypothesis that Sherpas exposed to hypobaric hypoxia on ascent to 5,300 m develop increased microcirculatory blood flow as a means of maintaining tissue oxygen delivery. Incident dark-field imaging was used to obtain images of the sublingual microcirculation from 64 Sherpas and 69 lowlanders. Serial measurements were obtained from participants undertaking an ascent from baseline testing (35 m or 1,300 m) to Everest base camp (5,300 m) and following subsequent descent in Kathmandu (1,300 m). Microcirculatory flow index and heterogeneity index were used to provide indexes of microcirculatory flow, while capillary density was assessed using small vessel density. Sherpas demonstrated significantly greater microcirculatory blood flow at Everest base camp, but not at baseline testing or on return in Kathmandu, than lowlanders. Additionally, blood flow exhibited greater homogeneity at 5,300 and 1,300 m (descent) in Sherpas than lowlanders. Sublingual small vessel density was not different between the two cohorts at baseline testing or at 1,300 m; however, at 5,300 m, capillary density was up to 30% greater in Sherpas. These data suggest that Sherpas can maintain a significantly greater microcirculatory flow per unit time and flow per unit volume of tissue at high altitude than lowlanders. These findings support the notion that peripheral vascular factors at the microcirculatory level may be important in the process of adaptation to hypoxia. NEW & NOTEWORTHY Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, yet the physiological mechanisms underlying this tolerance remain unknown. In our prospective study, conducted on healthy volunteers ascending to Everest base camp (5,300 m), we demonstrated that Sherpas have a higher sublingual microcirculatory blood flow and greater capillary density at high altitude than lowlanders. These findings support the notion that the peripheral microcirculation plays a key role in the process of long-term adaptation to hypoxia. PMID:28126908

  13. Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.

    2014-12-01

    In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary results from this study demonstrate the biogeomorphic relationships between hydrologic regime, vegetation establishment, and sediment storage within the MRB. An understanding of these relationships will aid in development and implication of management actions necessary to address sediment related impairments in the MRB.

  14. Development of indirect EFBEM for radiating noise analysis including underwater problems

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Wung; Hong, Suk-Yoon; Song, Jee-Hun

    2013-09-01

    For the analysis of radiating noise problems in medium-to-high frequency ranges, the Energy Flow Boundary Element Method (EFBEM) was developed. EFBEM is the analysis technique that applies the Boundary Element Method (BEM) to Energy Flow Analysis (EFA). The fundamental solutions representing spherical wave property for radiating noise problems in open field and considering the free surface effect in underwater are developed. Also the directivity factor is developed to express wave's directivity patterns in medium-to-high frequency ranges. Indirect EFBEM by using fundamental solutions and fictitious source was applied to open field and underwater noise problems successfully. Through numerical applications, the acoustic energy density distributions due to vibration of a simple plate model and a sphere model were compared with those of commercial code, and the comparison showed good agreement in the level and pattern of the energy density distributions.

  15. Theory and simulation of buoyancy-driven convection around growing protein crystals in microgravity.

    PubMed

    Carotenuto, L; Cartwright, J H E; Castagnolo, D; Garcia Ruiz, J M; Otalora, F

    2002-01-01

    We present an order-of-magnitude analysis of the Navier-Stokes equations in a time-dependent, incompressible and Boussinesq formulation. The hypothesis employed of two different length scales allows one to determine the different flow regimes on the basis of the geometrical and thermodynamical parameters alone, without solving the Navier-Stokes equations. The order-of-magnitude analysis is then applied to the field of protein crystallization, and to the flow field around a crystal, where the driving forces are solutal buoyancy-driven convection, from density dependence on species concentration, and sedimentation caused by the different densities of the crystal and the protein solution. The main result of this paper is to provide predictions of the conditions in which a crystal is growing in a convective regime, rather than in the ideal diffusive state, even under the typical microgravity conditions of space platforms.

  16. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  17. Eigenmode resonance in a two-layer stratification

    NASA Astrophysics Data System (ADS)

    Kanda, Isao; Linden, P. F.

    2002-06-01

    In this paper, we study the velocity field at the density interface of a two-layer stratification system when the flow is forced at the mid-depth of the lower layer by the source sink forcing method. It is known that, in a sufficiently strong linear stratification, the source sink forcing in certain configurations produces a single-vortex pattern which corresponds to the lowest eigenmode of the Helmholtz equation (Kanda & Linden 2001). Two types of forcing configuration are used for the two-layer experiments: one that leads to a steady single-vortex pattern in a linear stratification, and one that results in an unsteady irregular state. Strong single-vortex patterns appear intermittently for the former configurations despite the absence of stratification at the forcing height. When the single-vortex pattern occurs at the density interface, a similar flow field extends down to the forcing height. The behaviour is explained as the coupling of the resonant eigenmode at the interface with the horizontal component of the forcing jets. The results show that stratification can organise a flow, even though it is forced by an apparently random three-dimensional forcing.

  18. Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, G. L.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y.

    2016-07-15

    A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10{sup 17 }m{sup −3} and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma sourcemore » is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10{sup 4 }V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.« less

  19. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    NASA Technical Reports Server (NTRS)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  20. Subsampled Numerical Experiments as a Guide for Field Deployment of Thermistor Chains

    NASA Astrophysics Data System (ADS)

    Shaw, Justin; Stastna, Marek

    2017-11-01

    Thermistor chains are a standard tool for recording temperature profiles in geophysical flows. Density values can be inferred from readings and the resulting density field analyzed for the passage of internal waves, Kelvin-Helmholtz billows, and other dynamic events. The number and spacing of the thermistors, both on and between chains, determines which events can be identified in the dataset. We examine the effect of changing these variables by subsampling a set of numerical experiments to simulate thermistor chain locations. A pseudo spectral method was used to solve the incompressible Navier-Stokes equations under the Boussinesq approximation. The resulting flows are a set of high resolution seiches where the depth was held constant across experiments, and the length was varied. Sampling a known, commonly occurring flow with relatively simple geometry allows for a clear analysis of the effects of thermistor placement in the capture of dynamic events. We will discuss three dimensional deployment strategies, as well as EOF and DMD analyses if there is time. Funded by a Grant from the National Sciences and Engineering Research Council of Canada.

  1. Groundwater flow in the transition zone between freshwater and saltwater: a field-based study and analysis of measurement errors

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Banks, Eddie; Brunke, Miriam

    2018-02-01

    The quantification of groundwater flow near the freshwater-saltwater transition zone at the coast is difficult because of variable-density effects and tidal dynamics. Head measurements were collected along a transect perpendicular to the shoreline at a site south of the city of Adelaide, South Australia, to determine the transient flow pattern. This paper presents a detailed overview of the measurement procedure, data post-processing methods and uncertainty analysis in order to assess how measurement errors affect the accuracy of the inferred flow patterns. A particular difficulty encountered was that some of the piezometers were leaky, which necessitated regular measurements of the electrical conductivity and temperature of the water inside the wells to correct for density effects. Other difficulties included failure of pressure transducers, data logger clock drift and operator error. The data obtained were sufficiently accurate to show that there is net seaward horizontal flow of freshwater in the top part of the aquifer, and a net landward flow of saltwater in the lower part. The vertical flow direction alternated with the tide, but due to the large uncertainty of the head gradients and density terms, no net flow could be established with any degree of confidence. While the measurement problems were amplified under the prevailing conditions at the site, similar errors can lead to large uncertainties everywhere. The methodology outlined acknowledges the inherent uncertainty involved in measuring groundwater flow. It can also assist to establish the accuracy requirements of the experimental setup.

  2. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  3. Experimental and Numerical Study of Wind and Turbulence in a Near-Field Dispersion Campaign at an Inhomogeneous Site

    NASA Astrophysics Data System (ADS)

    Wei, Xiao; Dupont, Eric; Gilbert, Eric; Musson-Genon, Luc; Carissimo, Bertrand

    2016-09-01

    We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier-Stokes mode with a standard k{-}ɛ closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.

  4. Gradient flow of O(N) nonlinear sigma model at large N

    DOE PAGES

    Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya

    2015-04-28

    Here, we study the gradient flow equation for the O(N) nonlinear sigma model in two dimensions at large N. We parameterize solution of the field at flow time t in powers of bare fields by introducing the coefficient function X n for the n-th power term (n = 1, 3, ··· ). Reducing the flow equation by keeping only the contributions at leading order in large N, we obtain a set of equations for X n ’s, which can be solved iteratively starting from n = 1. For n = 1 case, we find an explicit form of the exactmore » solution. Using this solution, we show that the two point function at finite flow time t is finite. As an application, we obtain the non-perturbative running coupling defined from the energy density. We also discuss the solution for n = 3 case.« less

  5. Statistical parameters of thermally driven turbulent anabatic flow

    NASA Astrophysics Data System (ADS)

    Hilel, Roni; Liberzon, Dan

    2016-11-01

    Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.

  6. A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng

    2018-05-01

    A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.

  7. Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Zhang, H.; Sibeck, D.; Turner, D.

    2013-01-01

    Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) upstream of quasi-parallel bow shocks during steady solar wind conditions and in the absence of discontinuities. The results show the formation of a large number of structures along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and magnetic field enhancements, while their cores exhibit drops in density, magnetic field, solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the simulation, we show that the signatures of these structures in the time series data are very similar to those of SHFAs seen in THEMIS data and conclude that they correspond to SHFAs. Examination of the simulation data shows that SHFAs form as the result of foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due to the nonlinear evolution of ULF waves generated by the interaction of the solar wind with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock dissipation process, the formation of SHFAs is also an inherent part of the dissipation process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath including large scale density and magnetic field cavities.

  8. Navier-Stokes Entropy Controlled Combustion Instability Analysis for Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yoon, W. S.

    1990-01-01

    Navier-Stokes solutions are used to calculate oscillatory components of pressure, velocity, and density, which in turn provide necessary data to compute energy growth factors to determine combustion instability. It is shown that wave instabilities are associated with changes in entropy and the space and time averages of oscillatory components of pressure, velocity and density, together with the mean flow field in the energy equation. Compressible laminar and turbulent flows and reacting flows with hydrogen/oxygen combustion are considered. The SSME combustion/thrust chamber is used for illustration of the theory. The analysis shows that the increase of mean pressure and disturbances consistently results in the increase of instability. It is shown that adequate combustion instability analysis requires at least third order nonlinearity in energy growth or decay.

  9. Modelling of particle-laden flow inside nanomaterials.

    PubMed

    Chan, Yue; Wylie, Jonathan J; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  10. Modelling of particle-laden flow inside nanomaterials

    NASA Astrophysics Data System (ADS)

    Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keren, Y.; Bemporad, G.A.; Rubin, H.

    This paper concerns an experimental evaluation of the basic aspects of operation of the advanced solar pond (ASP). Experiments wee carried out in a laboratory test section in order to assess the feasibility of the density gradient maintenance in stratified flowing layers. The density stratification was caused by a non uniform distribution of temperatures in the flow field. Results of the experiments are reported and analyzed in the paper. Experimental data were used in order to calibrate the numerical model able to simulate heat and momentum transfer in the ASP. The numerical results confirmed the validity of the numerical modelmore » adopted, and proved the latter applicability for the simulation of the ASP performance.« less

  12. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  13. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  14. Density-driven vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) following the 1962 storm flood

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Houben, Georg J.

    2017-08-01

    Due to the growing vulnerability of low-lying coastal zones to flooding by seawater, there is a current need for studies of the impact of such inundations on fresh groundwater resources. The knowledge from the literature is biased towards tropical atoll environments, and only few studies specifically investigated the effect of density-driven downward flow, even though its importance is widely acknowledged. The present study is based on previously unpublished hydrochemical data collected on the island of Baltrum following a devastating storm in 1962, which uniquely show the impact of seawater inundation on a freshwater lens in a siliciclastic aquifer. The field data show that about 3 kg of Cl per m2 of inundated land area, or 18 cm of seawater, infiltrated, and that elevated salinities persisted at the measurement depths of 4 and 6 m for at least 4 years, and at least for 6 years at greater depths. Numerical models support the assertion that the shape of the measured salinographs, i.e. an initial sharp rise in the salt concentration with time, followed by a continually-slowing decrease, must be attributed to density-driven salt fingering. Models that did not consider density effects fail to simulate the observed patterns. Transient recharge, model dimension and lateral flow modify the details of the simulation results, but in all models density-driven vertical flow dominates the overall system behaviour. The diminishing importance of density-driven flow at greater depths, however, in combination with slow recharge-driven flow rates prolongs flushing times, and enhances the risk of brackish-water up-coning when pumping is resumed too soon.

  15. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  16. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  17. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  18. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  19. Simulation of saltwater movement in the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area, predevelopment-2004, and projected movement for 2000 pumping conditions

    USGS Publications Warehouse

    Provost, Alden M.; Payne, Dorothy F.; Voss, Clifford I.

    2006-01-01

    A digital model was developed to simulate ground-water flow and solute transport for the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area. The model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004), (2) project these trends from the present day into the future, and (3) evaluate the relative influence of different assumptions regarding initial and boundary conditions and physical properties. The model is based on a regional, single-density ground-water flow model of coastal Georgia and adjacent parts of South Carolina and Florida. Variable-density ground-water flow and solute transport were simulated using the U.S. Geological Survey finite-element, variable-density solute-transport simulator SUTRA, 1885-2004. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. The model was calibrated to September 1998 water levels, for single-density freshwater conditions, then refined using variable density and chloride concentration to give a reasonable match to the trend in the chloride distribution in the Upper Floridan aquifer inferred from field measurements of specific conductance made during 2000, 2002, 2003, and 2004. The model was modified to simulate solute transport by allowing saltwater to enter the system through localized areas near the northern end of Hilton Head Island, at Pinckney Island, and near the Colleton River, and was calibrated to match chloride concentrations inferred from field measurements of specific conductance. This simulation is called the 'Base Case.'

  20. Background oriented schlieren in a density stratified fluid.

    PubMed

    Verso, Lilly; Liberzon, Alex

    2015-10-01

    Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.

  1. Plasma Disks and Rings with ``High'' Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Rousseau, F.

    2006-04-01

    The nonlinear theory of rotating axisymmetric thin structures in which the magnetic field energy density is comparable with the thermal plasma energy density is formulated. The only flow velocity included in the theory is the velocity of rotation around a central object whose gravity is dominant. The periodic sequence, in the radial direction, of pairs of opposite current channels that can form is shown to lead to relatively large plasma density and pressure modulations, while the relevant magnetic surfaces can acquire a ``crystal structure.'' A new class of equilibria consisting of a series of plasma rings is identified, in the regimes where the plasma pressure is comparable to the magnetic pressure associated with the fields produced by the internal currents. The possible relevance of this result to the formation of dusty plasma rings is pointed out.

  2. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.

    Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.

  3. Effects of Sheared Flow on Microinstabilities and Transport in Plasmas

    NASA Astrophysics Data System (ADS)

    H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong

    2005-02-01

    Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.

  4. Automated MRI segmentation for individualized modeling of current flow in the human head.

    PubMed

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  5. Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Snyder, R.; Hesselink, L.

    1984-01-01

    In this paper, a tomographic procedure for reconstructing the density field around a helicopter rotor blade tip from remote optical line-of-sight measurements is discussed. Numerical model studies have been carried out to investigate the influence of the number of available views, limited width viewing, and ray bending on the reconstruction. Performance is measured in terms of the mean-square error. It is found that very good reconstructions can be obtained using only a small number of views even when the width of view is smaller than the spatial extent of the object. An iterative procedure is used to correct for ray bending due to refraction associated with the sharp density gradients (shocks).

  6. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  7. Asymmetric Reconnection With A Shear Flow and Applications to X-line Motion at the Polar Cusps

    NASA Astrophysics Data System (ADS)

    Doss, C.; Komar, C. M.; Beidler, M.; Cassak, P.; Wilder, F. D.; Eriksson, S.

    2014-12-01

    Magnetic reconnection at the polar cusps of the magnetosphere is marked by strong asymmetries in plasma density and magnetic field strength in addition to a potentially strong bulk flow shear parallel to the reconnecting magnetic field caused by the solar wind. Much has been learned about the effect of either asymmetries or shear flow on reconnection, but only a handful of studies have addressed systems with both. We perform a careful theoretical, numerical, and observational study of such systems. It is known that an asymmetry in magnetic field offsets the X-line from the center of the diffusion region in the inflow direction toward the weaker magnetic field. A key finding is that this alters the flow profile seen at the X-line relative to expectations from symmetric reconnection results. This causes the X-line to drift in the outflow direction due to the shear flow. We calculate a prediction for the X-line drift speed for arbitrary asymmetric magnetic field strengths and show the result is consistent with two-fluid numerical simulations. These predictions are also shown to be consistent with recent observations of a tailward moving X-line in Cluster observations of reconnection at the polar cusp. The reconnection rate with a shear flow is observed to drop as in symmetric reconnection, and the behavior of the reconnection qualitatively changes when the shear flow speed exceeds the hybrid Alfven speed of the outflow known from asymmetric reconnection theory.

  8. Scaled experiments to determine the role of density on granular flows behavior: preliminary results

    NASA Astrophysics Data System (ADS)

    Rodriguez Sedano, L. A.; Sarocchi, D.; Borselli, L.; Segura, O.

    2013-12-01

    Geological granular flows are very complex, gravity driven phenomena which can show different behaviors depending on its origin and the characteristics of the constituent material. Due to their dangerous nature, and multiple scientific and technological applications, these phenomena has being studied deeply in order to have a better comprehension, however, after more than one century of scientific research it remains as an open topic with more questions than answers. One of the aspects that still need exhaustive research is the effect of clast density on the flowing granular material, as pointed out by previous laboratory and field studies. There are anyway few studies which have tried to explain the role of bulk density, as well the density of different phases, as it increasing or decreasing on the kinematic and the rheological characteristics of geological granular flows. The content of low density juvenile material seems to condition the processes of transformations of debris flows to more diluted phases, as well the transport and emplacing mechanisms. It is well known that the content of clay in debris flows has great influence on its behavior, physical processes and the deposits characteristics for this reason lahars has being subdivided in base of this parameter. Our hypothesis is that, in like manner, the presence of low density material inside the granular flows (dry and wet) could conditioning its physical characteristics and its behavior. In order to put this to the test, we made some laboratory experiments using a five meter long and 0.3 m wide experimental flume equipped with a wide range of sensors and laser barriers to precisely measure the rheological properties and kinematic of the sliding avalanches. A special effort was devoted to determine a threshold or critical level in the amount of low density material at which the avalanche behavior suffer appreciable changes. The obtained preliminary results confirm our hypothesis and encouraged to perform further experiments. Such studies are important because they could provide useful information for developing analog models that take into account this important physical property.

  9. Passive turbulent flamelet propagation

    NASA Technical Reports Server (NTRS)

    Ashurst, William T.; Ruetsch, G. R.; Lund, T. S.

    1994-01-01

    We analyze results of a premixed constant density flame propagating in three-dimensional turbulence, where a flame model developed by Kerstein, et al. (1988) has been used. Simulations with constant and evolving velocity fields are used, where peculiar results were obtained from the constant velocity field runs. Data from the evolving flow runs with various flame speeds are used to determine two-point correlations of the fluctuating scalar field and implications for flamelet modeling are discussed.

  10. Zone of Avoidance Tully-Fisher Survey

    NASA Astrophysics Data System (ADS)

    Williams, Wendy; Woudt, Patrick; Kraan-Korteweg, Renee

    2009-10-01

    We propose to use the Parkes telescope to obtain narrowband HI spectra of a sample of galaxies in the Galactic Zone of Avoidance (ZOA). These observations, combined with high-quality near infrared photometry, will provide both the uniform coverage and accurate distance determinations (via the Tully-Fisher relation) required to map the peculiar velocity flow fields in the ZOA. The mass distribution in this region has a significant effect on the motion of the Local Group. Dynamically important structures, including the Great Attractor and the Local Void, are partially hidden behind our Galaxy. Even the most recent systematic all-sky surveys, such as the 2MASS Redshift Survey (2MRS; Huchra et al. 2005), undersample the ZOA due to stellar crowding and high dust extinction. While statistical reconstruction methods have been used to extrapolate the density field in the ZOA, they are unlikely to truely re?ect the velocity field (Loeb & Narayan 2008). Our project aims for the ?rst time to directly determine the velocity flow fields in this part of the sky. Our sample is taken from the Parkes HIZOA survey (Henning et al. 2005) and is unbiased with respect to extinction and star density.

  11. Investigations of Particle Transport in the Texas Helimak

    NASA Astrophysics Data System (ADS)

    Taylor, E. I.; Rowan, W. L.; Gentle, K. W.; Huang, H.; Williams, C. B.

    2016-10-01

    The correlation between electrostatic turbulence and particle flux is investigated in a simple magnetic torus, the Helimak. The Helimak is an experimental realization of a sheared cylindrical slab that generates and heats a plasma with microwaves at 2.45 GHz and confines it in a helical magnetic field. Although it is MHD stable, the plasma is always in a nonlinearly saturated state of microturbulence. The causes of this turbulence are diverse and it is thought that it is either due to drift wave instabilities or interchange instabilites. The local particle flux is estimated over most of the plasma cross section by measuring the particle source using filtered cameras. Plasma flow along the field lines is physically similar to SOL flows in tokamaks. It is significant and can be measured directly as well as inferred from asymmetries in the electron density. The cross field transport due to electrostatic turbulence is measured as the cross correlation of radial electric field fluctuations with electron density fluctuations with the data acquired using Langmuir probes. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-04ER54766.

  12. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Foss, J. F.

    1984-01-01

    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  13. The auroral current circuit and field-aligned currents observed by FAST

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Bonnell, J. W.; Strangeway, R. J.; Kepko, L.; Ergun, R. E.; McFadden, J. P.; Carlson, C. W.; Peria, W.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.; Pfaff, R.

    FAST observes signatures of small-scale downward-going current at the edges of the inverted-V regions where the primary (auroral) electrons are found. In the winter pre-midnight auroral zone these downward currents are carried by upward flowing low- and medium-energy (up to several keV) electron beams. FAST instrumentation shows agreement between the current densities inferred from both the electron distributions and gradients in the magnetic field. FAST data taken near apogee (˜4000-km altitude) commonly show downward current magnetic field deflections consistent with the observed upward flux of ˜109 electrons cm-2 s-1, or current densities of several µA m-2. The electron, field-aligned current and electric field signatures indicate the downward currents may be associated with “black aurora” and auroral ionospheric cavities. The field-aligned voltage-current relationship in the downward current region is nonlinear.

  14. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  15. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  16. Adaptive grid generation in a patient-specific cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce computational time for patient-specific hemodynamics simulations, which are used to help assess the likelihood of aneurysm rupture using CFD calculated flow patterns.

  17. Dry calibration of electromagnetic flowmeters based on numerical models combining multiple physical phenomena (multiphysics)

    NASA Astrophysics Data System (ADS)

    Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.

    2010-10-01

    This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.

  18. Modern quantitative schlieren techniques

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Settles, Gary

    2010-11-01

    Schlieren optical techniques have traditionally been used to qualitatively visualize refractive flowfields in transparent media. Modern schlieren optics, however, are increasingly focused on obtaining quantitative information such as temperature and density fields in a flow -- once the sole purview of interferometry -- without the need for coherent illumination. Quantitative data are obtained from schlieren images by integrating the measured refractive index gradient to obtain the refractive index field in an image. Ultimately this is converted to a density or temperature field using the Gladstone-Dale relationship, an equation of state, and geometry assumptions for the flowfield of interest. Several quantitative schlieren methods are reviewed here, including background-oriented schlieren (BOS), schlieren using a weak lens as a "standard," and "rainbow schlieren." Results are presented for the application of these techniques to measure density and temperature fields across a supersonic turbulent boundary layer and a low-speed free-convection boundary layer in air. Modern equipment, including digital cameras, LED light sources, and computer software that make this possible are also discussed.

  19. An investigation of the unsteady flow associated with plume induced flow separation

    NASA Technical Reports Server (NTRS)

    Boggess, A. L., Jr.

    1972-01-01

    A wind tunnel study of the basic nature of plume induced flow separation is reported with emphasis on the unsteady aspects of the flow. Testing was conducted in a 6 inch by 6 inch blow-down supersonic wind tunnel. A cone-cylinder model with a pluming jet was used as the test model. Tests were conducted with a systematic variation in Mach number and plume pressure. Results of the tests are presented in the form of root-mean-squared surface pressure levels, power spectral densities, photographs of the flow field from which shock angles and separation lengths were taken, and time-averaged surface pressure profiles.

  20. Prediction for the Flow-induced Gravity Field of Saturn: Implications for Cassini’s Grand Finale

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Kaspi, Yohai

    2017-07-01

    The Cassini measurements of Saturn’s gravity field during its Grand Finale might shed light on a long-standing question regarding the flow on Saturn. While the cloud-level winds are well known, little is known about whether these winds are confined to the outer layers of the planet or penetrate deep into the interior. An additional complexity is added by the uncertainty in the exact rotation period of Saturn, a key factor in determining the cloud-level winds, with an effect on the north-south symmetric part of the winds. Using Saturn’s cloud-level winds we relate the flow to the gravity harmonics. We give a prediction for the odd harmonics {J}3,{J}5,{J}7,{and} {J}9 as a function of the flow depth, identifying three ranges of depths. Since the odd harmonics depend solely on the flow, and are not influenced by Saturn’s shape and static density distribution, any measured value of the odd harmonics by Cassini can be used to uniquely determine the depth of the flow. We also discuss the flow-induced even harmonics {{Δ }}{J}2,{{Δ }}{J}4,\\ldots ,{{Δ }}{J}12 that are affected by Saturn’s rotation period. While the high-degree even harmonics might also be used to determine the flow depth, the lower-degree even harmonics serve as uncertainties for analysis of the planet’s interior structure and composition. Thus, the gravity harmonics measured during the Cassini Grand Finale may be used to get a first-order estimate of the flow structure and to better constrain the planet’s density structure and composition.

  1. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  2. Intermittency of solar wind on scale 0.01-16 Hz.

    NASA Astrophysics Data System (ADS)

    Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel

    Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.

  3. Radiation induced precursor flow field ahead of a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S.; Szema, K. Y.

    1977-01-01

    The change in flow properties ahead of the bow shock of a Jovian entry body, resulting from absorption of radiation from the shock layer, is investigated. Ultraviolet radiation is absorbed by the free stream gases, causing dissociation, ionization, and an increase in enthalpy of flow ahead of the shock wave. As a result of increased fluid enthalpy, the entire flow field in the precursor region is perturbed. The variation in flow properties is determined by employing the small perturbation technique of classical aerodynamics as well as the thin layer approximation for the preheating zone. By employing physically realistic models of radiative transfer, solutions are obtained for velocity, pressure, density, temperature, and enthalpy variations. The results indicate that the precursor flow effects, in general, are greater at higher altitudes. Just ahead of the shock, however, the effects are larger at lower altitudes. Pre-heating of the gas significantly increases the static pressure and temperature ahead of the shock for velocities exceeding 36 km/sec.

  4. Numerical analysis of tangential slot blowing on a generic chined forebody

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana M.

    1994-01-01

    A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.

  5. Stability of a non-orthogonal stagnation flow to three dimensional disturbances

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.

    1991-01-01

    A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.

  6. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  7. Model development of supersonic trough wind with shocks

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.

    1972-01-01

    The time dependent one dimensional hydrodynamic equations describe the evolution of the thermal plasma flow along closed magnetic field lines outside of the plasmasphere. The convection of the supersonic polar wind onto a closed fieldline results in the assumed formation of collisionless plasma shocks. These shocks move earthward as the field line with its frozen-in plasma remains fixed or contracts with time to smaller L coordinates. The high equatorial plasma temperature (of the order of electron volts) produced by the shock process decreases with time if the flow is isothermal but it will increase if the contraction is under adiabatic conditions. Assuming adiabaticity a peak in the temperature forms at the equator in conjunction with a depression in the ion density. After an initial contraction, if the flux tube drifts to higher L coordinates the direction of the shock motion can be reversed so that the supersonic region will expand along the field line towards the state characterizing the supersonic polar wind. A rapid expansion will lower the equatorial density while the temperature decreases with time under adiabatic but not isothermal conditions.

  8. An experimental investigation of an axisymmetric jet in a coflowing airstream. [using laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Morton, J. B.; Humphris, R. R.

    1976-01-01

    The flow development of an axisymmetric jet exhausting into a moving airstream has been studied. The jet has a Reynolds number of 22,600, and the ratio of the jet velocity to the wind tunnel velocity is 5.1 to 1. The flow field of the axisymmetric jet was examined at locations varying from approximately zero to eight diameters downstream of the orifice. Of primary concern at each downstream location was the mapping of the one point statistical properties of the flow, including mean velocity, turbulent intensity, and intermittency. Autocorrelations and power spectral density curves were determined for both the fluctuating velocity field and the concentration signal at various distances from the jet's center line for different downstream locations. A laser Doppler velocimeter, using a phase locked loop processor, was used to make the desired velocity field measurements which were compared with hot wire anemometer and pressure probe data.

  9. Potential field cellular automata model for pedestrian flow

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Jian, Xiao-Xia; Wong, S. C.; Choi, Keechoo

    2012-02-01

    This paper proposes a cellular automata model of pedestrian flow that defines a cost potential field, which takes into account the costs of travel time and discomfort, for a pedestrian to move to an empty neighboring cell. The formulation is based on a reconstruction of the density distribution and the underlying physics, including the rule for resolving conflicts, which is comparable to that in the floor field cellular automaton model. However, we assume that each pedestrian is familiar with the surroundings, thereby minimizing his or her instantaneous cost. This, in turn, helps reduce the randomness in selecting a target cell, which improves the existing cellular automata modelings, together with the computational efficiency. In the presence of two pedestrian groups, which are distinguished by their destinations, the cost distribution for each group is magnified due to the strong interaction between the two groups. As a typical phenomenon, the formation of lanes in the counter flow is reproduced.

  10. Fluid signatures of rotational discontinuities at Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1983-01-01

    Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.

  11. Control of the probe influence on the flow field in LP steam turbine

    NASA Astrophysics Data System (ADS)

    Kolovratník, Michal; Yun, Kukchol; Bartoš, Ondřej

    For measuring the fine droplets properties in the wet steam expanding in the steam turbines the light extinction probes are usually used. The paper presents CFD modelling of the extinction probe influence on the wet steam flow field at the measurement position. The aim is to get a basic information about the influence of the flow field deviation on the measured data, in other words, of necessity to correct the measured data. The basic modelling procedure is described, as well as the supposed simplifications and the factor considering the change in the steam density in the measuring slot of the probe. The model is based on the experimental data that were achieved during the developmental measurements in the steam turbine 1090 MW in the power station Temelín. The experimental measurement was done in the cooperation with the Doosan Škoda Power s.r.o.

  12. Effects of roughness on density-weighted particle statistics in turbulent channel flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milici, Barbara

    2015-12-31

    The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces,more » in the one-way coupling regime.« less

  13. Study of Plasma Flows Generated in Plasma Focus Discharge in Different Regimes of Working Gas Filling

    NASA Astrophysics Data System (ADS)

    Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.

    2017-12-01

    Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.

  14. A kinetic approach to magnetospheric modeling

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1979-01-01

    The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.

  15. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.

  16. Analysis and calculation of macrosegregation in a casting ingot. MPS solidification model. Volume 1: Formulation and analysis

    NASA Technical Reports Server (NTRS)

    Maples, A. L.; Poirier, D. R.

    1980-01-01

    The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data.

  17. Potential for seed-mediated gene flow in agroecosystems from transgenic safflower (Carthamus tinctorius L.) intended for plant molecular farming.

    PubMed

    McPherson, Marc A; Yang, Rong-Cai; Good, Allen G; Nielson, Ryan L; Hall, Linda M

    2009-04-01

    Safflower has been transformed for field scale molecular farming of high-value proteins including several pharmaceuticals. Viable safflower seed remaining in the soil seed bank after harvest could facilitate seed and pollen-mediated gene flow. Seeds may germinate in subsequent years and volunteer plants may flower and potentially outcross with commodity safflower and/or produce seed. Seeds from volunteers could become admixed with conventional crops at harvest, and/or replenish the seed bank. Seed in following crops could be transported locally and internationally and facilitate gene flow in locations where regulatory thresholds and public acceptance differ from Canada. Seed-mediated gene flow was examined in three studies. Safflower seed loss and viability following harvest of commercial fields of a non-transgenic cultivar were determined. We assessed seed longevity of transgenic and non-transgenic safflower, on the soil surface and buried at two depths. Finally, we surveyed commercial safflower fields at different sites and measured density and growth stage of safflower volunteers, in other crops the following year and documented volunteer survival and viable seed production. Total seed loss at harvest in commercial fields, ranged from 231 to 1,069 seeds m(-2) and the number of viable seeds ranged from 81 to 518 seeds m(-2). Safflower has a relatively short longevity in the seed bank and no viable seeds were found after 2 years. Based on the seed burial studies it is predicted that winter conditions would reduce safflower seed viability on the soil surface by >50%, leaving between 40 and 260 viable seeds m(-2). The density of safflower volunteers emerging in the early spring of the following year ranged from 3 to 11 seedlings m(-2). Safflower volunteers did not survive in fields under chemical fallow, but in some cereal fields small numbers of volunteers did survive and generate viable seed. Results will be used to make recommendations for best management practices to reduce seed-mediated gene flow from commercial production of plant molecular farming with safflower.

  18. Experimental study of stratified jet by simultaneous measurements of velocity and density fields

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Chen, Jun

    2012-07-01

    Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.

  19. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  20. Progress on Discrete Fracture Network models with implications on the predictions of permeability and flow channeling structure

    NASA Astrophysics Data System (ADS)

    Darcel, C.; Davy, P.; Le Goc, R.; Maillot, J.; Selroos, J. O.

    2017-12-01

    We present progress on Discrete Fracture Network (DFN) flow modeling, including realistic advanced DFN spatial structures and local fracture transmissivity properties, through an application to the Forsmark site in Sweden. DFN models are a framework to combine fracture datasets from different sources and scales and to interpolate them in combining statistical distributions and stereological relations. The resulting DFN upscaling function - size density distribution - is a model component key to extrapolating fracture size densities between data gaps, from borehole core up to site scale. Another important feature of DFN models lays in the spatial correlations between fractures, with still unevaluated consequences on flow predictions. Indeed, although common Poisson (i.e. spatially random) models are widely used, they do not reflect these geological evidences for more complex structures. To model them, we define a DFN growth process from kinematic rules for nucleation, growth and stopping conditions. It mimics in a simplified way the geological fracturing processes and produces DFN characteristics -both upscaling function and spatial correlations- fully consistent with field observations. DFN structures are first compared for constant transmissivities. Flow simulations for the kinematic and equivalent Poisson DFN models show striking differences: with the kinematic DFN, connectivity and permeability are significantly smaller, down to a difference of one order of magnitude, and flow is much more channelized. Further flow analyses are performed with more realistic transmissivity distribution conditions (sealed parts, relations to fracture sizes, orientations and in-situ stress field). The relative importance of the overall DFN structure in the final flow predictions is discussed.

  1. TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flock, M.; Dzyurkevich, N.; Klahr, H.

    2011-07-10

    We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less

  2. Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Raymond, John

    1994-01-01

    In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.

  3. Magnetic Field, Density Current, and Lorentz Force Full Vector Maps of the NOAA 10808 Double Sunspot: Evidence of Strong Horizontal Current Flows in the Penumbra

    NASA Astrophysics Data System (ADS)

    Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.

    2011-04-01

    The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).

  4. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  5. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast.

    PubMed

    Shao, J Y; Shu, C; Huang, H B; Chew, Y T

    2014-03-01

    A free-energy-based phase-field lattice Boltzmann method is proposed in this work to simulate multiphase flows with density contrast. The present method is to improve the Zheng-Shu-Chew (ZSC) model [Zheng, Shu, and Chew, J. Comput. Phys. 218, 353 (2006)] for correct consideration of density contrast in the momentum equation. The original ZSC model uses the particle distribution function in the lattice Boltzmann equation (LBE) for the mean density and momentum, which cannot properly consider the effect of local density variation in the momentum equation. To correctly consider it, the particle distribution function in the LBE must be for the local density and momentum. However, when the LBE of such distribution function is solved, it will encounter a severe numerical instability. To overcome this difficulty, a transformation, which is similar to the one used in the Lee-Lin (LL) model [Lee and Lin, J. Comput. Phys. 206, 16 (2005)] is introduced in this work to change the particle distribution function for the local density and momentum into that for the mean density and momentum. As a result, the present model still uses the particle distribution function for the mean density and momentum, and in the meantime, considers the effect of local density variation in the LBE as a forcing term. Numerical examples demonstrate that both the present model and the LL model can correctly simulate multiphase flows with density contrast, and the present model has an obvious improvement over the ZSC model in terms of solution accuracy. In terms of computational time, the present model is less efficient than the ZSC model, but is much more efficient than the LL model.

  6. Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles

    NASA Astrophysics Data System (ADS)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-03-01

    Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used in helium refrigeration and liquefaction cycles.

  7. Empirical study of a unidirectional dense crowd during a real mass event

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Weng, W. G.; Yuan, H. Y.; Chen, J. G.

    2013-06-01

    Many tragic crowd disasters have happened across the world in recent years, such as the Phnom Penh stampede in Cambodia, crowd disaster in Mina/Makkah, and the Love Parade disaster in Germany, showing that management of mass events is a tough task for organizers. The study of unidirectional flow, one of the most common forms of motion in mass activities, is essential for safe organization of such events. In this paper, the properties of unidirectional flow in a crowded street during a real mass event in China are quantitatively investigated with sophisticated active infrared counters and an image processing method. A complete dataset of flow rates during the whole celebration is recorded, and a time series analysis gives new insight into such activities. The spatial analysis shows that the velocity and density of the crowd are inhomogeneous due to the boundary effect, whereas the flux is uniform. The estimated capacity of the street indicates that the maximum flow rate under normal condition should be between 1.73 and 1.98 /m/s, which is in good agreement with several field studies available in the existing literature. In consideration of the significant deviation among different studies, fundamental diagrams of dense crowds are also re-verified, and the results here are consistent with those from other field studies of unidirectional flow, but different from the bidirectional and experimental results. It is suggested that the data from multidirectional flow and experiments cannot be directly applied to unidirectional dense flow in a real mass event. The results also imply that the density of a similar unidirectional marching crowd should be controlled to be under 5 /m2, which can produce optimal efficiency and have more possibility to ensure safety. The field study data given here provide a good example of a database for crowd studies.

  8. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    NASA Astrophysics Data System (ADS)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  9. Elliptical instability in stably stratified fluid interiors

    NASA Astrophysics Data System (ADS)

    Vidal, J.; Hollerbach, R.; Schaeffer, N.; Cebron, D.

    2016-12-01

    Self-sustained magnetic fields in celestial bodies (planets, moons, stars) are due to flows in internal electrically conducting fluids. These fluid motions are often attributed to convection, as it is the case for the Earth's liquid core and the Sun. However some past or present liquid cores may be stably stratified. Alternative mechanisms may thus be needed to understand the dynamo process in these celestial objects. Turbulent flows driven by mechanical forcings, such as tides or precession, seem very promising since they are dynamo capable. However the effect of density stratification is not clear, because it can stabilize or destabilize mechanically-driven flows.To mimic an elliptical distortion due to tidal forcing in spherical geometry (full sphere and shell), we consider a theoretical base flow with elliptical streamlines and an associated density profile. It allows to keep the numerical efficiency of spectral methods in this geometry. The flow satisfies the stress-free boundary condition. We perform the stability analysis of the base state using three-dimensional simulations to study both the linear and nonlinear regimes. Stable and unstable density profiles are considered. A complementary local stability analysis (WKB) is also performed. We show that elliptical instability can still grow upon a stable stratification. We also study the mixing of the stratification by the elliptical instability. Finally we look at the dynamo capability of these flows.

  10. Characterizing the performance of an affordable, multichannel conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo

    2017-11-01

    In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.

  11. Density-velocity equations with bulk modulus for computational hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsien; Chen, Yung-Yu; John Yu, S.-T.

    2014-02-01

    This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.

  12. Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2003-01-01

    A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.

  13. Cosmic-ray streaming and anisotropies

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Gleeson, L. J.

    1975-01-01

    The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.

  14. Alfven waves in spiral interplanetary field

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1973-01-01

    A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.

  15. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  16. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE PAGES

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; ...

    2017-05-31

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  17. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less

  18. A study of the glow discharge plasma jet of the novel Hamburger-electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenzheng, E-mail: wzhliu@bjtu.edu.cn; Ma, Chuanlong, E-mail: 15121452@bjtu.edu.cn; Yang, Xiao

    2016-08-15

    To generate atmospheric pressure glow discharge plasma jets (APGDPJs), a novel Hamburger-electrode was proposed. Through the study on electric field distributions, flow field distributions, and characteristics of the discharge and jet, we found that adopting the mode of dielectric barrier discharge with non-uniform thickness of dielectric, it was easy to form the strong electric field areas which were conducive to generate discharge and electric field distributions with large electric field intensity in the narrow gap and weak electric field intensity in the wide gap that were not inclined to form a filament discharge. Using the structure of evenly distributed innermore » electrodes, it was easy to weaken the pressure of strong electric field areas and form flow field distributions which is beneficial for taking out the high density charged particles and generating APGDPJs. Stable APGDPJs in nitrogen with 3.5 mm in diameter and 9 mm in length were formed by using the novel Hamburger-electrode.« less

  19. Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Haghani Hassan Abadi, Reza; Fakhari, Abbas; Rahimian, Mohammad Hassan

    2018-03-01

    In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.

  20. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less

  1. Time Evolution of the Density Field of a Micro-Explosion Using Background Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Suriyanarayanan, P.; Venkatakrishnan, L.; Jagadeesh, G.

    In recent years micro-explosions have found interesting trans-disciplinary applications in the areas of food preservation,wood science, drug delivery, gene therapy and bio-medical applications [1, 2]. Generating controlled micro-explosions in a laboratory environment in a reliable manner is essential; to study and understand some of the near field flow dynamics associated with blast waves.

  2. Fast Laser Holographic Interferometry For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lee, George

    1989-01-01

    Proposed system makes holographic interferograms quickly in wind tunnels. Holograms reveal two-dimensional flows around airfoils and provide information on distributions of pressure, structures of wake and boundary layers, and density contours of flow fields. Holograms form quickly in thermoplastic plates in wind tunnel. Plates rigid and left in place so neither vibrations nor photgraphic-development process degrades accuracy of holograms. System processes and analyzes images quickly. Semiautomatic micro-computer-based desktop image-processing unit now undergoing development moves easily to wind tunnel, and its speed and memory adequate for flows about airfoils.

  3. Chaotic advection in a 2-D mixed convection flow

    NASA Astrophysics Data System (ADS)

    Tangborn, Andrew V.; Silevitch, Daniel M.; Howes, Tony

    1995-06-01

    Two-dimensional numerical simulations of particle advection in a channel flow with spatially periodic heating have been carried out. The velocity field is found to be periodic above a critical Rayleigh number of around 18 000 and a Reynolds number of 10. Particle motion becomes chaotic in the lower half plane almost immediately after this critical value is surpassed, as characterized by the power spectral density and Poincaré section of the flow. As the Rayleigh number is increased further, particle motion in the entire domain becomes chaotic.

  4. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  5. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  6. Parallel closure theory for toroidally confined plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.

    2017-10-01

    We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  7. A dawn to dusk electric field in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Ip, W. I.

    1983-01-01

    It is shown that if Io-injected plasma is lost via a planetary wind-fixed Birkeland current system may result. This is due to the fact that the azimuthal centrifugal current flows across a density gradient produced by the loss of plasma through the planetary wind in the tail. The divergent centrifugal current is connected to field-aligned Birkeland currents which flow into the ionosphere at dawn and out of it at dusk. The closure currents in the ionosphere require a dawn to dusk electric field which at the orbit of Io is estimated to have a strength of 0.2 mV/m. However, the values of crucial parameters are not well known and the field at Io's orbit may well be significantly larger. Independent estimates derived from the local time asymmetry of the torus UV emission indicate a field of 1.5 mV/m.

  8. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    USGS Publications Warehouse

    Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  9. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  10. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  11. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  12. Twenty Years of Research on the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  13. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  14. Extracting physical quantities from BES data

    NASA Astrophysics Data System (ADS)

    Fox, Michael; Field, Anthony; Schekochihin, Alexander; van Wyk, Ferdinand; MAST Team

    2015-11-01

    We propose a method to extract the underlying physical properties of turbulence from measurements, thereby facilitating quantitative comparisons between theory and experiment. Beam Emission Spectroscopy (BES) diagnostics record fluctuating intensity time series, which are related to the density field in the plasma through Point-Spread Functions (PSFs). Assuming a suitable form for the correlation function of the underlying turbulence, analytical expressions are derived that relate the correlation parameters of the intensity field: the radial and poloidal correlation lengths and wavenumbers, the correlation time and the fluctuation amplitude, to the equivalent correlation properties of the density field. In many cases, the modification caused by the PSFs is substantial enough to change conclusions about physics. Our method is tested by applying PSFs to the ``real'' density field, generated by non-linear gyrokinetic simulations of MAST, to create synthetic turbulence data, from which the method successfully recovers the correlation function of the ``real'' density field. This method is applied to BES data from MAST to determine the scaling of the 2D structure of the ion-scale turbulence with equilibrium parameters, including the ExB flow shear. Work funded by the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045].

  15. Size and density avalanche scaling near jamming.

    PubMed

    Arévalo, Roberto; Ciamarra, Massimo Pica

    2014-04-28

    The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.

  16. A Theory and Experiments for Detecting Shock Locations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Johnson, D. K.; Adamovsky, G.

    1994-01-01

    In this paper we present a simplified one-dimensional theory for predicting locations of normal shocks in a converging diverging nozzle. The theory assumes that the flow is quasi one-dimensional and the flow is accelerated in the throat area. Optical aspects of the model consider propagation of electromagnetic fields transverse to the shock front. The theory consists of an inverse problem in which from the measured intensity it reconstructs an index of refraction profile for the shock. From this profile and the Dale-Gladstone relation, the density in the flow field is determined, thus determining the shock location. Experiments show agreement with the theory. In particular the location is determined within 10 percent of accuracy. Both the theoretical as well as the experimental results are presented to validate the procedures in this work.

  17. Buoyancy Driven Coolant Mixing Studies of Natural Circulation Flows at the ROCOM Test Facility Using ANSYS CFX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohne, Thomas; Kliem, Soren; Rohde, Ulrich

    2006-07-01

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shiftedmore » towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)« less

  18. Overview of TJ-II experiments

    NASA Astrophysics Data System (ADS)

    Sánchez, J.; Acedo, M.; Alonso, A.; Alonso, J.; Alvarez, P.; de Aragón, F.; Ascasíbar, E.; Baciero, A.; Balbín, R.; Barrera, L.; Blanco, E.; Botija, J.; Brañas, B.; de la Cal, E.; Calderón, E.; Calvo, I.; Cappa, A.; Carmona, J. A.; Carreras, B. A.; Carrasco, R.; Castejón, F.; Catalán, G.; Chmyga, A. A.; Dreval, N. B.; Chamorro, M.; Eguilior, S.; Encabo, J.; Eliseev, L.; Estrada, T.; Fernández, A.; Fernández, R.; Ferreira, J. A.; Fontdecaba, J. M.; Fuentes, C.; de la Gama, J.; García, A.; García, L.; García-Cortés, I.; García-Regaña, J. M.; Gonçalves, B.; Guasp, J.; Herranz, J.; Hidalgo, A.; Hidalgo, C.; Jiménez-Gómez, R.; Jiménez, J. A.; Jiménez, D.; Kirpitchev, I.; Komarov, A. D.; Kozachok, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; López-Bruna, D.; López-Fraguas, A.; López-Rázola, J.; López-Sánchez, A.; de la Luna, E.; Marcon, G.; Martín, F.; Martínez-Fresno, L.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melnikov, A. V.; Méndez, P.; Mirones, E.; van Milligen, B.; Nedzelskiy, I. S.; Ochando, M.; Olivares, J.; Orozco, R.; Ortiz, P.; de Pablos, J. L.; Pacios, L.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Pérez-Risco, D.; Petrov, A.; Petrov, S.; Portas, A.; Rapisarda, D.; Ríos, L.; Rodríguez, C.; Rodríguez-Rodrigo, L.; Rodríguez-Solano, E.; Romero, J.; Ros, A.; Salas, A.; Sánchez, E.; Sánchez, M.; Sánchez-Sarabia, E.; Sarasola, X.; Sarksian, K.; Silva, C.; Schchepetov, S.; Skvortsova, N.; Soleto, A.; Tabarés, F.; Tafalla, D.; Tera, J.; Tolkachev, A.; Tribaldos, V.; Vargas, V. I.; Vega, J.; Velasco, G.; Weber, M.; Wolfers, G.; Zweben, S. J.; Zurro, B.

    2007-10-01

    This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices.

  19. Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III

    2003-01-01

    An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.

  20. Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093

    2012-05-15

    In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift wave turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolutionmore » of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of zonal flows.« less

  1. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  2. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  3. Magnetoacoustic Waves and the Kelvin-Helmholtz Instability in a Steady Asymmetric Slab. I: The Effects of Varying Density Ratios

    NASA Astrophysics Data System (ADS)

    Barbulescu, M.; Erdélyi, R.

    2018-06-01

    Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.

  4. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  5. Pressure measurements in a low-density nozzle plume for code verification

    NASA Technical Reports Server (NTRS)

    Penko, Paul F.; Boyd, Iain D.; Meissner, Dana L.; Dewitt, Kenneth J.

    1991-01-01

    Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations.

  6. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  7. Laser collisional induced fluorescence electron density measurements as a function of ring bias and the onset of anode spot formation in a ring cusp magnetic field

    NASA Astrophysics Data System (ADS)

    Arthur, N. A.; Foster, J. E.; Barnat, E. V.

    2018-05-01

    Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.

  8. Stochastic-field cavitation model

    NASA Astrophysics Data System (ADS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  9. A cavitation model based on Eulerian stochastic fields

    NASA Astrophysics Data System (ADS)

    Magagnato, F.; Dumond, J.

    2013-12-01

    Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.

    Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less

  11. Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator

    DOE PAGES

    Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.; ...

    2017-06-22

    Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less

  12. Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.

    Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less

  13. Investigating Pollen and Gene Flow of WYMV-Resistant Transgenic Wheat N12-1 Using a Dwarf Male-Sterile Line as the Pollen Receptor.

    PubMed

    Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong

    2016-01-01

    Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.

  14. Investigating Pollen and Gene Flow of WYMV-Resistant Transgenic Wheat N12-1 Using a Dwarf Male-Sterile Line as the Pollen Receptor

    PubMed Central

    Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong

    2016-01-01

    Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow. PMID:26975052

  15. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  16. Large scale surface flow generation in driven suspensions of magnetic microparticles: Experiment, theoretical model and simulations

    NASA Astrophysics Data System (ADS)

    Belkin, Maxim; Snezhko, Alexey; Aranson, Igor

    2007-03-01

    Nontrivially ordered dynamic self-assembled snake-like structures are formed in an ensemble of magnetic microparticles suspended over a fluid surface and energized by an external alternating magnetic field. Formation and existence of such structures is always accompanied by flows which form vortices. These large-scale vortices can be very fast and are crucial for snake formation/destruction. We introduce theoretical model based on Ginzburg-Landau equation for parametrically excited surface waves coupled to conservation law for particle density and Navier-Stokes equation for water flows. The developed model successfully describes snake generation, accounts for flows and reproduces most experimental results observed.

  17. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    PubMed

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  18. Electrorheology leads to healthier and tastier chocolate.

    PubMed

    Tao, Rongjia; Tang, Hong; Tawhid-Al-Islam, Kazi; Du, Enpeng; Kim, Jeongyoo

    2016-07-05

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. Although this issue was called into attention decades ago, no actual solution was found. To bypass this critical outstanding problem, two manufacturers introduced some low-calorie fats to substitute for cocoa butter. Somehow, their products are not allowed in most countries. Here we show that this issue is deeply related to the basic science of soft matter, especially to the viscosity of liquid suspension and maximally random jammed (MRJ) density. When the concentration of cocoa solid is high, close to the MRJ density, removing a small amount of fat will jam the chocolate flow. Applying unconventional electrorheology to liquid chocolate with applied field in the flow direction, we aggregate the cocoa particles into prolate spheroids in micrometers. This microstructure change breaks the rotational symmetry, reduces liquid chocolate's viscosity along the flow direction, and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are expecting a new class of healthier and tastier chocolate soon.

  19. Electrorheology leads to healthier and tastier chocolate

    PubMed Central

    Tao, Rongjia; Tang, Hong; Tawhid-Al-Islam, Kazi; Du, Enpeng; Kim, Jeongyoo

    2016-01-01

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. Although this issue was called into attention decades ago, no actual solution was found. To bypass this critical outstanding problem, two manufacturers introduced some low-calorie fats to substitute for cocoa butter. Somehow, their products are not allowed in most countries. Here we show that this issue is deeply related to the basic science of soft matter, especially to the viscosity of liquid suspension and maximally random jammed (MRJ) density. When the concentration of cocoa solid is high, close to the MRJ density, removing a small amount of fat will jam the chocolate flow. Applying unconventional electrorheology to liquid chocolate with applied field in the flow direction, we aggregate the cocoa particles into prolate spheroids in micrometers. This microstructure change breaks the rotational symmetry, reduces liquid chocolate’s viscosity along the flow direction, and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are expecting a new class of healthier and tastier chocolate soon. PMID:27325758

  20. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    PubMed

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  1. Electric currents in the subsolar region of the Venus lower ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Hoegy, W. R.

    1994-01-01

    The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.

  2. Computational analysis of thresholds for magnetophosphenes

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-10-01

    In international guidelines, basic restriction limits on the exposure of humans to low-frequency magnetic and electric fields are set with the objective of preventing the generation of phosphenes, visual sensations of flashing light not caused by light. Measured data on magnetophosphenes, i.e. phosphenes caused by a magnetically induced electric field on the retina, are available from volunteer studies. However, there is no simple way for determining the retinal threshold electric field or current density from the measured threshold magnetic flux density. In this study, the experimental field configuration of a previous study, in which phosphenes were generated in volunteers by exposing their heads to a magnetic field between the poles of an electromagnet, is computationally reproduced. The finite-element method is used for determining the induced electric field and current in five different MRI-based anatomical models of the head. The direction of the induced current density on the retina is dominantly radial to the eyeball, and the maximum induced current density is observed at the superior and inferior sides of the retina, which agrees with literature data on the location of magnetophosphenes at the periphery of the visual field. On the basis of computed data, the macroscopic retinal threshold current density for phosphenes at 20 Hz can be estimated as 10 mA m-2 (-20% to  + 30%, depending on the anatomical model); this current density corresponds to an induced eddy current of 14 μA (-20% to  + 10%), and about 20% of this eddy current flows through each eye. The ICNIRP basic restriction limit for the induced electric field in the case of occupational exposure is not exceeded until the magnetic flux density is about two to three times the measured threshold for magnetophosphenes, so the basic restriction limit does not seem to be conservative. However, the reasons for the non-conservativeness are purely technical: removal of the highest 1% of electric field values by taking the 99th percentile as recommended by the ICNIRP leads to the underestimation of the induced electric field, and there are difficulties in applying the basic restriction limit for the retinal electric field.

  3. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    DOE PAGES

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; ...

    2018-01-05

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less

  4. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less

  5. Azimuthal ExB drift of electrons induced by the radial electric field flowing through a longitudinal magnetic channel with non-magnetized ions

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi

    2016-09-01

    To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.

  6. The sound field of a rotating dipole in a plug flow.

    PubMed

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  7. Stability of Brillouin flow in the presence of slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, D. H.; Lau, Y. Y.; Greening, G.

    2016-09-15

    Including a slow-wave structure (SWS) on the anode in the conventional, planar, and inverted magnetron, we systematically study the linear stability of Brillouin flow, which is the prevalent flow in crossed-field devices. The analytic treatment is fully relativistic and fully electromagnetic, and it incorporates the equilibrium density profile, flow profile, and electric field and magnetic field profiles in the linear stability analysis. Using parameters similar to the University of Michigan's recirculating planar magnetron, the numerical data show that the resonant interaction of the vacuum circuit mode and the corresponding smooth-bore diocotron-like mode is the dominant cause for instability. This resonantmore » interaction is far more important than the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It is absent in either the smooth-bore magnetron or under the electrostatic assumption, one or both of which was almost always adopted in prior analytical formulation. This resonant interaction severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow.« less

  8. Study on queueing behavior in pedestrian evacuation by extended cellular automata model

    NASA Astrophysics Data System (ADS)

    Hu, Jun; You, Lei; Zhang, Hong; Wei, Juan; Guo, Yangyong

    2018-01-01

    This paper proposes a pedestrian evacuation model for effective simulation of evacuation efficiency based on extended cellular automata. In the model, pedestrians' momentary transition probability to a target position is defined in terms of the floor field and queueing time, and the critical time is defined as the waiting time threshold in a queue. Queueing time and critical time are derived using Fractal Brownian Motion through analysis of pedestrian arrival characteristics. Simulations using the platform and actual evacuations were conducted to study the relationships among system evacuation time, average system velocity, pedestrian density, flow rate, and critical time. The results demonstrate that at low pedestrian density, evacuation efficiency can be improved through adoption of the shortest route strategy, and critical time has an inverse relationship with average system velocity. Conversely, at higher pedestrian densities, it is better to adopt the shortest queueing time strategy, and critical time is inversely related to flow rate.

  9. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements: Can we Predict Damage Zone Permeability?

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Faulkner, D. R.

    2009-04-01

    Models predicting crustal fluid flow are important for a variety of reasons; for example earthquake models invoking fluid triggering, predicting crustal strength modelling flow surrounding deep waste repositories or the recovery of natural resources. Crustal fluid flow is controlled by both the bulk transport properties of rocks as well as heterogeneities such as faults. In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a new model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.

  10. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.

  11. Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation

    NASA Technical Reports Server (NTRS)

    McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.; hide

    2009-01-01

    We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  12. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  13. Coupling of magnetopause-boundary layer to the polar ionosphere

    NASA Technical Reports Server (NTRS)

    Wei, C. Q.; Lee, L. C.

    1993-01-01

    The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.

  14. Variations in spatial patterns of soil-vegetation properties and the emergence of multiple resilience thresholds within different debris flow fan positions

    NASA Astrophysics Data System (ADS)

    Mohseni, Neda; Hosseinzadeh, Seyed Reza; Sepehr, Adel; Golzarian, Mahmood Reza; Shabani, Farzin

    2017-08-01

    Debris flow fans are non-equilibrium landforms resulting from the spatial variations of debris flows deposited on them. This geomorphic disturbance involving the asymmetric redistribution of water and sediment may create spatially heterogeneous patterns of soil-vegetation along landforms. In this research, founded on field-based observations, we characterized the spatial patterns of some soil (e.g., particle size distribution including fine and coarse covers, and infiltration capacity) and vegetation (e.g., plant distance, vegetation density, patch size, and average number of patches) properties within different debris flow fan positions (Upper, Middle, and Lower fan) located at the base of the Binaloud Mountain hillslope in northeastern Iran. Thereafter, using a mathematical model of dry land vegetation dynamics, we calculated response trends of the different positions to the same environmental harshness gradient. Field measurements of soil-vegetation properties and infiltration rates showed that the asymmetric redistribution of debris flow depositions can cause statistically significant differences (P < 0.05) in the spatial patterns of soil and eco-hydrological characteristics along different landform positions. The results showed that mean plant distance, mean vegetation density, and the average number of patches decreased as the coarse covers increased toward the Lower fan plots. Conversely, an increase in infiltration rate was observed. The simulation results on the aerial images taken from different positions, illustrated that positions with a heterogeneous distribution of vegetation patterns were not desertified to the same degree of aridity. Thus, the Middle and Lower positions could survive under harsher aridity conditions, due to the emergence of more varied spatial vegetation patterns than at the Upper fan position. The findings, based on a combined field and modeling approach, highlighted that debris flow as a geomorphic process with the asymmetric distribution of depositions on the gentle slope of an alluvial fan, can incur multiple resilience thresholds with different degrees of self-organization under stressful conditions over the spatial heterogeneities of soil-dependent vegetation structures.

  15. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Applications of the discrete Enskog-Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Chu, Kwang-Hua Rainer

    1998-08-01

    The continuous progress of micromachining technology has led to a growing interest in MicroElectroMechanical System (MEMS) for applications ranging from simple microsensors and microactuators to sophisticated microsystems. The characteristic length scale of these microdevices will be of the order of sub-microns so that the gas flow in this environment is within the rarified gas (RG) regime. In this PhD work, the mass/momentum/energy transport of the monatomic gases along the microchannel and the dispersion/attenuation of 1-D ultrasound propagation (plane wave) of RG are investigated by using the Discrete Enskog-Boltzmann approaches. We applied the 4-velocity coplanar model to plane Poiseuille flow of RG in microchannels. Firstly we reported a steady-state solution for this flow with a final-stage uniform density distribution. Then, we modified the model by introducing a density ratio to accomodate the density variations along the microchannel and to include the grazing-collision effects. We also borrowed thee idea from the Extended Irreversible/Reversible Thermodynamics to derive the pressure-gradient for the dimensional velocity field. Our results show the Knudsen minimum of the non- dimensional volume flow rate for Knudsen number (Kn) around 1.5. Using the macroscopic velocity fields, with Cercignani's comments for the 'Kinetic Temperature', we can calculate the related temperature distribution across the microchannel. We also checked the thermodynamic or equilibrium properties of 4-, 6-, and 8-velocity models, by calculating the dispersion relation of 1-D plane ultrasound wave propagation in the RG regime which has large Kn of O(1). The results (after comparison with the measurements) confirmed that the 4-velocity model is the most suitable model for our applications.

  17. Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Husson, L.; Henry, P.; Le Pichon, X.

    2004-12-01

    The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.

  18. Evaluating the impact of a wide range of vegetation densities on river channel pattern

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Roucou, Ron

    2016-04-01

    Braided rivers are very dynamic systems which have complex controls over their planform and flow dynamics. Vegetation is one variable which influences channel geometry and pattern, through its effect on local flow hydraulics and the process continuum of sediment erosion-transport-deposition. Furthermore, where in the braided floodplain stable vegetation develops depends on the temporal sequencing of the river discharge i.e. floods. Understanding the effect of vegetation in these highly dynamic systems has multiple consequences for human activity and floodplain management. This paper focusses on the specific role of vegetation density in controlling braided river form and processes. Previous research in this field has been contradictory; with Gran and Paola (2001) finding that increasing vegetation density decreased the number of active channels. In contrast, Coulthard (2005] observed that as vegetation become denser there was an increase in the number of channels. This was hypothesized to be caused by flow separation around vegetation and the development of bars immediately downstream of the plant. This paper reports the results from a set of experiments in a 4m by 1m flume, where discharge, slope and sediment size were kept constant. Artificial grass was used to represent vegetation with a density ranging from 50 plants/m2 to 400 plants/m2. Digital photographs, using a GoPro camera with a fish eye lens, were taken from ~1m above the flume at an interval of 30 seconds during the 3 hour experiment. The experiments showed that as the vegetation density increased from 50 to 150 plants/m2, the number of channel bars developing doubled from 12 to 24. At vegetation densities greater than 150 plants/m2 there was a decline in the number of bars created to a minimum of 8 bars for a density of 400 plants/m2. We attribute these patterns to the effect that the vegetation has on flow hydraulics, sediment transport processes and the spatial patterns of erosion and deposition. We develop a simple conceptual model to explain the observations along the wide range of vegetation densities investigated. At low plant densities, each plant acted independently and caused flow separation and convergence around each plant, similar to in the Coulthard (2005] experiment. At medium densities, individual plants start to interact together with narrow channels developing longitudinally between vegetative bars. Finally at very high densities, there was both lateral and longitudinal interaction between plants meaning that flow was diverted around them forming wandering, meandering channels. In summary, the relationship between vegetation density and channel braiding is more complex than previous thought, taking a parabolic shape, with maximum braiding occurring at medium vegetation densities.

  19. Variations of High-Energy Ions during Fast Plasma Flows and Dipolarization in the Plasma Sheet: Comparison Among Different Ion Species

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.

    2014-12-01

    We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.

  20. Study of plasma-chemical NO-containing gas flow for treatment of wounds and inflammatory processes.

    PubMed

    Pekshev, Alexander V; Shekhter, Anatoly B; Vagapov, Andrey B; Sharapov, Nikolay A; Vanin, Anatoly F

    2018-02-28

    This work is aimed at exhaustive and detailed study of chemical, physical and physico-chemical characteristics of NO-containing gas flow (NO-CGF) generated by a plasma-chemical generator of Plason device, which has been used in medical practice for more than 15 years for effectively healing wound and inflammatory conditions with exogenous nitric oxide (NO-therapy). Data was obtained on spatial structure of the gas flow, and values of its local parameters in axial and radial directions, such as nitric oxide content, velocity, temperature and mass flow density of nitric oxide, providing altogether the effectiveness of treatment by the exogenous NO-therapy method, were determined experimentally and by computations. It was demonstrated that plasma-chemical synthesis of NO from atmospheric air in a low direct current (DC) arc provides a high mass flow of nitric oxide at the level of 1.6-1.8 mg/s, while in the area of impact of NO-CGF on the biological tissue, on its axis, NO content is 400-600 ppm, flow velocity about 5 m/s, nitric oxide mass flow density 0.25-0.40 mg/(s·cm 2 ), temperature 40-60 °C. Tendencies were determined for designing new devices for further experimental biological and medical research in the field of NO-therapy: lowering the temperature of NO-CGF to ambient temperature will enable variation, in experiments, of the affecting flow parameters in a wide range up to their maximum values: NO content up to 2000 ppm, velocity up to 20 m/s, nitric oxide mass flow density up to 2.5 mg/(s·cm 2 ). Copyright © 2017. Published by Elsevier Inc.

  1. Chemically reacting supersonic flow calculation using an assumed PDF model

    NASA Technical Reports Server (NTRS)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  2. A study of the low energy magnetospheric lobal wind and possible controlling factors

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Liemohn, Mike; Chandler, Michael; Moore, Thomas

    2005-01-01

    The results of a survey of the parameters of the flow of low energy particles in the low latitude lobes of the magnetospheric, the lobal wind, are presented. Data from the TIDE instrument on the Polar satellite are used to derive the characteristics (density, temperature, and flow speed) of the lobal wind. These characteristics and their behavior with changes in the magnetic field, solar wind, and other associated parameters are examined.

  3. A Geophysical Model for the Origin of Volcano Vent Clusters in a Colorado Plateau Volcanic Field

    NASA Astrophysics Data System (ADS)

    Deng, Fanghui; Connor, Charles B.; Malservisi, Rocco; Connor, Laura J.; White, Jeremy T.; Germa, Aurelie; Wetmore, Paul H.

    2017-11-01

    Variation in spatial density of Quaternary volcanic vents, and the occurrence of vent clusters, correlates with boundaries in Proterozoic crust in the Springerville volcanic field (SVF), Arizona, USA. Inverse modeling using 538 gravity measurements shows that vent clusters correlate with gradients in the gravity field due to lateral variation in crustal density. These lateral discontinuities in the crustal density can be explained by boundaries in the North American crust formed during Proterozoic accretion. Spatial density of volcanic vents is low in regions of high-density Proterozoic crust, high in areas of relatively low density Proterozoic crust, and is greatest adjacent to crustal boundaries. Vent alignments parallel these boundaries. We have developed 2-D and 3-D numerical models of magma ascent through the crust to simulate long-term, average magma migration that led to the development of vent clusters in the SVF, assuming that a viscous fluid flow through a porous media is statistically equivalent to magma migration averaged over geological time in the full field scale. The location and flux from the uniform magma source region are boundary conditions of the model. Changes in model diffusivity, associated with changes in the bulk properties of the lithosphere, can simulate preferential magma migration paths and alter estimated magma flux at the surface, implying that large-scale crustal structures, such as inherited tectonic block boundaries, influence magma ascent and clustering of volcanic vents. Probabilistic models of volcanic hazard for distributed volcanic fields can be improved by identifying crustal structures and assessing their impact on volcano distribution with the use of numerical models.

  4. Investigation of the external flow analysis for density measurements at high altitude

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1984-01-01

    The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.

  5. NR-code: Nonlinear reconstruction code

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming

    2018-04-01

    NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

  6. New Results From Galileo's First Flyby of Ganymede: Reconnection-Driven Flows at the Low-Latitude Magnetopause Boundary, Crossing the Cusp, and Icy Ionospheric Escape

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn; Paterson, William R.; Bard, Christopher; Dorelli, John; Glocer, Alex; Sarantos, Menelaos; Wilson, Rob

    2018-04-01

    On 27 June 1996, the NASA Galileo spacecraft made humanity's first flyby of Jupiter's largest moon, Ganymede, discovering that it is the only moon known to possess an internally generated magnetic field. Resurrecting the original Galileo Plasma Subsystem (PLS) data analysis software, we processed the raw PLS data from G01 and for the first time present the properties of plasmas encountered. Entry into the magnetosphere of Ganymede occurred near the confluence of the magnetopause and plasma sheet. Reconnection-driven plasma flows were observed (consistent with an Earth-like Dungey cycle), which may be a result of reconnection in the plasma sheet, magnetopause, or might be Ganymede's equivalent of a Low-Latitude Boundary Layer. Dropouts in plasma density combined with velocity perturbations afterward suggest that Galileo briefly crossed the cusps into closed magnetic field lines. Galileo then crossed the cusps, where field-aligned precipitating ions were observed flowing down into the surface, at a location consistent with observations by the Hubble Space Telescope. The density of plasma outflowing from Ganymede jumped an order of magnitude around closest approach over the north polar cap. The abrupt increase may be a result of crossing the cusp or may represent an altitude-dependent boundary such as an ionopause. More diffuse, warmer field-aligned outflows were observed in the lobes. Fluxes of particles near the moon on the nightside were significantly lower than on the dayside, possibly resulting from a diurnal cycle of the ionosphere and/or neutral atmosphere.

  7. Negative energy, superluminosity, and holography

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph; Susskind, Leonard; Toumbas, Nicolaos

    1999-10-01

    The holographic connection between large N super Yang-Mills (SYM) theory and gravity in anti-de Sitter (AdS) space requires unfamiliar behavior of the SYM theory in the limit that the curvature of the AdS geometry becomes small. The paradoxical behavior includes superluminal oscillations and negative energy density. These effects typically occur in the SYM description of events which take place far from the boundary of AdS when the signal from the event arrives at the boundary. The paradoxes can be resolved by assuming a very rich collection of hidden degrees of freedom of the SYM theory which store information but give rise to no local energy density. These degrees of freedom, called precursors, are needed to make possible sudden apparently acausal energy momentum flows. Such behavior would be impossible in classical field theory as a consequence of the positivity of the energy density. However we show that these effects are not only allowed in quantum field theory but that we can model them in free quantum field theory.

  8. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    NASA Technical Reports Server (NTRS)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  9. Poly-Gaussian model of randomly rough surface in rarefied gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksenova, Olga A.; Khalidov, Iskander A.

    2014-12-09

    Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less

  10. Stochastic-field cavitation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumond, J., E-mail: julien.dumond@areva.com; AREVA GmbH, Erlangen, Paul-Gossen-Strasse 100, D-91052 Erlangen; Magagnato, F.

    2013-07-15

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-fieldmore » cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.« less

  11. Turbulence in transient solar phenomena

    NASA Technical Reports Server (NTRS)

    Cross, M.

    1982-01-01

    If theta dependence is kept in the Navier-Stokes equations for the solar wind, than a density enhancement will grow. This growth is followed in the nonlinear equations until a streamer is formed. Viscosity stops the streamer's growth when there is a large difference in speeds inside and outside of the streamer. Using classical fluid mechanics and a latitude dependent hydrodynamical model, it is shown that unmagnetized perturbed flow evolves into high and low density regions. The growth mechanisms for density enrichments are discussed along with a nonlinear solution for their large amplitude development. It was found that a higher Reynolds number is needed to start turbulence in the presence of a magnetic field because energy is required to bend the field lines attached to the fluid. If cosmological gas was turbulent shortly after the big bang, then galaxies could have been formed by turbulent eddies.

  12. Characteristics of magnetised plasma flow around stationary and expanding magnetic clouds

    NASA Astrophysics Data System (ADS)

    Dalakishvili, Giorgi

    Studies of interplanetary magnetic clouds have shown that the characteristics of the region ahead of these objects, which are moving away from the Sun in the solar wind, play a role in determining their geo-efficiency, i.e. the kind and the degree of their effects on the Earth environment. Therefore, our main goal is to model and study the plasma parameters in the vicinity of interplanetary magnetic clouds. To this end we present a model in which the magnetic clouds are immersed in a magnetised plasma flow with a homogeneous magnetic field. We first calculate the resulting distortion of the external magnetic field and then determine the plasma velocity by employing the frozen-in condition. Subsequently, the plasma density and pressure are expressed as functions of the magnetic field and the velocity field. The plasma flow parameters are determined by solving the time-independent ideal MHD equations for both the stationary regime and for the case of an expand-ing cylindrical magnetic cloud, thus extending previous results that appeared in the literature.

  13. Effect of volunteers on maize gene flow.

    PubMed

    Palaudelmàs, Montserrat; Peñas, Gisela; Melé, Enric; Serra, Joan; Salvia, Jordi; Pla, Maria; Nadal, Anna; Messeguer, Joaquima

    2009-08-01

    Regulatory approvals for deliberate release of GM maize events into the environment have lead to real situations of coexistence between GM and non-GM, with some fields being cultivated with GM and conventional varieties in successive seasons. Given the common presence of volunteer plants in maize fields in temperate areas, we investigated the real impact of GM volunteers on the yield of 12 non-GM agricultural fields. Volunteer density varied from residual to around 10% of plants in the field and was largely reduced using certain cultural practices. Plant vigour was low, they rarely had cobs and produced pollen that cross-fertilized neighbour plants only at low--but variable--levels. In the worst-case scenario, the estimated content of GMO was 0.16%. The influence of GM volunteers was not enough to reach the 0.9% adventitious GM threshold but it could potentially contribute to adventitious GM levels, especially at high initial densities (i.e. above 1,000 volunteers/ha).

  14. Application of Navier-Stokes code PAB3D with kappa-epsilon turbulence model to attached and separated flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Lakshmanan, B.; Carlson, John R.

    1995-01-01

    A three-dimensional Navier-Stokes solver was used to determine how accurately computations can predict local and average skin friction coefficients for attached and separated flows for simple experimental geometries. Algebraic and transport equation closures were used to model turbulence. To simulate anisotropic turbulence, the standard two-equation turbulence model was modified by adding nonlinear terms. The effects of both grid density and the turbulence model on the computed flow fields were also investigated and compared with available experimental data for subsonic and supersonic free-stream conditions.

  15. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall

    1995-01-01

    We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  16. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall

    1994-01-01

    We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  17. Lagrangian statistics in compressible isotropic homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  18. Thermally activated flux flow in FeSe0.5Te0.5 superconducting single crystal

    NASA Astrophysics Data System (ADS)

    Hamad, R. M.; Kayed, T. S.; Kunwar, S.; Ziq, Kh A.

    2017-07-01

    The current-voltage (J-E) isotherms of single crystal FeSe0.5Te0.5 sample have been measured at several temperatures near the transition temperature (Tc) and under applied magnetic fields (H). A power law (E ˜ Jβ ) has been used to fit the data and evaluate the activation energy Uo (T) using β = Uo/kBT. At low current density (J << Jc), the initial behaviour is associated with thermally activated flux Flow (TAFF) while at J >> Jc vortex flux flow (FF) behavior is expected. The effects of applied magnetic field on FF and TAFF also been investigated. We found that Uo(FF) was reduced with by about an order of magnitude in magnetic fields as low as ˜1.5 Tesla-the reduction in Uo(TAFF) is even faster than in Uo(FF)-hence reflecting the low pinning nature (defects, vacancies etc.) of FeSe0.5Te0.5 superconductor.

  19. Kinematic solar dynamo models with a deep meridional flow

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.

    2004-05-01

    We develop two different solar dynamo models to verify the hypothesis that a deep meridional flow can restrict the appearance of sunspots below 45°, proposed recently by Nandy & Choudhuri. In the first one, a single polytropic approximation for the density profile was taken, for both radiative and convective zones. In the second one, that of Pinzon & Calvo-Mozo, two polytropes were used to distinguish between both zones. The magnetic buoyancy mechanism proposed by Dikpati & Charbonneau was chosen in both models. We have in fact obtained that a deep meridional flow pushes the maxima of toroidal magnetic field towards the solar equator, but, in contrast to Nandy & Choudhuri, a second zone of maximal fields remains at the poles. The second model, although closely resembling the solar standard model of Bahcall et al., gives solar cycles three times longer than observed.

  20. Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery

    DOE PAGES

    Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.

    2017-03-28

    We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less

  1. Electrodynamics in the Friedmann Robertson Walker universe: Maxwell and Dirac fields in Newman Penrose formalism

    NASA Astrophysics Data System (ADS)

    Khanal, U.

    2006-07-01

    Maxwell and Dirac fields in Friedmann Robertson Walker (FRW) spacetime are investigated using the Newman Penrose method. The variables are all separable, with the angular dependence given by spin-weighted spherical harmonics. All the radial parts reduce to the barrier penetration problem, with mostly repulsive potentials representing the centrifugal energies. Both the helicity states of the photon field see the same potential, but that of the Dirac field see different ones; one component even sees attractive potential in the open universe. The massless fields have the usual exponential time dependences; that of the massive Dirac field is coupled to the evolution of the cosmic scale factor a. The case of the radiation-filled flat universe is solved in terms of the Whittaker function. A formal series solution, valid in any FRW universe, is also presented. The energy density of the Maxwell field is explicitly shown to scale as a-4. The co-moving particle number density of the massless Dirac field is found to be conserved, but that of the massive one is not. Particles flow out of certain regions, and into others, creating regions that are depleted of certain linear and angular momenta states, and others with excess. Such a current of charged particles would constitute an electric current that could generate a cosmic magnetic field. In contrast, the energy density of these massive particles still scales as a-4.

  2. Probing the nuclear symmetry energy at high densities with nuclear reactions

    NASA Astrophysics Data System (ADS)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  3. Critical Dynamics of Gravito-Convective Mixing in Geological Carbon Sequestration

    PubMed Central

    Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Dai, Zhenxue; Cole, David; Moortgat, Joachim

    2016-01-01

    When CO2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivity of facies is critical in determining the large-scale transport of CO2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. We discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution. PMID:27808178

  4. Plasma flow measurements in the Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) and comparison with B2.5-Eirene modeling

    NASA Astrophysics Data System (ADS)

    Kafle, N.; Owen, L. W.; Caneses, J. F.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2018-05-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local electron temperature and density at various radial and axial locations. A recently constructed Mach-double probe provides the added capability of simultaneously measuring electron temperatures ( T e), electron densities ( n e), and Mach numbers (M). With this diagnostic, it is possible to infer the plasma flow, particle flux, and heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.5 (towards the dump plate) and 1.0 (towards the target plate) downstream from the helicon source, and a stagnation point (no flow) near the source for the case where the peak magnetic field was 1.3 T. Measurements of particle flow and ne and Te profiles are discussed. The extensive coverage provided by these diagnostics permits data-constrained B2.5-Eirene modeling of the entire plasma column, and comparison with results of modeling in the high-density helicon plasmas will be presented.

  5. Flow Visualization in Supersonic Turbulent Boundary Layers.

    NASA Astrophysics Data System (ADS)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high-speed movies were made of the fog under general illumination, thus providing information about the streamwise evolution of the structures seen in the planar stills. Rayleigh scattering from a laser sheet was used to create instantaneous density cross-sections in the M = 2.5 boundary layer. The Rayleigh scattering experiment represents the first measurement of the instantaneous 2-D field of an intrinsic fluid property in any boundary layer. Imaged by an intensified UV camera, scattering from the Argon-Fluoride laser (193 nm) revealed density structures with sharp interfaces between high and low-density fluid. These pictures were also used to generated quantitative turbulence information. Density pdf profiles, intermittency values, density correlations, and structure shape data were derived with standard digital image-processing techniques.

  6. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    USGS Publications Warehouse

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant-head boundaries with the Time-Variant Constant-Head (CHD) Package. These options allow for increased flexibility when using CHD flow boundaries with the zero-dispersive flux solute boundaries implemented by MT3DMS at constant-head cells. This report contains revised input instructions for the MT3DMS Dispersion (DSP) Package, Variable-Density Flow (VDF) Package, Viscosity (VSC) Package, and CHD Package. The report concludes with seven cases of an example problem designed to highlight many of the new features.

  7. Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head

    PubMed Central

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-01-01

    Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Significance Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials. PMID:24099977

  8. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2014-05-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 Martian radii the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  9. Automated MRI segmentation for individualized modeling of current flow in the human head

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-12-01

    Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  10. Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Leary, P.; Malin, P.

    2013-12-01

    Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.

  11. Asymmetric flow field-flow fractionation in the field of nanomedicine.

    PubMed

    Wagner, Michael; Holzschuh, Stephan; Traeger, Anja; Fahr, Alfred; Schubert, Ulrich S

    2014-06-03

    Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.

  12. Measurement of Three-dimensional Density Distributions by Holographic Interferometry and Computer Tomography

    NASA Technical Reports Server (NTRS)

    Vest, C. M.

    1982-01-01

    The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.

  13. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.

    PubMed

    Bunton, Patrick H; Tullier, Michael P; Meiburg, Eckart; Pojman, John A

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  14. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick H.; Tullier, Michael P.; Meiburg, Eckart; Pojman, John A.

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  15. The solar atmosphere and the structure of active regions

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1974-01-01

    The existence of 'holes' in the corona is reported characterized by abnormally low densities and temperatures. It was found that such coronal holes appear to be the source of high-velocity, enhanced-density streams in the solar wind as observed at the earth's orbit. It was further noted that coronal holes appear to be associated with regions of diverging magnetic fields in the corona. Models were developed to accomplish the objective for the principal energy flows in the transition region and corona.

  16. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite differences in appearance and bulk‒flow density. These results demonstrate that debris flows can have strong control on rates of steepland evolution and contribute to a foundation needed for modeling debris‒flow incision stochastically.

  17. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  18. High-Latitude Neutral Density Structures Investigated by Utilizing Multi-Instrument Satellite Data and NRLMSISE-00 Simulations

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2018-02-01

    This study investigates various types of neutral density features developed in the cusp region during magnetically active and quiet times. Multi-instrument Challenging Minisatellite Payload data provide neutral density, electron temperature, neutral wind speed, and small-scale field-aligned current (SS-FAC) values. Gravity Recovery and Climate Experiment neutral density data are also employed. During active times, cusp densities or density spikes appeared with their underlying flow channels (FCs) and enhanced SS-FACs implying upwelling, fueled by Joule heating, within/above FCs. Both the moderate nightside cusp enhancements under disturbed conditions and the minor dayside cusp enhancements under quiet conditions developed without any underlying FC and enhanced SS-FACs implying the role of particle precipitation in their development. Observations demonstrate the relations of FCs, density spikes, and upwelling-related divergent flows and their connections to the underlying (1) dayside magnetopause reconnection depositing magnetospheric energy into the high-latitude region and (2) Joule heating-driven disturbance dynamo effects. Results provide observational evidence that the moderate nightside cusp enhancements and the minor dayside cusp enhancements detected developed due to direct heating by weak particle precipitation. Chemical compositions related to the dayside density spike and low cusp densities are modeled by Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended 2000. Modeled composition outputs for the dayside density spike's plasma environment depict some characteristic upwelling signatures. Oppositely, in the case of low dayside cusp densities, composition outputs show opposite characteristics due to the absence of upwelling.

  19. Numerical Investigation of Statistical Turbulence Effects on Beam Propagation through 2-D Shear Mixing Layer

    DTIC Science & Technology

    2010-03-01

    instrumental in helping me refine my grid and flow profile to produce my investigation flow field. Dr. Brooks and Dr. Grismer helped me by getting me current ...wavelength of the source and changes in the index of refraction from density changes in the medium. They are directly attributed to three physical phenomenon...Turbulence arises from injection of energy into the fluid causing the motion to become unstable. This source of this energy injection is usually

  20. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii

    NASA Astrophysics Data System (ADS)

    Gurioli, Lucia; Pareschi, M. Teresa; Zanella, Elena; Lanza, Roberto; Deluca, Enrico; Bisson, Marina

    2005-06-01

    Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.

Top